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Characterizing user pair relationships is important for applications such as friend recommendation and interest targeting in

online social networks (OSNs). Due to the large scale nature of such networks, it is infeasible to enumerate all user pairs and

so sampling is used. In this paper, we show that it is a great challenge even for OSN service providers to characterize user

pair relationships even when they possess the complete graph topology. The reason is that when sampling techniques (i.e.,

uniform vertex sampling (UVS) and random walk (RW)) are naively applied, they can introduce large biases, in particular, for

estimating similarity distribution of user pairs with constraints such as existence of mutual neighbors, which is important for

applications such as identifying network homophily. Estimating statistics of user pairs is more challenging in the absence of

the complete topology information, since an unbiased sampling technique such as UVS is usually not allowed, and exploring

the OSN graph topology is expensive. To address these challenges, we present unbiased sampling methods to characterize

user pair properties based on UVS and RW techniques respectively. We carry out an evaluation of our methods to show

their accuracy and efficiency. Finally, we apply our methods to three OSNs: Foursquare, Douban and Xiami, and discover

significant homophily is present in these networks.
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1. INTRODUCTION

Online social networks (OSNs) such as Facebook and Twitter have become extremely popular
within the last few years. OSNs have greatly changed people’s network activities. They help peo-
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ple to keep in touch with old friends and meet new friends with common interests. They provide
individuals online private spaces and multiple ways to interact using chat, messaging, email, video,
voice chat, file sharing, blogging, discussion groups and so on. Characterizing user pair properties
is of fundamental importance and has the following important applications

— Network homophily detection. Homophily refers to the tendency of users to connect to others with
common interests. Singla et al. [Singla and Richardson 2008] show that significant homophily is
present in the MSN Messenger network. That is, users who chat with each other are more likely to
share interests in terms of their Web search topics, and personal characteristics such as their ages
and locations. Similar findings hold for users who never talk to each other but do have at least
one friend in common. For a user in these networks with significant homophily, we can infer her
unstated (private) personal characteristics and give the user valuable recommendations based on
her neighbors’ characteristics and interests.

— Distance distribution measurement. The distance between two nodesA and B is measured by their
shortest path length in an OSN. Characterizing the distance distribution measurement is necessary
for calculating the average distance among pairs and the effective diameter (the 90th percentile
of all distances), which are fundamental statistics for understanding the nature and evolution of
the network. For example, the famous six degree of separation shows that any two people could
be connected on average within six hops from each other [Milgram 1967], which indicates that
human society is a small world type network.

In this paper, we design efficient methods to characterize node pairs in network. In particular, we
not only characterize all pairs (contained in the set S) but also connected pairs (contained in the set

S
(1)), and pairs that share a neighbor (contained in the set S(2)), where S consists of all node pairs

in G, S(1) consists of pairs of connected nodes, and S
(2) consists of pairs of nodes with at least one

common neighbor. Methods for characterizing node pairs in these three sets can be easily applied to
problems such as measuring homophily or distance distribution measurement. For example, we can
estimate the underlying distance distribution of G based on sampling random node pairs uniformly

from S. By comparing the interest similarity of user pairs in S, S(1), and S
(2), we can infer whether

users are connected and clustered based on their common interests. Due to the large sizes of these
networks, exhaustive enumeration of all node pairs is computational prohibitive. Existing sampling
techniques such as uniform vertex sampling (UVS) can be directly applied to characterizing node
pairs in S. However, UVS might not be publicly available for OSNs. Moreover, it is a challenge

to characterize node pairs in S
(2). A naive application of sampling techniques can generate large

biases in estimated statistics. For example, one might propose the following approach for sampling

a node pair [u, v] from S
(2). It first samples a node x from graph G using UVS. Then u and v are set

to two random neighbors of x. It is a simple way to sample two random nodes u and v with at least
one neighbor. However in what follows we show this sampling method does not sample node pairs
uniformly, and removing sampling bias is costly. Given that x is sampled, each pair of neighbors of
x is selected with the same probability 2

dx(dx−1) , where dx is the number of its neighbors. Denote

M(u, v) as the set of common neighbors of u and v. Then we find that the node pair [u, v] is sampled
with probability proportional to

∑

x∈M(u,v)
1

dx(dx−1) , which is related not only with the number of

common neighbor of u and v, but also with the degree of each common neighbor of u and v. We
can easily find that it is costly to correct the bias for sampling the node pair [u, v] since one needs
to query nodes u, v and all common neighbors of u and v.

To address the above issues, we systematically study the problem of sampling node pairs in a

large graph, and present sampling methods for estimating characteristics of node pairs in S, S(1),

and S
(2). Our major contributions can be summarized as follows:

1) When UVS is available, we propose a weighted vertex sampling (WVS) method to sample

node pairs in S
(1) and S

(2), and develop corresponding unbiased estimators for measuring node
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pairs’ statistics. Our WVS method can be applied to settings where the graph topology may or may
not be known.

