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Abstract—There is currently an urgent need for effective solutions against distributed denial-of-service (DDoS) attacks directed at

many well-known Web sites. Because of increased sophistication and severity of these attacks, the system administrator of a victim

site needs to quickly and accurately identify the probable attackers and eliminate the attack traffic. Our work is based on a probabilistic

marking algorithm in which an attack graph can be constructed by a victim site. We extend the basic concept such that one can quickly

and efficiently deduce the intensity of the “local traffic” generated at each router in the attack graph based on the volume of received

marked packets at the victim site. Given the intensities of these local traffic rates, we can rank the local traffic and identify the network

domains generating most of the attack traffic. We present our traceback and attacker identification algorithms. We also provide a

theoretical framework to determine the minimum stable time tmin, which is the minimum time needed to accurately determine the

locations of attackers and local traffic rates of participating routers in the attack graph. Entensive experiments are carried out to

illustrate that one can accurately determine the minimum stable time tmin and, at the same time, determine the location of attackers

under various threshold parameters, network diameters, attack traffic distributions, on/off patterns, and network traffic conditions.

Index Terms—DDoS attack, traceback, attack traffic filtering, minimum stable time.
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1 INTRODUCTION

THE Internet is an open architecture susceptible to various
forms of network attack, a prime example of which is the

distributed denial-of-service (DDoS) attack. Well established
commercial sites such as Yahoo, Amazon, and eBay were
being attacked and taken out of service for many hours in
February 2000 [2]. Recently, DDoS attacks have increased in
frequency, sophistication, and severity. A recent study by the
Computer Emergency Response Team (CERT) indicates that
the number of DDoS attacks has increased by 50 percent per
year [8]. More alarming is the fact that many sophisticated
DDoS attack tools, such as Tribal flood network (TBN),
TFN2K, and Trino can be easily downloaded from the
Internet such that users of these tools can launch a large-scale
site attack with a few simple key strokes.

A major difficulty in defending against DDoS attacks is
that attackers can easily disguise themselves by spoofing the
source IP addresses of their packets. Together with the
stateless nature of the Internet, it is then very difficult to
deduce and determine the originating sources of the attack
packets. This is the DDoS attacker traceback problem.

To prevent spoofed packets from entering the Internet,
an ISP network administrator can implement services such

as ingress filtering [7]. If packets enter an edge router

different from the known attached network domain, they

can be dropped. However, ingress filtering requires edge

routers to have sufficient processing power to inspect the

source IP address of every packet and determine whether

the address is legitimate or not. More importantly, ingress

filtering requires universal deployment at the network edge to

eliminate all spoofed packets.
Other methods to counter DDoS attacks have been

proposed but all have significant performance and deploy-

ment problems. For example, the input debugging technique

[19] requires cooperation between system administrators of

different ISPs. The major limitation of this approach is that

it may not be able to trace back the DDoS attackers in real

time or while a DDoS attack is ongoing. Controlled flooding

[4] generates many additional packets in the network,

which can itself lead to a form of DDoS attack. Network

logging [16] requires significant additional storage and

computational overhead at the participating routers.
Various researchers [12], [14], [15], [17] have proposed to

trace back DDoS attackers using a probabilistic packet

marking algorithm. In these solutions, each participating

router will probabilistically mark packets destined for a

victim site. Based on the received marked packets, the

victim can construct an attack graph of paths traversed by

these packets until they reach the victim. The constructed

attack graph consists of the paths traversed by the attack

packets as well as the paths traversed by the regular

packets. Therefore, it is not necessarily effective in isolating

all the responsible attackers.
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In this paper, we complement and enhance the prob-
abilistic marking method by more accurately identifying the
locations of the DDoS attackers. Our work is as follows:

1. We propose an effective method to allow a victim
site to deduce the local traffic rates of all participating
routers in an attack graph.

2. We provide a theoretical framework to determine
the minimum stable time tmin, which is the minimum
time required to accurately determine the local
traffic rates of all the participating routers. Note
that the lower the value of tmin, the earlier a system
administrator can determine the locations of the
attackers.

3. The traceback methodology is effective for a general
network topology and different attack patterns.

The balance of the paper is organized as follows: In
Section 2, we provide the necessary background of the
probabilistic marking algorithm for our work. In Section 3,
we introduce our traceback method and discuss howwe can
isolate potential attackers for a simple but illustrative linear
network topology. In Section 4, we extend our traceback
method to a general network topology. Experiments are
presented in Section 5 to illustrate the effectiveness of our
traceback method. Related work and implementation issues
are discussed in Section 6. Section 7 concludes.

2 BACKGROUND

IP traceback is an approach to determine the sources of a
DDoS attack. To accomplish the goal, routers are assumed
to provide additional packet marking functions besides basic
packet routing and forwarding. In particular, whenever a
packet passes through a router, the packet will be marked,
either deterministically or probabilistically. Marked packets
have information about their respective traversed paths.
Upon receiving the marked packets, a victim site, denoted
by V, can use the marking information to create an attack
graph. Based on the attack graph and received packets, V
can trace the attackers back towards the sources (i.e..,
originators of the attack traffic). In the following, we first
present the necessary background of the probabilistic edge
marking algorithm in [14], which is used by the victim site
V to create an attack graph. Given the attack graph, we then
present a methodology to estimate the local traffic of all
routers in the graph and the minimum time it takes to locate
the potential attackers.

2.1 Probabilistic Edge Marking Algorithm

To support IP traceback, one needs to allocate sufficient
space in the IP header to record the traversed path of a
packet. For example, every router in the path can append its
own IP address in the header. A major problem with this
simple approach is that the length of the path (i.e., the
number of hops) traversed by packet is not fixed. For
example, one packet may take two hops to the victim site V
whereas another packet may take 15. Therefore, it is
impossible to preallocate a sufficient amount of space in
the packet header. Another technical difficulty in recording
the complete traversed path is that an attacker can
potentially manipulate this path information to fill in false
router identifications, in order to mislead the path analysis.

