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Abstract

Best arm identification is an important problem of multi-
armed bandits, where each arm is associated with a reward
distribution and, when querying one arm, one obtains a re-
ward sampled from the queried arm’s distribution. In this pa-
per, we study this problem in the quantum multi-armed ban-
dits model, where the reward distributions of classical ban-
dits are replaced with quantum oracles, and the reward sam-
ples are replaced with quantum states generated by the quan-
tum oracles. We first prove a query complexity lower bound
for the quantum multi-armed bandits model, and then devise
an algorithm whose query complexity upper bound matches
the lower bound up to some logarithmic factors. Compared to
the classical best arm identification sample complexity bound
of O(∆−2 log(1/δ)), our quantum query complexity bounds
is O(∆−1 log(1/δ)), improving the dependence of ∆ from
∆−2 to ∆−1, where δ is the given confidence parameter and
∆(< 1) is the mean reward gap between optimal and sub-
optimal arms. We also extend our complexity bound analysis
and algorithm design to the multiple top arms identification
problem. Lastly, we conduct numerical experiments to cor-
roborate our theoretical results.

1 Introduction
Recent progress in building quantum computers (Arute et al.
2019; Chow, Dial, and Gambetta 2021) and quantum net-
works (Wehner, Elkouss, and Hanson 2018; Azuma et al.
2022) envisages wide applications of quantum systems in
the near future. With the advantage of quantum computation,
one can speed up not only fundamental algorithms, e.g., un-
structured search (Grover 1996) and factoring (Shor 1994),
but recent machine learning algorithms (Biamonte et al.
2017) as well. In this paper, we study the quantum speedup
of a canonical task of reinforcement learning in quantum
system—best arm identification in multi-armed bandits with
quantum oracles.

The multi-armed bandit (MAB) model—first studied
by Lai and Robbins (1985)—is a well-established sequen-
tial decision making model (ref., (Lattimore and Szepesvári
2020; Slivkins et al. 2019)). In the stochastic case, a MAB
consists of K arms, each of which is associated with an un-
known reward distribution. When querying an arm k ∈ K :=
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{1, 2, . . . ,K}, one obtains a reward drawn from a reward
distribution B(µk), i.e.,

(Classical oracle) Xk ∼ B(µk), (1)

which we assume to be a Bernoulli distribution with un-
known mean µk. This assumption can be straightforwardly
extended, as shown in the MAB literature. We refer to Eq. (1)
as the classical oracle.

Two kinds of quantum oracles have been proposed for
MAB: Wang et al. (2021) proposed an oracle that encodes
the Bernoulli reward distributions of all arms as follows,
(Strong quantum oracle)

Ostro : |k⟩I |0⟩R 7→ |k⟩I
(√

µk |1⟩R +
√
1− µk |0⟩R

)
,

(2)
where I is the “arm index” register with K states corre-

sponding toK arms, andR is a single-qubit “bandit reward”
register with basis states |1⟩ and |0⟩. On the other hand, Wan
et al. (2023) proposed another oracle that encodes the reward
distribution of each arm k into separate oracles as follows,
(Weak quantum oracle)

Ok : |0⟩ 7→ √µk |1⟩+
√
1− µk |0⟩ , k ∈ K. (3)

where the output is a single-qubit “bandit reward” superpo-
sition. The oracle in Eq. (2) is more powerful than the oracle
in Eq. (3) since the former allows one to access all arms
coherently in a single query, while the latter is restricted to
individual arm access per query. For example, when the arm
index register is queried in a uniform superposition of the
arm indices

∑
k∈K(

1/
√
K) |k⟩I |0⟩R, the oracle of Eq. (2)

returns
∑

k∈K(
1/

√
K) |k⟩I

(√
µk |1⟩R +

√
1− µk |0⟩R

)
in

which the qubit in register R encodes the information of all
arms’ reward distributions. We refer to the oracle in Eq. (2)
as the strong quantum oracle, and the one in Eq. (3) as the
weak quantum oracle.

We emphasize that, in several interesting settings that can
be modelled by quantum MAB, it may be unrealistic to as-
sume coherent access to all arms, whereas the weak oracle
assumption may still apply. For example, the weak oracle
model can be used to select paths in a quantum network un-
der the assumption that paths introduce unitary noise. In this
setting, the paths are modelled by the weak oracle, and the
objective is to find the path that introduces the least amount



of noise. On the other hand, the strong oracle model may be
unrealistic in this case, as coherent path access would neces-
sitate complex, macroscopic entanglement among network
paths (which could, in principle, be operated by different
network providers). Another motivating example is where
the oracles correspond to quantum solvers offered by dif-
ferent providers (e.g., IBM, Google, etc.) to solve the same
problem. One may wish to determine which algorithm suc-
ceeds with the highest probability, but it is not plausible to
assume coherent access to the different backend quantum
computers.

Prior works on the MAB problem typically focus on re-
gret minimization and best arm identification (BAI, a.k.a.,
pure exploration). In this paper, we focus on the BAI set-
ting introduced to MAB by Even-Dar, Mannor, and Mansour
(2002); Even-Dar et al. (2006) and Mannor and Tsitsiklis
(2004). The BAI setting can be further divided into two cat-
egories based on the learning objective: (1) BAI with fixed
confidence—find the best arm with a confidence of at least
1 − δ (δ ∈ (0, 1)) with as small number of samples as pos-
sible (Bubeck, Munos, and Stoltz 2011); and (2) BAI with
fixed budget—given a fixed budget of query times Q, find
the best arm with as large a probability as possible (Karnin,
Koren, and Somekh 2013). In this paper, we focus on the
former category, and for brevity, hereinafter refer to it as the
BAI problem. We study BAI under the weak quantum ora-
cle setting in Eq. (3).

1.1 Contributions
In Section 3, and inspired by quantum hypothesis test-
ing (Kargin 2005), we first derive a query complexity lower
bound of Ω (

∑
k(1/∆k) ln(1/δ)) for BAI with the weak

quantum oracle of Eq. (3), where ∆k := µ1 − µk is the
difference in the rewards of the optimal arm and arm k.
The proof of this lower bound is a non-trivial combina-
tion of three key components: a quantum hypothesis test-
ing lower bound (Lemma 1) (Kargin 2005), a mapping of a
lower bound on the failure probability of testing any two
quantum states to the query complexity of distinguishing
two quantum MAB instances (Lemma 2), and an application
of hypothesis testing to best arm identification (following
the classical BAI lower bound proof (Mannor and Tsitsik-
lis 2004)). We also derive another query complexity lower
bound Ω(

∑
k(1/∆k)(1−

√
δ)) based on the quantum adver-

sary method (Ambainis 2000) (Appendix A). Both highlight
the impact of the term

∑
k(1/∆k) on the query complexity

lower bound. Further, we extend the above lower bounds for
BAI to the top m arms identification (TMI) problem.

