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“Unbiasedness,” which is an important property to ensure that users’ ratings indeed re!ect their true evalu-
ations of products, is vital both in shaping consumer purchase decisions and providing reliable recommen-
dations in online rating systems. Recent experimental studies showed that distortions from historical ratings
would ruin the unbiasedness of subsequent ratings. How to “discover” historical distortions in each single
rating (or at the micro-level), and perform the “debiasing operations” are our main objective. Using 42M real
customer ratings, we "rst show that users either “assimilate” or “contrast” to historical ratings under dif-
ferent scenarios, which can be further explained by a well-known psychological argument: the “Assimilate-
Contrast” theory. This motivates us to propose the Historical In!uence Aware Latent Factor Model (HIALF),
the “"rst” model for real rating systems to capture and mitigate historical distortions in each single rating.
HIALF allows us to study the in!uence patterns of historical ratings from a modelling perspective, which
perfectly matches the assimilation and contrast e#ects observed in experiments. Moreover, HIALF achieves
signi"cant improvements in predicting subsequent ratings and characterizing relationships in ratings. It also
contributes to better recommendations, wiser consumer purchase decisions, and deeper understanding of
historical distortions in both honest rating and misbehaving rating settings.
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1 INTRODUCTION
Contemporary web services provide many important applications ranging from e-commerce web-
sites [4, 6, 21, 31] to online video/news platforms [9, 36]. One of the most important modules of
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these web services is the online rating system. Such online rating systems allow users to rate
items (e.g., products, videos, etc.) they have recently consumed, and these ratings can help subse-
quent users in making decisions on whether to consume this item or not. To have correct subse-
quent decision making, the unbiasedness of ratings, a property to ensure that users’ ratings indeed
re!ect their true evaluations to the product, is crucial. Furthermore, unbiased users’ ratings are
also important to recommender systems, because they rely on the unbiasedness to make reliable
recommendations.
Recent experimental studies [3, 22, 26, 34] showed that the disclosed historical ratings would

ruin the unbiasedness of subsequent ratings, making them inaccurate to convey users’ true (or in-
trinsic) evaluations of products. Such distortions bring bothmacro-level andmicro-level e#ects. At
the macro level, the distortions from historical ratings will make overall rating distribution deviate
from the intrinsic product quality, thereby misleading subsequent consumers to wrong purchase
decisions [22, 26, 34]. At the micro level (or at the granularity of each single rating), the distor-
tion in the rating provides an adulterated view of a user’s preference for the product, weakening
recommender systems’ ability to provide high-quality recommendations [3]. As in Reference [3],
even for products with the same quality, users tend to rate higher when they observe high his-
torical ratings as compared to low historical ratings. Thus, when a user gives a high rating to a
product under high historical ratings, the high rating may not suggest the user’s high preference
to the product anymore, since this high rating may be in!uenced by the high ratings in the past.
Recently, Wang et al. [32] studied the macro-level in!uence from historical ratings. However, to

debias the historical distortions in recommendations, we need a micro-level model to characterize
the historical ratings’ in!uence in each single rating. Previously, several works [2, 16] tried to mit-
igate the micro-level historical ratings’ in!uence with an assumption that we know users’ intrinsic
ratings, the ratings given when users could not observe historical ratings. However, their models
are inapplicable in real rating systems where users’ intrinsic ratings are usually latent. To the best
of our knowledge, there is no work to characterize and debias the micro-level in!uence from his-
torical ratings in real rating systems. The main challenge is that people do not fully understand
how historical ratings may in!uence subsequent rating behavior.
The goal of this work is to develop a novel model for real rating systems to accurately character-

ize and debias the in!uence from historical ratings in each single rating microscopically. To handle
the challenge mentioned before, we analyze real ratings to understand how historical ratings a#ect
the next rating.
In particular, we "rst analyze a dataset of 42M ratings from Tripadvisor and Amazon. We "nd

that users either assimilate or contrast to historical ratings under di#erent scenarios: A user tends
to give a rating similar to historical ratings when historical ratings are not far from the product
quality (assimilation), while deviating from historical ratings when historical ratings di#er sig-
ni"cantly from the product quality (contrast). In fact, this phenomenon can be well explained by
the “Assimilate-Contrast” theory [5] in psychology. Then, we found that previous works (Refer-
ences [2, 16, 32]) were unable to explain our empirical results. Thus, we propose the Historical
In!uence Aware Latent Factor Model (HIALF), the "rst model designed for real rating systems to
capture and mitigate the micro-level in!uence from historical ratings. In HIALF, we do not make
any assumptions about in!uence patterns of historical ratings, but we discover the most likely
in!uence pattern from data. The discovered in!uence patterns via HIALF match perfectly with
the assimilation and contrast e#ects in empirical observations. Compared with previous methods,
HIALF reveals the closest "tting to the relationships observed in previous empirical measurements
on real ratings, and signi"cantly reduces the mean-squared error (MSE) in predicting subsequent
ratings, i.e., up to 39% as compared with HEARD [32] and 12% as compared with the standard
latent factor model [25].
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To show the utility of HIALF, we apply the model to two applications. HIALF enables us to
separate users’ intrinsic interests from historical distortions, leading to better product recommen-
dations. Also, we can directly compare products by their intrinsic qualities, without being misled
by distorted historical ratings.
Last, we also conduct several analyses withHIALF.We "rst analyze the strength of historical dis-

tortions on di#erent datasets. Such analysis provides further justi"cations to our previous experi-
mental results and gives guidance on applying HIALF. Moreover, we extend our model to under-
stand how misbehaving/fake ratings will a#ect subsequent rating behavior. We conduct extensive
experiments and reveal important insights on when a small number of misbehaving ratings can
distort subsequent product ratings signi"cantly and lead the average rating of a product to diverge.
These observations can be applied to design e#ective misbehaving rating detection/defending
algorithms.
Contributions. Overall, we make the following contributions:

• Experimental observations.We "rst reveal the assimilation and contrast e#ects in users’
rating behavior caused by historical ratings. We also provide an explanation for our obser-
vations by a well-known psychological theory.

• Mathematical modelling. We develop the "rst model (HIALF) for real rating systems to
characterize and mitigate historical distortions in each single rating microscopically.

• Accuracy of our model. The discovered in!uence patterns of historical ratings via HIALF
perfectly match the assimilation and contrast e#ects in observations. Moreover, HIALF
achieves signi"cant improvements in predicting subsequent ratings, and accurately "ts the
relationships revealed in empirical measurements on real ratings.

• Applications. HIALF can contribute to better recommendations by separating users’ in-
trinsic interests from historical distortions. It can also facilitate wiser purchase decisions by
revealing the intrinsic product quality.

• Analyses. Important insights are revealed through the analysis of historical distortions on
di#erent datasets and the analysis of misbehaving ratings’ impacts.

This article is organized as follows: Section 2 presents a variety of previous experimental studies,
which justi"ed that historical ratings in!uence subsequent ratings. Section 3 presents our analysis
of rating datasets from Amazon and TripAdvisor. We observe the pattern of historical in!uence
and give explanations of the pattern, i.e., how historical ratings in!uence the next rating. Section 4
presents our HIALFmodel to capture the historical in!uence. Section 5 presents the experiments to
evaluate our model. Section 6 introduces two applications of HIALF model, and Section 7 presents
the analysis of historical distortions on di#erent datasets and the analysis of misbehaving ratings’
impacts. Section 8 discusses related works, and Section 9 concludes our article.

2 BACKGROUND: EVIDENCE OF HISTORICAL INFLUENCE
In this section, we brie!y introduce several previous experimental studies, which showed that the
disclosed historical ratings in!uence subsequent ratings. These studies build the foundation of our
work, i.e., they show that the historical ratings truly in!uence subsequent ratings. However, they
did not show how the historical ratings will in!uence subsequent ratings, which is the main goal
of our work.
Recently, a variety of experimental studies were conducted on di#erent platforms to study the

side e#ects caused by disclosing historical ratings. Typically, in these experimental studies, users’
rating behaviors are randomly measured in two di#erent scenarios: showing historical ratings or
hiding historical ratings. By comparing users’ behavior patterns under these two scenarios, they
concluded that historical ratings in!uence subsequent ratings. Salganik et al. [26] implemented
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a music lab, where users download and rate songs with or without information about how good
the songs are. They demonstrated that increasing historical in!uence could result in di#erent out-
comes for songs with similar quality. Muchnik et al. [22] andWeninger et al. [34] conducted similar
experiments on news platforms (e.g., Reddits), and found that small manipulations in historical rat-
ings will create signi"cant changes in downstream ratings, resulting in signi"cantly di#erent "nal
outcomes. With a joking rating dataset, Adomavicius et al. [3] demonstrated similar results.
All the above experiments only found that the disclosed historical ratings in!uence subsequent

user ratings, making them inaccurate to convey users’ true evaluations. However, they did not
show the speci"c pattern of how historical ratings in!uence subsequent ratings, and this is what
we will do in the next section.