Rather than record the complete path, probabilistic edge
marking [14], [17] proposes to record only a traversed edge
from the attacker to the victim site V in a probabilistic
fashion. The marking algorithm uses some unused fields in
the existing IP header to store three fields of information.
The three fields are {start, end, distance}. The
start and end fields store the IP addresses of the two
routers at the end points of the marked edge while the
distance field records the number of hops between the
marked edge and the victim site V. When a victim site V is
under a DDoS attack, it will send a marking-request-

signal to a set of routers (i.e., all the routers which are
within d � 1 hops from V) requesting their participation in
the probabilistic edge marking process. Each participating
router will then mark each packet destined for V with
probability p. In other words, whenever an IP packet
addressed to V passes through a router in the enabled
router set, the router, upon deciding the out-going edge of
the packet through standard routing lookup, will mark the
out-going edge in the packet’s IP header with probability p.
If marking is performed, the router records its IP address in
the start field and sets the value of the distance field to
zero. If the router decides not to mark the packet, the router
needs to check whether the distance field of the packet is
equal to zero or not. If it is equal to zero, the router records
its IP address in the end field and then increments the
distance field by one. If the distance field is not equal
to zero, the router simply increments the distance field by
one. Note that the mandatory increment of the distance
field is crucial because it is used to minimize the probability
of spoofing a marked edge. Under the marking method, any
packet generated by an attacker will have a distance greater
than or equal to the hop count between the victim site V and
the attacker. Therefore, an attacker cannot forge any edge
between itself and V. The probabilistic edge marking
algorithm used by each participating router in the enabled
set is illustrated in Fig. 1.

By the property of the probabilistic marking algorithm,
each traversed edge of an attack packet will have a different
probability of being marked or unmarked. Let PmðdÞ denote
the probability that a victim site V will find an edge which is
d hops away as a marked edge. In general, we have

PmðdÞ ¼ pð1� pÞd d � 0: ð1Þ

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 10, OCTOBER 2005

Fig. 1. Probabilistic edge marking algorithm for each participating router.



In other words, an edge which is d hops away from the
victim site V will only be marked if a router connected to
that edge decides to mark the packet and the remaining
routers along the same path decide not to mark this packet
(thereby overwriting any old mark). Let PuðdÞ be the
probability that a victim site V will not find an edge which
is d hops away or closer as a marked edge. We have

PuðdÞ ¼ ð1� pÞdþ1 d � 0: ð2Þ

This happens when all the routers along the path to V
decide not to mark the packet. Fig. 2 illustrates the set of
marked and unmarked edges collected by the victim site V
under a simple linear network topology. In the example, V
can collect four types of packets. The first three types are
marked packets with edges ðR3; R2Þ, ðR2; R1Þ, and ðR1;�Þ,
respectively. The last type of packet that can be received by
V is the unmarked packet.

V, upon receiving packets, needs to first filter out those
unmarked packets since they do not carry any information
useful in the attack graph construction. For all the collected
marked packets, the victim site V needs to execute the graph
construction algorithm, shown in Fig. 3, to construct the
attack graph.

To illustrate the attack graph construction algorithm, let
us consider a network which has a tree-like topology as
depicted in Fig. 4. In the figure, the routers are represented

by Ri and the victim site is represented by V. Packets
passing through the routers will be marked by the
probabilistic edge marking algorithm shown in Fig. 1. At

the end of the measurement period, the victim site V will
have received a number of packets with the marking

classification shown in Table 1.
V uses these marked packets to create an attack graph

based on the attack graph construction algorithm in Fig. 3.

From the above example, the attack graph contains four
linear paths, which are:

1. Path 1: R3 ! R2 ! R1 ! V,
2. Path 2: R4 ! R2 ! R1 ! V,
3. Path 3: R7 ! R6 ! R5 ! V, and
4. Path 4: R10 ! R9 ! R8 ! V.
It is important to point out that the following advantages

of the probabilistic marking algorithm:

. One only needs to allocate a small and finite amount
of space in the IP header so as to store the edge
information. As proposed in [14], this can be
achieved using the existing unused space in the
header.

. The distance field provides an ordering relationship
between edges so that the victim site V can construct
the attack graph from the received marked edges.
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Fig. 2. Example of a probabilistic edge marking.

Fig. 3. Attack graph construction algorithm.

Fig. 4. Example of attack graph construction: Solid lines represent edges

of the constructed attack graph G while a dotted line represents an edge

that is not marked or discovered by the algorithm.

TABLE 1
Marked Packet Received by the Victim Site V



. One can use this algorithm to construct the attack
graph in real time (e.g., construction of the attack
graph can be done during a DDoS attack).

One major shortcoming of the probabilistic edge marking
algorithm is that it does not provide an effective means to
locate the positions of the potential attackers in real time. In
general, the attack graph only provides a topology of the
attack traffic addressed to the victim site V. In the following,
we present a methodology to identify the potential attackers
and, at the same time, quantify the minimum time required
to determine the locations of the attackers.

3 ATTACKER TRACEBACK: LINEAR TOPOLOGY

Let us first present a network model and some of its
important components, namely transit traffic, local traffic,
and outgoing traffic of a participating router. Fig. 5 illustrates
the network model. A directed acyclic graph (DAG) rooted
at V represents the network topology while V itself also
represents a victim site. The DAG consists of routers and
local area networks (LANs). For simplicity of illustration,
the DAG shows only the network components that
participate in forwarding traffic to the victim site V. Let
Ri represent an upstream router of V and the DAG a map of
all routers which forward traffic to V.

LANs contain a number of end hosts, including some
legitimate clients of V and possibly some attackers. The
traffic to V generated by both the clients and attackers is
forwarded by routers of their LANs. For example, in Fig. 5,
router R1 serves as a gateway between LAN0 and LAN1.
These two LANs are regarded as the local administrative
domain of R1. A router is responsible for forwarding traffic
generated from its local administrative domain and any
traffic generated from the local administrative domains of
its upstream routers. In Fig. 5, the routers R3, R4, and R5 are
considered the upstream routers of R1 while routers R3 and
R4 are the immediate upstream routers of R1. We say that a
router is a leaf router in a DAG if it is not connected to any
upstream router. For example, in Fig. 5, routers R2, R3, and

R5 are leaf routers. All other routers are called internal
routers, for example, R1 and R4.

In our work, we classify three types of traffic. They are
transit traffic, local traffic, and outgoing traffic. The transit
traffic of Ri is the traffic forwarded from the immediate
upstream routers of Ri. The local traffic of Ri is the traffic
generated from the local administrative domain of Ri. The
outgoing traffic of Ri is the sum of the transit traffic and the
local traffic of Ri. To illustrate, consider the example in
Fig. 5. The traffic to V is generated in LAN5 and has to go
through routers R5, R4, and R1. The traffic from LAN5 is
considered the transit traffic for router R4. Clients in LAN4

can also generate traffic to V and this traffic is considered
the local traffic of R4. The union of these two kinds of traffic
generated in LAN4 and LAN5 is considered the outgoing
traffic of R4.