In Section 4, we propose near-optimal algorithms to
address BAI and TMI whose query complexity upper
bounds are tight up to some logarithmic factors. We de-
vise an elimination-based algorithm (Q-Elim) for BAI
(Section 4.1) and prove that this algorithm enjoys a query
complexity upper bound of Õ (

∑
k(1/∆k) ln(1/δ)). We

also devise a gap-based exploration algorithm (Q-GapE)
for TMI (Section 4.2) which enjoys an upper bound of
Õ(
∑

k(1/∆
⟨m⟩
k ) ln(1/δ)), where ∆

⟨m⟩
k is the reward gap

between arm k and themth (or (m+1)th)-largest arm (see the

definition in Eq. (5)). Both upper bounds match their corre-
sponding lower bounds up to some logarithmic factors. We
emphasize that existing BAI and TMI algorithms with clas-
sical oracles do not extend in a straightforward manner to
address BAI and TMI with weak quantum oracles, as these
classical algorithms rely on the flexible utilization of classi-
cal estimators, which are not feasible when utilizing quan-
tum estimators (see Remark 2 for more details). Lastly, we
conduct experiments to corroborate the superiority of our
quantum algorithms over classical ones (Section 5).

In Table 1, we summarize the key results in this paper and
compare them to prior works. Comparing the coefficient of
these complexities, we have√∑

k

1

∆2
k︸ ︷︷ ︸

Strong quantum oracle

⩽
∑
k

1

∆k︸ ︷︷ ︸
Weak quantum oracle

⩽
∑
k

1

∆2
k︸ ︷︷ ︸

Classical oracle

. (4)

Both quantum MAB models enjoy smaller query complexi-
ties than that of classical MAB. Secondly, our quantum query
complexity (via the weak quantum oracle Eq. (3)) is larger
than that of the strong quantum oracle Eq. (2); in the worst
case, it can be

√
K times larger by the Cauchy-Schmidt

inequality. This echoes the fact that our quantum oracle
(Eq. (3)) is weaker than the strong oracle Ostro in the sense
that we cannot explore multiple arms at the same time.

1.2 Related Works
For MAB with the strong quantum oracle, Wang et al. (2021)
proposed an algorithm that enjoys a quadratic speedup in
the query complexity for best arm identification with a
fixed confidence setting. For MAB with the weak quan-
tum oracle, Wan et al. (2023) devised regret minimization
algorithms for both multi-armed bandits and linear ban-
dits with quantum reward oracles that achieve an O(lnT )
problem-independent upper bound, while with classical or-
acle in Eq. (1), one only has O(

√
T ) problem-independent

bounds. Wu et al. (2023) extended the regret minimization
results of Wan et al. (2023) to bandits with heavy-tailed
quantum rewards. In this paper, we are the first to study the
BAI problem with the weak quantum oracle.

Besides MAB with quantum oracles (Casalé et al. 2020;
Wang et al. 2021; Wan et al. 2023; Wu et al. 2023) literature,
there are other interdisciplinary works involved with multi-
armed bandits and quantum computation (Lumbreras, Haa-
pasalo, and Tomamichel 2022; Brahmachari, Lumbreras,
and Tomamichel 2023; Ohno 2023; Buchholz, Kübler, and
Schölkopf 2023; Naruse et al. 2019; Cho et al. 2022). For
example, Lumbreras, Haapasalo, and Tomamichel (2022);
Brahmachari, Lumbreras, and Tomamichel (2023) applied
the classical bandit algorithms to learn properties of quan-
tum states and recommend quantum states. Ohno (2023)
applied quantum maximization and amplitude encoding to
speed up the classical ϵ-greedy algorithm in MAB. Cho et al.
(2022) proposed quantum amplitude amplification explo-
ration algorithm for adversarial MAB. Naruse et al. (2019)
built a physical quantum system (based on photons) to im-
plement the classical MAB algorithms.



Table 1: Comparison of query complexity bounds with classical and quantum BAI

Lower Bound Upper Bound

Classical oracle (1) Ω
(∑

k
1
∆2

k
ln 1

δ

)
(Mannor and Tsitsiklis 2004) O

(∑
k

1
∆2

k
ln 1

δ

)
(Karnin, Koren, and Somekh 2013)

Strong quantum oracle (2) Ω
(√∑

k
1
∆2

k

)
(Wang et al. 2021) Õ

(√∑
k

1
∆2

k
ln
(
1
δ

))
(Wang et al. 2021)

Weak quantum oracle (3) (ours) Ω
(∑

k
1
∆k

ln
(
1
δ

))
(Theorem 1) Õ

(∑
k

1
∆k

ln
(
1
δ

))
(Theorem 3)

2 Model

Bra-ket notation. We make use of quantum bra-
ket notation, where ket |x⟩ := (x1, x2, . . . , xn)

T ∈
Cn denotes a column vector, while the bra
⟨x| := |x⟩† = (x∗1, x

∗
2, . . . , x

∗
n), a row vector, is the

conjugate transpose of the ket |x⟩. The inner prod-
uct between |x⟩ ∈ Cn and |y⟩ ∈ Cn is defined as
⟨x|y⟩ := ⟨x| · |y⟩ =

∑n
i=1 x

∗
i yi ∈ C, and the tensor

product between |x⟩ ∈ Cn and |z⟩ ∈ Cm is defined as
|x⟩ |z⟩ := |x⟩ ⊗ |z⟩ = (x1z1, x1z2, . . . , xnzm) ∈ Cn ⊗ Cm.

Quantum query model. In this model, one can access a
black-box function implemented by a quantum oracle. The
objective is to study the query complexity, i.e., the number
of calls (denoted as Q) to this oracle that are needed to solve
a given task; all other costs except for querying the oracle
are ignored. This is a commonly used model for studying
quantum algorithms (Childs 2017, §20) and can be used, for
instance, to obtain algorithmic running time lower bounds.
In this paper, we study the query complexity of best arm
identification with fixed confidence using the weak quantum
oracle of Eq. (3).

