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ABSTRACT
Small cells are deployed in 5G networks to complement the macro
cells for improving coverage and capacity. Small cells and edge
computing are natural partners which can improve users’ expe-
rience. Small cell nodes (SCNs) equipped with edge servers can
support emerging computing services such as virtual reality which
impose low-latency and precise contextual requirements. With the
proliferation of wireless devices, there is an increasing demand for
o�oading tasks to SCNs. Given limited computation and communi-
cation resources, the fundamental problem for a small cell network
is how to select computing tasks to maximize e�ective rewards in
an uncertain and stochastic environment. To this end, we propose
an online learning framework, LFSC, which has the performance
guarantee to guide task o�oading in a small cell network. LFSC
balances between reward and constraint violations, and it consists
of three subroutines: i) a randomized algorithm which calculates
selection probability of each task based on task weights; ii) a greedy
assignment algorithm which cooperatively allocates tasks among
di�erent SCNs based on the selection probability; iii) an update
algorithm which exploits the multi-armed bandit (MAB) technique
to update task weights according to the feedback. Our theoretical
analysis shows that both the regret and violations metrics of LFSC
have the sub-linear property. Extensive simulation studies based
on real world data con�rm that LFSC achieves a close-to-optimal
reward with low violations, and outperforms many state-of-the-art
algorithms.
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1 INTRODUCTION
Explosive growth in mobile data tra�c brings severe challenges
to existing macrocell coverage. Small cells are introduced in 5G as
a fundamental element of network densi�cation. Small cell nodes
(SCNs) operate in high frequencies, covering a range of 10 meters
to 2 kilometers each [15]. SCNs are often attached to existing struc-
tures (e.g., streetlights or utility poles) and connected to the core
network (or the macrocell base station) through �ber optic cables.
In particular, SCNs are close to wireless devices (WDs) and are able
to process larger amount of data at faster speeds. A small cell net-
work also increases the macrocell’s capacity, and provides wireless
users with better and faster connectivity [29]. The number of small
cell installation in the US increased 550% in 2018, and is predicted
to exceed 800, 000 by 2026 [2].

5G is expected to support transmission speed as high as 10 Gb/s
[19], which boosts the demand for new services such as security
surveillance, virtual reality, and automatic driving [32]. These appli-
cations usually generate a huge amount of data and are often delay
sensitive, and thus such services are often prioritized to process
at the edge rather than at the remote cloud due to strict delay and
high computing requirements [3]. Therefore, edge computing and
small cells are natural partners that may work in concert. Small
cells equipped with edge servers represent a competitive solution
for mobile task o�oading. Since these servers are near to tasks’
origin, so they can better meet the strict latency requirements. A
major operator survey [1] shows that over 79% of operators will
deploy small cells with edge computing before 2020 to support
di�erentiated services for the potential market worth.

In this work, we consider how a small cell network can accept of-
�oaded tasks from wireless devices (WDs). Operating such a system
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is very challenging. First, di�erent types of tasks have di�erent fea-
tures, e.g., input and output data size, latency requirement, etc. The
above information is usually summarized as a task’s context and
leads to di�erent allocation strategies. However, naively considering
such large amount of contexts incurs high computation complexity.
Second, both communication and computation resources at a SCN is
limited. Due to the physical limitation of 5G high frequency bands,
e.g., Millimeter-Wave (mmWave) channel sparsity, beamforming
technique, and number of radio frequency (RF) chains [23], each
SCN can only establish a �xed number of connections to accept
o�oaded tasks. Furthermore, a lower-powered SCN may support
only a small edge server with �nite computation resource. Third,
there exist signi�cant uncertainties in the task o�oading process.
For example, 5G mmWave signals are prone to blockage due to
weak di�raction capabilities [15]. Once blockage happens, the exe-
cution of a task is interrupted. Therefore, an e�cient system needs
to guarantee its quality of o�oading service. In addition, the reward
(e.g., task value or computation rate) and resource consumption of
a task may be time varying, depending on the quality of returned
result. Worse yet, in practice, the aforementioned information can
only be learned after the system o�oads and processes tasks from
WDs. Last but not least, a WD may be covered by multiple small
cells. Collaborative task o�oading between SCNs is non-trivial,
because maximizing the reward at a single SCN does not always
imply a global reward maximization. Therefore, how to select of-
�oading tasks in a small cell network such that the e�ective reward,
i.e., total reward per unit resource, is maximized is a fundamental
and challenging problem.

Multi-armed bandit (MAB) is an online optimization method for
learning an e�ective strategy in an unknown environment. Existing
e�orts on MAB are not directly applicable to this problem. They
either focus on a single agent [24][20] or ignore system constraints
[17][14]. Meanwhile, previous research on task o�oading in edge
computing [28] cannot capture all features in small cell networks,
such as channel instability and collaborative o�oading. We will
discuss this in detail in Sec. 2. In this work, we propose an online
learning-based framework, LFSC, to address the above challenges
and guide the task o�oading process in small cell networks. Our
contributions are summarized as follows:

First, we formulate the task o�oading problem in 5G small cell
networks as an integer linear program (ILP). In the online setting,
there is no prior knowledge on the relevant system parameters.
We exploit MAB theory to deal with the unknown environment.
We �rst relax the integral constraint, and consider it as the task
selection probability. Rather than pursue reward maximization,
our design aims to minimize the regret, which is the di�erence
between the optimal reward and the average of our task o�oading
algorithm’s reward. Our online learning algorithm, LFSC, makes a
good balance between maximizing the overall e�ective reward (i.e.,
minimizing the regret) and satisfying resource capacity constraint
as well as QoS requirement (i.e., keeping low violations).

Second, to tackle other challenges in the algorithm design, we
leverage the following techniques: i) we introduce a series of ad-
justable penalty coe�cients, using the Lagrangian method in con-
strained optimization [13], to balance between maximizing objec-
tive values and curbing constraint violations; ii) we divide the
task context space into small hypercubes of similar contexts, and

estimate the relevant parameters of each task. In addition, each
hypercube maintains a weight, which is used to calculate the prob-
ability that each task will be o�oaded in each time slot. Hence,
the combined stage explosion and high computing complexity can
be masterly avoided; iii) in view of the computational di�culty of
coordinating all SCNs, a greedy algorithm is designed to conduct
task o�oading. While SCNs make a collaborative o�oading deci-
sion, which can prevent a task from being repeatedly o�oaded to
multiple SCNs at the same time. LFSC consists of three subroutines:
i) a randomized algorithm, trading o� between exploration and ex-
ploitation, computes the selection probability of each task being
o�oaded to SCNs; ii) the greedy algorithm coordinates multiple
SCNs for task o�oading, based on the selection probability; iii) an
update algorithm updates auxiliary variables based on feedback
from current decision, which will help in calculating the selection
probability in the next time slot.