Definition 1. The “local traffic” of a router Ri consists of the
packets destined for the victim site V, where the packets are
generated within the local administrative domain of Ri.

Definition 2. An attacker is defined as the router whose local
traffic contributes a sufficiently large percentage of the received
traffic at the victim site V.

In our work, we propose a traceback algorithm to
determine the locations of the attackers. Intuitively, attack-
ers may send a large number of packets to the victim site V.
Therefore, the volume of local traffic of routers where
attackers are located must be high. If one can determine the
amount of the local traffic generated from the local
administrative domain of each router, one can traceback
the source of the attack up to that local administrative
domain.

Note that the victim site V can utilize the marked packets
in two ways. First, these marked packets are used to
construct an attack graph G. Second, one can also use the
marked packets to generate statistical information so as to
traceback the potential attackers. In the following, we will
show that, based on the collected marked packets, one can
deduce the intensity of the local traffic for every router in the
attack graph G. Based on the traffic intensity of the local
traffic rate at each router, one can determine the possible
locations of the attackers. It is important to point out that
one major technical difficulty in estimating the local traffic
rate of a router is to determine the minimum stable time tmin,
which is the minimum time we need to collect the marked
packets such that the calculated local traffic rates are correct
and stable. Notice that once we reach the stability point, then
we can accurately determine the locations of the attackers.
In the following two sections, we illustrate how we can
determine the local traffic rates and the minimum stable
time tmin.

3.1 Determination of Local Traffic Rates and
Minimum Stable Time tmin

To illustrate the proposed method, let us consider the
following simple but illustrative example (in a later section,
we will extend the method to a general network topology).
Fig. 6 illustrates a linear network topology with d routers Ri,
1 � i � d. Router Ri receives its local traffic (i.e., traffic
generated from its local network domain) and forwards the
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Fig. 5. An example network topology.



local traffic to the victim siteV. Let �i denote the average local
traffic rate (in packets/s) from the routerRi to the victim site
V. Each router also performs the packet routing/forwarding
functions for all upstream traffic destined for V. For example,
router R3 in Fig. 6 performs packet routing/forwarding for
traffic �j for j ¼ 3; 4; . . . ; d. The purpose is that if one can
estimate the local traffic rates �i for all these routers from the
received marked packets, then, based on the intensities of
these traffic rates, one can identify the locations of the
attackers. Note also that in estimating the local traffic rates �i,
one cannot simply rely on inspecting the source IP addresses
since they can be easily spoofed by the attackers.

By the nature of the probabilistic marking algorithm,
each router may mark any local or upstream transit packet
to the victim site V. If the router Rj decides to mark a transit
packet, then, in essence, it resets the packet’s marking by
any upstream router of Rj. Let ~NNjðtÞ be a random variable
denoting the number of marked packets received by the
victim site V at time t, such that the start field is the router
Rj, for 1 � j � d. To compare these random variables ~NNjðtÞ
for 1 � j � d, we need the following definition from [13]:

Definition 3. Let X1 and X2 be two random variables. We

say that X1 is stochastically larger than X2, denoted as
X1 �st X2, if

Prob½X1 > x� � Prob½X2 > x� 8x:

It is clear that if we collect marked packets for a sufficiently
long period, the following relationship will hold:

~NNjðtÞ �st
~NNjþ1ðtÞ for j ¼ 1; . . . ; d� 1: ð3Þ

The above relationship holds because

1. Each router carries its local traffic as well as any
upstream transit traffic to victim site V. In the long
run, the number of marked packets by Rj should be
greater than the number of marked packets by Rjþ1.

2. Each router Rj will probabilistically mark a transit
packet to the victim site V. Therefore, the router Rj

erases any edge marking by an upstream router.

Let NjðtÞ be the number of marked packets received by the
victim site V at time t such that the start field is the router
Rj. We have the following relationship:

NjðtÞ ¼
Xd
i¼j

�it

 !
pð1� pÞj�1 j ¼ 1; . . . ; d: ð4Þ

The term in the parenthesis corresponds to the total
number of packets destined for the victim site V
forwarded by router Rj at time t. The remaining term is
the probability that these packets are marked by Rj and

that these packets are not marked by any downstream
routers of Rj. Equation (4) is a system of triangular
equations, so we can rearrange the above equations and
obtain the local traffic rate �i at each router Ri as:

�i ¼
NiðtÞ

tpð1�pÞi�1 � Niþ1ðtÞ
tpð1�pÞi 1 � i � d� 1;

NdðtÞ
tpð1�pÞd�1 i ¼ d:

8<
: ð5Þ

The remaining technical issue is the following: To have
an accurate estimate of the local traffic rates, we have to
make sure that the conditions in (3) are satisfied. It is not
difficult to observe that these conditions are not satisfied,
for example, when the duration of collecting these marked
packets is very small (e.g., t � 0). In the following, we
provide an analytical method to derive the minimum stable
time tmin such that the conditions of (3) are satisfied. Once
these conditions are satisfied, we can use the estimate of the
local traffic rates based on (5) to traceback the potential
attackers. To simplify the notation, let us define:

NjðtÞ ¼ �0
jt; where �

0
j ¼

Xd
i¼j

�i

 !
pð1� pÞj�1: ð6Þ

Assuming that the random variables ~NNj and ~NNjþ1 are
Poisson random variables,1 we can reformulate the problem
of finding the minimum stable time tmin as:

Prob½ ~NNjðtminÞ � ~NNjþ1ðtminÞ� � pthreshold 8j 2 f1; . . . ; d� 1g;
ð7Þ

where pthreshold is a high probability (e.g., pthreshold ¼ 95%). In
other words, we want to find the minimum time tmin such
that, with a very high probability, the number of collected
packets marked by router Rj is higher than the number of
collected packets marked by router Rjþ1 for 1 � j � d� 1.
Since the random variables ~NNjðtÞ and ~NNjþ1ðtÞ are Poisson,
we have

Prob½ ~NNjðtminÞ � ~NNjþ1ðtminÞ�

¼
X1
k¼0

Prob½ ~NNjðtminÞ � k�Prob½ ~NNjþ1ðtminÞ ¼ k�

¼
X1
k¼0

X1
n¼k

ð�0
jtminÞn

n!
eð��0

jtminÞ

" #
ð�0

jþ1tminÞk

k!
eð��0jþ1tminÞ

8j 2 f1; . . . ; d� 1g:

ð8Þ

Based on the above expression, one can easily determine the
minimum stable time tmin using standard numerical
methods [5] with a worst cast complexity of Oðn2Þ [9]. Fig.
7 illustrates a local traffic estimation procedure to estimate the
local traffic rate of each router in an attack graph G.