Quantum MABmodel. Consider aK-armed bandit, where
each arm k is associated with a Bernoulli distribution with
mean µk ∈ (0, 1), i.e., B(µk). When querying one arm k,
instead of obtaining a sample drawn from B(µk), we con-
sider the case that one obtains a qubit in state |ψk⟩ :=√
µk |1⟩+

√
1− µk |0⟩ . Formally, each arm k ∈ K is associ-

ated with a weak quantum oracleOk defined in Eq. (3). This
weak quantum oracle models the query feedback of classical
MAB in Eq. (1) as quantum superpositions. Measuring |ψk⟩
yields |1⟩ with probability µk and |0⟩ otherwise, which is
equivalent to classical oracle in Eq. (1), i.e., drawing a sam-
ple from a Bernoulli distribution B(µk). Although this weak
oracle does not provide an opportunity to simultaneously ex-
plore multiple arms coherently as the strong oracle in Eq. (2)
does, it is still more informative than the classical oracle
in Eq. (1) because its superposition output encodes the in-
formation of the whole reward distribution, instead of a sin-
gle reward sample as in the classical oracle. In this paper, we
show that the weak quantum oracle, followed by some quan-
tum computations, outperforms classical MAB algorithms.
For simplicity, we assume the K arms are ordered in de-
scending order of their means: µ1 > µ2 > · · · > µK , un-
known to the learner. A quantum MAB instance is determined
by the reward means of its arms, and we denote an arbitrary
instance I with means µ1, . . . , µK as I := {µ1, . . . , µK}.

Best arm (and top m arms) identification. Given δ ∈
(0, 1), design an algorithm that minimizes the number of
queries required to correctly output the best arm (top m
arms) with a probability of at least 1 − δ. To express the
query complexity, we denote the reward mean (suboptimal-
ity) gap as

∆
⟨m⟩
k :=

{
µk − µm+1 if k ⩽ m

µm − µk if k > m
, (5)

where m = 1 corresponds to the BAI. For brevity, we de-
note ∆k := ∆

⟨1⟩
k .

3 Lower Bound
In this section, we start by reviewing a quantum hypothesis
testing lower bound (Lemma 1), and then apply this lower
bound to distinguish two quantum MAB models (Lemma 2).
Next, based on the previous two lower bounds, we derive
query complexity lower bounds for the best arm identifica-
tion (BAI) (Theorem 1) and the top m arms identification
(TMI) problems (Theorem 2).

3.1 Preliminary Lower Bounds
Quantum hypothesis testing (Holevo 2003, §2.2) aims to
solve the following problem: Given multiple copies of one
of two known quantum states, |ψ0⟩ , |ψ1⟩, determine which
of both states has been given. We focus on pure states in this
paper, and consider the case that the quantum superposition
of both hypotheses are |ψ0⟩ and |ψ1⟩. Lemma 1 presents a
failure probability lower bound of testing whether the quan-
tum pure state is |ψ0⟩ or |ψ1⟩, given Q quantum copies.

Lemma 1 (Error probability lower bound for quantum pure
state hypothesis testing (Kargin 2005)). Given Q copies of
one of two pure quantum states, |ψ0⟩ or |ψ1⟩ (equal prior),
the smallest error probability of deciding which state has
been given is

p(Q)
error ⩾

1

2

(
1−

√
1− |⟨ψ0|ψ1⟩|2Q

)
.

Next, we extend the hypothesis testing between two
quantum pure states to distinguishing two quantum
MAB instances I0 = (µ

(0)
1 , µ

(0)
2 , . . . , µ

(0)
K ) and I1 =

(µ
(1)
1 , µ

(1)
2 , . . . , µ

(1)
K ). We consider the case where both in-

stances have only one arm ℓ where the reward oracles differ:

O(0)
ℓ : |0⟩ →

√
1− µ0 |0⟩+

√
µ0 |1⟩ ,

O(1)
ℓ : |0⟩ →

√
1− µ1 |0⟩+

√
µ1 |1⟩ ,



that is, µ(0)
ℓ = µ0 ̸= µ1 = µ

(1)
ℓ , and all other arm reward

means are the same, i.e., µ(0)
k = µ

(1)
k for all k ̸= ℓ. As we are

interested in query complexity, we transfer the failure prob-
ability bound in Lemma 1 to query complexity in Lemma 2
as follows.
Lemma 2 (Query complexity lower bound for distinguish-
ing two quantum MAB instances differing by exactly one
arm’s reward mean). Given µ0, µ1 ∈ (0, 1/2)1, the neces-
sary number of queries Q to distinguish the quantum MAB
instances I0 and I1, with a probability of at least 1 − δ, is
lower bounded by

Q ⩾
1

4|µ0 − µ1|
ln

1

4δ
.

Proof of Lemma 2. Step 1. Relax the task to quantum hy-
pothesis testing. We begin with an easier task than distin-
guishing two quantum MAB instances. We assume that the
reward mean parameters of both instances are known a pri-
ori, that is, the arm index ℓ whose reward mean is different
in instance I0 and I1 and the values of µ0 and µ1 are known.
To address the relaxed task, one only needs to pull arm ℓ and
test whether the reward mean of this arm is µ0 or µ1. We
note that with the above additional information, the task be-
comes easier, and, hence, the query complexity lower bound
of this relaxed task also serves as a lower bound for the orig-
inal task.

Step 2. Calculate the query complexity lower bound
from the quantum hypothesis testing result. Let

√
µ0 =

sin θ0 and
√
µ1 = sin θ1 for θ0, θ1 ∈ (0, π/4). We can

rewrite the quantum states as

|ψ0⟩ :=
√
1− µ0 |0⟩+

√
µ0 |1⟩ = cos θ0 |0⟩+ sin θ0 |1⟩ ,

|ψ1⟩ :=
√
1− µ1 |0⟩+

√
µ1 |1⟩ = cos θ1 |0⟩+ sin θ1 |1⟩ .

Lemma 1 shows that to differentiate both oracles with a
probability of a least 1− δ, one needs

δ ⩾ p(Q)
error ⩾

1

2

(
1−

√
1− |⟨ψ0|ψ1⟩|2Q

)
.

After rearranging the above inequality, we have

Q ⩾
ln
(
1− (1− 2δ)2

)
2 ln | ⟨ψ0|ψ1⟩|

=
1

−2 ln | ⟨ψ0|ψ1⟩|
ln

1

4δ(1− δ)
(6)

Algebraic calculations (see Appendix B.1) yield
ln | ⟨ψ0|ψ1⟩|−1 ⩽ (θ0 − θ1)2/2 and |µ0 − µ1| ⩾
(θ0 − θ1)2/4. Substituting both inequalities into Eq. (6)
concludes the proof.

3.2 Lower Bounds for Best Arm Identification
and Top m Arms Identification

Next, we extend the lower bound for distinguishing two
quantum MAB instances in Lemma 2 to the BAI problem.