3 HOW HISTORICAL RATINGS AFFECT THE NEXT SINGLE RATING
To understand how historical ratings may a#ect the next rating, we "rst conduct empirical mea-
surements on real-world datasets to study how historical ratings may impact the next single rating.
In this section, we "rst describe these rating datasets, then we discuss how to measure the impact
of historical ratings on the next rating. Finally, we propose an explanation of our empirical ob-
servations, and verify that the existing works [2, 16, 32] cannot explain our observations, which
motivates us to design a new model for real rating systems to describe the micro-level historical
ratings’ in!uence.

3.1 Rating Datasets
We "rst introduce two large-scale public available rating datasets fromAmazon1 and TripAdvisor,2
respectively. Table 1 summarizes the basic statistics of our datasets.
(1) Dataset from Amazon: Amazon is a popular e-commerce website that allows users to re-
view and rate products they recently consumed, e.g., books, clothes, and so on. In the Amazon
dataset [21], we focus on ratings of the top four largest categories: books, movies, electronics,
and clothes. These four categories cover about 48.8% of all products, and 50.4% of all ratings on
Amazon. The dataset spans from May 1996 to July 2014.
(2) Dataset from TripAdvisor: TripAdvisor is a popular travel website that provides reviews and
ratings of travel-related contents, e.g., hotels, restaurants, and so on. We use the entire ratings on
it from April 2001 to September 2012 [30].

3.2 Empirical Measurements and Observations
To gain a better understanding, we conduct empirical measurements on the above datasets to study
how historical ratings a#ect the next rating. Let rp,i denote the ith rating of product p, and let

Hp,i ! (rp,1, . . . , rp,i−1) (1)
denote a sequence of i − 1 ratings of product p received before rp,i (in the chronological order of
receiving time).Hp,i will be referred to as the historical ratings of rp,i .

Our goal is to measure how historical ratings Hp,i a#ect the next rating rp,i . Intuitively, there
are two factors that could a#ect a user’s decision on rating a product: (1) the product quality;
(2) historical ratings to which the user was exposed.
Note that the "rst factor is “latent” and around the average of ratings given by a large population

who were not exposed to historical ratings [29]. To process our dataset, we group products with

1https://www.amazon.com.
2https://www.tripadvisor.com.
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Table 1. Summary of Rating Datasets

category # products # users # ratings
Amazon-books 2,370,585 8,026,324 22,507,155
Amazon-clothes 1,503,384 3,117,268 5,748,920

Amazon-electronics 498,196 4,261,096 7,824,482
Amazon-movies 208,321 2,088,620 4,607,047
TripAdvisor 12,730 781,329 1,621,956

similar average ratings into one group such that each group has a maximum deviation of 0.2 in the
average rating. For example, consider the two selected groups of products with average ratings in
[2.9, 3.1] and [3.9, 4.1], and we assume the "rst (second) group has an approximately true quality
of 3 (4). We leave out a statistically insigni"cant group containing fewer than 100 products, and on
average, each dataset has 10 groups. Then, in each product group, for each rating rp,i , we calculate
its prior expectation formed on historical ratingsHp,i :

ep,i =
1

i − 1
i−1∑

k=1
rp,k , (2)

resulting in a pair (ep,i , rp,i ). To "gure out the relationship between the prior expectation and
the next rating, we follow the idea of binned scatterplots. More speci"cally, we round the prior
expectation ep,i to one decimal place, i.e., each bin has a width of 0.1. Let the set E denote all
distinct prior expectations after the rounding. And for any e ∈ E, a set of pairs {(e, ṙ1), . . . , (e, ṙne )}
have the same prior expectation e , but the ratings {ṙ1, . . . , ṙne } are given by di#erent users. Here ne
denotes the number of ratings under prior expectation e . We aggregate ratings {ṙ1, . . . , ṙne } to get
r̄e =

1
ne
∑ne

i=1 ṙi . Thus, the resulting list {(e, r̄e ) |e ∈ E} describes how prior expectation e a#ects the
next rating r̄e , on average, in this product group. Finally, we plot the relationship between prior
expectation e and the average of the next rating r̄e for each selected product group in Figure 1. Re-
lationships in other groups are similar with the two selected groups. In Figure 1, the solid line with
mark ! (◦) depicts the relationship between prior expectation e and the average of the next rating
r̄e in product group [3.9, 4.1] ([2.9, 3.1]). Each solid line is accompanied with two dotted lines in
the same color, which represent the 95% con"dence interval for the corresponding product group.
The wide con"dence interval as well as variations in plots are caused by users’ personal pref-

erence. However, users’ personal preference will not a#ect the plotted relationships between e
and r̄e , because for each prior expectation e , we aggregate users’ ratings under the same prior
expectation to obtain the average of the next rating r̄e . When ratings under each prior expecta-
tion are given by many users, the aggregated distortions of those users’ personal preference are
insigni"cant. To ensure this, we leave out prior expectations followed by less than 100 ratings due
to their low statistical reliability. As shown in Figure 1, the con"dence interval in two product
groups is roughly stable over di#erent prior expectations, which means the bias of users’ personal
preference is well controlled.
Examining the results via Figure 1, we made the following observations:

• Products’ historical ratings do a#ect the next rating. For example, in Figure 1(a), the Pearson
correlation coe%cient of group 1 (products with average ratings in [2.9, 3.1]) and group 2
(products with average ratings in [3.9, 4.1]) are 0.75 and 0.84, respectively. In general, the
Pearson correlation coe%cients (PCC) are in the range [0.62, 0.88], which re!ects a positive
correlation between prior expectation and the next rating.
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Fig. 1. (a)–(e): Relationship between prior expectation e and the average of the next rating r̄e in di!erent
datasets. The group 1 (group 2) contains products with average ratings in [2.9, 3.1] ([3.9, 4.1]). We observe
that products’ historical ratings do a!ect the next rating, and each curve with ! (◦) is divided into two parts
by the group’s approximately true quality (3 for group 1, and 4 for group 2).

• Each curve with ! (◦) is divided into two parts by the group’s approximately true quality (3
for group 1, and 4 for group 2). The black line represents a hypothetical linear relationship
between prior expectation and the next rating, i.e., the user will give a 4-star rating as
long as his/her prior expectation is 4. Take the group 2 in Figure 1(a) as an example: When
prior expectation is below the group’s approximately true quality of 4, it will receive a
rating higher than the prior expectation, on average; and when prior expectation is above
the group’s approximately true quality of 4, it will receive a rating lower than the prior
expectation, on average. We would like to emphasize that this phenomenon is “consistent”
among all groups of products in our datasets, and it is pretty interesting to "nd a model that
can accurately explain this phenomenon.

More remarks on the observations:

• We do not use the "rst observation to argue the existence of historical in!uence. Actually,
as mentioned in Section 2, the existence of historical in!uence has already been certi"ed
by previous experimental studies. And our "rst observation coincides with the results of
previous experimental studies.

• Because we choose the product group by products’ average rating, one may suspect the
observations are just a mathematical property of the experimental design. However, if the
observations are just a mathematical property of average ratings, there can be many pos-
sible patterns; for example, always receiving a rating equal to the group’s approximately
true quality under di#erent expectations, or receiving a higher rating when prior expecta-
tion is higher than the group’s approximately true quality, while a lower rating when prior

ACM Transactions on Information Systems, Vol. 38, No. 1, Article 2. Publication date: October 2019.
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Table 2. Information about Linear Regression

category slope p-value
group 1 group 2 group 1 group 2

Amazon-books 0.39 0.38 5.2e-12 6.5e-05
Amazon-clothes 0.34 0.14 7.5e-05 9.4e-05

Amazon-electronics 0.32 0.14 3.3e-09 2.9e-04
Amazon-movies 0.46 0.33 3.5e-06 2.8e-09
TripAdvisor 0.20 0.29 1.1e-04 5.6e-08

expectation is lower than the group’s approximately true quality. Why is there one speci"c
pattern in our observations that is consistent among all groups of products in datasets?