3.2 Elimination of Attackers

In the previous section, we have presented a method for
estimating the local traffic rate for each router in the attack
graph G. In this section, we present the algorithm to find the
potential attackers and eliminate their attack traffic.
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Fig. 6. Linear topology with local traffic rate �i to the victim site V.

1. In a later section, we will illustrate that even if the arrival process is
non-Poisson, the estimate is still quite robust for evaluating tmin and the
intensity of the local traffic.



Given a linear path P in the attack graph, the victim site

V can choose to reduce its traffic loading by a predeter-

mined fraction T cutoffðPÞ. To reduce the traffic, the victim

site V determines the local traffic rates for all routers in the

path P, which are sorted in nonincreasing order. The victim

site V then signals a subset of the routers along the path P
and instructs these routers to stop sending their local traffic

to V. Notice that a router can refuse packet forwarding not

by examining the source IP address (which can be spoofed),

but rather by examining the packet’s data link layer

information—for example, the link address of the attached

LAN. Fig. 8 illustrates the procedure to eliminate the

attacker’s traffic to victim site V.

4 ATTACKER TRACEBACK: GENERAL TOPOLOGY

In the previous section, we have presented a method to

deduce the local traffic rate of each router as well as the

minimum stable time tmin such that we can determine the

locations of the potential attackers in a linear network

topology. In this section, we extend the method to a general

attack graph topology. The basic ideas are similar to those

presented in the previous section. However, we will need to
refine some conditions for the general topology setting.

Fig. 9 illustrates a general topology in which each router
may be connected by several upstream and downstream

routers. For example, the router Rj in the figure has three
upstream routers Rjþ1, Rjþ2, and Rjþ3 and two downstream

routers Rj�1 and Rk. For this attack graph, the farthest
router from the victim site V is router Rn, which is of

distance d � 1 hops away from V. Each router receives its
local traffic from its own network domain. Some of this

traffic is destined for the victim site V. Let �j denote the

average local traffic rate (in pkts/s) from the router Rj to the
victim site V. Let �in

j denote the total average traffic rate

from all upstream routers of Rj to the victim site V and �out
j

denote the total average traffic rate from router Rj to all its

downstream routers addressed to the victim site V. Again,
the goal is to deduce the local traffic rate�j for all routers in

an attack graph. Then, based on their local traffic intensities,
we can identify the locations of the potential attackers.

Let G denote the attack graph based on the attack graph
construction method described in Section 2. We say that a

router is a leaf router in the attack graph G if it is not
connected to any upstream router. For example, in Fig. 9,

router Rn is a leaf router (and it is an upstream router of
routers Rjþ1 to Rjþ3). All other routers are called internal

routers. Let ði; jÞ denote an edge between router Ri and Rj.
We define �ði!jÞ to be the average traffic rate to the victim

site V that passes through the edge ði; jÞ between router Ri

and Rj.
The average local traffic rate �j for router Rj 2 G is:

�j ¼
�out
j if Rj is a leaf router;

�out
j � �in

j if Rj is an internal router;

�
ð9Þ

where �in
j and �out

j are the average traffic rates into and out

of router Rj, respectively. These average traffic rates can be
computed by

�in
j ¼

X
8ði;jÞ where Ri is an
upstream router of Rj

�ði!jÞ; ð10Þ

�out
j ¼

X
8ðj;kÞ where Rk is a

downstream router of Rj

�ðj!kÞ: ð11Þ

Therefore, if we can estimate the average traffic rate �ði!jÞ
for all marked edges ði; jÞ in the attack graph G, we can

deduce the average local traffic rate of each router based on
(9) to (11). In Fig. 10, we present the procedure for

estimating �ði!jÞ for each marked edge ði; jÞ in G.
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Fig. 7. Algorithm to determine local traffic rate for every router in the

attack graph.

Fig. 8. Algorithm to find potential attackers and eliminate their attack

traffic to V.

Fig. 9. A general attack graph G.



Let ~NNout
j ðtÞ be the random variable denoting the number

of marked packets received by the victim site V at time t

such that the start field is the router Rj. Let ~NNin
j ðtÞ be the

random variable denoting the number of marked packets

received by the victim site V at time t such that the end field

is the router Rj. After a sufficient amount of time in

collecting these marked packets, we have the following

relationship:

~NNout
j ðtÞ �st

~NNin
j ðtÞ 8Rj 2 G: ð12Þ

The above relationship holds because

1. There is nonnegative local traffic originated from
router Rj to the victim site V. Therefore, the number
of marked output packets from Rj should be greater
than the number of marked input packets to Rj in the
long run.

2. The probabilistic edge marking algorithm will mark
any transit packet to V from upstream of router Rj.
Therefore, the router Rj may erase any edge marking
of a transit packet from its upstream routers.

The remaining issue is: To have an accurate estimate of

the local traffic rate �j, we have to guarantee that the

conditions in (12) are satisfied. Once the conditions of (12)

are satisfied, we can then estimate the local traffic rate �j

based on (9), (10), and (11) to traceback the potential

attackers. In the following, we provide an analytical method

to derive the minimum stable time tmin such that the

conditions of (12) are satisfied.
Let Nout

j ðtÞ be the number of marked packets received by

the victim site V at time t such that the start field is the

router Rj. Let Nin
j ðtÞ be the number of marked packets

received by the victim site V at time t such that the end field

is equal to router Rj. We have the following relationship:

Nin
j ðtÞ ¼

X
8ði;jÞ

�ði!jÞðtÞpð1� pÞdði!jÞ�1t; ð13Þ

Nout
j ðtÞ ¼

X
8ðj;kÞ

�ðj!kÞðtÞpð1� pÞdðj!kÞ�1t; ð14Þ

where �ði!jÞðtÞ and �ðj!kÞðtÞ are the traffic rate estimates of
the corresponding edges ði; jÞ and ðj; kÞ at time t according
to the procedure given in Fig. 10, and dði!jÞ and dðj!kÞ are
the hop count from router Ri to victim V and from router Rj

to victim V, respectively.
To simplify the notation, let us define �0in

j ðtÞ and �0out
j ðtÞ as:

�0in
j ðtÞ ¼

X
8ði;jÞ

�ði!jÞðtÞpð1� pÞdði!jÞ�1;

�0out
j ðtÞ ¼

X
8ðj;kÞ

�ðj!kÞðtÞpð1� pÞdðj!kÞ�1;

