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Online product rating systems have become an indispensable component for numerous web services such as

Amazon, eBay, Google Play Store, and TripAdvisor. One functionality of such systems is to uncover the prod-

uct quality via product ratings (or reviews) contributed by consumers. However, a well-known psychological

phenomenon called “message-based persuasion” lead to “biased” product ratings in a cascading manner (we

call this the persuasion cascade). This article investigates: (1) How does the persuasion cascade influence the

product quality estimation accuracy? (2) Given a real-world product rating dataset, how to infer the persuasion

cascade and analyze it to draw practical insights? We first develop a mathematical model to capture key factors

of a persuasion cascade. We formulate a high-order Markov chain to characterize the opinion dynamics of a

persuasion cascade and prove the convergence of opinions. We further bound the product quality estimation

error for a class of rating aggregation rules including the averaging scoring rule, via the matrix perturba-

tion theory and the Chernoff bound. We also design a maximum likelihood algorithm to infer parameters of

the persuasion cascade. We conduct experiments on both synthetic data and real-world data from Amazon

and TripAdvisor. Experiment results show that our inference algorithm has a high accuracy. Furthermore,

persuasion cascades notably exist, but the average scoring rule has a small product quality estimation error

under practical scenarios.
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1 INTRODUCTION

Online product rating systems have become an indispensable component for numerous web ser-
vices, e.g., Amazon, TripAdvisor, Yelp, and Google Play Store. The online product rating systems
reduce the information asymmetry in the sense that product ratings reveal the product quality to
consumers while exposing consumer preferences to sellers. Reducing this information asymmetry
benefits both the consumers and sellers, i.e., it improves the purchasing experience [13, 14, 38] and
it generates more revenues for sellers [3, 15, 35]. Last but not least, many experts believe that on-
line product rating systems will play an increasingly important role in the future online commerce
[24, 34].

In general, online product rating systems realize the idea of “wisdom of the crowds.” Each con-
sumer provides ratings (or reviews) to only a subset of products, and share their experiences or
opinions toward these products. These product reviews, once posted, are made public to all con-
sumers, so that subsequent consumers can refer to them for making purchasing decisions. One
main functionality of consumer contributed ratings (or reviews) is to reveal the product quality
via the collective wisdoms [33]. If consumers provide ratings to reveal their true opinions (or we
call “unbiased”), a consensus will be reached when a sufficient number of ratings are collected [33].
As dictated by the statistical law of large numbers, this consensus is an accurate estimate of the
product quality.

However, a well-known psychological phenomenon called the message-based persuasion [28]
can change consumers’ opinions and lead to “biased” ratings (or reviews). Evidences of this phe-
nomenon include a number of survey studies [2, 4, 20, 23, 26] and empirical studies [14, 38]. In
fact, reading a product review can be interpreted as exposing to a persuasion message, which may
lead to opinion changes as psychology theory has indicated [9, 28]. This biased review will further
serve as a persuasion message to change subsequent consumers’ opinions in a cascading manner,
and we call this phenomenon persuasion cascades.

Let us use two simple examples to illustrate persuasion cascades. For simplicity, the overall
opinion of each consumer is summarized by a binary rating set {−1(“bad”), 1(“good”)}. Suppose
that intrinsically 20% of consumers have an overall opinion of −1, while 80% have 1 toward a
product. In practice, many online product rating systems use the average scoring rule to measure
the intrinsic quality, i.e., 1 × 0.8 − 1 × 0.2 = 0.6.

Example 1 (Unbiased Ratings). With probability 0.8 (or 0.2) a consumer has an opinion of “good”
(or “bad”) and provides a rating 1 (or −1). Using the average scoring rule, around 100 ratings can
produce an accurate estimator of the intrinsic quality [33], i.e., 0.6. Results in [33] also showed
that we can still reveal the intrinsic quality under a small fraction of misbehaving ratings, i.e.,
intentionally inject 1 to promote or −1 to bad-mouth a product. In this case, a small number of
ratings can give a high accuracy to reveal the product quality.

Example 2 (Ratings under Persuasion Cascades). For simplicity, each consumer only reads one
review, i.e., the latest review, and provides the same rating as the read review (i.e., an extremely
strong persuasion cascade). If the first rating is 1, then all the subsequent ratings will be 1, oth-
erwise all the subsequent ratings will be −1. In this case, it is impossible to reveal the intrinsic
quality. One misbehaving rating, i.e., intentionally inject 1 (or −1), can lead the subsequent ratings
to become 1 (or −1).

Examples 1 and 2 highlight that under these special cases of no cascades and extremely strong
cascades: (1) the observed opinions (or ratings) vary from invariant of initial reviews to fully
dependent on them; (2) the accuracy of product quality estimation reduces from high to low;
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(3) and the impact of misbehavior varies from tolerable (a small fraction) to destructive (even
one misbehaving rating).

This article explores in the general cases: (1) How does the persuasion cascade influences the

product quality estimation accuracy? (2) What are the impacts of initial ratings and misbehaving

ratings? (3) How to infer the persuasion cascade from real-world product rating datasets, and analyze

it to draw practical insights? Answering these questions are challenging due to the complicated
psychological nature of persuasion cascades. One needs to make tradeoffs between the model
complexity and the mathematical tractability. Our contributions are:

—We develop a mathematical model to capture key factors of persuasion cascades in online
product rating systems, under both the honest rating and misbehavior scenarios. Our model
uses empirical findings in the digital world, and has meaningful interpretations.

—We formulate a high-order Markov chain to characterize the opinion dynamics of the per-
suasion cascade and prove the convergence of opinions. We apply the matrix perturbation
theory and the Chernoff bound to bound the product quality estimation error for a class of
rating aggregation rules including the averaging scoring rule.

—We develop a maximum likelihood algorithm to infer parameters of the persuasion cas-
cade (i.e., the persuasion strength). Experiments on synthetic data show that our inference
algorithm has a high accuracy.

—We conduct experiments on the Amazon and TripAdvisor datasets, and obtain a number of
interesting findings. For example, persuasion cascades notably exist, but the average scoring
rule has a small product quality estimation error under practical scenarios.

This article organizes as follows. Section 2 presents the model to characterize the message-based
persuasion. Section 3 analyzes the persuasion cascade theoretically. Section 4 develops a maximum
likelihood algorithm to infer the persuasion cascade. Section 5 presents the verification and eval-
uation studies on synthetic datasets. Section 6 infers and analyzes the persuasion in Amazon and
TripAdvisor. Section 7 discusses the related work. Section 8 presents the proof to lemmas and
theorems. Section 9 concludes the article.

2 MODEL ON PRODUCT REVIEWS

We first model unbiased product reviews. Then, we extend to model product reviews under the
message-based persuasion and model persuasion cascades. Finally, we model misbehaving reviews.
Table 1 summarized the main notations of this article.

2.1 Unbiased Product Reviews

Intrinsic opinions. Without loss of generality, we focus on one product denoted by P. Let
(ri ,Ri ),∀i ∈ N+, denote the i-th review of product P, where ri denotes the review texts and

Ri ∈ M � {1, . . . ,M },∀M ∈ N+, denotes the associated numerical rating. The review text ri is
a vector of words, and the rating Ri summarizes the overall opinion of ri . A higher rating means
that the review is more positive. For example, a typical M = 5 level cardinal rating metric is {1 =
“Terrible,” 2 = “Poor,” 3 = “Average,” 4 = “Good,” and 5 = “Excellent”}. Let Oi ∈ M denote the in-
trinsic opinion of the consumer who provides (ri ,Ri ). Note thatOi is a hidden variable and (ri ,Ri )
is public to all consumers.

Definition 1. A consumer who provides (ri ,Ri ) is “unbiased”, if Ri = Oi , otherwise she is “bi-
ased.”
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Table 1. Main Notations

P notation for a product
ri the i-th review of product P
Ri the rating associated with ri

M (M) the rating metric (the number of rating points)
Oi the intrinsic opinion of the consumer who provides (ri ,Ri )
α the collective opinion of the whole consumer population toward product P
O a space of all possible collective opinions
A an opinion aggregation rule
α̂ i an empirical collective opinion
Ni number of reviews that the consumer reads before posting (ri ,Ri ).
N a set of all possible number of review readings
β the review reading distribution

H
[Ni ]
i−1 the set of Ni latest historical reviews assigned before (ri ,Ri ),

R̂i the overall opinion formed from reading reviews H
[Ni ]
i−1 .

h
[Ni ]
i−1 a vector of historical ratings associated with H

[Ni ]
i−1 ,

θm (h[Ni ]
i−1 ) probability mass function of R̂i

γ ∈ [0, 1] the strength of the message-based persuasion.
α̂∞ a collective opinion vector

(S, P) (state space, transition probability) of a Markov chain
s, s̃ state of the persuasion cascade

P (s̃|s) transition probability from s to s̃

Ns neighbor set of s

π a probability (row) vector
W a |S| ×M weight matrix
R recurrent state set
T transient state set
ϵa the approximation errorcaused by the partial information
ϵp the persuasion error caused by persuasion biases

P̃R the state transition matrix restricted to R
π̃ the steady-state distribution under γ = 0.
π 0, the joint distribution of the first N ratings

D (π 0,π R ) the distance metric
νps the pseudo spectral gap
ϵ,δ the error, confidence level
ϵsd the steady-state distribution error
I the number of ratings for infer the persuasion cascade

L (α , β ,γ ) the likelihood function
�(α , β,γ ) the log-likelihood function

γ̂ the inferred persuasion strength.
N̄ , γ̄ average number of review readings, persuasion strength
Eo ,Eq the relative opinion, product quality estimation error
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Namely, a consumer is unbiased if she provides her intrinsic opinion. We consider the case that
O ′is are IID random variables with a probability mass function (pmf):

P [Oi =m] = αm , ∀m ∈ M, i ∈ N+,

where αm ≥ 0 and
∑

m∈M αm = 1. The row vector α � [α1, . . . ,αM ] characterizes the collective
opinion of the whole consumer population toward the product P and it is also a hidden vector
as O ′is are hidden. For example, consider M = 5, then α = [0.1, 0.1, 0.1, 0.1, 0.6] models that 60%
consumers have the intrinsic rating of 5 (i.e., “Excellent”). Let O denote a space of all possible
collective opinions

O �
⎧⎪⎨⎪⎩α

������α ∈ [0, 1]M ,
∑

m∈M
αm = 1

⎫⎪⎬⎪⎭ .
We next define a notation to compare the collective opinions over different products.