2) When UVS is not feasible (either because we do not have the full graph topology, or generation
cost of random node is too expensive) and exploring the OSN graph topology is resource limited
and expensive, it is much more challenging to estimate node pairs’ statistics. Besides estimating

statistics of node pairs in S and S
(1) by using the regular random walk (RW) sampling method, we

propose a neighborhood random walk (NRW) method to characterize node pairs in S
(2). NRW does

not require the use of UVS, and it can be viewed as a regular RW over a new graph Ĝ, where a node

in Ĝ is an edge in the original graph G, and an edge in Ĝ consists of two edges in G with a common
node.

This paper is organized as follows. The problem is formulated in Section 2. Section 3 and Sec-
tion 4 present node pair sampling methods for ones with or without the complete graph topol-
ogy respectively. Performance evaluation and testing results are presented in Section 5. Section 6
presents real applications on Foursquare1, Xiami2 and Douban3 websites. Section 7 summarizes
related work. Section 8 concludes.

2. PROBLEM FORMULATION

Let G = (V,E) be an undirected graph, where V is the set of nodes and E the set of edges. G
contains no self-loops. In what follows, (u, v) denotes an edge in G, and [u, v] a node pair in G.
Note that [u, v] 6= [v, u]. We present sampling methods to measure characteristics of node pairs in
the following sets:

• whole set S = {[u, v] : u, v ∈ V and u 6= v};

• one-hop subset S(1) = {[u, v] : (u, v) ∈ E};

• two-hop subset S(2) = {[u, v] : u 6= v, u, v ∈ V, ∃x ∈ V, (u, x) ∈ E and (v, x) ∈ E};

• one to two-hop subset S(2+) = S
(2) ∪ S

(1).

We easily find that S(1) consists of all pairs of nodes whose distance is exactly one, and S
(2+)

consists of all pairs of nodes with distance no greater than two. Note that S(2) may not contain each

pair of nodes [u, v] in S
(1) because u and v need not have any mutual neighbors. For a node pair

[u, v], let function F (u, v) define the value of the pair’s property under study, e.g., the number of
mutual neighbors of u and v. Note that F (u, v) needs not equal to F (v, u), e.g., F (u, v) could be
the number of neighbors of u excluding the common neighbors of u and v. Let {a1, . . . , aK} be
the range of F (u, v). We propose sampling methods to estimate the node pair distributions ω =

(ω1, . . . , ωK), ω(1) = (ω
(1)
1 , . . . , ω

(1)
K ), ω(2) = (ω

(2)
1 , . . . , ω

(2)
K ), and ω

(2+) = (ω
(2+)
1 , . . . , ω

(2+)
K ),

where ωk, ω
(1)
k , ω

(2)
k , and ω

(2+)
k (1 ≤ k ≤ K) are the fractions of node pairs [u, v] with F (u, v) =

ak in S, S(1), S(2), and S
(2+) respectively. Define S

(1−) = S
(1)\S(2). For each element [u, v] ∈

S
(1−), u and v are connected but do not have any mutual neighbor. Similarly, we define ω

(1−) =

(ω
(1−)
1 , . . . , ω

(1−)
K ), where ω

(1−)
k (1 ≤ k ≤ K) is the fraction of node pairs [u, v] with F (u, v) = ak

in set S(1−). Let α = |S(1−)|
|S(1)|

and β = |S(1)|
|S(2)|

. Then we have

ω
(2+)
k =

|S(1−)|ω(1−)
k + |S(2)|ω(2)

k

|S(1−)|+ |S(2)| =
αβω

(1−)
k + ω

(2)
k

αβ + 1
.

This ω(2+) can be obtained from α, β, ω
(1−)
k , and ω

(2)
k , where α and ω

(1−)
k can be calculated based

on the node pairs in S
(1), and β and ω

(2)
k can be calculated based on the node pairs in S

(2). Since

1www.foursquare.com
2www.xiami.com
3www.douban.com
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ω
(2+)
k is very close to ω

(2)
k for most OSN graphs with very small α and β, therefore we focus

on designing methods for estimating characteristics of the node pairs in S, S(1), and S
(2) in the

following sections.

Since |S(1)| = 2|E|, |S| = |V |(|V | − 1), and |S(2)| is usually much larger than |V |, sampling is

unavoidable for estimating ω, ω(1), and ω
(2) even for a moderate size graph with several hundred

thousands of nodes. In the following two sections, we propose sampling methods based on two
common sampling techniques UVS and RW respectively.

3. NODE PAIR SAMPLING BASED ON UVS

To the best of our knowledge, previous work such as [Singla and Richardson 2008] directly uses
sampling methods such as UVS and uniform edge sampling (UES) to characterize the node pairs

in S, S(1), and S
(2). Clearly, it is easy to generate a random node pair in S through sampling two

different nodes from V by UVS, and generate a random node pair in S
(1) by sampling an edge from

E by UES. However, in practice UES is not publicly available for most OSNs, and it is difficult

to uniformly sample node pairs from S
(2) and accurately compute corresponding statistics by UVS

and UES. To solve these problems, in this section we present our sampling methods based on UVS

to estimate statistics of the node pairs in S
(1) and S

(2).

