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Abstract

Feedback-based reputation systems are widely deployed in
E-commerce systems. Evidences showed that earning a rep-
utable label (for sellers of such systems) may take a substan-
tial amount of time and this implies a reduction of profit. We
propose to enhance sellers’ reputation via price discounts.
However, the challenges are: (1) The demands from buy-
ers depend on both the discount and reputation; (2) The de-
mands are unknown to the seller. To address these challenges,
we first formulate a profit maximization problem via a semi-
Markov decision process (SMDP) to explore the optimal
trade-offs in selecting price discounts. We prove the mono-
tonicity of the optimal profit and optimal discount. Based on
the monotonicity, we design a QLFP (Q-learning with for-
ward projection) algorithm, which infers the optimal discount
from historical transaction data. We conduct experiments on
a dataset from to show that our QLFP algorithm improves the
profit by as high as 50% over both the classical Q-learning
and speedy Q-learning algorithm. Our QLFP algorithm also
improves the profit by as high as four times over the case of
not providing any price discount.

Introduction
Nowadays, E-commerce systems, e.g., Alibaba, Amazon,
eBay and Taobao, are becoming increasingly popular. Such
systems have generated tremendous economic values, e.g.,
Amazon and eBay were ranked 29th and 172nd in a Fortune
500 ranking (Fortune500 2015) in terms of the total revenue.
This paper considers the eBay like E-commerce systems,
where a large number of sellers and buyers transact online.
To reflect the trustworthiness of sellers, a reputation system
is maintained. In particular, the feedback-based reputation
system (Resnick et al. 2000) is the most widely deployed,
e.g., in eBay, Taobao, etc. Sellers of such systems are initial-
ized with a low reputation and they must obtain a sufficiently
large number of positive feedbacks from buyers to earn a
reputable label. For example, eBay and Taobao use three-
level feedbacks, i.e., {−1 (Negative), 0 (Neutral), 1 (Posi-
tive) }. Each seller is initialized with a reputation score of
zero. A positive (or negative) rating increases (or decreases)
the reputation score by one, while a neutral rating does not
change the reputation score. To earn a 4-star label (i.e., a
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reputable label), a seller must increase her reputation score
to at least 500 (eBay 1995).

Often, buyers are less willing to buy products from low
reputation sellers. Authors in (Xie and Lui 2015) found that
new sellers need to spend at least seven hundred days (on av-
erage) to earn a reputable label. Hence, some sellers resort to
“illegal means” to increase their reputation, i.e., authors in
(Xu et al. 2015) found that more than eleven thousand sellers
in Tabobao have conducted fake transactions. A number of
companies, e.g., Lantian, Shuake and Kusha, even provide
professional fake transaction services and the per-year fake
transaction volume is estimated to be more than six million
per company (Xu et al. 2015). Fake transactions are illegal,
and this motivates us to explore “legitimate means” to en-
hance (new) sellers’ reputation.

We propose to enhance sellers’ reputation via “price dis-
counts”. To illustrate, consider the eBay reputation system
and that a seller is reputable if and only if her reputation
score is no less than 500. A seller can attract 10 transactions
per day if she is reputable, otherwise, she can only attract 1
transaction per day. Assume each transaction earns a posi-
tive rating of 1. Suppose the price of a product is $1 and its
cost is $0.8. We have the following two cases:

Case 1 (No discounts) For a new seller (initialized with a
reputation score of zero) who does not provide any discount,
she needs to spend 500 days to earn a reputable label. The
total profit in the first 500 days is (1−0.8)×1×500 = 100.

Case 2 (With discounts) A new seller provides a discount
of 40% before she earns a reputable label, i.e., the price be-
comes 0.6, and she does not provide any discount after be-
coming reputable. Assume this discount increases the trans-
action volume to 2 per day. She needs to spend 250 days
to earn a reputable label. The profit in the first 250 days is
(0.6−0.8)×2×250 = −100. The total profit in the first 500
days is (0.6−0.8)×2×250 + (1−0.8)×10×250 = 400.

The above cases illustrate: (1) Price discounts can enhance
sellers’ reputation; (2) Price discounts may lead to profit
losses in the short run, but the reputation effect can compen-
sate the profit in subsequent days. Note that in real-world
E-commerce systems, the demands (i.e., per-day transaction
volumes) are dynamic, buyers may provide biased ratings,
and the discount-dependent demands (i.e., buyers’ prefer-
ences over discounts) are unknown, etc. This paper studies
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the discount selection problem in such general settings, and
we aim to answer: (1) What are the optimal trade-offs in se-
lecting price discounts? (2) How to perform online inference
to determine the optimal discount from historical transac-
tion data? Our contributions are:
• We develop a mathematical model to capture important

factors of an E-commerce system, i.e., the demand dy-
namics, rating biases, and buyers’ preferences over dis-
counts, etc. We formulate a profit maximization frame-
work via an SMDP to explore the optimal trade-offs in
determining the optimal price discount.