Definition 2. Consider α , α̃ ∈ O, we say α � α̃ if and only if

M∑
j=m

α j ≥
M∑

j=m

α̃ j , ∀m ∈ M .

Definition 2 defines a way to compare two collective opinion vectors. In fact, it treats each col-
lective opinion vector as a probability distribution overM, and compares two collective opinion
vectors via the stochastic ordering of the associated probability distributions. A larger collective
opinion vector corresponds to a more positive collective opinion. For example, consider the collec-

tive opinion α̃ = [0.6, 0.1, 0.1, 0.1, 0.1], over product P̃, which models that 60% consumers have the
intrinsic rating of 1 (i.e., “Terrible”). One can check that α � α̃ , where α = [0.1, 0.1, 0.1, 0.1, 0.6]
for product P. In other words, the collective opinion α is more positive than α̃ , i.e., product P is

more favorable than P̃.

Intrinsic product quality. Let A : O → [1,M] denote an opinion aggregation rule, which pre-
scribes an overall product quality indicator for each collective opinion. For example, a widely
practiced opinion aggregation rule is the average scoring rule, i.e., A(α ) =

∑
m∈Mmαm ,∀α ∈ O.

Definition 3. Given an opinion aggregation rule A and a collective opinion α ∈ O over P, we
define the intrinsic quality of P as A(α ).

For example, given α = [0.1, 0.1, 0.1, 0.1, 0.6] and the average scoring rule A, the intrinsic of
quality of P is A(α )=4.

Assumption 1. The rating aggregation rule A satisfies that

α � α̃ ⇒ A(α ) ≥ A(α̃ ), ∀α , α̃ ∈ O.

Assumption 1 states that if consumers’ collective opinion toward a product is more positive
than the other one, then the overall product quality should also be larger. For example, given
α = [0.1, 0.1, 0.1, 0.1, 0.6], α̃ = [0.6, 0.1, 0.1, 0.1, 0.1], for the average scoring ruleA, we haveA(α ) >
A(α̃ ). Note that Assumption 1 is not restricted. In fact, many rating aggregation rules such as
majority rule and median rule satisfy Assumption 1.

Definition 4. Let α̂ i � [α̂i,1, . . . , α̂i,M ] denote the empirical collective opinion summarized from
R1, . . . ,Ri :

α̂i,m �
|{j |R j =m, j ≤ i}|

i
, ∀m ∈ M, i ∈ N+. (1)
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In real-world online product review systems, a simple method, i.e., average scoring rule A(α̂ i ),
is widely applied to estimate the product quality. One of our objectives is to study the accuracy of
this method under the persuasion cascade (we will model it next).

2.2 Product Reviews Under Persuasion Cascades

Review reading behavior. Let Ni ∈ N � {0, 1, . . . ,N }, where N ∈ N+, denote the number of
reviews that the consumer reads before posting the i-th product review (ri ,Ri ). Here N models
the maximum number of reviews that a consumer may read and Ni is a hidden variable. We inject
N null reviews to product P denoted by

(ri ,Ri ) � (0, 0), ∀ 1 − N ≤ i ≤ 0,

to deal with the problem that initially product P does not have enough reviews for
a consumer to read, i.e., i − 1<Ni . For example, if N =3, we inject three null reviews
(r−2,R−2), (r−1,R−1), (r0,R0). Suppose N1=3 and N2=2, then the first consumer reads three null
reviews (r−2,R−2), (r−1,R−1), (r0,R0), and the second consumer reads two reviews (r0,R0), (r1,R1).
We consider N ′i s as IID random variables with a pmf

P [Ni = n]=βn , ∀n ∈ N , i ∈ N+,

where βn ≥ 0 and
∑

n∈N βn =1. The row vector β � (β0, β1, . . . , βN ) characterizes the collective
reading behavior of the whole consumer population and it is a hidden vector.

Let us focus on a typical review reading behavior, which we call reading in reverse chronolog-

ical order. Precisely, before providing the product review (ri ,Ri ), the consumer reads the set of
historical reviews denoted by

H
[Ni ]
i−1 � [(ri−Ni

,Ri−Ni
), . . . , (ri−1,Ri−1)], ∀i ∈ N+.

Note that the superscript [Ni ] means selecting the latest Ni reviews. This reading order captures:
(1) the evidence that the recency in product reviews is a critical factor to attract consumers’ read-
ings and trust [4, 23]; and (2) the feature of online product review systems that presents the reviews
in a reverse chronological order. The justifications are: (1) recent reviews are more likely to reflect
the true state of a product [7]; and (2) recent reviews are more likely to represent the opinion of
consumers with higher level of expertise [16]. As we will see that this simple review reading model
can already reveal a number of fundamental understandings on persuasion cascades. In general,
the review reading behavior can be quite complicated due to: (1) the complex nature of psycholog-
ical behavior; and (2) some systems use both the reverse chronological order and other ways, e.g.,
helpfulness order, to present the reviews. We leave it as a future work to capture these factors.

Message-based persuasion. Reading reviews can be interpreted as message-based persuasions,
where reviews serve as persuasion messages. Message-based persuasions influences consumers’

reviews through the persuaded opinion formation. To model it, we use R̂i ∈M to denote the overall

opinion formed from reading reviews H
[Ni ]
i−1 . We consider R̂′is as independent random variables with

pmf:

P
[
R̂i =m

���H[Ni ]
i−1

]
= θm

(
h

[Ni ]
i−1

)
, ∀m ∈ M, i ∈ N+,

where h
[Ni ]
i−1 � [Ri−Ni

, . . . ,Ri−1] denotes a vector of historical ratings associated with H
[Ni ]
i−1 ,

θm (h[Ni ]
i−1 ) ∈ [0, 1] and

∑
m∈M θm (h[Ni ]

i−1 ) = 1. Namely, we model the message-based persuasion by
considering the product rating only, because product ratings summarize the opinions of review
texts.

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 36. Publication date: April 2021.



Understanding Persuasion Cascades in Online Product Rating Systems 36:7

Assumption 2. Let θ (h[Ni ]
i−1 ) � [θ1 (h[Ni ]

i−1 ), . . . ,θM (h[Ni ]
i−1 )] denote the persuaded opinion function.

It satisfies

h
[Ni ]
i−1 = h

[Nj ]

j−1 ⇒ θ
(
h

[Ni ]
i−1 ) = θ (h

[Nj ]

j−1

)
, ∀i, j ∈ N+.

Assumption 2 implies that consumers form the same persuaded opinion (in distribution) if they

read two review histories with the same ratings. One simple example of θ (h[Ni ]
i−1 ) is to follow the

empirical opinions, i.e.,

θm

(
h

[Ni ]
i−1

)
=

#[ratings in h
[Ni ]
i−1 equalm]

#[non-zero ratings in h
[Ni ]
i−1 ]
, ∀m ∈ M . (2)

Equation (2) captures consumers’ herding behavior in opinion formation from reading reviews.

For simplicity of notations, we define h
[0]
i−1 � 0 to capture that a consumer does not read any re-

views (i.e., Ni = 0) or reads only null reviews, and we define the persuaded opinions θ (0) � α
correspondingly.

Persuasion cascades. After purchasing a product, a consumer’s final opinion is modeled as a
weighted combination of her persuaded opinion and her intrinsic opinion:

P
[
Ri =m

���H[Ni ]
i−1

]
� γ P

[
R̂i =m

���H[Ni ]
i−1

]
︸︷︷︸

persuaded opinion

+(1 − γ ) P [Oi =m]︸︷︷︸
intrinsic opinion

,

where γ ∈ [0, 1] models the strength of the message-based persuasion. For example, the case γ = 0
models that consumers post intrinsic opinions, whileγ = 1 models that consumers fully follow the
historical reviews. The persuasion strength increases in γ . This message-based persuasion effect
leads to a persuasion cascade, i.e., the previous reviews influence a consumer’s opinion, and this
consumer’s opinion will influence the opinions of the subsequent consumers. One of our objectives
is to explore the impact of γ on the accuracy of a product quality estimation method A(α̂ i ).