• Note that if historical ratings, i.e., prior expectations, have no e#ects on subsequent ratings,
the relationship between the prior expectation and the average of the next rating should be
parallel to x axis with slope = 0. To make our observations clearer, we do linear regression
for each plotted relationship and record the slope of "tted lines in Table 2. Moreover, we
do a hypothesis test whose null hypothesis is that the slope is zero. Table 2 also shows the
two-sided p-value for the hypothesis test. Both non-zero slopes and the p-value smaller
than 0.05 certify again that historical ratings truly have in!uence on subsequent ratings.

3.3 Proposed Explanation of Observations
Next, we aim to answer the following two fundamental questions: (1) Why do historical ratings
in!uence the next rating? (2) Why does the in!uence of historical ratings behave consistently like
those in Figure 1?

For the "rst question, one possible answer is that di#erent historical ratings lead the user to
form di#erent prior expectations for the product, which impact the user’s overall satisfaction with
the product (the given rating). Before consuming a product, a customer usually refers to previous
aggregated ratings to see whether the product really meets his/her needs. At this stage, he/she
forms his/her “prior expectation” for that product. Using the customer satisfaction theory [24],
a user’s prior expectation of the product and the product quality together determine the user’s
satisfaction on the product. Thus, di#erent historical ratings lead to di#erent prior expectations,
making the next single rating di#erent.
For the second question, we refer to three well-known psychological theories [5] that describe

how the user’s prior expectation for the product and the product quality together determine the
user’s overall satisfaction with the product. Figure 2(a) shows the sample representations of three
theories. The product quality is 3 and is represented by the line parallel with x axis.

(1) “Assimilate” theory: The user’s satisfaction of the product is always similar to his/her
prior expectation (the orange line with $).

(2) “Contrast” theory: The customer will magnify the di#erence between his/her prior ex-
pectation for the product and the product quality; i.e., if his/her prior expectation is below
(above) the product quality, the user will evaluate the product more (less) favorably than
the product quality (the purple line with ◦).

(3) “Assimilate-Contrast” theory: If the disparity between his/her prior expectation and
the product quality can be accepted by the user (in [θ ,σ ] in Figure 2(a)), then the user’s
satisfaction with the product assimilates to his prior expectation; otherwise, the di#erence
between the prior expectation and the product quality tends to be magni"ed (the red line
with !).

ACM Transactions on Information Systems, Vol. 38, No. 1, Article 2. Publication date: October 2019.
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Fig. 2. (a) Sample representations of three theories. (b) Relationship between prior expectation and the av-
erage of the next rating in products with average ratings in [2.9, 3.1] in all five datasets.

One important question we need to answer is which theory can explain our empirical observa-
tions best. To answer this question, we combine groups with the same average rating range in "ve
datasets as a product group, and do analysis on each product group. We do two types of analysis:
(1) Gaussian process regression; (2) statistical hypothesis test. And we show that the “Assimilate-
Contrast” theory is more approximate to explain our empirical observations.
Gaussian process regression.We do a Gaussian process regression (GPR) on relationship of each
product group. For example, Figure 2(b) illustrates the relationship for all products with average
ratings in [2.9, 3.1] as well as Gaussian process regression on it. The black line is the relationship
predicted by GPR, and the shaded area is 95%-con"dence interval of GPR prediction. We use this
product group to illustrate, because its approximate true quality is in the middle of the rating scale
of Amazon and Tripadvisor, i.e., [1, 5]. One can see that the relationship follows the “Assimilate-
Contrast” theory, since:

• The prior expectation has a positive correlation with the next rating (contradicting with the
“Contrast” theory).

• When the prior expectation is far away from its approximate true quality (i.e., in the range
of [1, 1.8) and (4.6, 5]), the average of the next rating as well as its GPR prediction diverge
from the increasing trend when prior expectation is close to its approximate true quality,
i.e., in [1.8, 4.6]. (contradicting with the “Assimilate” theory).

GRP regression on the other product groups suggest the same result. Note that the curve in Fig-
ure 2(b) is not very smooth, implying some variations. This is because the number of ratings un-
der some prior expectations—for example, the ones far from product quality—are not that large.
To handle this uncertainty, we leave out prior expectations followed by less than 100 ratings due
to their low statistical reliability. We also try larger thresholds—for example, 150 or 200—so the
resulted plotted curve is smoother but "lters out more points.
Statistical hypothesis test. Next, we test whether the “Assimilate-Contrast” theory can ex-
plain our observations through a statistical hypothesis test. The “Assimilate-Contrast” theory dif-
fers from the other two theories, because its slope changes when the di#erence between prior
expectation and the product quality is large; for example, when prior expectation is in [1,θ )
and (σ , 5] as shown in Figure 2(a). In our test, each data point is a pair (e, re ), where e is the
prior expectation, and re is the rating given under e . Thus, we can construct four sets. The set
C1 (C3) contains all data points with prior expectation e much smaller (larger) than the product
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quality q, C1 = {(e, re ) |e < θ < q} (C3 = {(e, re ) |e > σ > q}). The set C2 (C4) contains data points
with prior expectation e smaller (larger) than but near the product quality q,C2 = {(e, re ) |θ < e <
q} (C4 = {(e, re ) |q < e < σ }). Then, we calculate the slope between (θ , r̄θ ) and each point inC1 (C2),
putting it in S1 (S2), i.e.,

Si =
{re − r̄θ
e − θ |(e, re ) ∈ Ci

}
, i = 1, 2. (3)

For the above equation, r̄θ is the average of ratings under prior expectation θ . Similarly, we calcu-
late the slope between (σ , r̄σ ) and each point inC3 (C4), getting S3 (S4). We will discuss how we set
θ and σ in the next paragraph. If the “Assimilate-Contrast” theory holds, then the mean of S1 (S3)
should be smaller than the mean of S2 (S4). Otherwise, the mean of S1 (S3) equals to the mean of
S2 (S4). We use student t-test to examine whether there exists a signi"cant di#erence between the
mean of S1(S3) and S2(S4).
Speci"cally, we "rst group products with similar average ratings as before. In each group, we

divide the {(e, re )} pairs into distinct partitions such that pairs in each partition share a unique
prior expectation. We discretize real-valued e by equal-interval partition, i.e., prior expectations in
[a − ϵ,a + ϵ] are taken as the same prior expectation as a. In our experiments, we set ϵ = 0.1. Then,
we get Si , i = 1, 2, 3, 4 and apply the student t-test.We useWelch-Satterthwaite approximation [27]
to get the degrees of freedom. Let θ̂ (σ̂ ) be the fourth smallest (largest) prior expectations, then we
set θ = min{θ̂ ,q − 1}, and σ = max{σ̂ ,q + 1}. The null hypothesis in our test is that there exists no
statistically signi"cant di#erence between the mean of S1(S3) and S2(S4), while the alternate hy-
pothesis is that the mean of S1 (S3) is smaller than the mean of S2 (S4). We test all hypotheses at the
0.05 signi"cance level. We observe that 11 out of 12 groups reject the null hypothesis of the t-test
between S1 and S2, and 7 out of 8 groups reject the null hypothesis of the t-test between S3 and S4.
Since almost all groups reject the null hypothesis, the “Assimilate-Contrast” model is a more ap-
propriate theory to explain how historical ratings can a#ect customers in their subsequent ratings.

3.4 Limitations of Existing Works
Let us now show how existing works on modelling historical ratings’ in!uence [2, 16, 32] fall short
in explaining our previous observations.
Note that in our dataset, users’ intrinsic ratings are latent, thus we are unable to build the model

in References [2, 16]. Wang et al. [32] developed HEARD to model how historical ratings Hp,i
in!uence the general rating distribution after next M ratings, denoted as xp,i+M , at the macro level.
Here, for a one-to-K star rating system, xp,i+M ! [x (1)

p,i+M , . . . ,x
(K )
p,i+M ], where x (k )

p,i+M represents
the proportion of level-k ratings in the "rst (i +M − 1) ratings of the product p. Note that the
goal of HEARD is fundamentally di#erent from ours. However, given historical ratings Hp,i , the
probabilistic model of HEARD can reveal the probability P (rp,i = k |Hp,i ),∀k ∈ {1, . . . ,K }. Hence,
HEARD can be taken as a model to predict the next rating rp,i given its history Hp,i . Thus, we
perform experiments to see whether HEARD can reveal our previous observations. Speci"cally,
we "rst train HEARD with each dataset. Then, we select the same groups of products in each
dataset as in Figure 1. In each selected group, for each rating, given its historical ratingsHp,i , we
use HEARD to predict the next rating rHp,i = arдmaxkP (rp,i = k |Hp,i ). We also calculate its prior
expectation ep,i =

1
i−1
∑i−1

k=1 rp,k based on real ratings, obtaining a pair (ep,i , rHp,i ). Finally, for each
distinct prior expectation e , we calculate the average of the next HEARD-generated ratings under
e , and we denote it as rHe .