• We prove the monotonicity of the optimal profit and dis-
count via convex optimization (Boyd and Vandenberghe
2004) and comparative statics (Chiang 1984). Based on
the monotonicity, we design a QLFP (Q-learning with for-
ward projection) algorithm, which infers the optimal dis-
count from historical transaction data.

• We conduct experiments on a dataset from eBay to show
that our QLFP algorithm improves the profit by as high as
50% over both the classical Q-learning and the speedy Q-
learning algorithm. Our QLFP algorithm also improves
the profit by as high as four times over the case of not
providing any price discount.
This remaining of this paper organizes as follows. We

first present the system model and the problem formulation.
Then, we theoretically characterize the optimal profit and
price discount. Based on these characterizations, we design
of our QLFP algorithm. We conduct experiments on a data
set from eBay to evaluate our QLFP algorithm. Finally, we
present the related work and conclusion.

System Model
We first model the baseline E-commerce system and buyers’
preferences over price discounts. We then formulate a profit
maximization framework via an SMDP to characterize the
optimal trade-offs in selecting price discounts. Finally, we
formulate an online discount selection problem, which infers
the optimal discount from a seller’s transaction data, without
knowing any buyer’s preference over discounts.

Baseline E-commerce System Model
Consider an E-commerce system like eBay and Taobao
where buyers purchase products from online stores operated
by sellers, and a feedback-based reputation system is main-
tained to reflect the trustworthiness of sellers. Sellers set the
selling price and advertise the quality of products in their on-
line stores, and finally ship the ordered products to buyers.
Let q ∈ R+ and c ∈ R+ denote the price and overall cost of
a product respectively. The overall cost c captures the manu-
facturing cost, shipment fee, etc. We define the unit profit to
the seller u ∈ R as the price minus the cost, i.e., u , q − c.
Sellers advertise product quality honestly and we aim to en-
hance sellers’ reputation via price discounts.

To reflect the trustworthiness of sellers, a feedback-based
reputation system tags each seller with a reputation score
s ∈ S, and this score is accessible by all buyers, where

S ,
{
−Ŝ, . . . ,−1, 0, 1, . . . , S

}
,

and Ŝ, S ∈ N ∪ {∞}. For example, eBay and Taobao uses
Ŝ = 0, S = ∞, in other words S = {0, 1, . . . ,∞}. The
higher the reputation score, the more reputable the seller
is. When a seller joins an E-commerce system, the reputa-
tion system initializes her reputation score as s = 0, i.e.,
a low reputation. Buyers provide feedback ratings to reflect
their evaluation on the overall transaction quality (i.e., prod-
uct quality, trustworthiness of the seller, etc). Each feedback
rating is drawn from a discrete rating metric set

M ,
{
−M̂, . . . ,−1, 0, 1, . . . ,M

}
,

where M̂,M ∈ N. For example, eBay and Taobao deploy
M = {−1(Negative), 0(Neutral), 1(Positive)}. The higher
the rating, the more satisfied the buyer is toward that seller.
Consider a seller has a reputation score s, her reputation
score becomes s + m once she receives a feedback rating
m ∈M. For example, in eBayM = {−1, 0, 1}, a rating of
1 (or −1) increases (or decreases) the reputation score by 1,
while a rating of 0 does not change the reputation score.

Price Discount Model
To speed up the reputation accumulating process, a seller
can set a price discount a ∈ A , [0, 1]. Precisely, a denotes
the discount rate, and the product price under discount a is
q × (1 − a). For example, a = 0.2 means 20% off and the
corresponding price is 0.8q. Also a = 0 captures that a seller
does not provide any discount. Let ũ(a) denote the unit profit
under discount a. Then we have

ũ(a) , u− aq, ∀a ∈ A.

Modeling rating behavior under discounts. Human fac-
tors like personal preferences or even biases need to be in-
cluded in our model. Some buyers may provide higher rat-
ings while other may provide lower ratings. Let R(s, a) ∈
M denote a rating provided by buyers to the seller who has
a reputation score s ∈ S and sets a discount a ∈ A. The
rating R(s, a) is a random variable, and we define its cumu-
lative distribution function (CDF) as

FR(m|s, a) , P [R(s, a) ≤ m] , ∀m ∈M, s ∈ S, a ∈ A.

Note that sellers do not have any a-priori knowledge on
FR(m|s, a). For example, consider M = {−1, 0, 1} and
S = {0, 1, . . . ,∞}. Then, one example of FR(m|s, a) is

FR(−1|s, a) = [0.1/(1 + s)]1+a,

FR(0|s, a) = [0.3/(1 + s)]1+a,

FR(1|s, a) = 1.

(1)

Definition 1 Given two random variables X,Y with the
same sample space Ω. We say X is larger than Y (written
as X � Y ), iff P[X > x] ≥ P[Y > x] holds for all x ∈ Ω.