1This assumption is needed in the algebraic calculations in Ap-
pendix B.1, and such a constant constraint assumption is common
for lower bound results, e.g., (Mannor and Tsitsiklis 2004, Theo-
rem 1).

The proof follows the approach used to prove the classical
BAI sample complexity lower bound (Mannor and Tsitsiklis
2004).

Theorem 1 (Query complexity lower bound for best arm
identification). Given a quantum multi-armed bandits in-
stance I0 = {µ1, . . . , µK} where µk ∈ (0, 1/2) for all k
and µ1 > µ2 ⩾ µk for any k ̸= 1, the necessary query times
Q of any algorithm—that identifies the optimal arm with a
given confidence 1 − δ, δ ∈ (0, 1)—satisfies the following
inequality,

Q ⩾
∑
k∈K

1

4∆k
ln

1

4δ
.

Proof of Theorem 1. For any suboptimal arm k ̸= 1
in instance I0, we consider another instance Ik =

{µ(k)
1 , . . . , µ

(k)
K } whose reward means are the same as in-

stance I0 except for the reward mean of arm k which as-
sumes the form µ

(k)
k = µ1 + ϵ for 0 < ϵ < 1/2− µ1. There-

fore, in instance Ik, the optimal arm is k ̸= 1.
Because instances I0 and Ik have different optimal arms,

any feasible policy must be able to distinguish these two in-
stances with a confidence of at least 1 − δ. Given the addi-
tional information that all other arms have the same means,
this task reduces to distinguishing two instances I0 and Ik
as in Lemma 2. Therefore, the query complexity of distin-
guishing both instances is at least 1/4(∆k+ϵ) ln 1/4δ. Note that
these queries are all on arm k.

For the optimal arm k = 1 in instance I0, we consider
another instance I1 = {µ(1)

1 , . . . , µ
(1)
K } whose oracles are

the same as instance I0 except that the reward mean of the
arm 1 in I1 is µ(1)

1 = µ2 − ϵ for 0 < ϵ < µ2 and recall that
arm 2 is the second best arm in I0. Therefore, in instance I1,
the optimal arm is 2 ̸= 1. Similarly, applying Lemma 2 to
distinguishing instances I0 and I1, the query complexity is
lower bounded by (1/4(∆2+ϵ)) ln 1/4δ = (1/4(∆1+ϵ)) ln 1/4δ.

Last, summing the least query complexity spent on each
arm and letting ϵ go to zero yield Q ⩾

∑
k∈K

1/4∆k ln 1/4δ.

We further extend the result to top m arms identification
in Theorem 2 with a proof in Appendix B.2.

Theorem 2 (Query complexity lower bound for top m arms
identification). Given a quantum multi-armed bandits in-
stance I0 = {µ1, µ2, . . . , µK} where µk ∈ (0, 1/2) for all k
and µk1

> µk2
for any k1 ⩽ m and k2 > m, any

algorithm—that identifies the set of top m arms with a given
confidence 1 − δ where δ ∈ (0, 1)—satisfies the following
inequality,

Q ⩾
∑
k∈K

1

2∆
⟨m⟩
k

ln
1

4δ
.

Remark 1 (Comparison to the lower bounds of classical and
strong quantum oracles). Compared to the classical sample
complexity lower bound Ω(

∑
k∈K(1/∆k)

2 ln(1/δ)) (Man-
nor and Tsitsiklis 2004), the query complexity lower bounds
in Theorems 1 and 2 transform the quadratic depen-
dence on 1/∆k to a linear dependence. Compared to the
strong quantum oracle’s sample complexity lower bound



Ω(
√∑

k 1/∆
2
k(1 −

√
δ(1− δ)) (Wang et al. 2021, Theo-

rem 5), the coefficient of the query complexity lower bound
of the weak oracle is larger than that of the strong oracle, as
shown by the first inequality of Eq. (4), and is, in the worst
case,

√
K times larger. Nevertheless, our lower bound has a

better dependence on δ, since ln(1/δ) ≫ (1 −
√
δ(1− δ))

when δ is small.

4 Algorithm
In this section, we propose two algorithms for BAI and top
m arms identification (TMI) respectively. We first recall the
following useful result.

Lemma 3 (Adapted from Montanaro (2015)). For any weak
quantum oracle Ok in Eq. (3), there is a constant C1 > 1
and a quantum estimate algorithm QE(O, ϵ, δ) which re-
turns an estimate µ̂k of µk such that P(|µ̂k − µk| ⩾ ϵ) ⩽ δ

using at most (C1/ϵ) log(1/δ) queries to Ok and O†
k.

Remark 2 (Comparison to classical estimator). To achieve
the P(|µ̂k − µk| ⩾ ϵ) ⩽ δ claim in Lemma 3, a classical
estimator (e.g., empirical mean) needs O((1/ϵ2) log(1/δ))
(e.g., via Hoeffding’s inequality). Compared to the classi-
cal estimator, the quantum estimator QE enjoys a quadratic
speedup in query complexity regarding parameter ϵ. How-
ever, QE is not as flexible as the classical estimator. Before
the QE procedure runs to completion, one cannot obtain any
partial information of the reward mean, since that informa-
tion is stored in quantum states that can only be accessed
through measurements. In the case of a classical estimator,
one can improve the estimate gradually as samples accumu-
late, and these samples can be reused freely.
Remark 3 (Generality of the quantum estimator algorithm
and our BAI and TMI algorithms). We note that Lemma 3
is a special case of (Montanaro 2015, Theorems 3 and 5).
With more general quantum estimators, we can extend algo-
rithms in this section that apply to Bernoulli random variable
rewards to any random variables with bounded variance.

4.1 Algorithm for Best Arm Identification
We devise a quantum elimination algorithm (Q-Elim) for
BAI (Algorithm 1). Recall that the main idea of an elimina-
tion algorithm is to maintain a candidate arm set C (initiated
as the full arm set K), gradually identify and eliminate sub-
optimal arms from C as learning proceeds, and stop when
C contains only one arm, which is then output as the op-
timal arm. Note that, while several elimination algorithms
for BAI using classical oracles have been proposed, such as
successive elimination (Even-Dar et al. 2006), it is not feasi-
ble to apply these algorithms by directly replacing classical
estimators with the quantum estimator of Lemma 3. This
limitation arises from the inherent rigidity of the quantum
estimator discussed in Remark 2.