Nin
j ðtÞ ¼ �0in

j ðtÞ t and Nout
j ðtÞ ¼ �0out

j ðtÞ t:

ð15Þ

We can reformulate the problem of finding the minimum
stable time tmin such that:

Prob½ ~NNout
j ðtminÞ � ~NNin

j ðtminÞ� � pthreshold 8Rj 2 G; ð16Þ

where pthreshold is a high probability (e.g., pthreshold ¼ 95%).
The objective is: Find the minimum time such that with a
very high probability, the number of collected packets
marked by the router Rj is higher than the number of
collected packets marked by the upstream routers of Rj, for
all routers in the attack graph G. Assuming that the random
variable is Poisson, we have

Prob½ ~NNout
j ðtminÞ � ~NNin

j ðtminÞ�

¼
X1
k¼0

Prob½ ~NNout
j ðtminÞ � k�Prob½ ~NNin

j ðtminÞ ¼ k�

¼
X1
k¼0

X1
n¼k

�0out
j ðtminÞtmin

h in
n!

e� �0outj ðtminÞtmin½ �
2
4

3
5�

�0in
j ðtminÞtmin

h ik
k!

e� �0 in
j ðtminÞtmin½ � 8Rj 2 G:

ð17Þ

Again, we can easily determine the minimum stable time
tmin using standard numerical methods [5].

5 EXPERIMENTS

In this section, we perform experiments to illustrate the
effectiveness in locating the attackers. In particular, we show
the correctness and robustness of using (8) and (17) to find
the minimum stable time tmin such that we can compute the
intensities of the local traffic rates for all the routers in the
attack graph G. Note that a smaller value of tmin implies that
we can find the locations of the attackers earlier. We
illustrate various factors which can influence the value of
the minimum stable time tmin. We also extend the analysis of
the attacker location method to a general network topology.
In the first two sets of experiments, we use a linear network
topology as shown in Fig. 11. To derive the attack graph, the
victim V requests the participating routers to mark packets
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Fig. 10. Procedure to estimate �ði!jÞ for every marked edge ði; jÞ in G.

Fig. 11. Network topology for experiments 1 and 2.



with probability p ¼ 1=25. To estimate whether we have
reached the stability conditions specified by (8) or (17), we
set pthreshold ¼ 95%. In other words, the estimates of the local
traffic rates should be highly accurate. We define a variable,
the attack traffic ratio (ATR), which is the ratio of the
attacker’s average traffic rate to the normal average local
traffic rate. For example, if the normal average local traffic
rate is 100 pkts/s and ATR is 20, then the attacker’s average
traffic rate is equal to 2,000 pkts/s.

EXPERIMENT 1: (Correctness and robustness of esti-
mating the minimum stable time tmin). This set of
experiments evaluates the correctness of the estimate of
the minimum stable time tmin based on the mathematical
model (8) presented in Section 3.1. We show that the
estimate is robust and accurate for different traffic arrival
processes, including Poisson arrivals, constant-rate arrivals,
burst mode arrivals, and packet arrivals generated under a
random on/off process modulated by a Markov process
[11]. We demonstrate the performance trade-off with
different values of the parameter pthreshold. For this set of
experiments, we use a normal average local traffic rate of
100 pkts/s. The ATR is set to 20 (in other words, the
attacker’s average traffic rate is 2,000 pkts/s).

Experiment 1.A (Influence on the minimum stable time tmin

by different packet arrival processes). In this experiment, we
use a linear topology in Fig. 11 with 25 routers (e.g., d ¼ 25).
There is one attacker located at the farthest router R25. The
normal traffic and the attack traffic are generated using
three methods: 1) Poisson process, 2) Constant rate (e.g., an
average rate of 100 pkts/s implies that every 0.01 second,
there is a new packet generated by a router), and 3) Burst
rate (e.g., an average rate of 100 pkts/s implies that we
generate 100 pkts in one burst for every second). To
compute the minimum stable time tmin, we use the
mathematical derivation in (8). Table 2 illustrates that, with
different values of tmin, our computed pthreshold value is very
close to the simulated pthreshold values for different traffic
generation processes. This indicates that our methodology
is quite accurate and robust in estimating the minimum
stable time tmin. In addition, regardless of the packet arrival
process, it takes around 25 seconds to determine the local
traffic rates of all the routers in the attack graph G.

Experiment 1.B (Influence on theminimum stable time tmin by
different packet arrival processes under random on/off phase). We
also consider other ways to generate the normal and attack
traffic. In particular, we consider a random on-off process

modulated by aMarkov process fXðtÞg, whereXðtÞ 2 f0; 1g.
Let � (�) be the transition rate from state 0 (respectively,
state 1) to state 1 (respectively, state 0). If the current state of
theMarkov process is 1, then packet generation is enabled. If
the state of the process is 0, then no packet is generated into
the system. Again, the packet generation at state 1 can be
classified into three types, namely, 1) Poisson processwith an
average rate of 100 pkts/s, 2) Constant rate (e.g., an average
rate of 100 pkts/s implies that every 0.01 second, there is a
new packet generated by a router), and 3) Burst rate (e.g., an
average rate of 100 pkts/s implies that we generate
100 packets in one burst for every second). We consider
two different sets of parameters, 1) � ¼ 2:0; � ¼ 1:0 and
2) � ¼ 10; � ¼ 30. Tables 3 and 4 illustrate the influence on
the minimum stable time tmin under these two settings.
Again, we observe that the estimate is quite accurate and
robust in estimating the minimum stable time tmin even
when the packet arrival process is non-Poisson. Another
important observation is that we can quickly estimate tmin; in
particular,we need around 25 seconds to reach the 95 percent
stability condition. This implies that we can quickly
determine the locations of the attackers.