3.1. Basic Sampling Operations and Their Cost

Suppose that we can sample nodes from the graph G using UVS with replacement. For example,
there is a numeric ID associated with each node for OSNs such as Foursquare. Then one can perform
UVS by sampling IDs randomly from the ID space with replacement. This computation complexity
is O(1) when the ID values of nodes are sequentially assigned.

In what follows, we present methods for sampling nodes from V with any desired stationary
distribution π=(πv :v∈V ), which is important for sampling node pairs as we will show later. First,
we present an independent weighted vertex sampling (IWVS) method. For simplicity, we denote
V = {v1, . . . ,v|V |}, where vi is the node with ID i ∈ {1, . . . , |V |}. Then IWVS assigns a weight

W [i] to each node vi, where W [i] is defined as

W [i] =
∑

1≤j≤i

πvj
.

At each step, IWVS generates a random number τ drawn uniformly from the range (0,1), and
then samples the node vi whose ID i satisfies W [i] ≤ τ < W [i + 1]. Then we easily find that
the probability of sampling vj is πvj

. vi can be efficiently identified using binary search, and its
computational complexity is O(log |V |).

Note that when πv depends on the graph topology, say the degree of v, we need the complete
graph toplogy in advance to build the vector W . Often, the complete graph topology is not be avail-
able. Therefore, we propose a way to modify UVS using the Metropolis-Hasting technique [Chib
and Greenberg 1995; Hastings 1970; Metropolis et al. 2011]. This method does not require the com-
plete graph topology, and reduces the memory space used for storing the array W and extra compu-
tation for looking up the ID of a sampled node at each step. UVS can be modeled as a Markov chain
with transition matrix P = [Pu,v], u, v ∈ V , where Pu,v = 1

|V | is defined as the probability that a

node v is selected as the next sampled node given that the current node sampled is u. To generate
a sequence of random samples from a desired stationary distribution π, the Metropolis-Hastings
technique is a Markov chain Monte Carlo method based on modifying the transition matrix of UVS
as

P ⋆
u,v =

{

Pu,v min
(

πvPv,u

πuPu,v
, 1
)

if v 6= u,

1−∑w 6=u P
⋆
u,w if v = u.
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It provides a way to alter the next node selection to produce any desired stationary distribution π.
Metropolis-Hastings based weighted vertex sampling (MHWVS) with target distribution π works
as follows: at each step, MHWVS selects a node v using UVS and then accepts the move with prob-

ability min
(

πv

πu
, 1
)

. Otherwise, MHWVS remains at u. The computational complexity of sampling

a node by MHWVS is O(1).

3.2. Sampling Node Pairs From S and S
(1)

To sample a node pair [u, v] from S, we use UVS to select two different nodes u and v from V at
random. 1(P) defines the indicator function that equals one when the predicate P is true, and zero
otherwise. Based on sampled pairs [ui, vi] (1 ≤ i ≤ n), the fraction ωk (1 ≤ k ≤ K) is estimated
as follows

ω̂k =
1

n

n
∑

i=1

1(F (ui, vi) = ak).

Each node pair [ui, vi] is sampled with the same probability 1
|V |(|V |−1) , the expectation of

1(F (ui, vi) = ak) is

E [1(F (ui, vi) = ak)] =
∑

[u,v]∈S

1(F (u, v) = ak)

|V |(|V | − 1)
= ωk,

and the variance is

Var [1(F (ui, vi) = ak)] =
∑

[u,v]∈S

1
2(F (u, v) = ak)

|V |(|V | − 1)
− ω2

k = ωk − ω2
k.

Then we have

E[ω̂k] = ωk, and Var[ω̂k] =
ωk − ω2

k

n
.

Denote by du the degree of a node u ∈ V . To sample a node pair from S
(1), we select a random

node u according to the probability distribution (π
(1)
u : u ∈ V ) using IWVS or MHWVS, where

π
(1)
u is defined as

π(1)
u =

du
2|E| .

Then select a neighbor v at random. It is easy to see that the node pair [u, v] is sampled uniformly

from S
(1). Based on sampled pairs [ui, vi] (1 ≤ i ≤ n), we estimate ω

(1)
k (1 ≤ k ≤ K) as follows

ω̂
(1)
k =

1

n

n
∑

i=1

1(F (ui, vi) = ak). (1)

When IWVS is used to sample nodes, we can show that each (ui, vi), i = 1, . . . , n, is an edge
sampled uniformly and independently from the graph G. Similar to the derivation of ω̂k, we have

E[ω̂
(1)
k ] = ω

(1)
k , and Var[ω̂

(1)
k ] =

ω
(1)
k − (ω

(1)
k )2

n
.

3.3. Sampling Node Pairs From S
(2)

To sample a node pair from S
(2) at random, we first select a random node x ∈ V with degree greater

than two according to the probability distribution (π
(2)
x :x ∈ V), where π

(2)
x is defined as

π(2)
x =

dx(dx − 1)

M
,
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where M =
∑

y∈V dy(dy − 1). Then we generate a node pair [u, v] by sampling two different

neighbors u and v of x at random. There are dx(dx − 1) node pairs consisting of two different
neighbors of x, therefore each one of these node pairs is sampled with the same probability 1

M
.