One key challenge in designing our quantum algorithm
is to decide when to execute quantum estimation QE and
arm elimination. To address this challenge, we propose a
batch-based exploration and elimination scheme, where we
use p ∈ {1, 2, . . . } to denote batch number. In each batch,

Algorithm 1: Q-Elim: Quantum elimination for BAI

1: Input: fixed confidence parameter δ and number of
arms K

2: Initialize: empirical mean µ̂k ← 0, candidate arm set
C ← K, batch number p← 1

3: while |C| > 1 do
4: Query each arm in C for C12

p log(2p|C|/δ) times
5: Run QE(O, 2−p, δ/2p|C|) for each arm in C and up-

date these arms’ estimates µ̂k

6: µ̂max ← maxk∈C µ̂k

7: C ← C \ {k ∈ C : µ̂k + 2 · 2−p < µ̂max}
▷ Elimination

8: p← p+ 1

9: Output: the remaining arm in C.

we uniformly explore (query) all the remaining arms in can-
didate arm set C a number of times depending on the batch
number p (Line 4), conduct QE to estimate reward means of
arms in C based on queries in this batch (Line 5), and elimi-
nate the newly identified suboptimal arms (Line 7) at the end
of the batch. As the batch number p increases, we gradually
increase the number of queries (Line 8) and the estimation
accuracy of QE (Lines 4 and 5).

In Theorem 3, we analyze the query complexity upper
bound of Q-Elim. The upper bound theorem means, with a
probability of at least 1 − δ, Q-Elim terminates before the
proved query complexity upper bound and outputs the true
optimal arm.
Theorem 3 (Query complexity upper bound of Algo-
rithm 1). Given a confidence parameter δ ∈ (0, 1), the
query complexity of Q-Elim is upper bounded as follows,

Q ⩽
∑
k∈K

log2

(
4

∆k

)
16C1

∆k
ln
K

δ
.

Proof of Theorem 3. Correctness: Note that if all estimates
of QE are correct, i.e., µk ∈ (µ̂k − 2−p, µ̂k + 2−p) for all
arms in C, then the final output arm must be the true optimal
arm. Hence, we only need to show that the probability that
any of these QE fails is upper bounded by δ.

In the pth round, the probability that any of the |C| quan-
tum estimates fails is upper bounded by |C| × 2−pδ/|C| =
2−pδ. Therefore, the total failure probability over all rounds
is upper bounded by

∑∞
p=1 2

−pδ = δ. This fulfills the fixed
confidence requirement.

Query Complexity: Since failure of the QE procedures
are accounted for by the fixed confidence above, we assume
that µk ∈ (µ̂k − 2−p, µ̂k + 2−p) holds for all arms in C and
prove an upper bound of query times that Q-Elim needs to
output the optimal arm.

Consider a complete execution of Algorithm 1. Fix a sub-
optimal arm k. Denote sk as the batch during which arm k
is eliminated. We show that this arm must have been elimi-
nated when 4·2−p < ∆k. Otherwise this arm is not removed,
which implies that

µk+4·2−p
(a)

⩾ µ̂k+3·2−p
(b)

⩾ µ̂max+2−p ⩾ µ̂1+2−p
(c)

⩾ µk∗ ,



where inequalities (a) and (c) are due to the confidence in-
terval µk ∈ (µ̂k − 2−p, µ̂k + 2−p), and inequality (b) stems
from the fact that the elimination condition of Line 7 does
not hold. That is, if the arm is not eliminated, we have
4 · 2−p ⩾ µk∗ − µk = ∆k, which contradicts 4 · 2−p < ∆k.
Therefore, assuming the last batch that the arm k is queried
is sk, and we have 4 · 2−sk ⩾ ∆k. After rearrangement, we
have 2sk ⩽ 4/∆k. So, we can bound the query times of this
arm k as follows,

sk∑
p=1

C12
−p ln

K

2−pδ
⩽ C1 ln

2K

δ

sk∑
p=1

2p(p+ 1)

⩽ C1 ln
2K

δ
· (sk + 1)2sk+1 ⩽ C1 ln

2K

δ
log2

(
4

∆k

)
16

∆k
.

Last, summing the query times of all arms concludes the
proof.

Remark 4 (Optimality of query complexity upper bound).
Compared to the query complexity lower bound in Theo-
rem 1, our upper bound in Theorem 3 is tight up to some
logarithmic factor.
Remark 5 (Comparison to upper bounds of classi-
cal and strong quantum oracles). Compared to the
classical oracle sample complexity upper bound
O(
∑

k∈K(1/∆k)
2 log(1/δ)) (Karnin, Koren, and

Somekh 2013), the query complexity upper bound in
Theorem 3 has a quadratic improvement in the depen-
dence on 1/∆k for each individual arm. In contrast, the
strong quantum oracle sample complexity upper bound
Õ(
√∑

k 1/∆
2
k log(1/δ)) (Wang et al. 2021) enjoys an

overall quadratic speedup over all arms. That is, as the
first inequality of Eq. (4) shows, the coefficient of query
complexity lower bound of the weak quantum oracle is
larger than that of the strong oracle, and is, in the worst
case,

√
K times larger.

We note that Q-Elim in Algorithm 1 for BAI cannot be
extended to address TMI by simply changing the while-loop
condition |C| > 1 in Line 3 to |C| > m, because such an
algorithm cannot guarantee to output the top m arms with a
confidence of at least 1 − δ. For example, when the reward
means of the mth-best arm and the (m + 1)th-best arm are
close, the extended Q-Elim can easily make a mistake and
eliminate the mth-best arm instead of (m + 1)th-best arm,
whose failure probability is not taken into account by the
current analysis and can be significantly larger than δ.

4.2 Algorithm for Top m Arms Identification
In this subsection, we propose the quantum gap-based explo-
ration algorithm (Q-GapE) for TMI using the weak quan-
tum oracle in Algorithm 2. This algorithm adapts gap-based
exploration (Gabillon, Ghavamzadeh, and Lazaric 2012) to a
batched version so that one can apply the quantum estimator
for reward mean estimate.

We illustrate the gap-based exploration. Let Bk :=
maxmi̸=k(µ̂i + 2−pi) − (µ̂k − 2−pk) denote the gap, where
maxmi̸=k means outputting the mth-largest quantity among
all quantities referred to in index range K \ {k}, and pk ∈

Algorithm 2: Q-GapE: Quantum gap-based exploration for
top m arms identification

1: Input: fixed confidence parameter δ, number of arms
K, and top arm set size m

2: Initialize: empirical means µ̂k ← 0 and batch number
pk ← 1 for all arm k, empirical top m arms set H ←
{1, 2, . . . ,m}, empirical mth-best arm index h ← m,
empirical (m + 1)th-best arm index ℓ ← m + 1, and
exploration arm index u← 1.