Experiment 1.C (Influence on tmin and variance of traffic
rate estimation by different pthreshold). Equation (8) indicates
that if the stochastic relationship in (3) is satisfied with a
high probability pthreshold, the estimate of local traffic will be
accurate. The accuracy can be expressed by the variance of
the local traffic rate estimates. In this experiment, we
illustrate how the parameter pthreshold affects the minimum
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TABLE 2
Minimum Stable Time: Theoretical versus Simulation Results

for Different Packet Arrival Processes

TABLE 3
Minimum Stable Time: Theoretical versus Simulation Results

for Different Packet Arrival Processes under
Random On/Off Phase with � ¼ 2:0 and � ¼ 1:0

TABLE 4
Minimum Stable Time: Theoretical versus Simulation Results

for Different Packet Arrival Processes under
Random On/Off Phase with � ¼ 10 and � ¼ 30



stable time tmin and the quality of the attacker’s traffic rate
estimate. Fig. 12 illustrates that, for different values of
pthreshold, we have different values of tmin. The correspond-
ing variances of the attacker’s traffic rate estimates are also
shown. The figure shows that the variance in the estimate
of the attacker’s traffic rate approaches zero, which
indicates that a highly accurate estimate of attacker’s traffic
can be achieved when pthreshold � 80%. Our experiment uses
a linear topology with 25 routers and the attacker is located
at the farthest router R25. The normal average local traffic
is 100 pkts/s and the attacker’s average traffic rate is
2,000 pkts/s. The packets are generated by a Poisson
process and are marked by each router with probability
p ¼ 1=25. First we vary pthreshold from 50 to 99 percent and
calculate the corresponding minimum stable time tmin by
(8). Then, for each minimum stable time tmin, we conduct
experiments to estimate the traffic rate of the attacker. We
repeat the entire process 10,000 times. For each minimum
stable time tmin, we obtain 10,000 estimated traffic rates of
the attacker. Let X be the random variable denoting the
estimated traffic rate of the attacker. The variance of the
attacker traffic rate estimates is a measure of the spread
of a distribution about its mean and is defined by
V arðXÞ ¼ Eð½X � EðXÞ�2Þ. As expected, a higher value of
pthreshold gives a larger value of tmin, meaning that more
time is needed to determine the locations of the attackers.
However, since tmin is less than 60 seconds in all the cases,
we can still locate the attackers in a pretty short time.

Experiment 1.D (Influence on the minimum stable time tmin

by different packet arrival processes under a three-state Markov
process). In this experiment, we perform a more elaborate
performance study by generating normal and attack
traffic under a three-state Markov process fXðtÞg, where
XðtÞ2f0; 1; 2g. Let �0 (�0) be the transition rate from state 0
(state 1) to state 1 (state 0) and �1 (�1) be the transition rate
from state 1 (state 2) to state 2 (state 2). Fig. 13 illustrates the

transition rates of the three-state Markov-modulated pro-

cess. If the current state of the Markov process is 2, the
packet generation rate is double the rate in state 1. If the

state of the process is 0, then no packet is generated into the
system. Again, the packet generation at state 1 and state 2

can be classified into three types, namely, 1) Poisson process

with an average rate of 100 pkts/s, 2) Constant rate (e.g., an
average rate of 100 pkts/s implies that every 0.01 second,

there is a new packet generated by a router), and 3) Burst
rate (e.g., an average rate of 100 pkts/s implies that we

generate 100 packets in one burst for every second). We
consider two different sets of parameters, 1) �0¼4:0,

�1¼3:0, �0 ¼ 2:0, �1 ¼ 1:0 and 2) �0 ¼ 5, �1 ¼ 10, �0 ¼ 15,
�1 ¼ 20. Tables 5 and 6 show the influence on the minimum

stable time tmin under these two settings. We can observe
that the estimate of the minimum stable time tmin is highly

accurate regardless of the packet arrival process. Further-

more, it takes only around 25 seconds to reach the 95 percent
stability condition, showing the effectiveness of our

proposed method.
EXPERIMENT 2: (Factors which influence the mini-

mum stable time tmin). In this set of experiments, we

illustrate how the length of an attack path, the number of
attackers, and the attack traffic ratio ATR can affect the

values of the minimum stable time tmin. For this set of
experiments, we set the normal average local traffic rate to

100 pkts/s. The ATR is set to be 20 (i.e., the attacker’s

average traffic rate is 2,000 pkts/s).
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Fig. 12. Influence on tmin and variance of the attacker’s traffic rate

estimation by different pthreshold.

Fig. 13. Transition rates of the three-state Markov process.

TABLE 6
Minimum Stable Time: Theoretical versus Simulation Results
for Different Packet Arrival Processes under the Three-State

Markov Process with �0 ¼ 5, �1 ¼ 10, �0 ¼ 15, �1 ¼ 20

TABLE 5
Minimum Stable Time: Theoretical versus Simulation Results
for Different Packet Arrival Processes under the Three-State
Markov Process with �0 ¼ 4:0, �1 ¼ 3:0, �0 ¼ 2:0, �1 ¼ 1:0



Experiment 2.A (Influence on tmin by different lengths of the
attack path). In this experiment, the relationship between the
length of an attack path and the minimum stable time tmin is
analyzed. We use a linear network topology with varying
lengths of the attack path and compute the minimum stable
time tmin. We assume that there is one attacker located at the
farthest router (e.g., Rd). Fig. 14 shows that as the length of
the attack path increases, the minimum stable time tmin also
increases. The reason for this linear growth is that the victim
site V needs to take a longer time to collect a sufficient
number of marked packets from a farther router.

Experiment 2.B (Influence on tmin by the relative positions

of the attackers). In this experiment, we study how the

number of attackers and their relative positions influence

the value of the minimum stable time tmin. We consider

three attackers in a linear network topology, where these

attackers are distributed according to three different

configurations. For configuration 1, the attackers are

located at routers R1; R2, and R3 (i.e., the three closest

routers to the victim V). For configuration 2, the attackers

are located at the three farthest routers from the victim V.
In configuration 3, the attackers are evenly placed along the

linear network; i.e., they are located at routers Rbd�i3 c where

d is the length of the attack path and i ¼ 1; 2; 3. Fig. 15

illustrates the minimum stable time tmin when ATR ¼ 20

and pthreshold ¼ 95%. We observe that when the attackers are

closer to the victim V (i.e., configuration 1), the achieved

minimum stable time tmin is lower than the other

configurations. The minimum stable time tmin achieves

the highest value when attackers are evenly placed in the

network (i.e., configuration 3). The reason for this ordering

is that the estimate of local traffic rate at the farthest router

takes the longest to become stable while the estimate of the

local traffic rate at the nearest router takes the least time.

Regardless of the placement of the attacker, we can

determine their locations within 30 seconds, illustrating

the effectiveness of the proposed method.
Experiment 2.C (Influence on tmin by different ATR and

different lengths of the attack path). In this experiment, we
illustrate how the attack traffic ratio (ATR) and the length of
the attack path can affect the value of the minimum stable
time tmin. We consider a linear topology and compute the
minimum stable time tmin with varying attack traffic ratios
and lengths of the attack path. Since the previous result
suggests that tmin is largest when the attacker is located at
the farthest router, we consider the worst case scenario that
one attacker is located at the farthest router Rd. Fig. 16
illustrates the achieved minimum stable time tmin under
different values of ATR and lengths of the attack path. We
observe that if the attack path is longer, the minimum stable
time tmin is larger. On the other hand, when the attack
traffic ratio is higher (which is usually the case for a DDoS
attack), the minimum stable time tmin is lower. The achieved
tmin is less than 30 seconds in all the cases. Again, this
shows that we can quickly discover the locations of the
potential attackers in a DDoS attack.