Assumption 1 Given a ∈ A, R(s, a) � R(j, a) holds for
all s > j, where s, j ∈ S . Given s ∈ S , R(s, a) � R(s, b)
holds for all a > b, where a, b ∈ A.

Assumption 1 captures: (1) The herding behavior (Much-
nik, Aral, and Taylor 2013) that buyers give higher ratings to
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more reputable sellers; (2) The price effect that buyers tend
to become more lenient in providing ratings under larger dis-
counts. Equation (1) satisfies Assumption 1.
Modeling demand under discounts. We consider a dy-
namic demand from buyers and use the transaction’s arrival
process to model the demand. We define the transaction’s ar-
rival process through the inter-arrival time (or waiting time)
of transactions. Precisely, let W (s, a) ∈ R+ denote the
inter-arrival time of transactions to the seller who has a rep-
utation score s ∈ S and sets a discount a ∈ A. For example,
W (0, 0) measures the amount of time a seller must wait until
the next transaction arrives when she has a reputation score
s = 0 and does not provide any discount. The inter-arrival
time W (s, a) is a random variable and we denote its CDF as

FW (w|s, a) , P[W (s, a) ≤ w], ∀w ∈ R+, s ∈ S, a ∈ A.

Note that sellers do not have any a-priori knowledge on
FW (w|s, a). One example of FW (w|s, a) is

FW (w|s, a) = 1− exp(−λ(s, a)w), (2)

which means that W (s, a) follows an exponential distribu-
tion with a parameter λ(s, a) ∈ R+. This also models the
Poisson arrival of transactions. One example of λ(s, a) is

λ(s, a) =
1 +
√
a

1 + e−s
, ∀s ∈ S, a ∈ A. (3)

Assumption 2 Given a ∈ A, W (j, a) � W (s, a) holds for
all s > j, where s, j ∈ S . Given s ∈ S , W (s, b) � W (s, a)
holds for all a > b, where a, b ∈ A.

Assumption 2 captures: (1) The reputation effect that buyers
are more willing to transact with reputable sellers; (2) The
price effect that buyers are more willing to buy a product un-
der a larger discount. Consider Eq. (2), Assumption 2 means
that λ(s, a) increases in both s and a. One example of such
λ(s, a) is derived in Eq. (3).

Assumption 3 There exists two constants ε > 0, δ > 0 such
that FW (δ|s, a) ≤ 1− ε for all s ∈ S, a ∈ A.

Assumption 3 states that it is impossible that an infinite num-
ber of transactions arrive to an online store within a finite
time. Consider Eq. (2), Assumption 3 means that λ(s, a) is
bounded, e.g., the λ(s, a) derived in Eq. (3).
Modeling discount update. This paper aims to enhance
sellers’ reputation via price discounts. The challenge is that
sellers do not have any a-priori knowledge on FR(m|s, a)
and FW (w|s, a). However, a seller can infer them from his-
torical transaction data to optimize the price discounts. We
therefore focus on the scenario that a seller updates the dis-
count only when a new transaction arrives, i.e., gains some
new data for inference. Under this scenario, we next intro-
duce the formal discount selection models for sellers.

The Seller’s Decision Model
The seller needs to select a discount for each transaction.
Thus the decision space for the seller is the discount set A.
Offline decision model. We first consider the full informa-
tion scenario that FR(m|s, a) and FW (w|s, a) are given. We

formulate a profit maximization framework via an SMDP to
characterize the optimal trade-offs in determining discounts.

We consider a continuous time system with infinite-
horizon t ∈ [0,∞). Let ti denote the arrival time of the i-th
transaction, where i ∈ N+. We say a seller is at state s ∈ S
if she has a reputation score s. Thus, the state space is S. De-
cision epochs correspond to the time immediately following
an arrival of a transaction. For example, the first decision
epoch occurs at t1. The initial decision epoch does not cor-
respond to any transaction. Without any loss of generality,
we index the initial decision epoch with 0, and use t0 = 0 to
denote its occurrence time. The seller is the decision maker
and the decision to be made at each decision epoch is setting
a discount a ∈ A. We also call a the action. Note that the
action set at each decision epoch is the same A. When the
seller chooses an action a at state s, she receives a lump sum
reward denoted by k(s, a), which can be expressed as

k(s, a) = ũ(a), ∀s ∈ S, a ∈ A.

Note that the lump sum reward corresponds to the unit profit
earned from the next transaction. Namely, it is delayed to be
payed in the next decision epoch.

Note that the inter-arrival (or waiting) time of decision
epochs is W (s, a), which is a random variable variable and
has a CDF FW (w|s, a). Let p(j|s, a), where s, j ∈ S, a ∈
A, denote the state transition probability

p(j|s, a) , P[next state is j|current state s, discount a]

= FR(j − s|s, a)− FR(j − s− 1|s, a).

Namely, p(j|s, a) models the dynamics of the reputation
score.