Denote m(u, v) as the number of mutual neighbors of u and v. Then a node pair [u, v] in S
(2) is

sampled with probability

π
(2)
[u,v] =

m(u, v)

M
. (2)

Based on sampled pairs [ui, vi] (1 ≤ i ≤ n), we estimate ω
(2)
k (1 ≤ k ≤ K) as follows

ω̂
(2)
k =

1

H

n
∑

i=1

1(F (ui, vi) = ak)

m(ui, vi)
, (3)

where H =
∑n

i=1
1

m(ui,vi)
. Let m̄ = M

|S(2)|
denote the average number of mutual neighbors of the

node pairs in S
(2). The accuracy of ω̂

(2)
k can be stated by the following theorem.

THEOREM 3.1. ω̂
(2)
k (1 ≤ k ≤ K) is an unbiased estimator of ω

(2)
k . When [ui, vi] (1 ≤ i ≤ n)

are sampled independently using IWVS, we have

P

(

|ω̂(2)
k − ω

(2)
k | ≤ 2ǫω

(2)
k

1− ǫ

)

≥ 1− 1

nǫ2

(

m̄

ω
(2)
k

+ m̄− 2

)

where 0 < ǫ < 1.

The proofs of all theorems in this paper are given in Appendix.

4. NODE PAIR SAMPLING BASED ON RW

In what follows, we assume that UVS is not feasible (either because we do not have the full graph
topology, or generation cost of random ID is too expensive), and that the graph G is connected.
Instead, we study the use of a random walk (RW) as a node pair sampling technique. RWs have been
extensively studied in the graph theory literature [Lovász 1993]. From an initial node, a RW selects a
neighbor of the current node at random as the next-hop node. The walker moves to this neighbor and
samples its information. Denote by π = (πv : v ∈ V ) the stationary distribution of RW, where πv =
dv

2|E| . For a connected and non-bipartite graph G, the probability of RW being at node v converges

to πv [Lovász 1993]. Therefore, one can view this as a non-uniform vertex sampling algorithm: at
each step, a node is selected from V according to the probability distribution π. Note that RW is
biased towards large degree nodes. However its bias is known and can be corrected [Heckathorn
2002; Salganik and Heckathorn 2004]. Compared to UVS, RW exhibits smaller estimation errors
for characteristics associated with high degree nodes.

4.1. Sampling Node Pairs From S and S
(1)

We use two independent RWs to sample node pairs [ui, vi] (1 ≤ i ≤ n) randomly from S, where
ui and vi are nodes sampled from the graph G by these two RWs at the i-th step repectively. This

sampling method can be viewed as a regular RW over G(2) = (V (2), E(2)), where V (2) = {[u, v] :
u, v ∈ V } and E(2) = {([u, v], [x, y]) : (u, x), (v, y) ∈ E}. It is clear that a node (node pair) [u, v]
in G(2) has dudv neighbors. When G is a connected and non-bipartite graph, we can easily show

that G(2) is also connected and non-bipartite. Then a RW over G(2) exhibits a stationary distribution
πS = (π[u,v] : u, v ∈ V ), with

π[u,v] =
dudv
4|E|2 , u, v ∈ V.
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Note that this RW may sample [u, u] with stationary probability
∑

u∈V π[u,u] =
∑

u∈V d2
u

4|E|2 . Finally

we estimate ωk (1 ≤ k ≤ K) as follows

ω̂⋆
k =

1

J

n
∑

i=1

1(F (ui, vi) = ak)1(ui 6= vi)

dui
dvi

,

where J =
∑n

i=1
1(ui 6=vi)
dui

dvi

.

THEOREM 4.1. When the graph G is connected and non-bipartite, ω̂
(⋆)
k (1 ≤ k ≤ K) is

a consistent estimator of ωk, i.e., limn→∞ ω̂
(⋆)
k

a.s.−−→ ωk, where “a.s.” denotes “almost sure”
converge, i.e., the event happens with probability one.

To estimate statistics of node pairs in S
(1), we sample node pars [ui, vi] (1 ≤ i ≤ n) by applying

a RW over G, where ui and vi are nodes sampled by the RW at steps i and i+ 1 separately. We can
easily show that (ui, vi) is an edge in G. The probabilities of a RW sampling edges are equal when

the RW reaches steady state [Ribeiro and Towsley 2010], we estimate ω
(1)
k (1 ≤ k ≤ K) as follows

ω̂
(1⋆)
k =

1

n

n
∑

i=1

1(F (ui, vi) = ak).

THEOREM 4.2. When the graph G is connected and non-bipartite, ω̂
(1⋆)
k (1 ≤ k ≤ K) is a

consistent estimator of ω
(1)
k , i.e., limn→∞ ω̂

(1⋆)
k

a.s.−−→ ω
(1)
k .