EXPERIMENT 3: (Extension to General Network
Topology). In the previous set of experiments, we analyze
the performance of the attacker location method by
assuming a linear network topology. In this set of
experiments, we extend the performance study to a general
network topology. We evaluate the minimum stable time
tmin of the attacker location method based on the mathe-
matical model (17) presented in Section 4. Fig. 17 shows a
general network topology of 120 routers. We assume that

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 16, NO. 10, OCTOBER 2005

Fig. 14. Influence on tmin by different length of the attack path.

Fig. 15. Influence on tmin by the relative positions of the attackers.

Fig. 16. Influence on tmin by different ATR and different length of the

attack path.



victim V is located at router R0 and the attackers are
randomly assigned to different locations in disjoint attack
paths. We set the normal average local traffic rate to
10 pkts/s and vary the attacker average traffic rates to be
8,000, 9,000, and 10,000 pkts/s, respectively (corresponding
to ATRs of 800, 900, and 1,000).

Experiment 3.A (Influence on tmin by different ATRs and
different network topology diameters). In this experiment, we
vary the diameter of the general attack graph and evaluate
the average minimum stable time tmin under different
attacker traffic rates. Fig. 18 illustrates that, as the diameter
of the general attack graph increases, the average minimum
stable time tmin also increases. The reason is that it takes a
longer time to collect a sufficient number of marked packets
from the farthest router. Moreover, when the ATR is higher
(which is a common scenario for a DDoS attack), the average
minimum stable time tmin will be smaller. This experiment
shows that we can determine the locations of the attackers
within 14 seconds in the general network topology, showing
the effectiveness of the proposed method.

Experiment 3.B (Influence on tmin by different numbers of
attackers). In this experiment, we vary the the number of
attackers in the general attack graph and evaluate the
average minimum stable time tmin under different attacker
traffic rates. The attackers are located at the farthest
routers of the attack graph (note that this corresponds to a
worst case study). Fig. 19 shows that as the number of
attackers increases, the average minimum stable time tmin

decreases. The reason for the decrease is that with a larger
number of attackers, more marked packets will be
collected. Hence, it takes a shorter time to satisfy the
stability conditions of the local traffic estimation. This
illustrates that we can quickly determine the locations of
the attackers under a DDoS attack.

EXPERIMENT 4: (Extension to Internet Topology). In
the previous set of experiments,we evaluate the performance
of our attacker location method in a small size general
network topology. In this set of experiments, we perform a
more comprehensive performance studybyusing a large size
Internet topology obtained from Lucent Bell Labs [1]. Fig. 20
shows an Internet map2 generated by the traceroute data set.
The testing data set contains 10,000 distinct routers and the

maximum height (or the maximum hop count from the

victim site V to the farthest router in the graph) is 23. The

source of traceroute is considered the victim site V and the

traceroute data set is used to map he upstream routers. We

use the data set and repeat similar experiments as in

Experiment 3. We set the normal average local traffic rate

to 1 pkt/s and the attacker average traffic rate to 10,000 pkts/

s (i.e., ATR = 10,000).
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Fig. 17. General network topology with 120 routers with node 0 being the victim V .

Fig. 18. Influence on tmin by different ATR and different diameter of the
network topology.

Fig. 19. Influence on tmin by different number of attackers.
2. Image from http://research.lumeta.com/ches/mpa Internet Mapping

Project.



Experiment 4.A (Influence on tmin by different diameters of

the network topology). In this experiment, we study the

relationship between the diameter of the general attack

graph G and the average minimum stable time tmin in the

Internet topology. The main difference between a small size

topology and a large size one is that the aggregate transit

traffic for routers which are closer to a victim site V is

significantly larger than the aggregate rate for routers

farther away from the victim site V in a large size topology.

Fig. 21 illustrates the average minimum stable time tmin

when there is a single attacker. Again, we observe that

when the attacker is closer to the victim site V, we can

determine the location of the attacker earlier. One important

point is that, even for this large network, it takes less than

20 seconds to determine the local traffic rate of each router

and locate the attacker. This shows that our methodology is

quite robust and accurate in determining the locations of

the attackers.
Experiment 4.B (Influence on tmin by different numbers of

attackers). In this experiment, the relationship between the

number of attackers and the average minimum stable time

tmin in the Internet topology is analyzed. We use the same

traceroute data set as Experiment 4.A. The attackers are

randomly assigned to different locations in disjoint attack

paths. We evaluate the average minimum stable time tmin

for different numbers of attackers. From Fig. 22, we see that

the average minimum stable time tmin of our attacker

location method decreases as the number of attackers

increases. Again, this illustrates the effectiveness and
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Fig. 20. Internet map generated by the traceroute data set.

Fig. 21. Influence on tmin by different diameter of the network topology. Fig. 22. Influence on tmin by different number of attackers.



robustness of our traceback method even under a large-
scale DDoS attack.

Experiment 4.C (Detect and prevent attacks mounted from

multiple attackers). To show that the proposed method can

eliminate attack traffic from multiple attackers, let us

consider an example in Fig. 23. We consider a general

topology with 20 routers. Routers R1 to R3, R5 to R9, and

R11 to R19 carry normal local traffic with a rate of 10 pkts/s

to the victim site V. There are three attackers in the network

and they are located at routers R4, R10, and R20, respec-

tively. The attackers in R4, R10, and R20 generate attack

traffic to V at a rate of 50 pkts/s, 75 pkts/s, and 100 pkts/s,

respectively. The marking probability p for the edge

marking algorithm is set to 0.1 and the stability threshold

pthreshold is set to 95 percent. In this example, the victim site

V calculates the stability percentage every 10 seconds

according to the procedure in Fig. 7. Table 7 illustrates

that, after going through the loop of the traffic estimation

procedure five times, we can accurately estimate the local

traffic rate at each router Ri for i ¼ 1; . . . ; 20. In other words,

it only takes around 50 seconds to find the potential

attackers in R4, R10, and R20.
Table 8 illustrates the percentage of local traffic to total

traffic at each router at the end of 50 seconds, the time at
which the estimates of the local traffic rates become stable.
As we can observe from the table, the victim site V can
accurately estimate the intensity of the local traffic at each
router in the attack graph. If the victim site V wishes to
reduce the total traffic by 50 percent, one can set the
parameter T cutoffðPÞ to 50 percent. The victim site V can

then signal routers R4, R10, and R20 to drop the attack traffic
from these routers according to the procedure in Fig. 8.