2.3 Misbehaving Product Reviews

Misbehavior (also known as review spam [10]) exists in online product review systems. Some com-
panies may hire others to provide positive reviews to promote their own products, while provid-
ing negative reviews to bad-mouth their competitors’ products. We consider a (L,F )-misbehavior
model, which is defined as follows.

Definition 5. (L,F )-misbehavior is to inject L reviews with ratings characterized by set F ,
where L ∈ N+ and F is defined as

F �
{(
iτ , R̃iτ

)
: τ = 1, . . . ,L

}
with R̃iτ

∈ M denoting the τ -th misbehaving rating and iτ ∈ N+ denoting the corresponding in-
dex.

Note that this is a deterministic misbehavior model. Note that the analytical method developed
in Section 3 can be easily extended probabilistic models of misbehaving ratings, i.e., with certain
probability a rating is a misbehaving rating. This probabilistic model captures a fraction of mis-
behaving ratings. For brevity, we omit it. A special case of the (L,F )-misbehavior is the (L,m̃,k )-
misbehavior model, which injects a consecutive sequence of L reviews with rating m̃ toward a
product starting from the k-th review, where m̃ ∈M,k ∈N+. For example, a (6, 5, 4)-misbehavior
means injecting six reviews with rating 5 starting from the 4-th review, i.e., R4=5, . . . ,R9=5. The
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(L,m̃,k )-misbehavior is a strong review attack, because in practice, to avoid being caught or de-
tected, the L misbehaving reviews may be divided into several sub-groups and each group will
be injected after some honest reviews. If the product quality estimation is robust to this kind of
(L,m̃,k )-misbehavior, then we can imagine that it will be robust to lighter review attacks as well.

2.4 Motivating Questions

Formally, this article aims to investigate the following interesting questions to understand a per-
suasion cascade:

(1) Will the collective opinion reaches a consensus in the honest and misbehavior scenarios?

Precisely, does there exist a unique vector α̂∞ ∈O such that P
[
limi→∞ α̂ i =α̂∞

]
=1 (written

as α̂ i
a .s .−−−→ α̂∞)?

(2) How accurate is the average scoring rule (widely practiced) in estimating product quality

under persuasion cascades? Precisely, will |A(α̂ i ) −A(α ) | be small?

(3) How to infer and understand the persuasion cascade in real-world online product review sys-

tems? Precisely, how to design algorithms to infer α , β , and γ , from product review datasets,

and draw insights from them?

3 ANALYZING THE PERSUASION CASCADE

We first formulate a high-order Markov chain to track opinion dynamics of the persuasion cascade.
We then study the convergence of the collective opinions and apply the matrix perturbation the-
ory and the Chernoff bound (Markov dependency version) to bound the error of product quality
estimation under both the honest and the misbehaving settings.

3.1 Characterizing Opinion Dynamics

We characterize the status of a persuasion cascade via the latest N ratings. For example, if product
P has i ratings, the status of the persuasion cascade is [Ri−N+1, . . . ,Ri ]. Precisely, we define a
Markov chain (S, P): (1) The state space S characterizes all the possible status of a persuasion
cascade and (2) The state transition probabilities P characterizes the evolving dynamics of opinions.
The S can be derived as

S =
N⋃

j=0

{0} × · · · × {0}︸︷︷︸
N−j

×M × · · · ×M︸︷︷︸
j

.

The persuasion cascade is at state

s � [s1, . . . , sN ] ∈ S,

if the latest N historical ratings are s1, . . . , sN . For example, each product is initialized with no
reviews, namely, the initial state is s = [0, . . . , 0]. After the first consumer posts the review (r1,R1),
the state becomes i.e., s = [0, . . . , 0,R1]. In general, when the product P has i ratings, the state of
the persuasion cascade is s= [Ri−N+1, . . . ,Ri ]. The total number of states is

|S| =
N∑

j=0

M j =
MN+1 − 1

M − 1
.

The matrix P characterizes all possible state transitions of a persuasion cascade, i.e., P =

[P (s̃|s) : s ∈ S, s̃ ∈ S], where

P (s̃|s) � P [the next state is s̃|current state s], ∀s, s̃ ∈ S.
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Namely, P characterizes the evolving dynamics of the persuasion cascade. Each row of P corre-
sponds to all possible transitions from a state to another state, i.e., P (s̃|s),∀s̃ ∈ S. To derive the
closed-from of P (s̃|s), we define neighbors of a state.

Definition 6. We define the neighboring set of s as

Ns �
{
[s2, . . . , sN ,m]

���m ∈ M}
, s ∈ S.

The number of neighbors for each state is |Ns | = M . Each state is only possible to transit to one of
its neighbors, namely, P (s̃|s) = 0,∀s̃ � Ns, and the transition happens if and only if the product P
receives a new rating equals. Recall the stationary assumption (i.e., Assumption 2), without loss of
generality, suppose the latest N ratings are [Ri−N , . . . ,Ri−1] = s, then with some basic probability
arguments, we derive the state transition probabilities as

P (s̃|s) =
∑
n∈N

βn

(
γθs̃N

(s[n]) + (1 − γ )αs̃N

)
, ∀s̃ ∈ Ns,

where s
[n] is defined as the latest n elements of s, i.e.,

s
[n] � [sN−n+1, . . . , sN ], ∀n = 1, . . . ,N ,

and s
[0] � 0. We can then summarize the state transition probabilities as

P (s̃|s) =
⎧⎪⎪⎨⎪⎪⎩

∑
n∈N

βn

(
γθs̃N

(s[n]) + (1 − γ )αs̃N

)
, if s̃ ∈ Ns,

0, if s̃ � Ns.

Each row of the state transition matrix P has at most |Ns | = M non-zero entries. It is a sparse
matrix because M << |S|. We will refer to this Markov chain as (S, P).

3.2 Convergence of Opinions

Suppose consumers rate honestly, i.e., these is no misbehaving reviews. We now study the con-

vergence of opinions, i.e., the existence and uniqueness of a constant vector α̂∞ ∈ O such that

α̂ i
a .s .−−−→ α̂∞. Let us begin with the notion of steady-state distribution of (S, P), which characterize

the opinion dynamics of the persuasion cascade asymptotically.

Definition 7. A probability (row) vectorπ � [π (s) : s ∈ S], whereπ ∈ [0, 1] |S | and
∑

s∈S π (s) =
1, is a steady-state distribution for the Markov chain (S, P), if π = πP.

Remark: The convergence of (S, P) to a unique steady-state distribution π means that the per-
suasion cascade will be at each state s ∈ S with probability π (s). In other words, the steady-
state characterizes the stationary behavior of the persuasion cascade, which implies the following
theorem.

Theorem 1. Suppose (S, P) converges to a unique steady-state distributionπ . There exists a unique

constant vector α̂∞ ∈ O such that α̂ i
a .s .−−−→ α̂∞. Furthermore,

α̂∞ = πW, (3)

where W denotes a |S| ×M weight matrix

W � [Ws,m : s ∈ S,m ∈ M], Ws,m = 1{sN =m } .

Remark: All proofs of lemmas and theorems are in Section 8. Theorem 1 states that the stationary
behavior of the persuasion cascade (i.e., steady-state distribution π of (S, P)), not only implies the
convergence of the empirical collective opinion α̂ i to a unique α̂∞, but also implies a closed-form
α̂∞ in terms of π .
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Now we establish conditions to guarantee the the stationary behavior of the persuasion cascade
(i.e., steady-state distribution π of (S, P)). Without loss of generality, we impose the following
assumptions on collective intrinsic opinions.

Assumption 3. The α satisfies that αm > 0,∀m ∈ M.

Assumption 3 states that there are no redundant rating levels. Technically, if there are some
redundant rating levels, i.e.,αm = 0 for somem ∈ M, one can eliminate then to make Assumption 3
hold, through which our analysis applies.

Theorem 2. Suppose Assumption 3 holds andγ < 1. The Markov chain (S, P) has a unique steady-

state distribution π , which has the following structure:{
π (s) = 0, if s ∈ T ,
π (s) > 0, if s ∈ R,

where R �MN and T � S \ R. Furthermore, π R � [π (s) : s ∈ R] is a unique solution of

π R = π RPR ,
∑
s∈R

π (s) = 1, (4)

where PR � [P[s̃|s] : s ∈ R, s̃ ∈ R].

Remark: Theorem 2 states that asymptotically the persuasion cascade will reach the same steady-
state distribution π no matter what the initial ratings or reviews are. This implies that the per-
suasion cascade will converge to the same collective opinion, which is invariant of initial ratings.
Furthermore, the steady-state distribution is characterized by a linear system (4), which enables
us to bound product quality estimation error.

3.3 Bounding the Product Quality Estimation Error

In practice,A(α̂ i ) is widely adopted to estimate the intrinsic product qualityA(α ). We now bound
the estimation error of this method, i.e., |A(α̂ i ) −A(α ) |. Using the triangle inequality we decom-
pose the estimation error as

|A(α̂ i ) −A(α ) | ≤ |A(α̂ i ) −A(α̂∞) | + |A(α̂∞) −A(α ) |
= ϵa + ϵp , (5)

where ϵa � |A(α̂ i ) −A(α̂∞) | is defined as the approximation error caused by the partial infor-

mation (i.e., finite number of ratings) and ϵp � |A(α̂∞) −A(α ) | is defined as the persuasion error

caused by persuasion biases.