Third, we prove the sub-linear upper bounds on the regret and
violations of LFSC through rigorous theoretical analysis. We prove
that LFSC converges to the optimal task o�oading decision. Com-
paringwith existing state-of-the-art, we further demonstrate LFSC’s
e�ectiveness by extensive simulations. The results show that LFSC
signi�cantly outperforms other benchmark algorithms. Under the
same system settings, our algorithm’s e�ective reward almost co-
incides with the optimal value. Furthermore, in the early stage of
exploration, the total violations of LFSC are only 30%, 32% and
20% of the vUCB [5], FML [4] and random algorithm, respectively.
Moreover, these percentages decrease over time.

The rest of the paper is organized as follows. Sec.2 reviews related
literature. The small cell network is modeled in Sec. 3. The task
o�oading framework is presented in Sec. 4 and evaluated in Sec. 5.
Sec. 6 concludes the paper.

2 RELATEDWORK
Task O�loading. Previous studies on computation o�oading fo-
cus on when/how/what to o�oad from user devices to the cloud
or edge servers [28][30][12][25][27]. Sundar et al. [28] study the
dependent task o�oading problem. They make the assumption
that the current state of the server and its performance of process-
ing di�erent tasks are known in advance. Xu et al. [30] study task
o�oading in an unknown dynamic system. Eshraghi et al. [12]
propose an algorithm to jointly optimize the o�oading decisions
for minimizing a weighted sum of expected cost. They only con-
sider one computing access point and a remote cloud center. Online
learning algorithms based on MAB are proposed in [25][27] to help
making task o�oading desicions in the MEC environment.

Unfortunately, the above schemes are not well-suited for 5G
networks with its special small cell architecture and unique prop-
erties such as the collaboration among multiple SCNs, and the
communication limit of a SCN. Cheng et al. [10] investigate joint
task o�oading in 5G radio accessing networks, but not for small
cell networks. An arti�cial �sh swarm policy is developed in [31],
which involves minimizing the overall energy consumption while
o�oading tasks in 5G. But tasks are o�oaded to the macrocell base
station rather than SCNs. In this paper, we consider o�oad work-
load to the 5G small cell networks in an unknown environment,
and aim at maximizing e�ective reward under system constraints.
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Multi-armedBandit (MAB) Schemes.To address the uncertainty
in 5G environments, we propose an online learning algorithm based
on MAB, which was proven e�ective to balance between explo-
ration and exploitation in sequential decisions [18]. The basic MAB
framework learns to choose a single optimal arm among a set
of candidate arms of a priori unknown rewards [6], without any
constraints. Li et al. [20] take context-dependent rewards into ac-
count. Gai et al. [14] study multiple-play each time. Furthermore,
Kim et al. [17] propose a contextual MAB algorithm for a relaxed,
semi-parametric reward model. The above studies neglect system
constraints, which are crucial to guarantee system QoS. Mahdavi
et al. [21] extend the study of MAB where the learner aims to max-
imize the total reward, given that some additional constraints need
to be satis�ed. The arm’s reward and cost in [21] are independent,
while the objective value in our work is a compound reward, which
involves learning multiple parameters. Cai et al. [7] propose an on-
line learning framework using stochastic constrained bandit model
with time-varying multi-level rewards based on MAB.

Note that o�oading tasks in 5G small cell networks needs the
collaboration of multiple SCNs, which implies there are multiple
agents in the MAB framework. The above algorithms only work on
the single agent and cannot apply to multi-agents case. Shahram-
pour et al. [26] address the MAB problem in a multi-agents frame-
work, where all agents explore the same �nite set of arms. While,
in our work, each agent has a di�erent set of arms and the sets
change over time. An online distributed experts problem is studied
to minimize the regret at time horizon in [16], where the system in-
volves multiple sites (agents). However, the bandits are considered
to be non-stochastic in this work. Nicol et al. [8] propose a global
recommendation algorithm among multiple network nodes (i.e.,
multi-agents) to improve the quality of recommendations, where
only one node reveals its payo� (reward) in each round.

3 SYSTEM MODEL
3.1 System Overview
As shown in Fig. 1, we consider a small cell network where M
small cell nodes (SCNs) are connected to a macrocell base station
(MBS) via �ber optic cables. A set of wireless devices (WDs) are
distributed in this small cell network, and each may request to
o�oad a computing task. Each SCN is equipped with a computing
server, which can process tasks from WDs. Let T = {1, 2, . . . , T }
denote a large time span.M SCNs are denoted as M = {1, 2, . . . , M }.
Let Dt denote all tasks in time slot t and Dm,t denote the set of
tasks that are within the coverage of SCN m in time slot t . We
assume the maximum number of WDs that appear in SCN m’s
coverage area to be Km , i.e., Km = maxt2T |Dm,t |. Note that a WD
may be covered by multiple small cells, and WDs are free to move
from one cell to another in di�erent time slots.

3.2 Task O�loading Problem
Task Context Information. In order to provide better perfor-
mance, we consider the scenario where the MBS controls and pri-
oritizes o�oading task to SCNs. A computing task is characterized
by the following meta information: i) the size of input data that
needs to be transmitted from a WD to a SCN; ii) the size of output
data that is to be fed back from a SCN to a WD; iii) the type of

small cell node (SCN)

macrocell
base station (MBS)

Figure 1: An illustration of a small cell network.

latency requirement (e.g., tasks can be roughly classi�ed into two
categories: latency-sensitive, latency-insensitive), and so on. The
above meta information of task i (i 2 Dt ) is represented by its
context �i .