Before checking the slope changes as in previous hypothesis tests, we "rst check whether the
resulting list {(e, rHe )} meets rHe ≤ e , when e ≥ q, as in Figure 1. Here q refers to the approximately
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Table 3. dH and d∗ on All Five Datasets

category HEARD (dH ) real ratings (d∗)
group 1 group 2 group 1 group 2

Amazon-books −0.7899 −0.4305 0.5697 0.3681
Amazon-clothes −0.8629 −0.4438 0.3733 0.4396

Amazon-electronics −0.4944 −0.4421 0.4202 0.3868
Amazon-movies −0.8194 −0.4332 0.5333 0.3913
TripAdvisor −0.5097 −0.2339 0.2784 0.4368

true quality of the product group. Let E+q denote those prior expectations larger than q: E+q = {e |e −
q ≥ 0}. We calculate the average deviation from e to rHe when e ≥ q:

dH =
1
|E+q |

∑

e ∈E+q
(e − rHe ).

Let r ∗e be the average of the next real rating given under prior expectation e . We also calculate
the average deviation from e to r ∗e when e ≥ q, which we denote as d∗. Note that d∗ is always
positive in the real rating datasets, because re ≤ e , when e ≥ q in Figure 1. We present dH and d∗
in both groups on all "ve datasets in Table 3. From Table 3, we observe that all dH are negative and
signi"cantly di#erent from the positive d∗. For example, in Amazon-books, for all e , on average,
HEARD predicts a larger rHe than e in both groups (dH < 0), while in real ratings, re should be
smaller than e (d∗ > 0). This already suggests that HEARD fails to explain our observations in real
rating datasets, and there is no need for the hypothesis tests. The limitation of HEARD is due to the
fact that HEARD mainly focuses on the macro-level historical ratings’ in!uence in overall rating
distribution, rather than the micro-level historical in!uence in each single subsequent rating.

4 HIALF MODEL
Let us now describe in detail the Historical In!uence Aware Latent Factor Model (HIALF) that lever-
ages previous observations to characterize the micro-level in!uence from historical ratings in real
rating systems. Our objectives are: (1) to model the in!uence of historical ratings to do a better
prediction of the next rating; (2) to reveal the intrinsic qualities of products and users’ intrinsic
preference to do a better job in product recommendations.

4.1 Preliminary: Latent Factor Model
One can "rst consider using the classical latent factor (LF) model [25] to predict the rating ru,p for
user u and product p as

ru,p = д + bu + bp + xu
Typ . (4)

Here д is the overall rating for an arbitrary user and product; bu and bp denote the user and item
bias, respectively; xu and yp represent vectors of latent features for user u and product p.
It is important to emphasize that the standard latent factor model cannot explain our empirical

observations, because it does not consider factors due to the e#ects of historical ratings to subse-
quent ratings. We mention the standard latent factor model because HIALF is an enhanced version
of the LF model, i.e., it extends LF model to incorporate the in!uence from historical ratings.

4.2 Historical Influence Aware Latent Factor (HIALF) Model
Let the term user u’s experienced quality of product p refer to product p’s quality in user u’s view.
We use hp,i to represent the distortion from historical ratingsHp,i .
ACM Transactions on Information Systems, Vol. 38, No. 1, Article 2. Publication date: October 2019.
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In HIALF, the ith rating of product p given by user u is mainly taken as a combination of two
factors: (1) useru’s experienced quality of productp, denoted as qu,p ; (2) the distortion from histor-
ical ratings hp,i . The "rst factor is determined by product p’s intrinsic quality and user u’s overall
interest in product p. We model it by

qu,p = д + bp + xu
Typ . (5)

Based on the previous observations, the second factor hp,i depends on the discrepancy between
qu,p and the prior expectation formed on the historical ratings (i.e., ep,i ). Thus, we use a categorical
function β (x ) to represent the induced bias when the di#erence between ep,i and qu,p is x , i.e., x =
ep,i − qu,p . We call β (x ) as the discon"rmation bias curve. Moreover, applying Latané’s theory [17],
the size of historical ratings |Hp,i | will boost the distortion hp,i . For example, 100 historical ratings
will exert a larger in!uence on the next rating than only 1 historical rating. Thus, let f (x ) be a
scaling function to represent the magnitude of impact by historical ratings of size x . We have

hp,i = f ( |Hp,i |)β (ep,i − qu,p ). (6)
In summary, HIALF predicts r̂p,i,u for the ith rating of product p given by user u as follows:

r̂p,i,u = bu + qu,p + αuhp,i

= д + bu + bp + xu
Typ + αu f ( |Hp,i |)β (ep,i − qu,p ).

(7)

Here, д,bu ,bp ,xu ,yp take on the same roles as in the basic latent factor model; αu models how
easily user u will be in!uenced by historical ratings. A larger αu means that user u is easier to be
a#ected. Next, we describe how to model β (x ), f (x ), and give a more realistic formula of ep,i .
Modelling the discon!rmation bias curve β (x ).We use a data-driven approach to model β (x ),
i.e., we do not constrain the form of β (x ) (i.e., to be linear or quadratic). Instead, we learn the most
appropriate format from data. We expect the learned β (x ) can match the assimilation and contrast
e#ects in previous observations.
Online rating systems usually have a limited rating range. For example, Amazon and Tripadvisor

adopt a one-to-"ve-star rating system. Thus, x = ep,i − qu,p is in a "xed known range [xa ,xb ]. For
example, on both Amazon and Tripadvisor, x ∈ [−4, 4], since both ep,i and qu,p are in [1, 5]. In this
work, we use non-parametric kernel regression [33] to model β (x ).
In kernel regression, given a set of i.i.d. samples {(xi ,yi )}ni=1 from model yi = д(xi ) + ϵi , where

ϵi represents the noise from the standard normal distribution, we can approximateд(x ) by a kernel
function

дk (x ) =

∑n
i=1w (x ,xi ) · yi∑n
i=1w (x ,xi )

. (8)

The term w (x ,xi ) gives a greater weight to x that is closer to xi , and we select w (x ,xi ) =
exp (−κ (x − xi )2), where κ controls the smoothness of the function. Figure 3 shows examples us-
ing kernel methods to approximate three di#erent д(x ) with x in [−4, 4], and дk (x ) always gives a
good approximation to д(x ).
Thus, if we can get a set of samples {(el ,vl )}nl=1 from the discon"rmation bias curve, i.e., vl =

β (el ) + ϵl , where ϵl represents the noise from the standard normal distribution, we represent β (x )
as:

β (x ) =

∑n
l=1w (x , el ) · vl∑n
l=1w (x , el )

. (9)

To obtain the set of samples {(el ,vl )}nl=1, we let {e1, . . . , en } be uniformly distributed in the
known range of x ([xa ,xb ]), i.e., in our datasets, we set {e1, . . . , en } = {−4,−3.5, . . . , 3.5, 4}. And
we take {v1, . . . ,vn } as parameters and learn them from data.
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Fig. 3. Using kernel function to approximate three di!erent functions with x in [−4, 4]: (a) д(x ) = x
4 ;

(b) д(x ) = sin( πx4 ); (c) д(x ) = ( x4 )
2. In kernel function, we use {x1, . . . ,xn } = {−4,−3.5,−3, . . . , 3, 3.5, 4} and

κ = 10.

Modelling magnifying curve f (x ). Intuitively, the more historical ratings exist, the larger the
magnifying e#ect will be. The previous psychological study [17] showed that the slope of f (x ) de-
creases as x increases, but the slope remains positive. In this work, we use the followingmagnitude
function f (x ) to describe the magnifying e#ect of historical ratings with a size x :

f (x ) =
a

1 + exp (−b ∗ x ) −
a

2 . (10)

The "rst component is a sigmoid function while the second component (subtracting a/2) is to
ensure that f (0) = 0, because when we do not have any historical ratings, no magnifying e#ect
exists.
Modelling prior expectation ep,i . In previous measurements, we used the average of historical
ratings as prior expectation ep,i . In reality, users focus more on recent ratings instead of all ratings
of a product. Hence, we represent ep,i by the following general formula:

ep,i =

∑i−1
k=1 ξ (i − k ) · rp,k∑i−1

k=1 ξ (i − k )
. (11)

Here, ξ (d ) = exp (−γ ∗ d ) denotes an exponential triggering kernel that models the decay of in!u-
ence; rp,k is the kth real rating of product p; γ controls the extent to which users prefer recent
ratings. If γ is 0, then ep,i is exactly the average of historical ratings. A larger γ means that users
focus more on recent ratings. In our case, γ is set through experiments on a validation dataset.