3: while maxk∈HBk > 0 do
4: u← argmaxk∈{h,ℓ} 2

−pk , break ties arbitrarily
5: Query arm u for C12

−pu log(2puK/δ) times and
use QE(O, 2−pu , δ/2puK) to update µ̂u

6: H ← argmin1...mk∈K Bk.
7: h ← argmink∈H(µ̂k − 2−pk) and ℓ ←

argmaxk ̸∈H(µ̂k + 2−pk)
8: pu ← pu + 1

9: Output: the arm setH

{1, 2, . . . } denotes the batch number for exploring the arm
k.Bk ⩽ 0 means that the lower confidence bound µ̂k−2−pk

of arm k is no less than the mth-largest upper confidence
bound among arms other than k, which implies that arm k is
among the top m arms with high probability; the smaller Bk

is, the higher the assurance. Let H := argmin1...mk∈K Bk de-
note the set of m arm indexes with the smallest Bk’s, where
argmin1...mk∈K represents the m indices with the minimum m
quantities referred to in the index rangeK. Arm setH serves
as the estimated top m arms set in the algorithm. If, for all
k ∈ H, Bk ⩽ 0 holds (i.e., maxk∈HBk ⩽ 0), then we
output arm set H as the identified top m arms fulfilling the
required confidence. This leads to the while-loop condition
maxk∈HBk > 0 in Line 3 of Algorithm 2.

Within each iteration of the while-loop, we let arm h with
the smallest lower confidence bound among arms in H de-
note the estimated mth-best arm, and arm ℓ with the largest
upper confidence bound among arms in K \ H denote the
estimated (m + 1)th-best arm (Line 7). Since both arms are
critical for separating the top m arms from the rest, we pick
the arm with largest confidence interval width among h and
ℓ (Line 4) to conduct a batched exploration (Line 5). We
present Q-GapE in Algorithm 2 and its query complexity
upper bound in Theorem 4 with a proof in Appendix B.3.

Theorem 4 (Query complexity upper bound of Algo-
rithm 2). Given a confidence parameter δ ∈ (0, 1), the
query complexity of Q-GapE is upper bounded as follows,

Q ⩽
∑
k∈K

log2

(
4

∆
⟨m⟩
k

)
16C1

∆
⟨m⟩
k

· ln 2K

δ
. (7)

where ∆
⟨m⟩
k is defined in Eq. (5).

Remark 6 (Optimality of this query complexity upper
bound). Similar to Remark 4, compared to the query com-
plexity lower bound for TMI in Theorem 2, the upper bound
in Theorem 4 is tight up to some logarithmic factor.



(a) Five different suboptimality gaps (b) Five different scenarios

Figure 1: Comparing Q-Elim and Q-GapE with SuccElim and UGapEc

Remark 7 (Comparison to upper bounds of classical or-
acles). Compared to the classical oracle query upper
bound for TMI O(

∑
k∈K(1/(∆

⟨m⟩
k )2) log(1/δ)) (Gabillon,

Ghavamzadeh, and Lazaric 2012), the query complexity
bound of Algorithm 2 in Eq. (7) improves the coefficient
before log(1/δ) from 1/(∆

⟨m⟩
k )2 to 1/(∆

⟨m⟩
k ) (ignoring the

logarithmic factor). Additionally, whether one can design a
TMI algorithm with the strong quantum oracle in Eq. (2)

that enjoys a Õ(

√∑
k∈K 1/(∆

⟨m⟩
k )2 log(1/δ)) query com-

plexity is an open problem. We conjecture that its design is
possible.
Remark 8 (Comparison between Q-GapE and Q-Elim).
Letting m = 1, Q-GapE becomes a BAI algorithm as
Q-Elim, and both algorithms have the same query com-
plexity upper bound (notice that ∆⟨1⟩

k = ∆k). Numerical
simulations in Figure 1 show that both algorithms also have
similar empirical performance.

5 Experiments
We report experimental results from comparing our quan-
tum algorithms, Q-Elim (Algorithm 1) and Q-GapE (Al-
gorithm 2 with m = 1), to classical successive elimination
algorithm (Even-Dar et al. 2006, Algorithm 3), SuccElim,
and classical unified gap-based exploration with fixed con-
fidence algorithm (Gabillon, Ghavamzadeh, and Lazaric
2012, Section 3), UGapEc, in BAI objective with different
suboptimality gaps ∆.

We experiment with confidence δ = 0.1 and K = 8
arms with reward means 0.99 − i ×∆, i ∈ {0, ...,K − 1},
where suboptimality gap ∆ is reduced from 0.14 to 0.06
with step size 0.02 to study the impact of the suboptimal-
ity gap on query complexity. For classical BAI algorithms,
we set c = 4 for SuccElim, b = 1, c = 0.5 for UGapEc
according to the default in (Even-Dar et al. 2006; Gabillon,
Ghavamzadeh, and Lazaric 2012). For our quantum algo-
rithms, we set C1 = 10 and simulate the output of the quan-
tum estimator in Lemma 3 via the estimator’s analytical out-
put distribution (Brassard et al. 2002, Theorem 11). We re-
port values averaged over 50 independent trials as markers
and their standard deviations as shaded regions.

Figure 1a shows that (1) our quantum algorithms outper-
form the classical ones; (2) as the suboptimality gap de-
creases (along the right direction of x-axis), query complexi-
ties of classical algorithms grow faster than that of quantum
algorithms, which corroborates the quantum improvement
of the dependence on ∆ from ∆−2 to ∆−1; (3) both quan-
tum algorithms have similar empirical performance.

We further evaluate our Q-Elim and Q-GapE in
some settings considered in prior best arm identification
work (Audibert, Bubeck, and Munos 2010):

• Setting 1: one group of bad arms, K = 20, µ1 = 0.5,
µi = 0.4,∀i ∈ {2, ..., 20}

• Setting 2: two groups of bad arms, K = 20, µ1 = 0.5,
µi = 0.42,∀i ∈ {2, ..., 6}, µi = 0.38,∀i ∈ {7, ..., 20}

• Setting 3: geometric progression,K = 4, µ1 = 0.5, µi =
0.5− (0.37)i,∀i ∈ {2, 3, 4}

• Setting 4: three groups of bad arms, K = 6, µ1 = 0.5,
µ2 = 0.42, µ3 = µ4 = 0.4, µ5 = µ6 = 0.35

• Setting 5: arithmetic progression, K = 15, µ1 = 0.5,
µi = 0.5− 0.025i,∀i ∈ {2, ..., 15}

We report values averaged over 50 independent trials and
their standard deviations in Figure 1b.