RandomProcess inTaskO�loading.Consider three unknown
random processes that capture the o�oading scenario at SCNm,
Um
� (t ), Vm

� (t ) and Qm
� (t ), where � is the task’s context. As a re-

alization of Um
� (t ), um,t

�i
characterizes the reward for SCN m to

complete task i with context �i at time t (e.g., the value or com-
putation rate of processing task i). Latency-sensitive tasks have
higher rewards since they are eager to be completed as soon as
possible. Let �m,t

�i
be the likelihood for SCNm to complete task i

at t . This captures the unstable communication link between SCN
m and the WD caused by weak penetration of 5G millimeter-Wave
(mmWave). The variable qm,t

�i
characterizes resource consumption

at SCNm while processing task i at t . Given that the environment
and the resource consumption of a task are relatively stable in the
long run, we assume that Vm

� (t ) and Qm
� (t ) are stationary across

contexts. The other random processes Um
� (t ) are not necessarily

stationary. They are all independent across � and independent of
each other. Without loss of generality, we normalize Um

� (t ) 2 [0, 1],
Vm
� (t ) 2 [0, 1] and 1/Qm

� (t ) 2 [0, 1]. Therefore, the e�ective reward
per unit resource for SCNm to complete the task with context �
at time t is Gm

� (t ) = Um
� (t )Vm

� (t )/Qm
� (t ). For the convenience of

description, we use compound reward to refer to Gm
� (t )’s realization

�m,t
�i

. Let �m,t = {�m,t
�i

}i2Dm,t , similarly, we have vm,t and qm,t .
System Constraints. 5G utilizes beamforming for mmWave

communications between SCNs and WDs. Due to physical limi-
tations such as RF chains, the number of beams emitted by each
SCN is limited. Hence, SCN m cannot support all tasks in Dm,t
if the number of requests is beyond its capacity. Let c denote the
maximum number of tasks that each SCN can support at a time
slot. Similarly, the computing resources (i.e., RAM, CPU, GPU) at
each SCN are also limited. The total resources utilized by all tasks
at each SCN cannot exceed its resource capacity � at each time slot.
Last but not least, in order to provide QoS guarantee, we also need
to impose a requirement that the number of successfully processed
tasks by each SCN at a time slot is at least � .

Decision Variable. Let a binary variable pm,t
i indicate whether

SCNm executes task i at time t . Let Im,t ✓ Dm,t be the set of tasks
selected by SCNm at t . Table I lists all notations.
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Problem Formulation.We aim tomaximize the total compound
reward under system constraints. The optimization problem can be
formulated as the following integer linear program (ILP):

maximize
’
t2T

’
m2M

’
i2Dm,t

�m,t
�i

pm,t
i (1)

subject to:
’

i2Dm,t

pm,t
i  c,8t 2 T, 8m 2 M, (1a)

’
m2M

pm,t
i  1,8t 2 T, 8i 2 Dt , (1b)

’
i2Dm,t

�m,t
�i

pm,t
i � �,8t 2 T, 8m 2 M, (1c)

’
i2Dm,t

qm,t
�i

pm,t
i  �,8t 2 T, 8m 2 M, (1d)

pm,t
i 2 {0, 1},8t 2 T, 8m 2 M, 8i 2 Dm,t . (1e)

Constraint (1a) implies that the number of tasks accepted by each
SCN does not exceed its communication capacity. Constraint (1b)
guarantees that each task is not repetitively o�oaded by multiple
SCNs, which avoids wasting resources and improves the e�ciency
of overall system. System QoS requirement and resource capacity
are modeled by (1c) and (1d), respectively.

Table 1. Summary of Notations

M set ofM SCNs T set of T time slots
Dt set of tasks at t �i the context of task i
� context space D� # of context dimensions

Im,t set of the tasks o�oaded to SCNm at t
Dm,t set of tasks in SCNm’ coverage area at t
Km maximum # of tasks inm’s coverage
FT set of hypercubes
hT # of parts each dimension can be divided into
pm,t
i selection probability form to execute task i at t

um,t
�i

reward for SCNm to complete task i at t
�m,t
�i

likelihood for SCNm to complete task i at t
qm,t
�i

resource consumption whilem processing i at t
�m,t
�i

compound reward form complete task i at t
c maximum # of tasks that each SCN can support
� minimum completed task threshold of each SCN
� computation resource capacity of each SCN

Challenges. Existing online optimization literature assumes
that the information of time slot t is known at the beginning of
t . We consider a more practical scenario, where such information
is not available. In particular, um,t

�i
, �m,t

�i
and qm,t

�i
can only be

observed after a SCN processes a task. In this paper, we design a
learning-based framework to allocate at most c tasks to each SCN.
It is still challenging to maximize the compound reward without
any prior knowledge. Hence, we relax the constraint of pm,t

i . Let
pm,t = (pm,t

1 , pm,t
2 , . . . , pm,t

Km
) represent the task selection proba-

bility vector of SCN m at time t , where pm,t
i 2 [0, 1], i 2 Dm,t .1

Let {p⇤
m,t }m2M denote the optimal solution. We quantify the per-

formance of our algorithm by its regret value, which is de�ned as
1With the exception of pm,t being a column vector, all other vectors in this paper
are row vectors.

the di�erence between the omniscient oracle’s compound reward
and the expectation of the LFSC’s compound rewards. We assume
that the oracle makes the best selection and achieves the optimal
compound reward. The regret is de�ned as,

R(T ) =
’
m2M

[
’
t2T

�m,tp
⇤
m,t � E(

’
t2T

�m,tpm,t )]. (2)

In addition to maximizing the total compound rewards (minimizing
the regret), (1c) and (1d) should also be guaranteed. To measure
the overall violations of the constraints until time T , we de�ne two
violations under the LFSC framework,

V1(T ) =
’
m2M

E[
’
t2T

(� �vm,tpm,t )]+, (3)

V2(T ) =
’
m2M

E[
’
t2T

(qm,tpm,t � � )]+, (4)

where [·]+ = max(·, 0). V1(T ) shows the overall di�erence between
the total expected number of completed tasks and the minimum
completed task threshold. Similarly, V2(T ) measures how much
the overall expected resource consumption exceeds the resource
capacity. The regret and the above two violations are important
metrics to measure the performance of o�oading tasks selection. A
good algorithm should reduce both the regret and violations, and
it learns more information about the environment.