6 RELATED WORK AND IMPLEMENTATION ISSUES

One major security problem of the IP protocol is that the
source IP address can be spoofed by users [3]. There is no
provided means to discover the true origin of a packet.
Various researchers have proposed different approaches to
solve the DDoS attack problem, including ingress filtering
[7], link testing [4], logging [16], and throttling [21]. In link
testing, we interactively test a router’s upstream link starting
from the nearest routers. The process is repeated until the
source of an attack is found. Stone [19] proposes an
automatic way to trace attackers within their own networks.
The communication overhead in their approach for ex-
changing messages is very high and interoperations are
difficult due to the existence of different administrative
domains. Burch and Cheswick [4] propose another approach
called controlled flooding. In controlled flooding, a victim
site interactively floods its upstream links starting from the
nearest routers. Then the victim site observes the changes in
the rate of attack packets and identifies the attack packet
origins. Selective flooding is repeated for farther routers
until the full attack path is found. Controlled flooding
consumes significant network resources including network
bandwidth. If it is not handled or implemented carefully, the
approach can itself become a form of network attack.

Logging is an approach to traceback even after the attack
has completed. Partial packet information will be stored in
routers for the traversed packets and this information
provides a trail of the attack path. A full attack path can be
reconstructed by applying certain data extraction methods.
An advantage of the approach is that it does not increase
the volume of traffic. However, it increases the storage
requirement at the participating routers. Snoeren et al. [16]
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Fig. 23. Example to estimate the local traffic rates in a general topology.

TABLE 7
Estimation of the Local Traffic Rates in R1 to R20

TABLE 8
Percentage of Local Traffic to the Total Received Traffic by V after 50.0 Seconds



propose an efficient hash-based technique for storing packet
digests. They claim that the storage requirement is less than
one percentage of the link capacity per unit time. However,
because tens of thousands of packets can traverse a router
every second, the logging data can still grow quickly to an
enormous size, which is especially problematic for very
high speed links. Steven and Bellovin [18] propose ICMP
traceback (later extensions include Wu et al. [20], [10])
which can traceback the attackers without incurring much
overhead at the routers. In the approach, routers probabil-
istically generate an authenticated copy of a packet,
including information about the adjacent routers along the
path to the destination. The information can be used to
reconstruct the path to the attackers. However, ICMP traffic
can be easily identified and may be blocked or rate limited.
ICMP traceback also needs key distribution and manage-
ment to avoid the faking of ICMP packets.

Savage et al. [14] propose an elegant probabilistic
marking method for traceback without generating separate
ICMP packets to the victim site V. Their approach does not
require coordination among the network administrators
and does not increase the network traffic or the storage
requirement of a router. Dean et al. [6] formulate the
traceback problem as a polynomial reconstruction problem.
They use algebraic coding theory to encode traceback
information in a packet, similar to Savage et al. [14].
However, their approach also suffers the packet spoofing
problem and may even be more vulnerable without the
distance field in the marking. Song and Perrig [17] report
that if the victim site V knows the map of its upstream
routers, it does not need the full IP address in the packet
marking. They improve on the marking approach in [14] by
hashing so as to achieve a lower false positive rate and a
lower computation overhead. They propose efficient
authentication of packet markings to filter packets with
spoofed markings from the attackers. Note that the
approaches in [14] and [17] provide the topology of the
attack graph only. Our approach can be viewed as a
complementary approach to theirs in also locating the
potential attackers in an attack graph.

To realize the proposed traceback method, some further
implementation issues need to be considered. For example,
one needs routers to support the probabilistic traceback
functions. If a router, say Rj, does not support packet
marking and does not participate in the traceback process,
then all its local traffic will be treated as the local traffic of
its first downstream router which participates in the
marking process. Therefore, as long as one router provides
this service, the proposed traceback methodology will be
able to perform attack tracing up to that point and enable
packet filtering. Of course, under this situation, legitimate
packets may be filtered out as well. If more routers
participate in the marking and traceback process, the packet
filtering can be more accurate and effective. This is an
important point because one can incrementally deploy our
proposed scheme in the Internet. Another issue is the
computational complexity of estimating local traffic at all
the routers. The computational complexity occurs mainly in
(8), and it can be shown [9] that the worst case complexity is
Oðn2Þ. Note that the proposed method does not depend on a

particular attack signature, but rather on the intensities of
the attack traffic. Therefore, when a victim site is under
attack, either the victim’s resources are overwhelmed or the
bandwidth of the input link to the victim site is over-
whelmed and the victim site requests all participating
routers to perform probabilistic edge marking. Based on the
collected marked packets, the proposed solution deduces the
local traffic rates of all the routers. The purpose is to find
out those routers whose local traffic consumes a sufficiently
large percentage of the victim’s resources.

Note that the traceback methodology we propose in this
paper assumes that the attack traffic volume is large in the
attack path. However, this is not always the case when
many machines are compromised and each machine simply
sends a small amount of attack traffic to the victim site. In
this case, the distributed throttling approach proposed in
[21], [22] is effective since it guarantees the “level-k max-min
fairness” to upstream traffics.

7 CONCLUSION

In this paper, we have considered the traceback problem
during a DDoS attack. Instead of dealing with the issue of
detecting a DDoS attack, we address how we can locate and
eliminate potential attackers. Our approach is based on a
probabilistic packet marking algorithm: A victim site V,
upon discovering that it is being attacked, requests a set of
routers to mark all the packets addressed to V with a given
probability p. Based on the collected marked packets, the
victim site V can construct an attack graph. We enhance the
probabilistic marking algorithm by determining the local
traffic rate of each router in the attack graph. Based on the
traffic intensities, we can signal the relevant routers (i.e.,
those routers which consume a high fraction of the victim’s
resources) to eliminate their local traffic. An important
technical contribution is our theoretical approach to
determine the minimum stable time tmin, which is the
minimum time it takes to accurately determine the local
traffic rate of every participating router in the attack graph.
We have carried out experiments to illustrate the effective-
ness and robustness of our algorithm under both linear and
general network topologies. We have shown the robustness
of our estimation when the packet arrival process takes on
different forms, including Poisson, constant rate, bursty
rate, and random on/off. Our results show that we can
locate the attackers in a short time. The proposed
methodology provides a useful step towards an automated
wide-area network traceback facility.
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