6 Future Directions
In the BAI literature, Q-Elim and Q-GapE use two differ-
ent mechanisms, known as “uniform exploration and elim-
ination” and “adaptive sampling” respectively. Previous
research (Kaufmann and Kalyanakrishnan 2013) suggests
that adaptive sampling outperforms uniform exploration and
elimination in classical BAI, but our quantum algorithms,
despite employing different mechanisms, show similar the-
oretical and empirical performance. Thus, further research is
needed to compare quantum algorithms based on both mech-
anisms to determine if adaptive sampling maintains its supe-
riority in the quantum setting.

In addition to the best arm identification with fixed confi-
dence setting studied in this paper, the best arm identification
with fixed budget setting remains significantly less explored
and understood, even within the existing literature on clas-
sical MAB (Kaufmann, Cappé, and Garivier 2016; Barrier,



Garivier, and Stoltz 2023). Another compelling future direc-
tion is to investigate this fixed budget setting utilizing the
quantum oracles.
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Supplementary Material
A Lower bound Proof

via quantum adversary method
In addition to Lemma 2 based on quantum hypothesis test-
ing, we provide an alternative lower bound based on the
quantum adversary method (Ambainis 2000).
Theorem 5. Given µ0, µ1 ∈ (µ, 1− µ), the necessary num-
ber of queries to distinguish the quantum MAB instances I0
and I1, with a probability of at least 1−δ, has the following
lower bound,

Q ⩾
1

|µ0 − µ1|
·

1− 2
√
δ(1− δ)

1 + 2
√
1/µ(1− µ)

.

Replacing Lemma 2 by Theorem 5 in the proofs of Theo-
rems 1 and 2, one can obtain another two query complexity
lower bounds for BAI and TMI as follows,

BAI: Q ⩾
∑
k∈K

1

∆k
·

1− 2
√
δ(1− δ)

1 + 2
√
1/µ(1− µ)

,

TMI: Q ⩾
∑
k∈K

1

∆
⟨m⟩
k

·
1− 2

√
δ(1− δ)

1 + 2
√

1/µ(1− µ)
.

Proof of Theorem 5. Without loss of generality we assume
µ1 > µ0 and denote ∆ = µ1 − µ0. We denote

∣∣∣ψ(t)
a

〉
as the

output after querying the oracle Oa for t times for a = 0, 1.
In the adversary method, we consider a weight function as
follows,

st =
1

∆

〈
ψ
(t)
0

∣∣∣ψ(t)
1

〉
.

Note that s0 = 1
∆ and, to distinguish both oracles’ output

after T queries, we require that sT ⩽ 1
∆

√
2δ(1− δ).

After the tth query, we have∣∣∣ψ(t)
0

〉
= α0,0 |0⟩+α0,1 |1⟩ ,

∣∣∣ψ(t)
1

〉
= α1,0 |0⟩+α1,1 |1⟩ .

Denote the action of the quantum oracles by the following
two unitary matrices,

A0 =

[√
1− µ0

√
µ0√

µ0 −
√
1− µ0

]
,

A1 =

[√
1− µ1

√
µ1√

µ1 −
√
1− µ1

]
.

Then, we have〈
ψ
(t+1)
0

∣∣∣ψ(t+1)
1

〉
−
〈
ψ
(t)
0

∣∣∣ψ(t)
1

〉
=
〈
ψ
(t)
0

∣∣∣A†
0A1

∣∣∣ψ(t)
1

〉
−
〈
ψ
(t)
0

∣∣∣ψ(t)
1

〉
=
〈
ψ
(t)
0

∣∣∣A†
0A1 − I

∣∣∣ψ(t)
1

〉
.

Denote[
u v
−v u

]
:= A†

0A1 − I

=

[√
µ0µ1 +

√
(1− µ0)(1− µ1)− 1√

µ0(1− µ1)−
√
(1− µ0)µ1√
(1− µ0)µ1 −

√
µ0(1− µ1)√

µ0µ1 +
√
(1− µ0)(1− µ1)− 1

]
.

We have

|st+1 − st|

⩽
|u|
∆2
|α0,0α1,0 + α0,1α1,0|+

|v|
∆2
|α0,0α1,1 − α0,1α1,0|

(a)

⩽
|u|+ |v|

∆2

(b)

⩽
1 + 2

√
1/µ(1− µ)
∆

,

where the inequality (a) is due to the Cauchy-Schwartz in-
equality, and the inequality (b) is due to that

|u| =
∣∣∣1−√µ0µ1 −

√
(1− µ0)(1− µ1)

∣∣∣
⩽ |1− µ0 − (1− µ1)| = ∆,

|v| = µ1 − µ0√
(1− µ0)µ1 +

√
µ0(1− µ1)

⩽
∆

2
√
µ(1− µ)

.

At last, we have

1

∆2

(
1− 2

√
δ(1− δ)

)
⩽ |sT − s0|

⩽ T ·
1 + 2

√
1/µ(1− µ)
∆

.

That is,

T ⩾
1

∆
·

1− 2
√
δ(1− δ)

1 + 2
√
1/µ(1− µ)

.

B Deferred Proofs
B.1 Algebraic Details of Proof of Lemma 2

Then, we prove that log | ⟨ψ0|ψ1⟩|−1 ⩽ (θ0−θ1)
2

2 as follows,

log | ⟨ψ0|ψ1⟩|
= log(cos(θ0 − θ1))
(a)

⩾ log

(
1− (θ0 − θ1)2

2

)
(b)

⩾ − (θ0 − θ1)2

2

(8)

where inequality (a) is due to cosx ⩾ 1− x2

2 , and inequality
(b) is due to to log(1− x) ⩾ −x for x ∈ (0, 0.85).

Next, we upper bound |µ0 − µ1| with an expression of θ0
and θ1. With trigonometric identities, we have

µ0 − µ1

= sin2 θ0 − sin2 θ1

= sin2((θ0 − θ1) + θ1)− sin2 θ1

= sin2(θ0 − θ1) cos2 θ1 + cos2(θ0 − θ1) sin2 θ1
+ 2 sin(θ0 − θ1) cos(θ0 − θ1) sin θ1 cos θ1 − sin2 θ1

= sin θ1 cos θ1 sin 2(θ0 − θ1) + (1− 2 sin2 θ1) sin
2(θ0 − θ1).