4.3 Model Inference
Our goal is to solve the following optimization problem:

min
Θ

∑

(p,i,u )∈K
(rp,i,u − r̂p,i,u )2 + λr ec (b2u + b2p + | |xu | |22 + | |yp | |22 )

+ λf (a
2 + b2) + λβ !"

∑

l

v2
l
#
$ + λα (α

2
u ). (12)

Here, Θ = {д, {bu }, {bp }, {xu }, {yp }, {αu },a,b, {vl }} and rp,i,u is the real rating. The r̂p,i,u is the pre-
dicted rating by HIALF (Equation (7)),K contains all (p, i,u) pairs, and the (p, i,u) represents that
the ith rating of product p in the dataset is given by user u. Of the parameters to learn, д,a,b, {vl }
are global parameters, and {xu }, {αu }, {bu } are user-speci"c (i.e., each user has his/her own set of
parameters), and {bp }, {yp } are product-speci"c (i.e., each product has its own set of parameters).
To make it more clear, if we set {e1, . . . , en } = {−4,−3.5, . . . , 3.5, 4} and set the dimension of latent
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Table 4. MSE on Five Datasets

Amazon-movie Amazon-books Amazon-electronics Amazon-clothes Tripadvisor
HEARD 1.5826 1.5548 3.1170 2.1550 1.3135

LF 1.2794 1.0777 1.9634 1.4123 1.0074
HIALF-AVG 1.2054 1.0619 1.9357 1.3985 0.9805

HIALF 1.1194 1.0318 1.8764 1.3759 0.9405
bene"ts of HIALF over HEARD 29.27% 32.83% 39.80% 35.17% 28.40%

bene"ts of HIALF over LF 12.51% 4.26% 4.43% 2.58% 6.64%

features as 5, we have 1 + 1 + 1 + 17 = 20 global parameters, 5 + 1 + 1 = 7 user-speci"c parameters
for each user, and 1 + 5 = 6 product-speci"c parameters for each product.
We use L2 loss function to make r̂p,i,u as close as possible to the real rating rp,i,u . Since there

is no need for sparse output, we leverage L2 regularization due to its computational e%ciency
following previous works [20]. The λr ec , λf , λβ , λα are regularization hyperparameters to prevent
over"tting. To learn the parameters, we use the stochastic gradient descent (SGD) algorithm, which
has been widely used in previous works [10, 14, 15] because of its e%ciency and accuracy.

5 EXPERIMENTS
We conduct experiments on real rating datasets (Table 1) to compare the performance of our model
(HIALF)with state-of-the-artmodels.We compare di#erentmodels by evaluating: (1) how accurate
a model could predict the subsequent ratings, and (2) how well a model could "t the previous
empirical observations in real ratings.

5.1 Predicting Subsequent Ratings
Experimental Setup. For the rating sequence of each product, we split it into the testing subse-
quence (the last 25 ratings) and the training subsequence (the rest of the ratings), and put the two
subsequences into the training set and the testing set, respectively. Such construction avoids test-
set biasing towards part of products—for example, products that have a large amount of ratings.
We also remove the products with less than 50 training ratings, and combine users with fewer than
50 ratings as a big user. After the pre-processing, for example, the Amazon-books dataset contains
29,296 products, 6,450 users, and 8,193,695 ratings. We train the model on the training set, and
validate the model on the testing set in terms of mean squared error (MSE), which is widely used
in evaluating the accuracy of rating prediction [19, 20]. Smaller MSE suggests the higher accuracy
of prediction. Speci"cally, the MSE on the test set T is de"ned as

MSE (T ) =

∑
rp,i,u ∈T (rp,i,u − r̂p,i,u )2

|T | , (13)

where rp,i,u is the real rating, and r̂p,i,u is the predicted rating. To set hyperparameters in each
model, we pick out each product’s last 25 ratings in the training set and construct a validation
set. We use the set of hyperparameters that reveal the best performance on the validation set.
Following previous works [19, 20], we choose the dimension of latent features as 5.

We compare HIALF with several state-of-the-art models: latent factor (LF) model [25],
HEARD [32], and also a variant of HIALF model, denoted by HIALF-AVG. In HIALF-AVG, prior
expectation is taken as the average of historical ratings without emphasis on recent ratings.
Results. Table 4 shows that our model signi"cantly outperforms alternatives on all datasets. On
average, HIALF achieves a 33% reduction in MSE compared to HEARD, and a 6% reduction to LF.
Note that the improvements over LF are bounded by the extent to which ratings in the dataset
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Fig. 4. The learned disconfirmation bias curve β (x ). All β (x ) match the “Assimilate-Contrast” theory well.

are a#ected by historical ratings as shown in Section 7.1. Furthermore, HIALF is consistently
more accurate than HIALF-AVG, because users focus more on recent ratings when shaping prior
expectations.

5.2 Validating the Disconfirmation Bias Curve
We then seek to validate whether the discon"rmation bias curve β (x ) meets with the “Assimilate-
Contrast” theory, because this will dictate the accuracy of HIALF.

As in Figure 4, all learned β (x ) match the “Assimilate-Contrast” theory well. β (x ) on Amazon-
books, Amazon-movie, Amazon-electronics, and Tripadvisor have similar formats with the sample
representation of the “Assimilate-Contrast” theory in Figure 2(a). β (x ) on Amazon-clothes also fol-
lows the theory: In the range [0, 1], the bias roughly equals to di#erence between prior expectation
and the product quality, while deviating it out of the range. This di#erent β (x ) suggests that users
only follow prior expectation when prior expectation is above and not too far from their experi-
enced quality when consuming clothing.
We also notice that β (x ) is close to 0 for some x ; for example, x in [−4,−3] or [3, 4] in Figure 4(a).

There are two possible reasons. For one thing, x seldom achieves values in these ranges. Take
x = −3 as an example: It means that a user takes an inferior product in others’ views (i.e., forming
a prior expectation as 1-star) as a good 4-star product. In reality, such large discrepancy rarely
occurs. With a high probability, an inferior product in many users’ view is truly a bad product.
Then with constraints on value of vl (i.e., λβ ), β (x ) in the above ranges is close to 0. For another,
from a psychological point of view, as mentioned in Reference [38], if users "nd others’ opinions
highly contradict their own opinions, they may tend to insist on their own opinions.

5.3 Fi"ing Empirical Observations
Next, we re-do the empirical measurements in Section 3 with the predicted ratings by HEARD,
LF, HIALF, respectively. Note that an accurate model should reveal a similar relationship as in our
previous observations in real ratings.
We only describe the experimental steps on HIALF here. Experiments on other models are sim-

ilar. For each dataset, we "rst model it using HIALF. Then, we select the same groups of products
as in Figure 1. In each selected group, for each rating, given its history Hp,i , we use HIALF to
predict the next rating rHIALFp,i . We also calculate its prior expectation ep,i based on real ratings, get-
ting one pair (ep,i , rHIALFp,i ). We consider two types of ep,i here: (1) the average of historical ratings;
(2) the one de"ned in Equation (11) that focuses more on recent ratings. Finally, for each type
of ep,i , we plot the relationship between prior expectation and the average of the next HIALF-
generated rating. Figure 5 shows the results with prior expectation de"ned in Equation (11), while
prior expectation in Figure 6 is the average of historical ratings. Here, we only plot the relation-
ship for the group of products with average ratings in [3.9, 4.1] in each dataset, because this group
contains more products. Similar patterns are also found in other groups of products.
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Fig. 5. Relationship between prior expectation (defined in Equation (11)) and the average of the next rating.
A smaller d implies a be"er fi"ing.

Fig. 6. Relationship between prior expectation (the average of historical ratings) and the average of the next
rating. A smaller d implies a be"er fi"ing.