(1) Bounding the persuasion error. Based on Theorem 2, we apply the matrix perturbation
theory [25] to bound ϵp . Let

P̃R � (P[s̃|s;γ = 0] : s ∈ R, s̃ ∈ R )

denote the state transition matrix restricted to R and γ = 0. Namely, P̃R is the station transition
matrix (restricted to R) when consumers provide unbiased reviews. Let

E � PR − P̃R

denote the error matrix caused by the persuasion bias. The error matrix E reflects the persuasion
strength γ and it converges to a matrix with all entries being 0 as γ converges to zero. Let the row

vector π̃ � [π̃ (s) : s ∈ S] denote the steady-state distribution underγ = 0. Namely, π̃ corresponds
to the intrinsic collective opinion

α = π̃W. (6)
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Comparing with Equation (3), one can observe that ϵp arises from the “error” in the stationary be-
havior of the persuasion cascade (i.e., steady-state distribution). Thus, we start from understand-
ing the steady-state distribution error caused by the persuasion biases. First, π̃ has the following
closed-form.

Corollary 1. The π̃ can be derived as

π̃ (s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if s ∈ T ,

N∏
n=1

αsn
, if s ∈ R .

Now, we apply the matrix perturbation theory to bound the steady-state distribution error.

Theorem 3. Given the steady-state distribution π under γ > 0 and π̃ under γ = 0. We bound the

error between them as

| |π − π̃ | |
| |π̃ | |

≤ ϵsd ,

where ϵsd denotes the steady-state distribution error

ϵsd � | |[(PR − I) (PT
R − I) + e

T
e]−1 | |×(

| |E| | × | |P̃R−I| | + | |ET | |× | |P̃T
R−I| | + | |E| |2 + | |ET | |2 + | |E| | × | |ET | |

)
,

the notation | | · | | denotes a general matrix norm, e � [1, . . . , 1] denotes a |R | dimensional row vector

with all 1 elements and I denotes a |R | × |R| identity matrix.

Remark. Theorem 3 derives a closed-form upper bound for the steady-state distribution error. It
implies that the steady-state distribution error | |π − π̃ | |/| |π̃ | | can be arbitrarily small when the
persuasion strength γ is sufficiently small. In other words, when the persuasion strength is small,
the stationary behavior of the persuasion cascade will slightly different from the one with no
persuasion biases (i.e., providing intrinsic reviews). As a consequence, Theorem 3 implies the fol-
lowing upper bound on the collective opinion error.

Corollary 2. The collective opinion error can be bounded as

| |α − α̂∞|| ≤ ϵsd | |π̃ | | × | |W| |.

Remark: Corollary 2 derives a closed-form upper bound for the opinion error. It implies that when
the persuasion strength is small, the empirical opinion of the persuasion cascade converges to
an opinion, which is slightly different from the intrinsic opinion. In other words, the empirical
opinion α̂ i would be an accurate estimator for the intrinsic opinion when the number of ratings i
is sufficiently large. Corollary 2 implies the following upper bound on the persuasion error ϵp .

Corollary 3. Consider the average scoring rule A, the persuasion error ϵp can be bounded as

ϵp ≤ ϵsd | |π̃ | | × | |Wm
T | |,

where m � [1, . . . ,M] denotes an M-dimensional row vector.

Remark: Corollary 3 derives a closed-form upper bound for the persuasion error ϵp under the av-
erage scoring rule. For other rating aggregation rules such as the median rating rule and weighted
average scoring rule, one can apply Corollary 2 to derive similar bounds on ϵp . It implies that
when the persuasion strength γ is small, the persuasion error ϵp can be small (we will study the
error numerically in Section 5). In other words, the simple product estimation method, i.e., A(α̂ i ),
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would eventually be accurate, when the number of ratings i is sufficiently large. We next derive
the minimum number of ratings to guarantee the convergence of opinions, which implies the ap-
proximation error ϵa as well.

(2) Bounding the approximation error. Based on Theorem 2, we now apply the Chernoff bound
(the Markovian version) [19] to bound the approximation error ϵa . To study the convergence of a
persuasion cascade, we first quantify the distance to convergence and the speed of convergence. Let
the |R |-dimensional row vector

π 0 � [π0 (s) : s ∈ R],

where π 0 ∈ [0, 1] |R | and
∑

s ∈R π0 (s) = 1, denote the joint distribution of the first N ratings.
Namely, π 0 characterizes the initial state of the persuasion cascade with restriction to (R, PR ).
Eventually, the persuasion cascade will converges to a steady-state distribution π R . To quantify
how far away the persuasion cascade is from convergence, we define the distance metric as

D (π 0,π R ) �
√√∑

s∈R

π 2
0 (s)

πR (s)
.

Using the Cauchy–Schwarz inequality, one obtains that when π 0 = π R , the minimum distance is
attained D (π 0,π R ) = 1. Let νps denote the pseudo spectral gap [19] of the Markov chain (R, PR ),
where νps quantifies the speed of convergence of the persuasion cascade. With these two metrics,
we now bound the opinion error caused by approximation, i.e., | |α̂ i − α̂∞||.

Theorem 4. Suppose the number of ratings i satisfies

i ≥ 1

ϵ2

16(1 + 1/νps ) + 40ϵ

νps
ln ��
√

2MD (π 0,π R )

δ
�� + N , (7)

where ϵ > 0 and δ ∈ [0, 1]. It holds with probability at least 1 − δ that

| |α̂ i − α̂∞|| ≤ ϵ | |c| |,
where c � [1, . . . , 1] denotes a M-dimensional row vector.

Remark: Theorem 4 states the “minimum number of ratings” to guarantee that the empirical opin-
ion α̂ i is an accurate estimator of the converged opinion α̂∞. It reveals that the minimum number
of ratings is critical to the estimation accuracy ϵ and the speed of convergence (i.e., pseudo spectral
gap νps ), while it is not critical to the distance to convergence (i.e., lnD (π 0,π R )), because it is pro-
portional to the logarithmic of the distance, i.e., lnD (π 0,π R ). We will study the minimum number
of ratings quantitatively in Section 5. Theorem 4 implies the following approximation error ϵa .

Corollary 4. Consider A to be the average scoring rule. Suppose the number of ratings satisfies

(7). With probability at least 1 − δ , it holds that

ϵa ≤ ϵ | |c| | × | |m| |.
Remark: Corollary 4 states that the approximation error ϵa can be arbitrarily small with a suffi-
ciently large number of ratings under the average scoring rule. For other rating aggregation rules
such as the median rating rule, one can apply Theorem 4 to derive similar bounds for ϵa . Com-
bining Equation (5), Corollary 3, and Corollary 4, one can obtain the error bound for the product
estimation error |A(α̂ i ) −A(α ) |.
(3) Summary of honest case. The persuasion cascade converges to a unique collective opinion,
which is invariant of the initial rating, except the extremal case γ = 1. The A(α̂ i ) is an accurate
estimator of the intrinsic quality A(α ) when the persuasion strength is weak and the number of
ratings is large.
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3.4 Impact of Misbehavior Attacks

We first analyze the impact of the (L,F )-misbehavior on the convergence of the persuasion cas-
cade. As a corollary of Theorem 2, we have the following result.

Corollary 5. Suppose Assumption 3 holds and γ < 1. The steady-state distribution of the Markov

chain (S, P) remains unchanged under any (L,F )-misbehavior with L < ∞.

Remark: Corollary 5 states that the convergence of the persuasion cascade is invariant of any
(L,F )-misbehavior with a finite length. This implies that the persuasion error ϵp is invariant of
the (L,F )-misbehavior.

Corollary 6. Suppose Assumption 3 holds and γ < 1. The persuasion error ϵp remains unchanged

under any (L,F )-misbehavior with L < ∞.

However, the misbehavior slows down the convergence of opinions. We will need to compen-
sate this by a larger number of ratings to make the approximation error ϵa small (will study it
numerically in Section 5). One can apply Theorem 4 to derive the number of ratings needed to
compensate.

Summary of misbehavior. The convergence of persuasion cascades is invariant of the misbe-
havior attack, except the case γ =1. The misbehavior slows down the convergence.

4 INFERRING THE PERSUASION CASCADE

In this section, we design maximum likelihood algorithms to infer the persuasion cascade, i.e., the
parameters α , β , and γ , from real-world product review datasets.