Taking the absolute values of both sides, we obtain

|µ0 − µ1| ⩾
∣∣(1− 2 sin2 θ1) sin

2(θ0 − θ1)
∣∣

− |sin θ1 cos θ1 sin 2(θ0 − θ1)|
⩾
∣∣(1− 2 sin2 θ1) sin

2(θ0 − θ1)
∣∣

(a)

⩾ |(1− 2µ1)|
(θ0 − θ1)2

4

⩾
(θ0 − θ1)2

4

(9)

where inequality (a) is due to sinx ⩾ x
2 for x ∈ (0, 1.8).

Lastly, we conclude the proof as follows,

Q
(a)

⩾
1

−2 log | ⟨ψ0|ψ1⟩|
log

1

4δ(1− δ)
(b)

⩾
1

(θ0 − θ1)2
log

1

4δ(1− δ)
(c)

⩾
1

4|µ0 − µ1|
log

1

4δ(1− δ)

⩾
1

4|µ0 − µ1|
log

1

4δ
,

where inequalities (a), (b), and (c) are due to Eq. (6), Eq. (8),
and Eq. (9) respectively.

B.2 Proof of Theorem 2
For any top arm k ⩽ m, i.e., among top m arms
set, in instance I0, we consider another instance Ik =

{µ(k)
1 , . . . , µ

(k)
K } whose reward means are the same as in-

stance I0 except for the reward mean of arm k which as-
sumes the form µ

(k)
k = µm+1− ϵ for 0 < ϵ < µm+1. There-

fore, in instance Ik, the top m arms set is {1, 2, . . . ,m,m+
1} \ {k}.

Because the instances I0 and Ik have different top m
arms, any feasible policy must be able to distinguish these
two instances with a confidence of at least 1 − δ. Given
the additional information that all other arms have the same
means, this task reduces to distinguishing two instances I0
and Ik as in Lemma 2. Therefore, the query complexity of
distinguishing both instances is at least 1/4(∆⟨m⟩

k +ϵ) log 1/4δ.
Note that these queries are all on arm k.

For any other suboptimal arm k > m, i.e., not among
top m arms set, in instance I0, we consider another instance
Ik whose oracles are the same as instance I0 except that
the reward mean of the arm k in Ik is µ(k)

k = µm + ϵ for
0 < ϵ < 1/2−µm. Therefore, in instance Ik, the topm arms
set is {1, 2, . . . ,m−1}∪{k}. Similarly, applying Lemma 2
to distinguishing instances I0 and Ik, the query complexity
is lower bounded by 1/4(∆(m)

k +ϵ) log 1/4δ.
Last, summing the least query complexity spent on each

arm and letting ϵ→ 0 yields

Q ⩾
∑
k∈K

1

4∆
⟨m⟩
k

log
1

4δ
.

B.3 Proof of Theorem 4
Correctness: If all estimates of QE are correct, i.e., µk ∈
(µ̂k − 2−pk , µ̂k + 2−pk) holds for all arms, then the final
output arm set H must be the true top m arms. We show
that the probability that any of these QEs fails, i.e., µk ̸∈
(µ̂k − 2−pk , µ̂k + 2−pk), is upper bounded by δ.

Fix an arm k. Its pth reward mean estimate QE fails with
a probability of at most 2−pkδ

K = δ
2pK . Consequently, the

probability of any of this arm’s reward mean estimates fail-
ing are upper bounded as follows,

sk∑
p=1

δ

2pK
<

∞∑
p=1

1

2p
δ

K
=

δ

K
,

where sk is the total number of times that arm k’s reward
mean is estimated in Algorithm 2. Applying the union bound
to all arms shows that the total failure probability of this
algorithm is upper bounded by δ.

Query complexity: Since the above correctness analy-
sis rules out all failures of confidence interval constructions
(with probability at most δ), we assume in this part of the
proof that µk ∈ (µ̂k − 2−pk , µ̂k + 2−pk) holds for all arms’
reward mean estimates in the algorithm.
Lemma 4 (Adapted from (Gabillon, Ghavamzadeh, and
Lazaric 2012, Lemma 2)). When arm k ∈ {h, ℓ} is queried,
we have

max
k∈H

Bk ⩽ min{0,−∆⟨m⟩
k + 2 · 2−pk}+ 2 · 2−pk .

For any queried arm k, Lemma 4 and the while-loop con-
dition yields

0 ⩽ max
k∈H

Bk ⩽ min{0,−∆⟨m⟩
k + 2 · 2−pk}+ 2 · 2−pk

=⇒ ∆
⟨m⟩
k ⩽ 4 · 2−pk .

Denote sk as the last round in which the arm k is queried in
Algorithm 2. Then, we have ∆

⟨m⟩
k ⩽ 4 · 2−sk . Hence, the

number of times arm k is queried in the algorithm is upper
bounded as follows,

sk∑
p=1

C1

2−p
ln

K

2−pδ
⩽ C1 ln

2K

δ
·

sk∑
p=1

(p+ 1)2p

⩽ C1 ln
2K

δ
· (sk + 1)2sk+1 ⩽ C1 ln

2K

δ
· 16

∆
⟨m⟩
k

log2
4

∆
⟨m⟩
k

.

Lastly, summing over all arms yields the following upper
bound to the total number of queries performed in Algo-
rithm 2:

E[Q] ⩽ C1 ln
K

δ
·
∑
k∈K

16

∆
⟨m⟩
k

log2
4

∆
⟨m⟩
k

= ln
K

δ

∑
k∈K

16C1

∆
⟨m⟩
k

log2
4

∆
⟨m⟩
k

.

C Experimental Setup Detail
Following the convention of prior quantum bandit
works (Wan et al. 2023; Wu et al. 2023), we implement the



quantum estimate algorithm in Lemma 2 according to (Bras-
sard et al. 2002, Theorem 11). Specifically, QE(O, ϵ, δ)
outputs µ̂, where µ̂ = median(µ̂′

1, ..., µ̂
′
i, ..., µ̂

′
δ), and

P
(

arcsin (
√

µ̂′
i)

ϵπ = x

)
= sin (γπ/ϵ)2

sin (γπ)2/ϵ2
, if sin (γπ)2 ̸= 0

P
(

arcsin (
√

µ̂′
i)

ϵπ = x

)
= µ, if sin (γπ)2 = 0

,

∀x ∈
[
1

ϵ

]
, i ∈ [δ],

where γ = min{(arcsin (
√
µ)/π − (x − 1)ϵ)%1, 1 −

(arcsin (
√
µ)/π − (x − 1)ϵ)%1)}. Our experiments are exe-

cuted on a computer equipped with Xeon E5-2680 CPU and
128GB RAM.