Summary of results. Both Figure 5 and Figure 6 indicate that HIALF provides the best "t to
previous observations in real ratings. Take Figure 5(a) and Figure 6(a) as examples. The black lines
with ◦ are the relationship between prior expectation and the average of the next rating in real
ratings, and we can "nd our model HIALF (red line with !) "ts the relationship of real ratings the
best, as compared to LF (blue line with $) and HEARD (the purple line with ×). We also de"ne a
quantitative metric to measure the di#erence between relationship in real ratings and in ratings
generated by model A (where A can be HEARD/LF/HIALF) as:

d =

∑
e ∈E (re − rAe )2
|E | , (14)

where E contains all distinct prior expectation e , re is the average of real ratings under e , and rAe
is the average of model A-generated ratings under e . HIALF also reveals the smallest d , implying
the closest "tting to empirical observations in real ratings. The latent factor model (LF) reveals
relationships that are approximately parallel to the x axis, since LF does not consider the factors of
distortions from historical ratings. HEARD is too optimistic, since it always tends to predict high
ratings when prior expectations are larger than 3.

5.4 Evaluation on Hyperparameters Testing
Our model is based on a set of hyperparameters, which are divided into two types:

• Regularization hyperparameters: λr ec , λf , λβ , λα in Equation (12), which are used mainly
for preventing over"tting.

• Model-related hyperparameters: κ is used in modelling the discon"rmation bias curve β (x )
(Equation (9)) and γ is used in modelling prior expectation (Equation (11)).

We next vary the above hyperparameters to study their e#ects. We use the same training set
and test set as in Section 5.1, and take the hyperparameters used in Section 5.1 as default
hyperparameters.
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Table 5. MSE with Di!erent λr ec

λr ec 0.5 0.1 0.05 0.01 0.005 0.001
Amazon-movie 1.1130 1.1194 1.1365 1.2015 1.1928 1.1804
Amazon-books 1.0284 1.0292 1.0318 1.0514 1.0583 1.0720

Amazon-electronics 1.8677 1.8764 1.8870 1.8986 1.9096 1.9130
Amazon-clothes 1.3718 1.3778 1.3759 1.3755 1.3767 1.3943
TripAdvisor 0.9920 1.0028 0.9829 0.9405 0.9428 0.9484

Table 6. MSE with Di!erent λf

λf 0.01 0.001 0.0005 0.0001 0.00005 0.000001
Amazon-movie 1.1588 1.1229 1.1206 1.1194 1.1187 1.1185
Amazon-books 1.0765 1.0503 0.0418 1.0330 1.0318 1.0313

Amazon-electronics 1.9571 1.9413 1.8880 1.8764 1.8703 1.8717
Amazon-clothes 1.3867 1.3768 1.3764 1.3759 1.3759 1.3759
TripAdvisor 0.9512 0.9433 0.9430 0.9405 0.9402 0.9401

E"ect of λr ec . For each dataset, we vary λr ec from 0.5 to 0.01, and "x other hyperparameters to
be the same with experiments in Section 5.1. Table 5 shows the mean squared error (MSE) on "ve
test datasets under di#erent λr ec . The bold part in each row is the MSE reported on each dataset
in Section 5.1.
From Table 5, we can observe that the MSE on each test dataset varies with λr ec . And when

λr ec decreases, the MSE on the test dataset becomes larger on all "ve datasets, i.e., prediction
accuracy decreases. This is because smaller λr ec leads to larger product quality qu,p and larger
user biases {bu }. And according to Equation (7), the factors modelling the historical in!uence will
be smaller and thus lead to lower prediction accuracy. However, the MSE under di#erent λr ec
are always smaller than the MSE of the standard latent factor model (LF) shown in Table 4. In
other words, capturing the in!uence of historical ratings improves the prediction accuracy on
subsequent ratings. And when λr ec becomes larger on some dataset, e.g., Amazon-books, the MSE
becomes smaller, while the MSE on TripAdvisor dataset becomes larger. This may be due to the
di#erence of the dataset and the value of other hyperparameters.
E"ect of λf . For each dataset, we vary λf from 0.01 to 0.00001, while "xing the other hyperpa-
rameters to be the same with that in Section 5.1. Table 6 shows the mean squared error (MSE) on
each test dataset under di#erent λf . The bold part in each row is the MSE reported on each dataset
in Section 5.1.
From Table 6, we can observe that when λf is too large (i.e., λf = 0.01), the prediction accuracy

decreases a lot. This is because too large λf makes f (x ) too small. Recall that f (x ) represents the
magnifying e#ect of historical ratings with size x . And when λf is smaller than the default value,
the prediction accuracy on all "ve datasets changes slightly. This may be due to the constraints
from other hyperparameters.
E"ect of λα . Similar as above, we vary λα from 0.1 to 0.0001, while "xing the other hyperparam-
eters to be the same with that in Section 5.1. Table 7 shows the mean squared error (MSE) on "ve
test datasets under di#erent λα . The bold part in each row is the MSE reported on each dataset in
Section 5.1.
From Table 7 one can observe that too large or too small λα can hurt the prediction accuracy.

This is understandable, since too large λα leads to too small αu , i.e., nearly ignoring the in!uence
ACM Transactions on Information Systems, Vol. 38, No. 1, Article 2. Publication date: October 2019.



Understanding Assimilation-contrast E!ects in Online Rating Systems 2:17

Table 7. MSE with Di!erent λα

λα 0.1 0.01 0.005 0.001 0.0005 0.0001
Amazon-movie 1.1198 1.1194 1.1228 1.1230 1.1228 1.1245
Amazon-books 1.0336 1.0318 1.0324 1.0352 1.0367 1.0370

Amazon-electronics 1.8863 1.8840 1.8806 1.8764 1.8766 1.8802
Amazon-clothes 1.3855 1.3745 1.3750 1.3759 1.3776 1.3832
TripAdvisor 0.9428 0.9421 0.9417 0.9408 0.9405 0.9410

Table 8. MSE with Di!erent λβ

λβ 0.1 0.01 0.005 0.001 0.0005 0.0001
Amazon-movie 1.2095 1.1254 1.1210 1.1188 1.1194 1.1187
Amazon-books 1.0651 1.0510 1.0445 1.0339 1.0318 1.0310

Amazon-electronics 1.9628 1.9174 1.9020 1.8876 1.8827 1.8764
Amazon-clothes 1.4041 1.3833 1.3821 1.3793 1.3783 1.3759
TripAdvisor 0.9573 0.9473 0.9446 0.9411 0.9405 0.9410

Table 9. MSE with Di!erent κ

κ 5 7 10 13 15 20
Amazon-movie 1.1199 1.1199 1.1194 1.1290 1.1269 1.1209
Amazon-books 1.0322 1.0324 1.0318 1.0317 1.0314 1.0325

Amazon-electronics 1.8710 1.8745 1.8764 1.8715 1.8723 1.8672
Amazon-clothes 1.3746 1.3755 1.3759 1.3767 1.3728 1.3754
TripAdvisor 0.9447 0.9424 0.9405 0.9421 0.9430 0.9498

from historical ratings, while too small λα leads to too large αu , i.e., making the in!uence from
historical ratings dominant.
E"ect of λβ . We vary λβ from 0.1 to 0.0001, while "xing the other hyperparameters to be the
same with that in Section 5.1. Table 8 shows the mean squared error (MSE) on "ve test datasets
under di#erent λβ . The bold part in each row is the MSE reported in Section 5.1.

From Table 8 one can observe that when λβ increases, the factor of historical in!uence becomes
smaller, thus making the prediction accuracy decrease.
E"ect of κ .We study the e#ect of κ used in modelling the discon"rmation bias curve β (x ) (Equa-
tion (9)). Recall that κ controls the smoothness of β (x ), and smaller κ corresponds to smoother
curve. We vary κ from 5 to 20, while "xing the other hyperparameters to be the same with that
in Section 5.1. Table 9 shows the mean squared error (MSE) on "ve test datasets under di#erent
κ. The bold part in each row is the MSE reported in Section 5.1. One can observe that the results
change slightly with κ, i.e., they are roughly robust against the change of κ.
E"ect of γ . The hyperparameters γ is used in modelling prior expectation (Equation (11)). Recall
that γ controls the extent to which users prefer recent ratings. A larger γ means that users focus
more on recent ratings. We vary γ from 0.01 to 0.1, while "xing the other hyperparameters to
be the same with that in Section 5.1. Table 10 shows the mean squared error (MSE) on "ve test
datasets under di#erent γ . The bold part in each row is the MSE reported in Section 5.1.

From Table 10, one can "nd that whenγ becomes larger, the prediction accuracy drops a lot. This
means that users do not only focus on recent ratings too much. However, γ cannot be too small,
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Table 10. MSE with Di!erent γ

γ 0.01 0.03 0.05 0.07 0.09 0.1
Amazon-movie 1.1438 1.1194 1.1199 1.2049 1.2422 1.2499
Amazon-books 1.0467 1.0310 1.0318 1.0386 1.0436 1.0452

Amazon-electronics 1.8753 1.8642 1.8764 1.8910 1.8954 1.8968
Amazon-clothes 1.3842 1.3774 1.3759 1.3926 1.4077 1.4120
TripAdvisor 0.9703 0.9457 0.9427 0.9415 0.9405 0.9413

otherwise the prediction accuracy will also decrease, since users still prefer the recent ratings to
some extent.