3.3 Discussion
Since SCNs are deployed closer to WDs than MBS, they can provide
low-lantency services and have higher priority in task o�oading.
For those tasks that are not selected by SCNs, they can be o�oaded
and processed by MBS. In addition, we assume all tasks can be
processed in one time slot. If some tasks need to execute over
multiple slots, they can keep submitting o�oading requests in the
subsequent time slots. In future work, we will consider the case
where a task’s reward is obtained only after full execution.

4 ALGORITHM DESIGN AND ANALYSIS
4.1 Challenges and Solutions
In the general MAB framework, the learner simply aims to maxi-
mize the total reward (i .e ., or minimize the regret) without taking
any constraints into account, which does not apply to our model.
Enlightened by [7], we leverage the theory of Lagrangian method in
constrained combinatorial optimization to balance between maxi-
mizing the total compound reward and satisfying the system con-
straints. Speci�cally, we introduce a set of adjustable Lagrangian
multipliers �m1 (T ) and �m2 (T ) for each SCN m, and combine the
regret with violations to construct a new regret function:

Y =
’
m2M

[Rm (T ) + �m1 (T )(Vm,1(T ))2 + �m2 (T )(Vm,2(T ))2],

where the Lagrangian multipliers play a regulatory role and Rm (T ),
Vm,1(T ) and Vm,2(T ) denote the regret and violations of SCN m
at time slot t , respectively. If constraints are being violated a lot,
LFSC places more weight on the violations controlled by �m1 (T )
(�m2 (T )); it decreases the weight on violations when constraints are
satis�ed reasonably. Note that, our algorithm allows violations to
happen in some time slots, but the constraints must hold in the
long term. Now our goal is to obtain a sub-linear bound for Y , i .e .,
Y  T 1�� (0 < � < 1), and thus we can further derive sub-linear
bounds for both regret and violations in long terms.
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Algorithm 1 An Online Learning Framework (LFSC)

Initialize context partition: divide context space � into (hT )D�

hypercubes of identical size
Initialize partitions weight: wm,1

f = 1 for f 2 FT form 2 M
Initialize auxiliary variables: �1m,1 = 0, �1m,2 = 0, � > 0, � >

0, �m 2 (0, 1], �m = 8�mc
1��m , �m =

�m�mc
(�m+c )Km form 2 M

1: for t = 1, · · · , T do
2: form 2 M do
3: p̃tm = Calculating({wm,t

f }f 2FT )
4: end for
5: {Itm }m2M = GreedySelect(c, {p̃tm }m2M)
6: form 2 M do
7: {wm,t+1

f }f 2FT = Updating({wm,t
f }f 2FT , Itm, p̃tm )

8: end for
9: end for

Algorithm 2 Calculate Chosen Probability Vectors Calculating

Input: {wm,t
f }f 2FT

1: Observe SCNm’s current neighbor tasks Dm,t
2: Observe tasks’ contexts �m,t = {�i,t }i2Dm,t
3: for i 2 Dm,t do
4: Find ft = {fi,t }i2Dm,t such that �i,t 2 fi,t 2 FT
5: end for
6: if argmaxj2FT wm,t

j � ( 1c � �
|FT | )/(1 � � )Õf 2FT wm,t

f then
7: Decide �t so as to satisfy
8: �tÕ

wm,t
f ��t

�t +
Õ
wm,t
f <�t

wm,t
f
= ( 1c � �

|FT | )/(1 � � )

9: Set S t = {f : wm,t
f � �t } and w̃m,t

f = �t for f 2 S t

10: else
11: Set S t = ;
12: end if
13: Set w̃m,t

f = wm,t
f for f 2 FT \S t

14: Set w̃m,t
i = w̃m,t

fi
15: for i 2 Dm,t do

16: p̃m,t
i = c[(1 � � ) w̃m,t

iÕ
i2Dm,t w̃

m,t
i
+

�
|Dm,t | ]

17: end for
18: Return: p̃tm

The core issue to be solved is how the MBS selects c o�oading
tasks for each SCN based on historical knowledge. A straightfor-
ward approach is to enumerate all possible sets and select the op-
timal one. Unfortunately, this leads to a very large search space.
Furthermore, the compound reward can only be observed after
task completion. In order to avoid this combinatorial explosion, the
traditional way is to keep a series of weights for each SCN’s all
task contexts [9]. According to these weights, the selection proba-
bility vectors are calculated in each time slot. Nevertheless, each
task comes with its context, which means there are massive con-
texts to be learned. If we maintain a weight for each context, it
will have high computational complexity. Hence, we use a basic
hypothesis that for similar task contexts, their feedback by a par-
ticular SCN will be similar. Under this hypothesis, our algorithm
uniformly partitions the context space into small hypercubes of
similar task contexts and maintains a weight for each hypercube.

Meanwhile, the algorithm learns about the parameters of di�erent
hypercubes, which can be considered as approximate estimates of
the parameters for contexts belonged to it.

Finally, since a task can be assigned to multiple SCNs, we need
to consider the collaboration between di�erent SCNs. If we extend
the traditional single agent MAB approach to our setting, there
are two key obstacles: i) the tasks covered by multiple SCNs may
be repeatedly o�oaded, which causes unnecessary waste of com-
puting resources; ii) cascade sub-optimality will occur when a SCN
selects a sub-optimal task i since its optimal task i⇤ has already
been o�oaded to another SCN. This sub-optimal selection has the
potential to bring cascade e�ect. In other words, local optimality at
a single SCN does not always result in the global optimum. There-
fore, we design a greedy algorithm that maps a task to a SCN with
the maximum reward to solve this challenge.

4.2 Algorithm Details
The framework of our algorithm, LFSC, is shown in Alg. 1. At a
high level, the algorithm consists of two parts: i) a tailored con-
textual MAB algorithm, which balances between exploration and
exploitation in each time slot to learn parameters such that a close-
to-optimal performance can be achieved; ii) a greedy assignment al-
gorithm, which gives a collaborative task o�oading solution among
all SCNs.