Setting price discounts may lead to some profit losses at
the present decision epoch, but it can speed up the reputa-
tion score accumulation process, which may improve sell-
ers’ profit in subsequent decision epochs. To quantify the op-
timal discount and reputation trade-off, we use an expected
infinite-horizon discounted profit for the seller. Precisely, we
consider a continuous-time discounting rate α ∈ R+ and de-
fine the expected infinite-horizon discounted profit as

vπ(s) , E

[ ∞∑
i=0

e−αti+1k(si, ai)

∣∣∣∣∣ s0 = s, π

]
, ∀s ∈ S,

where si, ai denote the reputation score and discount at the
i-th decision epoch, and π denotes a policy (Puterman 2014),
which prescribes a discount for each transaction (or decision
epoch). We also call vπ(s) the long-term profit. For example,
the long term profit for a new seller is vπ(0). One interpre-
tation of the discounting rate α is inflation from economic
perspectives. The discounting rate α also reflects the will-
ingness of a seller to trade discounts for reputation. Increas-
ing α means that the seller cares less about the future profit
(or is more keen about the present profit). In other words,
she is less willing to trade discounts for reputation.

We define a stationary and deterministic (SD) policy as
π = (d)∞, where d : S → A denotes a Markovian de-
terministic decision rule, which maps each state to a price
discount.
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Problem 1 (Offline discount selection) Given the initial
state s0, FR(m|s, a), and FW (w|s, a), select price dis-
counts to maximize the long term profit. Formally,

maximize
π

vπ(s0)

subject to π ∈ Π,

where Π denotes a set of all possible SD policies.

Problem 1 optimizes the long term profit over a special class
of policies, i.e., SD policies, because SD policies suffice to
attain the global maximum long term profit.
Online decision model. Now we relax problem 1 to the
online decision making setting, in which FW (w|s, a) and
FR(m|s, a) of problem 1 are unknown to the seller. The
seller can only access her own historical transaction data and
use her data to predict the optimal discount. Precisely, the i-
the transaction data item is associated with: (1) A discount
ai−1, (note that the discount of a transaction is set in the
last decision epoch); (2) A reputation score si−1 at which
the seller sets ai−1; (3) A lump sum reward (i.e., profit)
k(si−1, ai−1); (4) An arrival time ti; (5) A rating denoted
by mi. For example, at the 0-th decision epoch (i.e., the ini-
tial decision epoch), the seller sets a discount a0 at state s0.
When the first transaction occurs at time t1, the seller ob-
tains a lump sum reward (i.e., profit) k(s0, a0) and receives
a rating m1. The first transaction data item is then H1 ,
{a0, s0, k(s0, a0), t1,m1}. In general, the i-th transaction
data item is Hi , {ai−1, si−1, k(si−1, ai−1), ti,mi}, i =

1, 2, . . . ,∞. For the ease of presentation, we define H0 ,
{t0, s0} for the initial decision epoch. At the i-th decision
epoch, a seller observes Hi and she uses it to infer the opti-
mal discount.

Problem 2 (Online discount selection) Given an initial
state s0, at the i-th decision epoch, where i = 0, 1, . . . ,∞,
• receiveHi and determine a discount ai based onHi,
to maximize long term profit E [

∑∞
i=0 e

−αti+1k(si, ai)|s0] .

We will first study Problem 1. Through this we lay the
foundation to address Problem 2.

Optimal Profit and Discounts
It is mathematically intractable to derive the closed-form
expression for the maximum long-term profit denoted by
v∗(s). In the following theorem, we identify a monotone
property of v∗(s).

Theorem 1 For all s ≥ j, where s, j ∈ S, v∗(s) ≥ v∗(j)
holds. Furthermore, v∗(s) is non-increasing in α.

Theorem 1 states that the seller can earn more profit if her
reputation score increases or the inflation decreases. In other
words, sellers always have incentive to increase their repu-
tation scores. These monotone properties serve as an impor-
tant building block for us to characterize the optimal dis-
count. Due to page limit, we present all proofs in our tech-
nical report (Xie, Li, and Lui 2018).

Definition 2 For each reputation score s ∈ S, we define the
associated action-dependent long term profit as Q(s, a) ,

φ(s, a)V (s, a), where φ(s, a) =
∫∞
0
e−αwdFW (w|s, a)

and V (s, a) = k(s, a) +
∑
j∈S p(j|s, a)v∗(j).

Given that a seller has a reputation score s, theQ(s, a) gives
the maximum long term profit she can earn by setting a
discount a. The optimal discount d∗(s) satisfies d∗(s) ∈
arg maxa∈AQ(s, a).