6 APPLICATIONS
In this section, we apply HIALF to improve recommendations and to help users to make wiser
consuming decisions.

6.1 Debiased Recommender System
Distortions from historical ratings weaken the system’s ability to provide high-quality recommen-
dations, since we cannot distinguish whether the given high rating is out of users’ preferences
or high historical ratings. Using HIALF, one can obtain users’ and products’ intrinsic features
(bp ,bu ,xu ,yp ) without contamination from historical ratings. Thus, based on these intrinsic fea-
tures, for a product p that user u has not consumed, we can generate a recommendation score:

rec (p,u) = д + bp + bu + xu
Typ . (15)

Here,д,bp ,xu ,yp ,bu are learned parameters in HIALF. Products with high recommendation scores
are those potential products that user u may like and, therefore, we recommend these products to
user u. We call a recommender system using the above methodology as debiased recsys.
We compare debiased recsys with the standard latent factor model (LF), since HIALF is built

on top of the latent factor model. Note that HIALF is orthogonal to other techniques to improve
recommendations, such as modelling evolution of users’ expertise [20], modelling temporal dy-
namics [15], and so on. For future work, we can combine HIALF with the above techniques for
further improvements.
We take the set of ratings without historical ratings as the ground truth (e.g., the "rst rating

of each product). We train HIALF with the rest of the ratings using the same hyperparameters
(λβ , λf , etc .) as in Section 5.1. We use two typical types of metrics to evaluate the accuracy of
recommendations.
Root Mean Square Error (RMSE). RMSE is widely used to evaluate the accuracy of recommen-
dations [10, 14, 15]. It quanti"es the error of estimating users’ intrinsic rating toward products.
Small RMSE implies high recommencation accuracy. We report the RMSE on the ground truth in
Table 11. As in Table 11, debiased recsys consistently reveals smaller RMSE than LF, implying that
it can provide more accurate recommendations.
Relative Cumulative Reciprocal Rank (RCRR). Recommendation can be treated as a person-
alized preference ranking problem, i.e., ranking products based on a user’s preferences (usually
the inferred or estimated preferences) and then recommending top-ranked products to that user.
Another typical way to quantify the accuracy of recommendation is through rank-basedmeasures.
As there are a large number of products, and the test set only contains a small fraction of products
for each user, i.e., products that the user rated without historical ratings, we therefore de"ne a new
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Table 11. RMSE on Five Datasets

category LF debiased recsys

Amazon-movie 1.0639 1.0465
Amazon-books 0.9125 0.8922

Amazon-electronics 1.2273 1.2083
Amazon-clothes 1.1239 1.1034
Tripadvisor 1.1919 1.1776

Fig. 7. Results in terms of RCRR in a log scale.

rank-based measure called “relative cumulative reciprocal rank” (RCRR) to quantify the recommen-
dation accuracy. LetDu be the set of items adopted by user u in the test set. Let RCRRu denote the
relative cumulative reciprocal rank with respect to user u. Formally, we de"ne RCRRu as

RCRRu ! 1
|Du |

∑

i ∈Du

1
(rankui/N )

, (16)

where N ∈ N+ denotes the total number of products and rankui ∈ {1, . . . ,N } denotes the rank of
product i in the ranking list based on user u’s preferences. For example, rankui = 1 means that
product i is ranked as the top-1 for user u. RCRRu quanti"es the average relative ranking of the
products adopted by a user in the inferred ranking list (based on the inferred preference of this user)
of products. For example, an RCRRu of 100 means that the items adopted by user u are in the top
1% of the inferred ranking list on average. Large RCRRu means that the adopted items are ranked
higher on the list, i.e., implying a more accurate recommendation. The underlying intuition is that
users tend to adopt products that match their preferences better. We de"ne RCRR as the average of
RCRRu over the whole user population. Figure 7 shows the RCRR for our debiased recsys and the
LF algorithm in a log scale. One can observe that our debiased recommender system has a higher
RCRR than LF, except for the Clothes dataset. This implies that debiased recommender system can
make more accurate recommendations. For the Clothes dataset, our debiased recommender system
has nearly the same RCRR as LF. This is because the user ratings in the Clothes dataset really su#er
small distortions by historical ratings as suggested before.

6.2 Exposing the Intrinsic Product #ality Using HIALF
The intrinsic quality of a product is around the aggregated collective ratings given by a large
group of users who were not exposed to historical ratings [29]. With HIALF, we can also easily
get the intrinsic quality of product p with Np ratings, which we denote as q∗p , by factoring out the
distortions from historical ratings:

q∗p =
1
Np

Np∑

i=1
(д + bp + xũ (p,i )

Typ ). (17)

Here ũ (p, i ) is the user who gave the ith rating of product p.
We use the case study in Figure 8 to illustrate the signi"cance of revealing the intrinsic qualities

of products. Figure 8 shows the dynamics of the average rating of two selected products inAmazon-
movie. These two products have similar intrinsic quality (around 4) and similar initial ratings. Note
that initial ratings su#er small historical distortions. However, after they experienced a sequence
of ratings with di#erent trends, the average rating of product 1 and product 2 are 3.2 and 4.9,
respectively (di#ering by about 1.7). This shows the impact of historical ratings’ distortions. With
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Fig. 8. Two products with similar intrinsic quality have di!erent rating growth histories, leading to signif-
icantly distinct ratings. The blue lines show the dynamics of the average of real ratings, and the red lines
show the dynamics of the intrinsic quality extracted by HIALF.

HIALF, one can perform the debiasing operation and obtain the intrinsic quality so users will not
be misguided by historical ratings.

7 ANALYSES OF RATING DISTORTIONS AND MISBEHAVIOR
In this section, we discuss more about historical distortions on di#erent datasets. Moreover, we
extend our model to study the impact of misbehaving ratings. We found that a small number of
misbehaving ratings can distort subsequent product ratings signi"cantly and make the average
rating of a product diverge.

7.1 Rating Distortions on Di!erent Datasets
We study the strength of historical distortions on di#erent datasets, and how the length of his-
torical ratings in!uences the strength of historical distortions on each dataset. In particular, we
vary the length of historical ratings and calculate the corresponding average absolute historical
distortions in ratings over all "ve datasets. Speci"cally, let

Rpa,b ! {rp,i |anp < i ≤ bnp } (18)

denote the rating subsequence between the anp th rating and the bnp th rating of product p, where
a,b ∈ [0, 1] and np is the total number of ratings of product p. For example, consider a product p
has np = 100 ratings, then Rp0,0.2 denotes the set of the "rst 20 ratings of product p. To select the
historical ratings of a dataset, we de"ne

Ra,b !
⋃

p∈ {all products of a dataset}
Rpa,b . (19)

Then, we calculate the average absolute historical distortions for all ratings in in Ra,b as:
∑

rp,i ∈Ra,b |αũ (p,i ) f ( |H p,i |)β (ep,i − qũ (p,i ),p ) |
|Ra,b |

. (20)

Note that ratings in Ra,b with larger a and b correspond to the scenario that a user is exposed to
more historical ratings.
Figure 9 plots the average absolute historical distortions for R0,0.2, . . . ,R0.8,1. One can observe

that with "xed a and b, items in Amazon-movie seem to su#er the largest historical distortions,
followed by Tripadvisor, Amazon-electronics, and Amazon-books. The Amazon-clothes is the one
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Fig. 9. Average absolute historical distortions.

with the smallest historical distortions. It is interesting to observe that in Table 4, HIALF has the
most signi"cant bene"ts on Amazon-movie over LF, followed by Tripadvisor, Amazon-electronics,
and Amazon-books, and has the least bene"ts on Amazon-clothes over LF. In other words, the im-
provement of HIALF increases with the strength of historical distortions in the dataset.
Moreover, as we increase botha andb, the historical distortions in all datasets get larger. Namely,

when a user is exposed to more historical ratings, his rating is more likely to be distorted more.
Lessons learned. Movie ratings are prone to historical distortions, while clothes ratings are not
very prone to historical distortions. The strength of historical distortions in book ratings, electron-
ics ratings, and hotel ratings lie between them. When a user is exposed to more historical ratings,
his rating is more likely to be distorted more.