Let � be the D�-dimensional context space, where D� is the
number of context dimensions per task. We assume it is bounded
and can hence be set to � := [0, 1]D� without loss of generality.
First, during initialization, LFSC uniformly partitions the context
space � into (hT )D� hypercubes (i.e., each hypercube has the same
size ( 1

hT
)D� ), where hT is an input to our algorithm. Let FT be the

resulting partition. Then LFSC initializes a set of weights for the
hypercubes of each SCN, which will be updated according to his-
torical observations. In each time slot, LFSC calculates the selection
probability vector for each SCN towards current tasks within its
coverage, as shown in Alg. 2. Next, the greedy assignment algo-
rithm in Alg. 4 assigns tasks to SCNs based on selection probability
vectors. Finally, in Alg. 3, each SCN accepts tasks according to the
assignment. After receiving the feedback (i .e ., um,t

�i
, �m,t

�i
and qm,t

�i
)

of the processed tasks, LFSC updates estimated parameters and hy-
percubes’ weights as well as some auxiliary variables for each SCN,
which will be used in the next time slot to help learning.

Tailored Contextual MAB Algorithm. The algorithm consists
of Alg. 2 and Alg. 3. In each iteration, LFSC �rst gets the contexts
of all tasks within SCNm’s coverage and classi�es them into cor-
responding hypercubes (Lines 1-5 in Alg. 2). Then, our algorithm
preprocesses the weights of hypercubes and determines each task’s
weight (Lines 6-14 in Alg. 2), which are used to calculate the se-
lection probability vector p̃tm (Lines 15-17 in Alg. 2). Note that the
�rst and second terms in the RHS of Line 16 re�ect the trade-o� be-
tween exploitation and exploration. After each SCN has processed
tasks according to the greedy assignment approach, MBS receives
their feedback and calculates compound rewards for them (Line
1 in Alg. 3). In Lines 2-5, Alg. 3 calculates the unbiased estimates
�̂m,t
i , �̂m,t

i , q̂m,t
i for each task, where (A) is an indicator function,

i .e ., (A) = 1 if the event A happens and (A) = 0 otherwise. Next,
in Line 8, the estimated compound reward �̂m,t

f of the hypercube f
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Algorithm 3 Update Auxiliary Variables Updating

Input: {wm,t
f }f 2FT , Itm, p̃tm

1: Receive feedback um,t
i , �m,t

i , qm,t
i and calculate compound reward

�m,t
i for i 2 Itm

2: for i 2 Dm,t do
3: �̂m,t

i = �m,t
i /p̃m,t

i (i 2 Itm )
4: �̂m,t

i = �m,t
i /p̃m,t

i (i 2 Itm )
5: q̂m,t

i = qm,t
i /p̃m,t

i (i 2 Itm )
6: end for
7: for f 2 F do
8: Calculate hypercubes’ compound reward and parameters

�̂m,t
f , �̂m,t

f and q̂m,t
f

9: if f < St then
10: wm,t+1

f = wm,t
f exp [�m (�̂m,t

f + �tm,1�̂
m,t
f + �tm,2q̂

m,t
f )]

11: else
12: wm,t+1

f = wm,t
f

13: end if
14: end for
15: Update Lagrange multipliers:
16: �t+1m,1 = [(1 � �m�m )�tm,1 � �m ( v̂t p̃t

1��m � � )]+
17: �t+1m,2 = [(1 � �m�m )�tm,2 � �m (� � q̂t p̃t

1��m )]+
18: Return: {wm,t+1

f }f 2FT

is calculated according to �̂m,t
f =

Õ
i :�i,t 2f �̂

m,t
i /Õi :�i,t 2f . Similarly,

our algorithm computes �̂m,t
f and q̂m,t

f . Finally, Lines 9-17 in Alg. 3
update the weights of all hypercubes and Lagrange multipliers of
each SCN at the end of each iteration.

Greedy Assignment Algorithm. We design a greedy assign-
ment algorithm to give a collaborative task o�oading solution
among all SCNs. According to our system model, we abstract a
weighted bipartite graph G = (M, Dt , E), where M, Dt and E rep-
resent left vertices (i.e., all SCNs), right vertices (i.e., all tasks at time
slot t ) and edges, respectively. If task i is within the coverage of SCN
m at time slot t (i .e ., i 2 Dm,t ), there is a weighted edge between
them, which is denoted as w (m, i). Hence, E , {w (m, i)}. In par-
ticular, we set w (m, i) = p̃m,t

i after all SCNs’ selection probability
vectors are computed in Alg. 2.

Algorithm 4 Greedy Assignment Algorithm GreedySelect

Input: c, {w (m, i)}
Initialize: � = ;, E0 = {w (m, i)}, C(m) = 0 form 2 M

1: while E0 , ; do
2: select (m, i) = argmax(m0,i0)2E0 w (m0, i0)
3: if C(m) < c then
4: � = � [ {(m, i)}
5: C(m) = C(m) + 1
6: E0 = E0\{(m0, i0)}8(m0, i0) : i0 = i
7: else
8: E0 = E0\{(m, i)}
9: end if
10: end while
11: Return: �

The greedy algorithm operates in an iterative fashion. Let C(m)
denote the number of tasks that will be o�oaded to SCNm until
now, which is initialized to zero. In each iteration, the highest

weight edge (m, i) is selected until there is no edge in E0 (Line 2 in
Alg. 4). If the number of selected tasks for SCNm is less than c , task
i will be selected and o�oaded to SCNm. Meanwhile, we update
C(m) and the set of available edges E0 (Lines 3-6). Otherwise, this
edge is deleted from E0. Finally, we get the task o�oading scheme
� after all iterations.

4.3 Regret and Violation Analysis
Now we establish the upper bounds on the regret R(T ) and vi-
olations V1(T ), V2(T ) of our online learning algorithm LFSC. The
theorem below states that the regret and violations of our algorithm
are all sub-linearwith respect to T , which means LFSC converges to
the optimal task o�oading decisions over time, and has an asymp-
totically optimal performance when T is su�ciently large.
Theorem 1. Let �m =

�m�mc
(�m+c )Km , �m =

8�mc
1��m and � = min(1,r

2Km (1+c )
c ln(Km /c )T 2/3 ), we achieve its sub-linear bounds for the regret R(T )

and violations V1(T ), V2(T ) as follows:

R(T )  O [T
2
3 �

�
D� LD

�
2
� c(c + 1)

’
m2M

(Km lnKm )],

V1(T )(V2(T ))  O (T 5
6 L

1
2 D

�
4
� c

3
2

’
m2M

K
1
2
m ).