Theorem 2 Suppose a ∈ As, where As is defined as As ,
{a|Q(s, a) ≥ 0, a ∈ A}. For all j > ` ≥ s, where j, `, s ∈
S, Q(j, a) ≥ Q(`, a) holds.
Theorem 2 states that given the same discount a ∈ As, the
seller can earn more profit if she has a higher reputation
score. We formulate the following problem to further study
the optimal discount.
Problem 3 Given s, select a to maximize lnQ(s, a):

maximizea∈A lnQ(s, a) = lnφ(s, a) + lnV (s, a)

In Problem 3, we maximize the log function of the action-
dependent long term profit. This treatment does not change
the optimal discount and will facilitate the analysis.
Theorem 3 Suppose FW (w|s, a) is strictly concave with
respect to a and FR(m|s, a) is convex with respect to a.
Problem 3 has a unique optimal solution.
Theorem 3 derives sufficient conditions to guarantee the
uniqueness of the optimal discount for each given s. This
uniqueness enables us to further characterize the optimal
discount via comparative statics. When the optimal discount
is unique, it is algorithmically easy to locate it. For example,
Eq. (1) satisfies the condition on FR(m|s, a).
Corollary 1 Suppose FW (w|s, a) satisfies Eq. (2). If
λ(s, a) is strictly concave in a and FR(m|s, a) is convex
in a, there exist a unique optimal discount for s.
Corollary 1 states that given the Poisson arrival of transac-
tions, if the transaction’s arrival rate λ(s, a) has a dimin-
ishing return in the discount a, then the optimal discount is
unique for each reputation score. For example, Eq. (3) satis-
fies the condition on λ(s, a).

In order to apply comparative statics to further character-
ize the optimal discount, we define the following notation.
Definition 3 We define the hazard function of Q(s, a) with
respect to a as

h(s, a) , −∂Q(s, a)

∂a

1

Q(s, a)
,∀s ∈ S, a ∈ As.

The hazard function h(s, a) measures the proportional re-
duction in the discount-dependent long-term profit (i.e.,
−∂Q(s, a)/Q(s, a)) with respect to the marginal change in
the price discounts (i.e., ∂a).
Theorem 4 Suppose the conditions in Theorem 3 hold. If
h(s, a) is non-decreasing in α, the unique optimal discount
d∗(s) is non-increasing in α. If h(s, a) is non-decreasing in
s, the unique optimal discount d∗(s) is non-increasing in s.
Theorem 4 states sufficient conditions under which the
unique discount is non-increasing in the discounting rate α
and non-increasing in reputation score s. One interpretation
is that the seller sets smaller discounts when the inflation in-
creases or she is more keen about the present profit. More
reputable sellers set smaller discounts.

7995



Online Discount Selection
We first apply the Q-learning algorithm to infer the optimal
discount from historical transaction data. To speed up the
convergence, we design a QLFP algorithm, which extends
the Q-learning to incorporate the characterizations in the last
section.

Algorithm 1 : Discount Selection Via Q-learning
Require: Discounting rate α, learning rate ηi, exploration

probability εi, initialization Q(0)(s, a);
1: for i = 1 to∞ do
2: Compute the waiting time wi ← ti − ti−1.
3: φ̂(si−1, ai−1)← e−αwi .
4: r̂(si−1, ai−1)← e−αwi(u− ai−1q).
5: Update reputation score si ← si−1 +mi.

If si < −Ŝ, si ← −Ŝ. If si > S, si ← S.
6: Q(i)(si1, ai−1) ←

φ̂(si−1, ai−1) maxa∈AQ
(i−1)(si, a)+r̂(si−1, ai−1).

7: If s 6= si−1 or a 6= ai−1, Q(i)(s, a) ←
Q(i−1)(s, a), otherwise Q(i)(si−1, ai−1) ←
ηi−1Q

(i)(si−1, ai−1)+(1−ηi−1)Q(i−1)(si−1, ai−1).

8: With probability εi, ai ∼ UniformRandom(A), with
probability 1− εi, ai ∈ arg maxa∈AQ

(i)(si, a).
9: end for

Q-learning for online discount selection. We apply the Q-
learning algorithm (Bradtke and Duff 1994) to infer the op-
timal discount. Recall that for each given reputation score s,
the optimal discount d∗(s) maximizes the Q(s, a) and that
in each decision epoch the seller observes the transaction
data Hi. Once receives Hi, the seller first uses it to esti-
mate Q(s, a), and then selects a discount based on the esti-
mated Q(s, a). We formally outline this idea in Algorithm
1. To illustrate, suppose a seller is in the i-th decision epoch,
i.e., receives Hi , {ai−1, si−1, k(si−1, ai−1), ti,mi}.
Step 2 computes the waiting time of the i-th transaction
wi = ti − ti−1. Step 3 estimates the per-epoch dis-
count factor, i.e., φ̂(si−1, ai−1) = e−αwi . Step 4 esti-
mates the per-epoch discounted profit, i.e., r̂(si−1, ai−1) =