4.1 Maximum Likelihood Estimation

Without loss of generality, suppose we are given a sequence of I ∈ N+ ratings of the product P in
chronological order, i.e., R1, . . . ,RI . We do not assume any a-priori knowledge on the persuasion
strength γ , the review reading distribution β , and the intrinsic collective opinion α . Our objective
is to infer these parameters from R1, . . . ,RI via maximum likelihood estimation. In the remaining
parts of this article, we consider a specific form of persuaded opinion function, i.e., θ (hi ) satisfies
Equation (2), which capture consumers’ herding or following behavior in opinion formation from
review readings. Given R1, . . . ,RI , we derive the likelihood function of α , β ,γ as:

L (α , β ,γ ) � P [R1, . . . ,RI ;α , β,γ ]

=

I∏
i=1

��
∑
n∈N

βn

[
γθRi

(
h

[n]
i−1

)
+ (1 − γ )αRi

]�� .
Then the log-likelihood function can be derived as

�(α , β ,γ ) =
I∑

i=1

ln ��
∑
n∈N

βn

[
γθRi

(
h

[n]
i−1

)
+ (1 − γ )αRi

]�� .
Formally, we state our inference problem as follows.
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Problem 1. Given R1, . . . ,RI of the product P, M,N and θ (hi ) which satisfies (2), select α , β
and γ to maximize the log-likelihood function �(α , β,γ ). Formally,

maximize
α ,β,γ

�(α , β,γ )

subject to
∑
n∈N

βn = 1,
∑

m∈M
αm = 1,

β ∈ [0, 1] |N |,α ∈ [0, 1] |M |,γ ∈ [0, 1].

In case we are given the ratings for multiple products, one can repeat Problem 1 for each product
separately.

Theorem 5. Problem 1 has at least one optimal solution.

Remark: Problem 1 has at least one optimal solution, because its feasible space is compact and its
objective function �(α , β ,γ ) is continuous over the feasible space.

We next identify some properties of the objective function, which may enable us to design
efficient algorithms to locate the optimal solution.

Lemma 1. The log-likelihood function �(α , β,γ ) is concave with respect to α , concave with respect

to β and concave with respect to γ , respectively.

Lemma 1 states that given any two ofα , β , andγ , the log-likelihood function is concave with the
remaining one. Note that there are a variety of efficient algorithms to solve concave optimization
problems. Hence, Lemma 1 inspires one possible efficient inference algorithm: update α , β , and γ
alternately, and each time apply concave optimization algorithms to update one of them.

4.2 Inference Algorithms

Note that Problem 1 is not a concave program. In general, the optimal solution is not unique
and there may exist several local optimal solutions as well. We employ gradient-based methods
to search local optimal solutions. By repeating the searching algorithm for multiple times with
random start, we may hit the optimal solution with high probability. Let us derive the gradient of
�(α , β,γ ) as:

∂�(α , β,γ )

∂αm
=

I∑
i=1

(1 − γ )1{αRi
=m }∑

n∈N βn

[
γθRi

(
h

[n]
i−1

)
+ (1 − γ )αRi

] ,
∂�(α , β ,γ )

∂βn
=

I∑
i=1

γθRi

(
h

[n]
i−1

)
+ (1 − γ )αRi∑

n∈N βn

[
γθRi

(
h

[n]
i−1

)
+ (1 − γ )αRi

] ,
∂�(α , β ,γ )

∂γ
=

I∑
i=1

∑
n∈N βn

[
θRi

(
h

[n]
i−1

)
− αRi

]
∑

n∈N βn

[
γθRi

(
h

[n]
i−1

)
+ (1 − γ )αRi

] .
With these gradients, we use the interior point algorithmic framework [29] to search the optimal

solution. For brevity, we omit the details, because it only involves some minor modifications of the
standard interior point algorithm [29].

5 Synthetic Data Analytics and Implications

We first conduct synthetic data analytics to systematically verify our theoretical findings and ex-
amine the impact of various factors on the convergence of the persuasion cascade and on the
accuracy of product quality estimation. Then, we evaluate the accuracy of our inference algorithm.
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(a) α with M = 5 (b) β with N = 50

Fig. 1. Examples of α and β (M = 5,N = 50).

5.1 Synthetic Datasets

We set M = 5, which is consistent with real-world online product review systems. We set N = 50
to capture the finding that around 88% consumers read less than 10 reviews of a product [20]. Thus,
the number of states of the underlying Markov chain (S, P) is

|S| ≈ 550 ≈ 8 × 1034.

Namely, it is computationally expensive to calculate the exact steady-state distribution π . We con-
sider a persuaded opinion formation function θ (hi ) that satisfies Equation (2), to capture con-
sumers’ herding or following behavior in persuaded opinion formation. Without loss of general-
ity, we focus on generating ratings for one product, i.e., product P. In particular, we instantiate
the associated intrinsic collective opinion α and review reading distribution β via discretizing the
beta distribution Beta(a,b) with parameters a,b ∈ R+:

αm ∝ xa−1 (1 − x )b−1 |x= m
M+1
, m ∈ M,

βn ∝ xa−1 (1 − x )b−1 |x= n+1
N+2
, n ∈ N .

One can select different pairs of (a,b) to model different intrinsic collective opinions α and model
different review reading distributions β . In particular, we select three pairs of (a,b) illustrated
in Figure 1. From Figure 1(a), one can observe that the parameter (a,b) = (2, 6) (or (a,b) = (2, 2)
or (a,b) = (6, 2)) models that most consumers have low (or medium or high) intrinsic ratings. In
other words, the product is of low (or medium or high) overall quality. Similarly, from Figure 1(b),
one can observe that the parameter (a,b) = (2, 6) (or (a,b) = (2, 2) or (a,b) = (6, 2)) models that
most consumers read a small (or medium or large) number of reviews.

With the above parameters, we simulate our model (details in Algorithm 1) to synthesize product
ratings.

5.2 Opinion Dynamics and Biases

Impact of initial ratings: We consider one typical instance of α and β generated by discretizing
Beta(2, 2) (depicted in Figure 1). We study a strong persuasion strength γ = 0.9, because if the
persuasion cascade converges under strong persuasion strengths, it also implies the convergence
under weak persuasion strengths. We vary the initial rating R1 from 1 to 5. We input these param-
eters into Algorithm 1 to generate I = 35,000 product ratings. We evaluate the empirical opinion
α̂ i via Equation (1). Figure 2 shows the value of α̂i,1, α̂i,2, α̂i,3, and α̂i,4 as we vary the number
of ratings i from 1 to 35,000, where the empirical αi,m corresponds to α̂i,m . Note that we omit
α̂i,5 because its convergence can be implied by that of α̂i,1, α̂i,2, α̂i,3, and α̂i,4. From Figure 2, we
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(a) α̂i , 1 (b) α̂i , 2

(c) α̂i , 3 (d) α̂i , 4

Fig. 2. Impact of the initial rating R1 on convergence of α̂ i (α , β are generated by Beta(2, 2) and γ = 0.9).

ALGORITHM 1: : Synthesize Product Ratings

Require: α , β , γ ,M,N , θ (hi ) satisfies (2), R1, I .
Ensure: I ratings for product P, i.e., R1, . . . ,RI .

1: R−i ← 0 for all i = 0, 1, . . . ,N − 1

2: for i = 2 to I do

3: Generate the number of review readings n from β .

4: h
[n]
i−1 ← [Ri−n , . . . ,Ri−1].

5: Plug h
[n]
i−1 into (2) to obtain θ (h

[n]
i−1).

6: Generate Ri according to the pmf γθ (h
[n]
i−1) + (1 − γ )α .

7: end for

observe that the empirical collective opinion α̂ i converges to a unique value no matter what the
initial rating R1 is. This verifies our theoretical findings. It is interesting to observe that around
10000 ratings are enough to guarantee the convergence, even though the number of the states of
the underlying Markov chain is |S| ≈ 8 × 1034.

Impact of persuasion strengths: We extend the last experiment to vary the persuasion strength
from 0 to 0.9. For brevity, we select R1 = 1,R1 = 5, and α̂i,1 to study. Figure 3 shows the value of
α̂i,1 across the number of ratings i . One can observe that when there is no persuasion bias, i.e.,
γ = 0, we only need hundreds of ratings to guarantee the convergence of opinions. As γ increases,
we need more ratings to guarantee the convergence. In particular, when the persuasion strength is
strong, i.e., γ = 0.9, we need around 10,000 ratings. It is interesting to observe that eventually the
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(a) R1 = 1 (b) R1 = 5

Fig. 3. Impact of the persuasion strength γ on the convergence of α̂ i (α , β are generated by Beta(2, 2) and

R1 = 1 or 5).

(a) γ = 0.3 (b) γ = 0.9

Fig. 4. Impact of the review reading distribution β on the convergence of α̂ i (α is generated by Beta(2, 2),
R1 = 1 and γ = 0.3 or 0.9).

value of α̂i,1 converges to similar values under different values ofγ . In other words, in the long run
the persuasion bias will be averaged out, but it slows down the speed of convergence significantly.
This observation also suggests that real-world online product review system operators should
focus on speeding up the convergence, because most products only have hundreds of ratings.

Impact of review reading distributions: We extend the last experiment settings to consider
three instances of β depicted in Figure 1(b). For brevity, we select γ = 0.3, γ = 0.9, α̂i,1, and R1 = 1
to study. From Figure 4, one can observe that under different review reading distributions β , the
value of α̂i,1 converges to similar values. It further verifies our finding that the persuasion biases
will eventually be averaged out.

Lessons learned: The collective opinion of a persuasion cascade converges and this convergence
is invariant of initial ratings. The persuasion bias will eventually be averaged out; however, it slows
down the speed of convergence.