To prove Theorem 1, we �rst decompose themulti-agent problem
into multiple single agent problems and analyze the sub-problems.
Let Rm (T ), Vm

1 (T ), Vm
2 (T ) respectively denote the regret and two

violations of SCNm when the all tasks within SCNm’s coverage
are available to it, and there exist no con�icts with other SCNs.
Lemma 1. For a SCNm, we can establish its sub-linear bounds for
its regret Rm (T ) and violations Vm

1 (T ), Vm
2 (T ) as follows:

Rm (T )  O (LD
�
2
� cKm lnKmT

2
3 �

�
D� ), (5)

Vm
1 (T )(Vm

2 (T ))  O (L 1
2 D

�
4
� c

1
2 K

1
2
mT

5
6 ). (6)

Proof. Please refer to Appendix. A.1. ut
Next, we analyze the performance of our greedy algorithm in

Alg. 4.
Lemma 2. For any given weighted bipartite graph instance G =
(M, Dt , {w (m, i)}), let �⇤ and � denote the optimal solution and the
output of our greedy algorithm, respectively. Then,Õ(m,i )2� �

m,t
�i

w (m, i)
� 1

c+1
Õ

(m,i )2�⇤ �m,t
�i

w (m, i), wherew (m, i) = p̃m,t
i in our setting and

�m,t
�i

w (m, i) correspondingly represents the objective value in ILP (1).
Proof. Please refer to Appendix. 1.2. ut

Finally, combining Lemma 1 and Lemma 2, we derive the upper
bounds for the regret and violations of LFSC. Let p⇤⇤

m,t denote the
optimal solution for SCNm without considering con�icts. Note that
p⇤
m,t is the optimal solution for SCNm, which takes into account
the con�icts among multiple SCNs. Since the con�icts among SCNs
are ignored in Lemma 1, we have Õ

t2T �m,tp⇤
m,t  Õ

t2T �m,tp⇤⇤
m,t

form 2 M, and we obtain,

R(T ) =
’
m2M

[
’
t2T

�m,tp
⇤
m,t � E(

’
t2T

�m,t p̃m,t )]

 (c + 1)[
’
m2M

’
t2T

�m,tp
⇤⇤
m,t � E

’
t2T

�m,t p̃m,t ].

Therefore, we obtain:
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(a) Cumulative compound reward.
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(b) Per-time-slot compound reward.
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(c) Cumulative violation of (1c).
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(d) Per-time-slot violation of (1c).
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(e) Cumulative violation of (1d).
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(f) Per-time-slot violation of (1d).
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Figure 2: Compound rewards, violations and performance ratio of LFSC, Oracle, vUCB, FML and Random.

R(T )  O [T
2
3 �

�
D� LD

�
2
� c(c + 1)

’
m2M

(Km lnKm )],

V1(T )(V2(T ))  O (T 5
6 L

1
2 D

�
4
� c

3
2

’
m2M

K
1
2
m ),

which shows that both regret and violations are sub-linear in the
time horizon T . ut

5 PERFORMANCE EVALUATION
Wenext demonstrate the performance of LFSC via numerical simula-
tions. We �rst describe the simulation settings. Then the benchmark
algorithms and numerical results are presented.

Simulation Setup.We consider a scenario where there are 30
SCNs connected to a MBS. Suppose the number of WDs appearing
in each SCN’s coverage area varies randomly in interval [35, 100]
in each time slot, i.e., |Dm,t | 2 [35, 100]. In a time slot, each SCN
can simultaneously support up to 20 WDs. For simplicity, we only
consider the input and output data size of tasks, as well as the
type of computation resources they depend on (i.e., CPU, GPU, or
both CPU and GPU). The input data size of tasks is randomly dis-
tributed between 5Mbit and 20Mbit [22]. Similarly, the output is
between 1Mbit and 4Mbit. Then we divide the input/output data
size into three categories by default. The reward and likelihood of
a SCN completing a task are normalized and uniformly distributed
in [0, 1]. And the resource consumption that a SCN processes a
task is uniformly distributed in [1, 2] [25]. To guarantee the perfor-
mance of the network, the minimum completed task threshold �
and computation resource limit � of each SCN are set to 15 and 27,
respectively.

Benchmark Algorithms. To evaluate the performance of our
algorithm, we provide a thorough analysis by comparing LFSC with
the following benchmark schemes:

• Oracle: Oracle has a priori knowledge of the entire system. In
each time slot, Oracle makes the best task o�oading policy
under the system constraints, and it constitutes a perfor-
mance upper bound to the other algorithms.

• Variant-UCB (vUCB): This is a variant of the classic learning
algorithm UCB [5], which we adapt to our use-case. To �t our
model, vUCB maintains a series indices �̄tf +

q
2 ln(t )/(Nf (t ))

for our hypercubes for each SCN, where �̄tf is the estimated
compound reward of hypercube f , and Nf (t ) is the total
number of times that tasks with context in hypercube f has
been selected before time t . Then our greedy algorithmAlg. 4
is used to guide task o�oading among multiple SCNs based
on the indices.

• FML: Fast Machine Learning (FML) [4] is an e�cient context-
aware online learning algorithm. Since FML only considers
a single agent, it is slightly modi�ed to �t our system model.
Speci�cally, our greedy algorithm is added to handle multi-
agents problem (i .e ., multiple SCNs in our paper).

• Random: This algorithm randomly picks c tasks for each
SCN in each time slot, and each task cannot be repeatedly
o�oaded.

Performance Metrics. Our performance metrics consist of cu-
mulative (per-time-slot) compound reward, cumulative (per-time-
slot) violations of (1c) and (1d) in ILP (1) and performance ratio. The
cumulative compound reward (violation) is the overall compound
reward of all SCNs in the system up to time slot t . And the per-
time-slot compound reward (violation) at t is the compound reward
(violation) of all SCNs in time slot t . In particular, we de�ne the
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performance ratio as: performance ratio=cumulative compound re-
ward / (cumulative violation1 + cumulative violation2), which shows
the ratio between total reward and violations.