φ̂(si−1, ai−1)k(si−1, ai−1) = e−αwi(u − ai−1q). Step
5 updates the reputation score. Step 6 computes a new
estimation of the Q(si−1, ai−1) as Q(i)(si−1, ai−1) =

r̂(si−1, ai−1) + φ̂(si−1, ai−1) maxa∈AQ
(i−1)(si, a). Step

7 updates the estimation of Q(si−1, ai−1) by combining the
oldQ(i−1)(si−1, ai−1) and new estimationQ(i)(si−1, ai−1)
with a learning rate ηi ∈ R+. Step 8 selects a discount to
maximize Q(i)(si, a) with probability 1 − εi, and it selects
a discount uniformly at random with probability εi (i.e., this
corresponds to the exploration step in reinforcement learn-
ing). Note that Algorithm 1 is suitable for finite discount
set A and finite reputation score set S, because we need to
store Q(s, a) for all s ∈ S and a ∈ A. For our problem,
we can discretize the discount set and truncate the reputa-
tion score to be finite. Under mild assumptions on rating

bias FR(m|s, a) and proper selections of the exploration pa-
rameter εi and learning rate ηi, Algorithm 1 converges to the
optimal policy, i.e., it selects the optimal discount asymptoti-
cally. Due to page limit, we present the convergence analysis
in out technical report (Xie, Li, and Lui 2018).
Q-learning with Forward Projection (QLFP). Improving
the above Q-learning algorithm, i.e., Algorithm 1, can im-
prove a seller’s profit. We now apply the insights obtained
in last section to improve Algorithm 1. Recall that Theorem
2 states that given a reputation score s and a discount a, if
Q(s, a) ≥ 0, Q(j + 1, a) ≥ Q(j, a) holdes for all j ≥ s.
Algorithm 2 applies this observation to further improve the
prediction of Q(s, a) via forward projection, which we call
QLFP for short. For the input of Algorithm 2, we require
the initial Q(0)(s, a) to satisfy Theorem 2. Step 2 executes
the steps 2–7 of Algorithm 1 to obtain an estimation of
Q(i)(s, a) based on Hi. Step 3-7 makes the Q(i)(s, a) to
satisfy Theorem 2 via forward projection, i.e., propagate the
value of Q(i)(si−1, ai−1) upward in terms of the reputation
score.

Algorithm 2 : QLFP Algorithm

Require: α, ηi, εi, Q(0)(s, a) (satisfies Theorem 2);
1: for i = 0, 1 to∞ do
2: Execute step 2–7 of Algorithm 1.
3: if Q(i)(si−1, ai−1) ≥ 0 then
4: for j = si−1 + 1 to S do
5: If Q(i)(j, ai−1) < Q(i)(j − 1, ai−1),

Q(i)(j, ai−1)← Q(i)(j − 1, ai−1).
6: end for
7: end if
8: Execute step 8 of Algorithm 1.
9: end for

Under mild assumptions on rating bias FR(m|s, a) and
proper selections of the exploration parameter εi and learn-
ing rate ηi, Algorithm 2 converges to an optimal policy. Due
to page limit, we present the convergence analysis in our
technical report (Xie, Li, and Lui 2018) We next conduct
experiments to evaluate the convergence speed of our QLFP
algorithm as well as its effectiveness in optimizing the repu-
tation and discount trade-offs.

Experiments on Real Data
We conduct experiments on a dataset from eBay and show
that our QLFP improve the profit by as high as 50% over
Q-learning and Speedy Q-learning, and by as high as four
times over the case of not providing any price discount.

Experiment Settings
Datasets. We use a dataset from eBay (Xie and Lui 2017),
which contains 19,217,083 transactions of 4,586 sellers. For
each seller, the dataset contains all her transactions up to
April 2013. Each transaction data item contains a sellerID,
a buyerID, a time stamp and a feedback rating provided by
buyers. Each feedback rating is drawn from {−1, 0, 1}. Fig-
ure 1 plots the distribution of the number of transactions.
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Figure 1: The distribution of number of transactions.

Model parameters. To assist buyers to assess sellers’ rep-
utation, eBay adopts a twelve-star label system (eBay 1995)
summarized in Table 1. Authors in (Xie and Lui 2017) found

# stars 0 1 2 3 4 5
min#rat 0 10 50 100 500 103

6 7 8 9 10 11 12
5·103 104 2.5·104 5·104 105 5·105 106

Table 1: Reputation score vs. the number of stars.

that the transactions in eBay follow a Poisson arrival pro-
cess. Thus, we consider a Poisson arrival of transactions and
we infer the transaction’s rate (without discounts) across the
number stars via the empirical mean

Trans. rate|n stars =
# of trans. to sellers with n stars

total time to accumulate these trans.
.