5.3 Product Quality Estimation Accuracy

We set A as the average scoring rule and we aim to study the convergence of the product qual-
ity, i.e., A(α̂ i ). We use the same experiment setting as that in Section 5.2. Figure 5(a) shows the
convergence of A(α̂ i ), where we vary the persuasion strength from 0 to 0.9. One can observe
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(a) β generated by Beta(2,2) (b) γ = 0.9

Fig. 5. Impact of γ and β on the convergence of the average rating (α is generated by Beta(2, 2), R1 = 1).

(a) L = 50 (b) γ = 0.9

Fig. 6. Impact of (L,m̃,k )-misbehavior on the convergence of α̂ i (α , β generated by Beta(2, 2), R1 = 1,m̃ =
5,k = 50).

that under different persuasion strengths, the average rating A(α̂ i ) converges to similar values. In
other words, asymptotically A(α̂ i ) is an accurate estimator of the product quality. The persuasion
bias, however, slows down the convergence significantly. It suggests that online product review
system operators should focus on speeding up the convergence. Figure 5(b) shows the impact of
the review reading distribution on the convergence ofA(α̂ i ). One can observe that under different
β (i.e., different review reading distributions), the average ratingA(α̂ i ) converges to similar values
with similar speeds of convergence.

Lessons learned: Using the average scoring rule to estimate product quality, the estimator A(α̂ i )
is asymptotically accurate; however, the persuasion bias slows down the speed of convergence.

5.4 Impact of Misbehavior Attacks

To understand the robustness against misbehavior, we consider a company launches a strong mis-
behavior attack, i.e., (L,m̃,k )-misbehavior attack, where m̃ = 5 and k = 50, to promote its prod-
ucts. We use the same experiment setting as that in Section 5.2. For brevity, we only focus on α̂i,5.
Figure 6 shows the impact of the (L, 5, 50)-misbehavior when we vary the persuasion strength γ
and the length L. One can observe that in the short run, the misbehavior can increase the positive
opinion α̂i,5 significantly, especially when the persuasion strength γ is strong or the number of
misbehaving ratings L is large. However, in the long run, the bias caused by the misbehavior attack
will eventually be averaged out, and α̂i,5 converges to similar values.
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(a) Honest rating (b) Misbehaving rating

Fig. 7. The accuracy of our inference algorithm under both honest rating and misbehaving rating settings

(α , β generated by Beta(2, 2), γ = 0.9, R1 = 1,m̃ = 5,k = 50,L = 50).

Lessons learned: The opinion bias caused by misbehavior attacks will eventually be averaged
out, however, the misbehavior attack slows down the convergence.

5.5 Evaluating the Inference Algorithm

Now we evaluate the accuracy of our inference algorithm (stated in Section 4). We run our in-
ference algorithm (stated in Section 4) on synthetic data to infer α , β , and γ . Note that in the
synthetic dataset, the ground truth of α , β , and γ are given. Observe that α , β are vectors, and
we measure the inference accuracy of them in terms of the intrinsic quality A(α ) and the average
number of review readings

∑
n∈N nβn . We consider that A is the average scoring rule. Figure 7

shows the relative error in intrinsic quality A(α ), average number of review readings
∑

n∈N nβn

and the persuasion strength γ , under both the honest rating and misbehaving rating settings. One
example of the relative error is |γ − γ̂ |/γ , where γ̂ denotes the inferred persuasion strength. From
Figure 7, one can observe that the relative error decreases as we increase the number of ratings.
This means that our inference algorithm becomes more accurate as more ratings can be used to
conduct the inference. This also gives evidences on the convergence of our inference algorithm.
Figure 7(a) shows that under the honest rating scenario, the relative error of inferring the persua-
sion strength is less than 5% when the number of ratings is around 800, implying a high inference
accuracy. Furthermore, the relative errors of inferring the product quality and the average num-
ber of review readings are around 5% and 7%, respectively, when the number of ratings is 2,000,
implying a high inference accuracy. Figure 7(b) shows that under the misbehaving scenario, the
relative error in intrinsic quality and persuasion strength can also be around 5% when the number
of ratings is around 2,000. And the relative error in average number of review readings is around
10%. This implies that our inference algorithm is highly robust against misbehaving ratings.

Lessons learned. Our inference algorithm is accurate in uncovering the intrinsic quality, average
number of review readings and the persuasion strength under both the honest rating and misbe-
having rating settings.

6 REAL-WORLD DATA ANALYTICS AND GUIDANCES

We apply our framework to analyze real-world datasets from Amazon and TripAdvisor. We infer
the persuasion strengthγ , the distribution of number of review readings β and the intrinsic opinion
α . We analyze the inferredα , β , and γ to gain practical understandings on the persuasion cascade.
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(a) e whole dataset (b) e selected items

Fig. 8. The distribution of the number of ratings across items.

6.1 Data Analysis Setting

Datasets. The datasets contain historical ratings (with time stamps) of 32,888 products in Amazon
and of 11,543 hotels in TripAdvisor. The dataset was crawled by Xie et al. [33] in 2013 and it was
used in several previous works [30, 32]. We plot the distribution of the number of ratings across
items (i.e., products or hotels) in Figure 8(a). One can observe that around 80% items have less than
300 ratings. From these two datasets, we select all the items that have no less than 1,000 ratings
for analysis. This is to attain a balance between the data sufficiency for the inference algorithm
to be accurate and the scale of the experiment dataset. In total, we select 738 products from the
Amazon dataset and 507 hotels from the TripAdvisor dataset, which are depicted in Figure 8(b).
One can observe that most selected items have around 1,000 ratings.

Parameter setting and persuasion cascade inference. We consider the following experimental
settings. Amazon and TripAdvisor adopt the same five-level rating metric {1, 2, 3, 4, 5}. We there-
fore setM = {1, 2, 3, 4, 5}. A survey study [20] reported that around 84% consumers read less than
10 reviews of a product. Based on this survey study, we setN = {0, 1, . . . , 15} to avoid over param-
eterization of the model. We consider a simple persuaded opinion formation function θ (hi ) that
satisfies Equation (2), to capture consumers’ following (or herding) behavior in persuaded opinion
formation. For each selected item in Figure 8(b), we input the above parameters and the whole
rating history of this item into the inference algorithm (presented in Section 4). Through this we
infer persuasion strength γ (will be shown in Section 6.2) ,the review reading distribution β (will
be shown in Section 6.3) and the intrinsic opinion α (will be shown in Section 6.4) for each item.

6.2 Persuasion Strengths

Note that each item may be associated with a different persuasion strength. Figure 9 shows
the distribution of the inferred persuasion strength γ across items. Figure 9(a) depicts the pmf
of γ , where we discretize [0, 1] into 20 sub-intervals such that the j-th sub-interval represents
[0.05(j − 1), 0.05j] for all j = 1, . . . , 20. From Figure 9(a), one can observe the persuasion strength
has a normal-like distribution for both Amazon and TripAdvisor. The persuasion strength for most
items fall into the range of 0.1–0.4. Only a very small fraction of items are associated with a persua-
sion strength larger than 0.6. Around 10% items has a very weak persuasion strength, i.e., less than
0.05. These observations show that the persuasion effect exists for most users/items. Furthermore,
these observations match well with the survey study [20], which reported that 88% users trust rat-
ing or reviews and they incorporate them into their decisions. Figure 9(b) depicts the cumulative
distribution function (CDF) of the persuasion strength across items. One can observe that the CDF
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(a) Probability mass function (b) Cumulative distribution function (c) γ̄ vs. avg. score

Fig. 9. The the variation of the persuasion strength across items and average score of products.

curve for Amazon lies above that for TripAdvisor. This implies that on average, the persuasion
strength in TripAdvisor is stronger than Amazon. One possible reason is that perceiving the qual-
ity of a hotel is more complicated than perceiving the quality of a product. This makes consumers
more likely to follow the message-based persuasions. Figure 9(c) shows the variation of persua-
sion strength across the average score of products. Note that there is no product with average
score being smaller than 2. The bar with index 3/4/5 depicts the average persuasion strength of all
products with average score in the range (2, 3]/(3, 4]/(4, 5]. From Figure 9(c), one can observe that
as the average score increases, the persuasion strength decreases. This observation matches well
with the survey study [20], which reported that 95% users suspect reviews when there are no bad
ratings or reviews. For a product with average score around three, it contains both good ratings
and bad ratings. Hence, as indicated by the survey study [20], users trust the ratings or reviews
more resulted in a stronger persuasion strength. However, for a product with average score around
five, it nearly has no bad ratings. Hence, users trust the ratings or reviews less resulted in a weaker
persuasion strength.

Lessons learned: In both Amazon and TripAdvisor, the persuasion cascade widely exists. The
persuasion strength has a normal-like distribution and concentrates in the range of 0.1–0.4. The
persuasion strength in TripAdvisor is stronger than that in Amazon.

As the average score of a product increases, the persuasion strength decreases.

6.3 Review Reading Distributions

Number of Review Readings: Based on the inferred β for a product, we define its average num-
ber of review readings

N̄ �
∑
n∈N

nβn .

Figure 10 shows the distribution of N̄ across items, where we discreterize the interval [0, 15] into
10 sub-intervals such that the j-th sub-interval corresponds to [2(j − 1), 2j − 1], for all j = 1, . . . , 8.