Result Analysis. We run simulations with T = 10, 000. As can
be seen in Fig. 2(a), the cumulative compound reward of LFSC is
almost identical to that of the Oracle at each time slot. To get more
details, as shown in Fig. 2(b), the per-time-slot compound reward
of LFSC is slightly larger than that of the Oracle in the �rst few
time slots (t  74). It is because LFSC is in unknown environment
at the beginning. It may o�oad the tasks that have large compound
rewards but violate the system constraints. As t increases, LFSC is
in the exploration stage and learns from history observation. Thus,
its per-time-slot compound reward is decreasing and smaller than
Oracle’s. After that, the compound reward becomes closer to the
value of Oracle, which means LFSC becomes more accurate in esti-
mating the system parameters. Note the per-time-slot compound
reward of the Oracle is varying since the number of incoming tasks
and their contexts may be di�erent in each time slot. However,
the cumulative compound rewards and per-time slot compound
rewards of vUCB and FML are always larger than the values of
our LFSC and the Oracle. This is because these two algorithm se-
lect tasks with large compound reward regardless of the minimum
completed task threshold and computation resource limit.
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Figure 3: Total compound reward and violation of (1c) under dif-
ferent value of � .

Fig. 2(c) shows that for each time slot, LFSC’s cumulative vio-
lation of minimum completed task threshold is always the lowest.
LFSC selects and processes tasks that are less likely to violate the
minimum completed task threshold. Moreover, the violations of
LFSC occur in the exploration stage, and the growth rate of later
cumulative violations tends to zero. This can also be veri�ed in
Fig. 2(d). After t = 1200, the per-time-slot violation-1 of vUCB
and FML �uctuates within a certain range. In contrast, the value
of LFSC gradually decreases and asymptotically approaches zero.
Since the Oracle can make task o�oading decisions without any
violation, it is not depicted in Fig. 2(c) and Fig. 2(d). Similarly, the
cumulative/per-time-slot violation of computation resource limit
are shown in Fig. 2(e) and Fig. 2(f). They show the superiority of
LFSC in meeting resource capacity constraints. In Fig. 2(g), after
t = 2750, LFSC has a signi�cantly better performance ratio com-
pared to vUB and FML algorithms. It strikes a balance between
gleaning reward and curbing violations.
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Figure 4: The impact of the likelihood of task completion

Next, we investigate the impact of the minimum completed task
threshold � on the total compound reward and violation of (1c). As
before, we run the simulation with T = 10, 000. Fig. 3 shows the total
compound rewards and violations of algorithms for di�erent � 2
{13, 14, 15, 16, 17}. As the value of � increases, the total compound
reward of LFSC decreases. Nonetheless, it is still the closest to the
value of Oracle. Note the total compound rewards of vUCB and
FML have not changed because the way they make task o�oading
decisions is not a�ected by the value of � . The total violations of all
algorithms increase with the increase of � , yet, the value of LFSC
increases more slowly.

Finally, we observe the performance of LFSC in di�erent environ-
ments where the range of the likelihood that a task is successfully
o�oaded is di�erent. The likelihood of task completion is divided
into three intervals, i .e ., [0.25, 0.5), [0.5, 0.75) and [0.75, 1]. From
Fig. 4, we can �nd that it is easier to satisfy the minimum com-
pleted task threshold, and all algorithms’ violations of constraint
(1c) in ILP (1) are decreasing as the likelihood increases, when the
value of � is �xed. The likelihood is smaller, i.e., the minimum
threshold is more di�cult to satisfy, the superiority of our LFSC
algorithm over vUCB and FML is more prominent.

6 CONCLUSION
We studied task o�oading in 5G small cell networks, and proposed
an online learning-based solution framework. Our algorithm, LFSC,
leverages the MAB technique to learn the best task selection strat-
egy in a small cell network, while considering resource capacity
constraints and QoS requirement. The e�ciency of LFSC is veri�ed
by both theoretical analysis and simulation studies. We proved that
LFSC achieves sub-linear bounds for both regret and violations.
Our algorithm’s superiority over other benchmark algorithms is
also con�rmed by large-scale evaluations based on real-world data.

For future work, it is interesting to jointly consider o�oading
tasks to MBS and SCNs. Tasks that do not restrict the latency but
consume large amount of computing resources will be o�oaded to
MBS. As mentioned in Sec. 3, another question is how to guarantee
full execution of tasks, in which the execution time extends to mul-
tiple time slots. A possible solution is to assign an extra reward for
processed tasks, such that they have the priority in future o�oading
decisions.
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A APPENDIX
A.1 Proof of Lemma 1
Assumption 1. We assume there exists constant L > 0, � > 0 such
that for all contexts �x , �� 2 �, it holds that |l�x � l�� |  L | |�x �
�� | |� , where | | · | | denotes the Euclidean norm in RD� .

This assumption is needed for the analysis of the regret, but
it should be noted that our algorithm can also be applied if this
assumption does not hold.2
Proof of Lemma 1: LetWt =

Õ
i2Dm,t

wm,t
fi

and W̃t =
Õ

i2Dm,t
w̃m,t
fi

.

De�ne r̂m,t = �̂m,t + �t1v̂m,t + �t2 q̂m,t and rm,t = �m,t + �t1vm,t +

�t2qm,t . 3 For the sequence of selected o�oading tasks Itm at t 2 T,’
t2T

ln
Wt+1
Wt

= ln
WT+1
W1

= ln(
’

i2Dm,T+1

wT+1
fi

) � ln |Dm,1 |

� ln
’

i2Dm,T+1

pm,t
i wm,T+1

fi
� lnKm

= ln[
’

i2Dm,T+1

pm,t
i
c

(
’

t :fi <St
exp(�r̂m,t

fi
))] � ln

Km
c

�
’

i2Dm,T+1

pm,t
i
c

’
t :fi <St

�r̂m,t
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� ln
Km
c

(7)

=
�
c

’
i2Dm,T+1

pm,t
i

’
t :fi <St

r̂m,t
fi

� ln
Km
c

(8)

Inequality (7) follows from the concavity of the log function. Then,
we have,
Wt+1
Wt

=
’

i :fi <St

wm,t+1
fi
Wt

+
’

i :f 2St

wm,t+1
fi
Wt


’

i :fi <St

wm,t
fi
Wt

[1 + �r̂m,t
fi
+ (�r̂m,t

fi
)2] +

’
i :fi 2St

wm,t
fi
Wt

(9)

= 1 +
W̃t
Wt

’
i :fi <St

p̃m,t
i
c � �

Km
1 � �

[�r̂m,t
fi
+ (�r̂m,t

fi
)2]

 1 +
�

c(1 � � )
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p̃m,t
i r̂m,t
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+
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c(1 � � )
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i :fi <St
p̃m,t
i (r̂m,t
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)2 (10)

 1 +
�2

c(1 � � )
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i :fi <St
(1 + �t1 + �t2 )r̂

m,t
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+

�
c(1 � � )

’
i :fi <St

p̃m,t
i r̂m,t

fi
.