7.2 Misbehaving Ratings
Our results thus far consider honest ratings. However, in real-world online rating systems, there
can be somemisbehaving or fake ratings. Due to the openness of online rating systems, i.e., anyone
can provide ratings to any product, some sellers or companies may hire users to provide high
ratings intentionally to promote their products or even hire some users to provide low ratings to
badmouth their competitors’ products. In this section, we aim to extend our model to study the
impact of such misbehaving ratings. In particular, we aim to answer: How do misbehaving ratings
in!uence the subsequent ratings of products?

MisbehaviorModel.Without loss of generality, we describe misbehaving ratings toward a single
product. We use a tuple (k̄,L, N̄ ) to characterize misbehaving ratings, where k̄ denotes the rating
that misbehaving users provide, L denotes the length of misbehaving ratings (i.e., the number
of misbehaving ratings), and N̄ denotes the position of the "rst misbehaving rating. Note that
we consider a consecutive sequence of misbehaving ratings. For example, under (5, 3, 1), the "rst
three ratings of a product would be 5, 5, 5. Note that this misbehavior model is simple yet captures
important factors of misbehaving ratings for our experimental studies.
Impact of misbehaving rating k̄ . In the following experimental studies, we choose four repre-
sentative products denoted byA,B,C,D from our dataset to analyze, whose intrinsic quality range
from low to high. We "x L = 50, i.e., we inject 50 misbehaving ratings to each product. We con-
sider three cases of misbehavior with misbehaving rating k̄ = 1, 4, 5, respectively. For each case of
misbehavior, the rating before the misbehavior is each product’s historical ratings up to the mis-
behaving rating position, and we apply HIALF used in Section 6.2 to synthesize the subsequent
ratings after each case of misbehavior.
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Fig. 10. E!ects of the injected ratings.

The trends of a product’s average rating after misbehavior is shown in Figure 10. In each sub"g-
ure of Figure 10, the orange line named HIALF represents the trend of average ratings synthesized
by our HIALF model without arti"cial injections, and lines named HIALF-In-r5, HILF-In-r4, and
HIALF-In-r1 represent the average rating trends synthesized by HIALF after inserting 50 5-star,
4-star, and 1-star ratings, respectively. The black line is the trend of average rating in real datasets,
and the brown line parallel with x-axis is the intrinsic quality of the product.

From Figure 10(b) and Figure 10(c), one can observe that: (1) The higher the injected rating is,
the larger the resulting average rating will be. For example, in both "gures, the line named HIALF-
In-r5 is above the line named HIALF-In-r4, which is above the line named HIALF-In-r1. (2) The line
named HIALF-In-r1 is under the trend in real ratings and the trend generated by HIALF without
injection. However, the "rst observation is not held in Figure 10(a) with HIALF-In-r5 and HIALF-
In-r4 overlapped, while the second observation is not held in Figure 10(d) with HIALF-In-r1 above
the two trends without arti"cial injection. Namely, the consequence of misbehaving ratings is not
solely determined by the injected rating. Actually, it depends on both the injected rating and the
intrinsic quality of the product. In Figure 10(a), the injected 5-star or 4-star ratings make users’
prior expectation much larger than the intrinsic quality, and users prefer to insist their opinions
and give ratings near the intrinsic quality. This is why the HIALF-In-r5 and HIALF-In-r4 overlap.
Similarly, in Figure 10(d), the injected 1-star ratings make the users’ prior expectation much lower
than the product’s intrinsic quality, and users also prefer to not assimilate to the prior expectations
and give ratings near the intrinsic quality.Withoutmisbehaving ratings, users will give a lower rat-
ing than the product’s intrinsic quality, since they will assimilate to a prior expectation lower than
the product’s intrinsic quality. That is why trends in HIALF-In-r1 are higher than the two trends
without misbehaving ratings. The intrinsic quality of products in Figure 10(b) and Figure 10(c) are
in the middle of range [1, 5], thus prior expectations after inserting misbehaving ratings are not
too far from the product’s intrinsic quality, and users will assimilate to prior expectations.
Impact of the injecting position N̄ . In this experiment, we "x L = 50, k̄ = 5, i.e., injecting 50
5-star ratings. We vary the injecting positions. The trends of products’ average rating are shown in
Figure 11. In each sub"gure of Figure 11, the line namedHIALF-In-pN̄ denotes the trend of average
rating after injecting the ratings just before the N̄ th rating. We can observe that the smaller N̄ is,
the larger the average rating will be in all sub"gures. Namely, injecting ratings earlier results in
larger impacts on subsequent ratings.
Impact of number of injected ratings L. In this experiment, we "x k̄ = 5, i.e., injecting
5-star ratings. We vary the number of ratings injected. We then apply the same steps as in above
experiments to get the average rating trends under di#erent scenarios and plot them in Fig-
ure 12. In each sub"gure, the line named HIALF-In-nL represents the trend of average rating after
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Fig. 11. E!ects of injecting position.

Fig. 12. E!ects of number of injected ratings.

injecting L ratings. From all sub"gures, we can "nd that more injected ratings can distort subse-
quent ratings more.
Learned Lesson. Misbehaving ratings can distort the subsequent ratings signi"cantly, and these
distortions may lead the average rating of a product to diverge. This distortion is more signi"-
cant when misbehaving ratings are injected earlier or a larger number of misbehaving ratings are
injected.

8 RELATEDWORK
Biases in rating system.Users’ ratings are often biased, due to a variety of causes, such as ratings
from spammers [18] or water-armies [1], evolution of users’ expertise [20], temporal dynamics [13,
15, 35], dimensional biases [11], biases across categories [12], biases due to algorithms [28], and so
on. In this article, we focus on a di#erent kind of bias caused by in!uence from historical ratings.
Experiments on historical ratings’ in#uence. Recent studies [3, 22, 26, 34] found that the
disclosed historical ratings would distort subsequent ratings. Experiments [22, 34] revealed that
small positive manipulations would encourage more positive future ratings, creating accumulative
herding that boosts the "nal average ratings. Even for products with the same quality, users tend
to rate higher when they are displayed with higher historical ratings [3, 26]. Our work is motivated
by the above "ndings, however, our goal is to model rather than to test whether the in!uence from
historical ratings exists.
Modelling historical ratings’ in#uence. Previous works [2, 16] have attempted to mitigate the
micro-level in!uence from historical ratings. However, their models were developed for specially
designed rating systems, and one needs to know users’ ratings given when users cannot see his-
torical ratings, which is usually latent in reality. Wang et al. [32] then developed a more practical
model (HEARD) to characterize the macro-level in!uence from historical ratings on Amazon, i.e.,
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how historical ratings of a product will a#ect its general rating distribution after 100 ratings. The
goal is di#erent from our work, since we aim to capture the microscopic in!uence, i.e., how his-
torical ratings will a#ect the next single rating.
Social network–based in#uence. Several works [7, 8, 23, 37] also modeled and debiased the
in!uence in social networks, i.e., peer e#ects. Peer e#ects are interactive and more credible, i.e.,
users and their friends will in!uence each other and users often trust each other. The historical
ratings are usually generated by strangers, and only previous ratings can in!uence the subsequent
ratings. The di#erence between these two types of in!uence makes our work di#er from this line
of works.

9 CONCLUSION AND FUTURE WORK
In this article, using 42M ratings from Tripadvisor and Amazon, we "rst reveal and explain the
assimilation and contrast e#ects in users’ given ratings caused by historical ratings. Then, we pro-
pose HIALF, the "rst model for real rating systems to characterize the micro-level in!uence from
historical ratings in each single rating. We demonstrate the e#ectiveness of HIALF in predicting
subsequent ratings, capturing dynamics in real ratings, providing better recommendations, and
further revealing products’ intrinsic qualities for subsequent wiser decisions on purchasing prod-
ucts. Moreover, HIALF can also help us to gain a deeper understanding of historical distortions
in normal ratings and e#ects of misbehaving ratings. Our model and observations not only can
be applied to improve various rating-based applications such as recommendation, but also can be
applied to design e#ective misbehaving rating detection/defending algorithms.
There are several directions for future work. First, besides ratings, review texts also contain

a lot of information. The recent work [19] has combined reviews and ratings for better recom-
mendations. Thus, one can further improve the HIALF model by incorporating useful information
embedded in the review texts. Also, HIALF is orthogonal to other factors in ratings, such as evo-
lution of users’ expertise [20], temporal dynamics [15], and so on. Considering these factors may
contribute to a better model; we plan to do this in our future work.
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