From Figure 10(a), one can observe that the distributions of the N̄ across hotels in TripAdvisor
and products in Amazon are in normal-like shapes. Around 82% users in Amazon only read up to
eleven reviews, and around 90% users in TripAdvisor read up to thirteen reviews. This observation
roughly agrees with the survey study [20], which reported that around 84% users reads up to ten
reviews. From Figure 10(b), one can observe that the CDF curve of N̄ for Amazon lies above that for
TripAdvisor. This means that consumers tend to read more reviews in TripAdvisor than Amazon.
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(a) Probability mass function (b) Cumulative distribution function

Fig. 10. The distribution of the number of review readings N̄ across items.

(a) N̄ vs. average score (b) γ̄ vs. N̄

Fig. 11. Variation of N̄ across average score of products and average number of review readings.

One reason is that the public information of hotels are less than products in Amazon, and thus
consumers rely more on the product reviews to estimate the quality of hotels.

Variation of N̄ : Given the average number of review readings N̄ , we define the corresponding
average persuasion strength as

γ̄ � summation of γ over items having N̄

#[items have N̄ ]
.

Figure 11(a) shows the variation of number of review readings across the average score of prod-
ucts. Note that there is no product with average score being smaller than 2. The bar with index
3/4/5 depicts the average of N̄ over all products with average score in the range (2, 3]/(3, 4]/(4, 5].
From Figure 11(a), one can observe that as the average score increases, the number of review read-
ings decreases. This observation is supported by a survey study [20], which reported that star
rating is the number one factor used by consumers to judge a product. For a product with average
score around three, it contains both good ratings and bad ratings. Users need to read more reviews
to weight the pros and cons of a product. However, for a product with average score around five,
it nearly has no bad ratings. Hence, users read less reviews to form an opinion about a product.

Figure 11(b) shows γ̄ across N̄ , where we use the same discretization of [0, 15] as that in
Figure 10(a). To illustrate, the bar with index 5/7 depicts the average of persuasion strength over all
products with N̄ in the range (0, 5]/(6, 7]. From Figure 10(a), one can observe that the persuasion
strength under N̄ ≤ 5 is larger than that under N̄ ≥ 6. Furthermore, the persuasion strength varies

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 36. Publication date: April 2021.



Understanding Persuasion Cascades in Online Product Rating Systems 36:23

(a) Opinion error Eo (b) Product quality error Eq

Fig. 12. The opinion error and average rating error.

slightly when N̄ ≥ 6. This observation is supported by the survey study [20], 73% of consumers
form an opinion by reading up to six reviews. Forming an opinion with only a small number of
reviews means that these reviews are really persuasive resulting in a larger persuasion strength.

Lessons learned: The average number of review readings concentrates around 11 for both Ama-
zon and TripAdvisor. Consumers tend to read more reviews in TripAdvisor than Amazon. As the
average score of a product increases, the number of review readings decreases.

6.4 The Opinion and Product Quality Estimation Error

From Figure 8, we observe that around 90% of the items (i.e., products or hotels) have less than 500
ratings. We therefore explore: (1) Given a small number of ratings (i.e, i ≤ 500), how accurate is α̂ i

in reflecting α ? (2) How accurate is A(α̂ i ) in estimating the intrinsic quality A(α )?
Note that the intrinsic opinionα for each item has been inferred in Section 6.1. For each selected

item, we compute the associated empirical collective opinion α̂ i for each given number of ratings
i = 1, . . . , 500. Given, α and α̂ i , we define the relative opinion error as

Eo � | |α̂ i − α | |1
| |α | |1

,

where | | · | |1 denote the taxicab norm. The opinion error Eo ∈ [0, 2], and the smaller the Eo , the
more accurate α̂ i is. We define the relative product quality estimation error as

Eq � |A(α̂ i ) −A(α ) |
|A(α ) | .

The product quality error Eq ∈ [0,M − 1], and the smaller the Eq , the more accurate A(α̂ i ) is. We
set A to be the average scoring rule. Figure 12 shows Eo and Eq (average across items) when we
vary the number of ratings i from 1 to 500. From Figure 12, one can observe that when the number
of ratings is small, both the opinion error Eo and the quality error Eq are large. As we increase the
number of ratings, Eo and Eq decrease. Namely, the larger the number of ratings, the higher the
accuracy. When the number of ratings is less than 100, increasing the number of ratings decreases
the error (both Eo and Eq ) significantly. Further increasing the number of ratings from 100 to 500
only decreases the error (both Eo and Eq ) slightly. When the number of ratings is around 200, the
quality error Eq is around 5%, while the opinion error is around 20%. In other words, 200 ratings
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can achieve an accurate estimation of the product quality, while the estimation of the opinion
requires more ratings.

Lessons learned: Consider the average scoring rule. When the number of ratings is small, the
product quality estimation error is much smaller than the opinion estimation error. Around two
hundred ratings can produce an accurate estimator on the product quality. The average scoring
rule is effective at reducing the persuasion bias.

7 RELATED WORK

A variety of works studied the benefits of online product review systems. Chevalier et al. [5]
showed that product reviews can increase the sales of sellers. Mudambi et al. [18] showed that
product reviews serve as an important information source for consumers to make purchase de-
cisions. This argument was further justified by Lackermair et al. [13] and Li [14]. A number of
survey studies [4, 20, 23] were conducted to investigate how consumers use the product reviews.

They revealed that around 90% consumers reading product reviews before making decisions.
Furthermore, consumers only read a small subset of the reviews and most of them only trust the
latest reviews. These observations give us important insights to model the persuasion cascades.

Consumers’ reviews are subject to biases due to a number of reasons. One the product side,
Guo et al. revealed the category-wise biases [8]. On the product review system side, the system
interfaces [6] or the recommendation algorithms [22] can lead to opinion biases. On the consumer
side, the opinion biases can be caused by the evolving dynamics of their preferences [11], or the
change in their experience [16]. A variety of effective methods, e.g., [6, 8, 11, 16, 22], have been
proposed to mitigate these biases.

To gain deeper understanding in the personal biases in product reviews, a variety of works
explore the review (or opinion) formation from psychological perspectives. Zhang et al. [37] iden-
tified the assimilate and contrast phenomenon in providing product reviews and they applied the
“assimilate-contrast” theory to mitigate this bias. A number of experiments [17, 21] revealed that
consumer’s reviews are subject to social influence biases. Krishnan et al. [12] and Wang et al.
[27] developed models to quantify the effect of social influence biases and designed algorithms to
mitigate the social influence bias. However, a latest work by Adomavicius et al. [1] showed that
the social influence bias can be dominated by the personalized recommendation bias. Their ob-
servations motivated us to investigate the dominate biases source. The survey studies [4, 20, 23]
revealed that consumers read reviews in decision making. This uncovers a typical psychological
phenomenon called the message-based persuasion [28]. As psychology theory [9, 28] have indi-
cated, message-based persuasion is powerful in changing a consumer’s opinion or attitudes. Our
work explores this message-based persuasion in online rating systems.

Lastly, we discuss several related works from a modeling perspective. Xie et al. [31, 33] pro-
posed a rating model, where rating are statistically independent. Their study revealed insights on
the minimum number of reviews needed such that a consensus is reached. However, their model
does not capture important factors that historical ratings (or reviews) influence users’ opinions.
Wang et al. [27] developed an additive generative model to quantify the impact of historical rat-
ings on subsequent users’ opinions. The model assumes that users’ opinions is influenced by all
previous ratings. However, a number of survey studies [4, 20, 23] revealed that most users only
trust recent ratings (or reviews). Our high-order Markov chain model captures this rating recency
factor. Furthermore, our high order Markov chain model enables us to study convergence of opin-
ions theoretically, while their model can only allow one to study such questions via simulating
the model. Studying the convergence of opinions theoretically is important, because it reveals im-
portant insights on product quality estimation accuracy, defending misbehavior ratings, and the
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like. Zhang et al. [36, 37] proposed a latent factor based model to quantify the impact of historical
ratings on subsequent users’ opinions. Their model also does not capture the rating recency fac-
tor [4, 20, 23], while our high order Markov chain model captures it. Also, their can only enable
one to study such questions via simulating the model, which our model enables us to study such
questions theoretically.

8 PROOF FOR LEMMAS AND THEOREMS

We first state a lemma to characterize the states of the Markov chain (S, P), which will be used a
lot in our proof.

Lemma 2. Suppose Assumption 3 holds and γ < 1. The Markov chain (S, P) is an ergodic unichain

with recurrent states denoted by R and transient sates denoted by T :

R =MN , T = S \ R .