(11)
Inequality (9) uses ea  1 + a + a2 for a  1, inequality (10)

holds because W̃t /Wt  1, and inequality (11) uses the fact that
p̃m,t
i r̂m,t

fi
= rm,t

fi
 1+�t1+�

t
2 for fi 2 S t and p̃m,t

i r̂m,t
fi
= 0 for fi < S t .

Due to 1 + x  ex , we have ln Wt+1
Wt

 �
c (1�� )

Õ
i :fi <St p̃

m,t
i r̂m,t

fi
+

�2
c (1�� )

Õ
i :fi <St (1 + �

t
1 + �

t
2 )r̂
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. By summing over t , we obtain

2However, a regret bound might not be guaranteed in this case.
3For convenience, we denote �tm,1(�tm,2) as �t1 (�t2 ) later.
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From (8) and (12), we get
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. Taking expectation
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Inequality (13) holds because �m,t
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 1. Given that (a+b)2 
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From Line 16 of the Alg. 3, we denote that �t+11  [(1���)�t1+�� ]+.
By induction on �t1 , we can obtain �t1  �

� . Let �t (�1) =
�
2 �

2
1 +

�1( v̂m,t p̃m,t
1�� � � ), t 2 T. Then we have �t+11 = [�t1 � �r�t (�t1 )]+.

Applying the standard analysis of online gradient descent yields
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Then, taking expectation over Õt2T[�t (�t1 ) � �t (�1)], we obtain
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Combining (15), (16) with (14), we have
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By rearranging the terms we get’
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� ln Km

c + 2�KmT + 2�c2T + 2cKm�
1�� T +�KmT . Let

�1 =
Õ
t2T[� (1�� )�vm,t p̃m,t ]

�T+1/� and �m,2 =
Õ
t2T[qm,t p̃m,t �� (1�� )]

�T+1/� . By
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where p⇤⇤
m,t is the optimal solution for SCNm without considering

con�icts.
So far, we have been substituting task i ’s relevant parameters

(�m,t
�i

and so on) with its corresponding hypercube fi,t ’s parameters
while analyzing the regret and violations. Next, we take into account
the deviation between them. According to Assumption 1, we de�ne
max{ |l�i � l�j | } = max{L | |�i � � j | |� } = L(D1/2

� /hT )� as the gap
between any two contexts in the same hypercube. Let hT = dT � e 
2T � , 0 < � < 1

hT
. After considering the context gap, we �nally obtain
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1.2 Proof of Lemma 2
The proof is based on a charging argument, which is often used in
the matching literature [11]. Speci�cally, we prove that each edge
belonging to �⇤ can be charged to an edge in � by constructing an
injective function. During the charging process, we ensure that no
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more than c + 1 edges in �⇤ are charged to the same edge in �. It
shows the approximation factor of our greedy algorithm is c + 1.

First, we construct an injective function h : �⇤ ! �. For any
edge (m, i) 2 �⇤, h[(m, i)] is de�ned as the edge (m0, i0) 2 � with
the largest weight that is not less than w (m, i), where m0 = m or
i0 = i .

To show that h is indeed a function mapping �⇤ to �, we assume
that there is no such edge h[(m, i)] for edge (m, i) 2 �⇤. This means
that edge (m, i) is not in �, which implies that the edge (m, i) was
removed from the set E0 at some iterations during the course of
Alg. 4. In particular, as per the algorithm, the removal can occur
in only two ways: i) via Line 6, there exists an edge (m0, i) that has
been selected to � ahead of (m, i); ii) via Line 8, the SCN m has
been selected c tasks, i .e, the communication capacity constraint
was met. On this basis, we divide the analysis into two cases.

Case 1: Removal via Line 6 in Alg 4.Without loss of general-
ity, we suppose that (m0, i)) is the edge added to � during the itera-
tion in which edge (m, i) is removed. According to the de�nition
of Line 2, (m0, i) = argmax(m00,i00)2E0 w (m00, i00) before the removal of
(m, i) from E0. Hence, we can infer that w (m, i)  w (m0, i).

Case 2: Removal via Line 8 in Alg 4. In this case, because the
number of tasks selected by SCNm has reached the capacity limit

and our greedy algorithm selects tasks in the decreasing order of
the weight of the corresponding edge, it must be the case that for
every (m, i0) 2 �, we can obtain that w (m, i)  w (m, i0).

Now we �nd that there exists an edge in � that satis�es the
de�nition of h in both cases, which is contrary to our assumption.
This means that for each edge in �⇤, there is such an edge h(m, i)
in �. Meanwhile, such an edge is unique according to h’s de�nition.
Therefore, h proves to be a function mapping �⇤ to �.

Next, we show that h is a (c + 1)-to-one function. According to
our greedy algorithm and h’s de�nition, the only edges that can
be charged to (m, i) must contain either the nodem or the node i .
Hence, for any given edge in �, at most (c + 1) edges in �⇤ can be
charged to it, which means h is (c+1)-to-one. Sincew (m, i) (i .e, p̃m,t

i
in our setting) is proportional to �m,t

i and the auxiliary variables
are updated in the same way at the same time slot, by the charging
argument, our greedy algorithm is a (c + 1)-approximation algo-
rithm, namely, Õ(m,i )2� �

m,t
i w (m, i) � 1

c+1
Õ

(m,i )2�⇤ �m,t
i w (m, i).

Note that the performance of our greedy algorithm in practice ap-
pears to be much closer to the optimum solution than the 1/(c + 1)
approximation. ut