4.2. Sampling Node Pairs From S
(2)

We present a new method named neighborhood random walk (NRW) to sample node pairs randomly

from S
(2). It can be viewed as a regular RW over a graph Ĝ = (V̂ , Ê), with node set V̂ = {(u, v) :

(u, v) ∈ E}, edge set Ê = {((u, v), (u, v′)) : (u, v) ∈ E, (u, v′) ∈ E, v 6= v′}. Ĝ is similar to the
line graph proposed in [Kang et al. 2011], which is used for calculating node centralities. Let (u, v)
be the initial edge for a NRW. Denote by N(u,v) the set of edges connected to u or v excluding the

edge (u, v). Clearly |N(u,v)| = du + dv − 2. Then NRW selects a random edge from N(u,v) as the
next sampled edge. Formally, the NRW can be modeled as a Markov chain with transition matrix
PNRW = [PNRW

e,e′ ], where e = (u, v) and e′ = (u′, v′) are edges in E, and PNRW
e,e′ is defined as the

probability that e′ is selected as the next-hop edge given that its current edge e. PNRW
e,e′ is computed

as PNRW
(u,v),(u′,v′) = 1

du+dv−2 if (u′, v′) ∈ N(u,v) and (u, v) ∈ E, otherwise PNRW
(u,v),(u′,v′) = 0. We

can easily show that a node (u, v) (an edge in G) in Ĝ connects to du+dv−2 nodes in Ĝ, its degree

in Ĝ is du + dv − 2. Meanwhile Ĝ has |Ê| = M/2 edges, where M =
∑

y∈V dy(dy − 1). Then we

have

THEOREM 4.3. When the graph G is connected and non-bipartite, NRW exhibits a stationary
distribution πE = (π(u,v) : (u, v) ∈ E), where π(u,v) is

π(u,v) =
du + dv − 2

M
, (u, v) ∈ E. (4)

The pseudo-code for the NRW based node pair sampling algorithm is depicted in Algorithm 1.
Let (xi, yi) and si be the i-th (i ≥ 0) visited edge and node. For each step i, the next visited edge
(xi+1, yi+1) is selected from N(xi,yi) at random, which has exactly one common node with current

edge (xi, yi). Clearly the common node is xi with probability
dxi

−1

dxi
+dyi

−2 , or yi with probability

dyi
−1

dxi
+dyi

−2 . By excluding the common node, we obtain two distinct nodes u and v in these two edges
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and output node pair [u, v] or [v, u] with equal probability. Each edge ((w, u), (w, v)) in graph Ĝ
can generate a node pair consisting of two distinct nodes u and v by excluding the common node

w, therefore the node pair [u, v] can be generated by m(u, v) different edges in Ĝ, where m(u, v)
is the number of common neighbors of u and v in the original graph G. NRW can be viewed as a

regular RW over graph Ĝ, and it samples edges randomly from Ĝ with the same probability [Lovász

1993], therefore a node pair (u, v) is sampled by NRW with a stationary probability
m(u,v)

M
. Based

on sampled pairs [ui, vi] (1 ≤ i ≤ n), we estimate ω
(2)
k (1 ≤ k ≤ K) as follows

ω̂
(2∗)
k =

1

H

n
∑

i=1

1(F (ui, vi) = ak)

m(ui, vi)
, (5)

where H =
∑n

i=1
1

m(ui,vi)
.

THEOREM 4.4. When the graph G is connected and non-bipartite, ω̂
(2⋆)
k (1 ≤ k ≤ K) is a

consistent estimator of ω
(2)
k , i.e., limn→∞ ω̂

(2⋆)
k

a.s.−−→ ω
(2)
k .

Next, we propose a better sampling method than NRW. [Lee et al. 2012] reveals that duplicated
samples generated by a RW will cause estimation errors. Clearly the NRW might generate dupli-

cated edge samples. To reduce the error of ω̂
(2∗)
k induced by the temporal correlation over random

samples generated by a NRW, we present an avoid backtracking NRW (ABNRW) method, which
uses the avoid backtracking method proposed in [Lee et al. 2012]. The ABNRW works as follows:
At each step i ≥ 2, it first computes |N(u,v)| = du + dv − 2. If |N(u,v)| ≥ 2, it selects an edge ran-

domly from N(u,v)\{(xi−1, yi−1)} as the next sampled edge (xi+1, yi+1). Otherwise the ABNRW

moves to the previous sampled edge, i.e., (xi+1, yi+1) = (xi−1, yi−1). From [Lee et al. 2012],

we can easily show that the ABNRW samples “nodes” (i.e., edges in the graph G) in the graph Ĝ
with the stationary distribution πE = (π(u,v) : (u, v) ∈ E) defined in (4). This is the same as
NRW. Then ABNRW generates node pairs based on sampled edges, which is the same as NRW.
The pseudo-code for the ABNRW based node pair sampling algorithm is depicted in Algorithm 2.

Finally we use the same estimator (5) to measure the concentration ω
(2)
k (1 ≤ k ≤ K) based on

node pairs sampled by ABNRW. It is important to point out that the estimator given in (5) is also
consistent for ABNRW.