Table 2 presents the inferred per-day transactions’ rate.
From Table 2, one can observe that when the number of stars

# stars 0 1 2 3 4 5
tran rate 0.05 0.18 0.33 0.68 1.29 2.37

6 7 8 9 10 11 12
4.57 8.13 15.59 28.69 89.39 − −

Table 2: Transaction’s rate across number of stars.

is less than 4, the transaction’s rate is less than one per day.
This verifies that when the reputation is low, it is difficult for
sellers to attract buyers. Note that no seller has ever achieved
a reputation score of more than 500,000, i.e., the number of
11 or 12 stars. Thus, the transaction’s rate for these stars
are missing. We synthesize the corresponding transaction’s
rate to capture that further increasing the reputation of highly
reputable sellers increases the transactions slightly, i.e.,

Trans. rate|11 stars = 1.1× Trans. rate|10 stars = 98.329

Trans. rate|12 stars = 1.05× Trans. rate|11 stars = 103.245

In eBay, sellers with reputation score 106 or above have
the same number of stars, i.e., twelve stars. We thus truncate
the reputation score set to be S = {0, 1, . . . , 106}. Let λ̃s
denote the transaction’s rate to a seller who has a reputation
score s and does not provide any discounts. We infer it as
the empirical transaction’s rate, i.e.,

λ̃s = Trans. rate|n stars, ∀s is associated with n stars.

Note thatM = {−1, 0, 1} for eBay. The fraction of each
rating level in our dataset can be summarized as follows:
0.23% are of −1, 0.34% are of 0, and 99.43% are of 1.
This implies a very small bias in providing feedback ratings.
Thus, we set the rating distribution as

FR(−1|s, a) = 0.0023,

FR(0|s, a) = 0.0057, FR(1|s, a) = 1, (4)

holds for all s ∈ S, a ∈ A.
To study the impact of rating bias in general, we also syn-

thesize the feedback rating as
FR(−1|s,m) =

[
1/(1 + η + η2)

]1+γa
,

FR(0|s, a) =
[
(1 + η)/(1 + η + η2)

]1+γa
,

FR(1|s, a) = 1,

(5)

where η = θ + ln(1 + s), θ ∈ [1,∞) and γ ∈ R+. For
example, when s = 0, a = 0 and θ = 1, the rating will
be of −1, 0, 1 with equal probability 1/3. The θ models the
baseline rating bias under no discounts. The larger the θ,
the higher the probability of providing a high rating, i.e., a
smaller rating bias. The γ models the sensitivity of buyers’
rating leniency over discounts. The larger the γ, the higher
the probability of providing a high rating.

We normalize the baseline price to be q = 1. Further-
more, we set the cost and the discount set to be c = 0.6,A =
{0.02k|k = 0, 1, . . . , 25}. With discounts, we still consider
a Poisson arrival of transactions, i.e., FW (w|s, a) satisfies
Eq. (2), with a transaction’s rate λ(s, a) = (1 + a)βλ̃s,
where β ∈ R+. The β models the buyer’s sensitivity to
discounts. The larger the β, the more transactions will be
attracted given the same discount. We set α = 0.001 and
s0 = 0 by default. We also set η̃i = 1/(Ni(s, a) + 1),
ε = 0.1/(Ñi(s) + 1) and Q(0)(s, a) = 1, where Ni(s, a)

and Ñi(s) denote the number of visiting (s, a) pair and state
s up to i-th iteration.
Baselines and metrics. We compare our QLFP algorithm
with: (1) Q-learning (Bradtke and Duff 1994), (2) speedy Q-
learning (Azar et al. 2011), and (3) the case of not providing
any discount. We do not compare with the Zap Q-learning
(Devraj and Meyn 2017) because it needs to invert a square
matrix of order 26 ·106 in each iteration, making it not prac-
tical to infer the optimal discount. We define the profit im-
provement of QLFP over the Q-learning as

ImpOverQL ,
v∗(s|QLFP )− v∗(s|Q-learning)

v∗(s|Q-learning)
,

where v∗(s|Q-learning) denotes the long term profit under
the Q-learning algorithm, i.e., Algorithm 1. Similarly, we
define the improvement over speedy Q-learning and no dis-
count as ImpOverSpeedyQL and ImpOverND respectively.

Impact of Demand
We study the impact of demand (i.e., parameter β). We con-
sider the rating bias stated in Eq. (4). Figure 2 shows the long
term profit and the profit improvement when β varies from
0.1 to 2. Figure 2(a) shows that the long term profit under
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QLFP, Q-learning and speedy Q-learning increases as β in-
creases (i.e., buyers become more sensitivity to discounts).
Among these three algorithms, our QLFP algorithm has the
largest long term profit. This implies that our QLFP con-
verges faster than Q-learning and speedy Q-learning. From
Figure 2(b), one can observe that the relative profit improve-
ment is as high as 50%. The relative profit improvement
decreases in β. Namely, the benefit of the forward projec-
tion decreases as buyers become more sensitive to discounts.
This is because the forward projection preserves the mono-
tonicity and its benefit is large when the Q(s, a) is flat in s
(i.e., when buyers are not very sensitive to discounts).
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Figure 2: Impact of β on the profit and ImpOverQL and Im-
pOverSpeedyQL.