Proof. We need to show that R contains a class of recurrent states and T contains all the
transient states (might be of multiple classes). Let us first show thatR form a class of states, i.e., any
state s ∈ R communicates with any other state s̃ ∈ R and does not communicates with any other
state in T . Without loss of generality, suppose Ri−N = s1, . . . ,Ri−1 = sN . Note that Assumption 3
holds and γ < 1, which imply that Ri will be of levelm,∀m ∈ M, rating with a positive probability.
Then with a positive probability, we can have Ri = s̃1. Similarly, with a positive probability we can
have Ri+n = s̃1+n , for all n = 1, . . . ,N − 1. These N ratings Ri , . . . ,Ri+N−1 form a “path,” through
which the persuasion cascade transits from state s to state s̃. We can construct a similar path,
through which the the persuasion cascade transits from state s̃ to state s. It is easy to observe that
it is only possible to construct a path such that the persuasion cascade transits from a state in T to
a state in R. Thus we conclude that R form a class of states. Furthermore, given a state s ∈ R, any
state s̃ ∈ R is accessible from s and s is accessible from s̃. Thus R form a class of recurrent states.
Note that all the states in R have the same period. Consider a special class of states s = [m, . . . ,m],
∀m ∈ M. Then there exists a self-loop transition for such states, i.e., receive a rating m and the
next state is still s̃ = [m, . . . ,m]. The period for such states is 1. Thus the period of R is 1. We
therefore conclude that R is an esodic class of states. Note that all states in T are transit, because
the persuasion cascade never transits back to such states. �

Proof of Theorem 1: Note that the Markov chain (S, P) converges to a steady state distribution
π . Then the persuasion cascade will at each state s with probability π (s). Note that persuasion
cascade at each state s corresponds to that a rating sN is earned. Hence, under the steady-state
distribution π , each rating will be of levelm with probability

∑
s∈S π (s)1{sN =m } . This implies that

α̂i,m
a .s .−−−→

∑
s∈S

π (s)1{sN =m } .

Write it in matrix form, we complete this proof. �

Proof of Theorem 2: Lemma 2 implies that the Markovian chain has a unique steady-state dis-
tribution π . Furthermore, T contains all the transient states, thus π (s) = 0 for all s ∈ T . Under
the steady-state distribution, the persuasion cascade will at each recurrent state with a positive
probability, thus π (s) > 0 for all s ∈ R. Then it follows that π R satisfies Equation (4). �

Proof of Corollary 1: Note that for the consumers provide unbias reviews. Namely, each rating
will be of level m with probability αm . Then, in the steady state, the persuasion cascade will be at
each state sR with probability
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π̃ (s) =
N∏

n=1

αsn
.

On the other hand, one can easily check that π̃ (with restrict to R) satisfies Equation (4). �

Proof of Theorem 3: Let e � [1, . . . , 1] denote a |R |-dimensional row vector. First, we can write
the linear system (4) in a matrix form as[

P
T
R − I

e

]
πT
R =

[
0

1

]
Note that the coefficient matrix is a ( |R | + 1) × |R| matrix. We thus multiple each side of the above
equation with a |R | × ( |R | + 1) matrix [PR − I e

T ] to obtain that[
PR − I e

T
] [

P
T
R − I

e

]
πT
R =

[
PR − I e

T
] [

0

1

]
.

Then it follows that [(PR − I) (PT
R − I) + e

T
e]πT

R = e
T Similarly, we have that[

(P̃R − I) (P̃T
R − I) + e

T
e

]
π̃T
R = e

T . (8)

Note the linear system (4) has a unique solution when γ = 0. Thus, the inverse of the coefficient
matrix exists, i.e., we have [

(P̃R − I) (P̃T
R − I) + e

T
e

]−1
. (9)

Note that PR = P̃R + E. Then we can further have[
(P̃R + E − I) (P̃T

R + E
T − I) + e

T
e

]
πT
R = e

T

⇔
[
(P̃R − I) (P̃T

R − I) + e
T

e

]
πT
R +

[
E

(
P̃

T
R − I +

E
T

2

)
+

(
P̃R − I +

E

2

)
E

T

]
πT
R = e

T . (10)

Combine Equations (8), (9), and (10) and apply the matrix perturbation theory [25], i.e., perturbing
the linear system, we have

| |π R − π̃ R ||
| |π R ||

≤ ||[(P̃R − I) (P̃T
R − I) + e

T
e]−1 | |( | |E| | × | |P̃R − I + E

T | | + | |ET | | × | |P̃T
R − I| |)

≤ ||[(PR − I) (PT
R − I) + e

T
e]−1 | |

×
(
| |E| | × | |P̃R−I| | + | |ET | |× | |P̃T

R−I| | + | |E| |2 + | |ET | |2 + | |E| | × | |ET | |
)
.

We can then complete this proof by noting that | |π − π̃ | | = | |π R − π̃ R || and | |π̃ | | = | |π̃ R ||. �

Proof of Corollary 2: Note that α = π̃W and α̂∞ = πW. Then it follows that

| |α − α̂∞|| = | |(π̃ − π )W| | ≤ | |π̃ − π | | × | |W| | ≤ ϵsd | |π̃ | | × | |W| |.

This proof is then complete. �

Proof of Corollary 3: Note that A(α ) = αm
T = π̃Wm

T . Also note that A(α̂∞) = α̂∞m
T =

πWm
T . Then it follows that

|A(α ) −A(α̂∞) | = | |π̃Wm
T − πWm

T | | ≤ | |π̃ − π | | × | |Wm
T | |

≤ ϵsd | |π̃ | | × | |Wm
T | |.

This proof is then complete. �
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Proof of Theorem 4: Note that

α̂i,m =

i∑
j=1

1{Rj=m }/i =
i∑

j=1

1{S[1]
j
=m }/i,

where Sj � [S j,1, . . . , S j,N ] ∈ S denotes the state of the Markov chain (S, P) corresponding to the

j-th rating R j , i.e., S
[1]
j � S j,N = R j . Also note that α̂∞,m = limi→∞

∑i
j=1 1{S[1]

j
=m }/i . Then it follows

that

|α̂i,m − α̂∞,m | > ϵ ⇔
�������

i∑
j=1

1{S[N ]
j
=m } − i lim

k→∞

∑k
j=1 1{S[N ]

j
=m }

k

������� > iϵ .

Apply Lemma 2, we obtain that the Markov chain (S, P) is an ergodic unichain with recurrent
states R. Also note that initially, each product is at a transient state and once it receives N ratings,
it hit one recurrent state with distributionπ 0. Then, apply the Chernoff bound (Markovian version)
[19] with restrict to the recurrent states, i.e., the Markov chain (R, PR ), we have

P [|α̂i,m − α̂∞,m | > ϵ] ≤
√

2D (π 0,π R ) exp

(
−1

2

(i − N )2ϵ2νps

8(i − N + 1/νps ) + 20(i − N )ϵ

)

≤
√

2D (π 0,π R ) exp

(
−1

2

(i − N )ϵ2νps

8(1 + 1/νps ) + 20ϵ

)
Then to make

√
2D (π 0,π R ) exp

(
−1

2

(i − N )ϵ2νps

8(1 + 1/νps ) + 20ϵ

)
≤ δ

M
,

we only need

i ≥ 1

ϵ2

16(1 + 1/νps ) + 40ϵ

νps
ln ��
√

2MD (π 0,π R )

δ
�� + N .

By the union bound we have

P
[
max
m∈M

|α̂i,m − α̂∞,m | ≤ ϵ
]
≥ 1 −

∑
m∈M

P [|α̂i,m − α̂∞,m | > ϵ] = 1 − δ .

Note that

| |α̂ i − α̂∞|| ≤ max
m∈M

|α̂i,m − α̂∞,m | × | |c| | = ϵ | |c| |.

This proof is then complete. �

Proof of Corollary 4: Note thatA(α̂ i ) = α̂ i m
T . Also note thatA(α̂∞) = α̂∞m

T . Then it follows
that

|A(α̂ i ) −A(α̂∞) | = | |α̂ i m
T − α̂∞m

T | | ≤ ϵ | |c| | × | |m| |.
This proof is then complete. �

Proof of Corollary 5: Note that the (L,F )-misbehavior does not affect the transition matrix of
the Markov chain (S, P). Hence Lemma 2 still holds. Lemma 2 implies this corollary. �

Proof of Corollary 6: Note that Lemma 2 still holds. Lemma 2 implies the steady-state distribu-
tion of the Markov chain (S, P) is invariant of the misbehavior. �

Proof of Theorem 5: Note that the domains of α , β and γ are compact. Also note that the
constraints are linear functions. That the feasible space is also compact. Note that the objective
function is continuous in the interior of the feasible space. On the boundary of the feasible space,

ACM Transactions on Knowledge Discovery from Data, Vol. 15, No. 3, Article 36. Publication date: April 2021.



36:28 H. Xie et al.

the objective function is either semi-continuous or goes to−∞ (can not be optimal on these bound-
aries). This proof is then complete. �

Proof of Lemma 1: Without loss of generality, let us consider α . Note that the objective func-
tion is a summation of log functions. Each log function is concave with respect to α , because∑

n∈N βn[γθRi
(h[n]

i−1) + (1 − γ )αRi
] is affine with respect to α . Similarly, we conclude this lemma

for β and γ . �

9 CONCLUSION

This article develops a data analytic framework to analyze persuasion cascades in online rating
systems. We develop a mathematical model to captures key factors of persuasion cascades and
we prove the convergence of opinions. We apply the matrix perturbation theory and the Chernoff
bound to bound the product quality estimation error for a class of rating aggregation rules includ-
ing the average scoring rule. We develop a maximum likelihood algorithm to infer the persuasion
cascade. We conduct experiments on the data from Amazon and TripAdvisor, and show that per-
suasion cascades notably exist, but the average scoring rule has a small product quality estimation
error under practical scenarios.
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