5. DATA EVALUATION

Our simulation experiments are performed over a variety of real world graphs, which are sum-
marized in Table I. Wikipedia is a free encyclopedia written collaboratively by volunteers. Each
registered user has a talk page, which the user and other users can edit in order to communicate
and discuss updates to various articles on Wikipedia. Nodes in the network represent Wikipedia
users and a directed edge from nodes u to v represents that u voted on v. Gnutella is a peer-to-peer
file sharing network. Nodes represent hosts in the Gnutella network topology and edges represent
connections between the Gnutella hosts. Another network is Epinions, a general consumer review
website. Users build a who-trust-whom online social network, where a directed edge from nodes u
to v represents that u trusts v. Slashdot is a technology-related news website where a node repre-
sents a user and a directed edge from nodes u to v represents that u tags v as a friend or foe. We test
our sampling methods on their corresponding undirected graphs which were generated by ignoring
the directions of edges.

We introduce the error metric used to compare the different sampling methods. Mean square
error (MSE) is a common measure to quantify the error of an estimate ω̂ with respect to its true

value ω > 0. It is defined as MSE(ω̂) = E[(ω̂ − ω)2] = var(ω̂) + (E[ω̂]− ω)
2
. We can see

that MSE(ω̂) decomposes into a sum of the variance and bias of the estimator ω̂, both quantities are
important and need to be as small as possible to achieve good estimation performance. When ω̂ is an
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Algorithm 1: NRW pseudo-code.

/* n is the sampling budget, (x0, y0) is the initial edge, and (xi, yi) and si are the

visited edge and node at the i-th step. */

input : n and (x0, y0) ∈ E
output: node pairs [u1, v1], [u2, v2], . . . , [un, vn]

i← 0;
while i <= n do

/* U(0, 1) is a uniform (0, 1) random sample. */

Generate p← U(0, 1);
/* dx is the degree of a node x in G. */

if p <
dxi

−1

dxi
+dyi−2

then

/* randomNeighbor(x, Y ) returns a node selected randomly from the neighbors

of the node x excluding the nodes in the set Y */

si ← randomNeighbor(xi, {yi});
xi+1 ← xi and yi+1 ← si;
/* u and v are the nodes in two sequentially visited edges (xi, yi) and

(xi+1, yi+1) excluding their common node. */

u← yi and v ← si;

else
si ← randomNeighbor(yi, {xi});
xi+1 ← si and yi+1 ← yi;
u← xi and v ← si;

end
Generate q ← U(0, 1);
if q < 0.5 then

ui+1 ← u and vi+1 ← v;
else

ui+1 ← v and vi+1 ← u;
end
i← i+ 1;

end

unbiased estimator of ω, then MSE(ω̂) = var(ω̂). In our experiments, we study the normalized root
mean square error (NRMSE) to measure the relative error of the estimator ω̂k of ωk, k = 1, 2, . . . .
NRMSE(ω̂k) is defined as:

NRMSE(ω̂k) =

√

MSE(ω̂k)

ωk

, k = 1, 2, . . . .

When ω̂k is an unbiased estimator of ωk, then NRMSE(ω̂k) is equivalent to the normalized standard

error of ω̂k, i.e., NRMSE(ω̂k) =
√

var(ω̂k)/ωk. Note that our metric uses the relative error. Thus,
when ωk is small, we consider values as large as NRMSE(ω̂k) = 1 to be acceptable. In all our
experiments, we average the estimates and calculate their NRMSEs over 1,000 runs.

5.1. Distance Distribution

We evaluate the performance of UVS for estimating ω = (ω1, . . . , ωK), the distance distribu-
tion of the node pairs in S, where K is the graph diameter, and graphs used are the largest con-
nected component (LCC) of Wiki-vote and the LCC of P2P-Gnutella. Fig. 1 presents NRMSE(ω̂k)
(1 ≤ k ≤ K) for sampling budgets B = {0.001|S|, 0.005|S|, 0.01|S|}. When B ≥ 0.05|S|,
the NRMSE(ω̂k) is always smaller than one. On average, the ratios of NRMSE(ω̂k)|B=0.005|S|

to NRMSE(ω̂k)|B=0.001|S| are 0.436 and 0.440 for Wiki-vote and P2P-Gnutella graphs respec-

tively, the ratios of NRMSE(ω̂k)|B=0.01|S| to NRMSE(ω̂k)|B=0.005|S| are 0.709 and 0.719 for
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Algorithm 2: ABNRW pseudo-code.

/* n is the sampling budget, (x0, y0) is the initial edge, and (xi, yi) and si are the

visited edge and node at the i-th step. */

input : n and (x0, y0) ∈ E
output: node pairs [u1, v1], [u2, v2], . . . , [un, vn]

i← 0;
while i <= n do

/* dx is the degree of a node x in G */

if dxi
+ dyi = 3 then

xi+1 ← xi and yi+1 ← yi;
else

/* c records the common node between two edges (xi−1, yi−1) and (xi, yi). w

records the node differing (xi−1, yi−1) from (xi, yi). c and w are set to

null when i = 0. */

c← {xi−1, yi−1} ∩ {xi, yi};
w← {xi−1, yi−1} − {xi, yi};
/* U(0, 1) is a uniform (0, 1) random sample. */