Figure 3 shows the long term profit and the profit im-
provement over no discount. Figure 3(a) shows that the long
term profit is invariant of β when a seller does not provide
any discount, while the long term profit under our QLFP
algorithm increases significantly in β. Namely, using our
QLFP algorithm, the sellers can earn more profit when buy-
ers becomes more sensitive to discounts. Observe that when
β is around 1 (i.e., buyers are not sensitive to discounts),
our QLFP algorithm has a slightly smaller long term profit
than the case of not providing any discount. This uncover a
“cost” in inferring buyers’ discount preferences from his-
torical transaction data. When buyers are not sensitive to
discounts, the cost of inference is larger than the benefit of
providing discounts. This “inference cost” exists in general.
Figure 3(b) shows that the profit improvement increases in
β and the improvement can be as high as 4 times.
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Figure 3: Impact of β on profit and ImpOverND.

Lessons learned: Our QLFP algorithm improves the profit
over the Q-learning and Speedy Q-learning by as high as
50%, and over the case of not providing any price discount
by as high as four times.

Impact of Rating Bias
Now we study the impact of rating bias (i.e., parameter θ
and γ). We fix β = 1 and consider the rating bias stated
in Eq. (5). Figure 4 and shows the long term profit and the
profit improvement. Figure 4(a) and 4(d) show that the long
term profit (of QLFP, Q-learning, speedy Q-learning and no
discount) is non-decreasing in both θ and γ. This implies
that the seller can earn more profit when buyers providing
higher ratings. Furthermore, our QLFP has the largest long
term profit among these four algorithms. From Figure 4(b)
and Figure 4(e) one can observe that the profit improvement
is as high as 30% over Q-learning and speedy Q-learning,
and as high as two times over the case of no discount. This
shows that our QLFP converges faster than Q-learning and
speedy Q-learning and effective in inferring the optimal dis-
count.
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Figure 4: Impact of rating bias on profit and ImpOverQL and
ImpOverSpeedyQL.

Related Work
Reputation systems (Resnick et al. 2000) are important in
E-commerce systems. Several works investigated the eco-
nomic efficiency of reputation systems in E-commerce ap-
plications. Dellarocas (Dellarocas 2001) studied the impact
of rating leniency (from buyers) on sellers’ advertising be-
havior. Khopkar et al. (Khopkar, Li, and Resnick 2005) stud-
ied the impact of negative feedback ratings on the efficiency
of the eBay reputation system. Xie et al. (Xie and Lui 2015;
2017) formulated the “ramp-up time” to quantify the effi-
ciency of reputation systems. Xie et al. (Xie, Ma, and Lui
2018) applied the stochastic bandit framework to select price
discount online subjected to various trade-offs between the
ramp up time and the short term profit. However, it is still un-
clear how the reputation effect compensates a seller’s profit
in the long run, i.e., the long term profit, and how to infer
the optimal discount being aware of the long term profit. Out
work applies a reinforcement learning approach to fill in this
gap.
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From an economic perspective, our work is related to
(Landon and Smith 1998; Ba and Pavlou 2002; Jin and Kato
2006). Using a historical transaction dataset from the wine
market, Landon et al. (Landon and Smith 1998) uncovered
how the reputation of a wine influences its price. In online
auction markets, Ba et al. (Ba and Pavlou 2002) found that
a seller can have some price premiums if she has a high rep-
utation, and Jin et al. (Jin and Kato 2006) studied how the
reputation influences the pricing behavior of sellers in Inter-
net auctions. We study a different problem, i.e., optimizing
the reputation & discount trade-offs.

A variety of RL algorithms were designed for SMDP
models (Bradtke and Duff 1994), such as the classical Q-
learning, temporal difference learning, ATRDP and their
variants. We refer the reader to (Bertsekas and Tsitsiklis
1996; Bradtke and Duff 1994; Sutton and Barto 1998) for
a thorough treatment on RL. To infer the optimal discount,
there are three notable Q-learning like algorithms, i.e., Q-
learning (Bradtke and Duff 1994), Speedy Q-learning (Azar
et al. 2011), and Zap Q-learning (Devraj and Meyn 2017).
Our QLFP algorithm extends the classical Q-learning algo-
rithm. We prove the convergence of our QLFP algorithm and
show via experiments that our QLFP algorithm improves the
profit by as high as 50% over both the classical Q-learning
and speedy Q-learning algorithm. We do not compare with
the Zap Q-learning algorithm because the it needs to invert
a square matrix of order 26 × 106 in each iteration, making
it not practical to infer the optimal discount.

Conclusion
This paper develops an online framework to optimize the
reputation & discount trade-offs. We formulated a profit
maximization problem via an SMDP to explore optimal
trade-offs in selecting price discounts. We proved the mono-
tonicity of the optimal profit and discount. Based on the
monotonicity, we designed a QLFP algorithm, which infers
the optimal discount from historical transaction data. We
conducted experiments on a dataset from eBay to showed
that our QLFP algorithm improves the profit by as high as
50% over the Q-learning and speedy Q-learning algorithm.
Our QLFP algorithm also improves the profit by as high as
four times over the case of not providing any discount.
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