Generate p← U(0, 1);

if p <
dxi

−1−1(c=xi)

dxi
+dyi−3

then

/* randomNeighbor(x, Y ) returns a node selected randomly from the

neighbors of the node x excluding nodes in the set Y . */

if c = xi then
si ← randomNeighbor(xi, {yi, w});

else
si ← randomNeighbor(xi, {yi});

end
xi+1 ← xi and yi+1 ← si;
/* u and v are the nodes in two sequentially visited edges (xi, yi) and

(xi+1, yi+1) excluding their common node. */

u← yi and v ← si;

else
if c = yi then

si ← randomNeighbor(yi, {xi, w});
else

si ← randomNeighbor(yi, {xi});
end
xi+1 ← si and yi+1 ← yi;
u← xi and v ← si;

end

end
Generate q ← U(0, 1);
if q < 0.5 then

ui+1 ← u and vi+1 ← v;
else

ui+1 ← v and vi+1 ← u;
end
i← i+ 1;

end
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Table I. Overview of Graph Datasets Used in Our Simulations. ”LCC” refers to the
largest connected component in the undirected graph generated by ignoring the di-
rections of edges.

Graph
Entire Graph LCC

nodes edges nodes edges

Wiki-vote [Leskovec et al. 2010a; 2010b] 7,115 103,689 7,066 103,663
P2P-Gnutella [Ripeanu et al. 2002] 6,301 20,777 6,299 20,776

soc-Epinions [Richardson et al. 2003] 75,879 508,837 75,877 508,836
soc-Slashdot [Leskovec et al. 2009] 77,360 905,468 77,360 905,468

Wiki-vote and P2P-Gnutella graphs respectively, and the ratios of NRMSE(ω̂k)|B=0.01|S| to

NRMSE(ω̂k)|B=0.001|S| are 0.307 and 0.316 for Wiki-vote and P2P-Gnutella graphs respectively.
From these results, we observe that the error of sampling B node pairs from S is roughly propor-

tional to 1/
√
B.
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Fig. 1. Average and NRMSE of distance distribution estimates.

5.2. Mutual Neighbor Count Distribution

The number of mutual neighbors for a pair of nodes is usually used as a metric to indicate the

strength of their relationship [Shi et al. 2007]. Define ω
(1)
k and ω

(2)
k as the fraction of node pairs with

k ≥ 1 mutual neighbors in S
(1) and S

(2) respectively. Fig. 2 shows the complementary cumulative

distribution function (CCDF) of ω(1) and ω
(2) for the graphs soc-Epinions and soc-Slashdot. The
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sizes of S(2) are 7.34 × 107 and 9.49 × 107 for soc-Epinions and soc-Slashdot respectively. The
statistics for the LCCs of soc-Epinions and soc-Slashdot are similar.
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Fig. 2. (soc-Epinions and soc-Slashdot) CCDF of the distributions of the node pairs in S
(1) and S

(2) by the mutual
neighbor count.

For S
(1), we evaluate the performance of sampling methods: IWVS and MHWVS pre-

sented in Section 3.2, and RW presented in Section 4.1 using the graphs soc-Epinions

and soc-Slashdot. Figs. 3 (a)–(f) present NRMSE(ω̂
(1)
k ) for sampling budgets B =

{0.001|S(1)|, 0.005|S(1)|, 0.01|S(1)|}. We find that the error of sampling B node pairs from S
(1)

is roughly proportional to 1/
√
B for each method. Figs. 3 (g)–(l) compare the NRMSEs of the three

sampling methods with the same sampling budget. It shows that RW and IWVS are slightly more
accurate than MHWVS, and RW almost has the same accuracy of IWVS.

For S
(2), we evaluate the performance of the following methods: IWVS and MH-

WVS presented in Section 3.3, and NRW presented in Section 4.2 using the graphs soc-

Epinions and soc-Slashdot. Figs. 4 (a)–(f) present NRMSE(ω̂
(2)
k ) for sampling budgets B =

{0.001|S(2)|, 0.005|S(2)|, 0.01|S(2)|}. When B > 0.05|S(2)|, all NRMSE(ω
(2)
k ) are smaller than

one for each sampling method. Figs. 4 (g)–(l) compare the NRMSEs of three sampling methods
under the same sampling budget. It shows that 1) NRW, ABNRW, and IWVS have much smaller er-
rors than MHWVS; 2) ABNRW is more accurate than NRW; 3) ABNRW almost exhibits the same
accuracy as IWVS.

5.3. Similarity distribution

It is hard to obtain all users’ interests in a real large OSN due to resource limits. Using publicly
available graph topologies, we manually generate interests and distribute them over these graphs,
and use them as benchmark datasets for our simulation experiments. We use the following interest
distribution schemes (IDSs) to distribute interests over a graph:

• IDS I: It distributes each interest to a node independently selected from the graph at random.

• IDS II: To distribute an interest possessed by k different nodes, it first selects a random node v
that can reach at least k − 1 different nodes, where two nodes are reachable if there is at least
one path between them in the undirected graph. Then we distribute this interest to the node v
and the closest k − 1 nodes connected to v.

• IDS III: It distributes interests over undirected graphs using independent cascade model [Gold-
enberg et al. 2001]. First distribute an interest i to a random selected node v. Then distribute i to
the other nodes from v iteratively. When a new node first receives interest i, it is given a single
chance to distribute i to each of its neighbors currently without i with a probability pS .
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(c) (soc-Epinions) RW
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(d) (soc-Slashdot) IWVS
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(e) (soc-Slashdot) MHWVS
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(f) (soc-Slashdot) RW
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(g) (soc-Epinions) B = 0.001|S(1)|
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(h) (soc-Epinions) B = 0.005|S(1)|
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(i) (soc-Epinions) B = 0.01|S(1)|
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(j) (soc-Slashdot) B = 0.001|S(1)|
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(k) (soc-Slashdot) B = 0.005|S(1)|
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Fig. 3. (soc-Epinions and soc-Slashdot) NRMSE of distribution estimates of the node pairs in S
(1) by the mutual neighbor

count.

IDS I models the scenario where interests are distributed independently with the graph topology.
Unlike IDS I, IDS II and IDS III are used to model the scenario where interests are spreading over
undirected and directed graphs respectively.

Define the truncated Pareto distribution as θk = α
γkα+1 , k = 1, . . . ,W , where α > 0 and

γ =
∑W

k=1
α

kα+1 . In the following experiments, we generate 105 distinct interests for IDS I and
IDS II, and for each interest the number of nodes possessed it is a random variable selected from
{1, . . . ,W} according to the truncated Pareto distribution with α = 1 and W = 103. For CDS
III, we generate 104 distinct interests and set pS = 0.01. The graphs used are the LCCs of P2P-
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(b) (soc-Epinion)MHWVS
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(c) (soc-Epinion)NRW
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(d) (soc-Slashdot)IWVS
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(e) (soc-Slashdot)MHWVS
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(f) (soc-Slashdot)NRW
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(g) (soc-Epinion)B = 0.001|S(2)|
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Fig. 4. (soc-Epinion and soc-Slashdot) NRMSE of distribution estimates of the node pairs in S(2) by the mutual neighbor
count.

Gnutella and Wiki-vote, where the sizes of S(2) are 2.69× 105 and 3.46× 106 respectively. Define

ωk, ω
(1)
k and ω

(2)
k as the fraction of the node pairs with k ≥ 1 common interests in S, S(1), and S

(2)

respectively. Fig. 5 shows the CCDFs of ω, ω(1), and ω
(2) generated by our simulations.

Figure 6 shows NRMSEs of sampling methods for the set S under the same number of sampled
pairs B = 0.01|S|. Results for IDS II show that UVS is more accurate for estimating ωk with
small k, and RW is more accurate for estimating ωk with large k. This is because RW is biased to
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Fig. 5. Distributions of the node pairs in S, S(1) , and S(2) by the common interest count.

sample high degree nodes, and IDS II generates more interests for high degree nodes than nodes
with small degrees. It is similar to the observation for estimating degree distribution using RW and

UVS [Ribeiro and Towsley 2010]. Figs. 7 shows NRMSEs of sampling methods for the set S(1)

under the same number of sampled pairs B = 0.05|S(1)|. We find that IWVS, MHWVS, and RW

almost have the same accuracy. Figs. 8 shows NRMSEs of sampling methods for the set S(2) under

the same number of sampled pairs B = 0.01|S(2)|. We can see that IWVS, MHWVS, and ABNRW
almost have the same accuracy for IDS I and IDS III. For IDS II, our results show that IWVS has the

smallest errors for estimating ω
(2)
k with small k, ABNRW has much smaller errors for estimating

ω
(2)
k with small k than MHWVS for the graph Wiki-vote, and ABNRW almost exhibits the same

accuracy as MHWVS for the graph P2P-Gnutella.

6. APPLICATIONS

In this section, we conduct real experiments on Foursquare and two popular Chinese OSNs: Douban
and Xiami.

6.1. Real Experiments on Foursquare

We sampled 22, 247 users and 22, 500 edges from Foursquare using RWs and a NRW respectively.
For a sampled Foursquare user, we collected his/her friends, home location (e.g., city and country),
and tips on venues (i.e., places like coffee shops, restaurants, shopping malls). Based on these sam-
ples, we compare the similarities of locations and interested venues of a pair of users selected from

S
(1), S(1), and S

(2). The result is shown in Figure 9. Compared to a pair of users selected from S,
the probability of two friends living in the same city or country is 31 times larger, and the probability
of two friends checking in the same place is 113 times larger. Moreover, when two users share a
common friend, the probability of they living in the same city/country increases to 17 times larger,
and the probability of they checking in the same place increases to 64 times larger in comparison
with a pair of users selected from S.
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Fig. 6. (Wiki-vote and p2p-Gnutella) Compared NRMSE of distribution estimates of the node pairs in S by the common
interest count for different methods.
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Fig. 7. (Wiki-vote and p2p-Gnutella) Compared NRMSE of distribution estimates of the node pairs in S
(1) by the common

interest count for different methods.

6.2. Real experiments on Douban and Xiami

Douban mainly provides an exchange platform for reviews and recommendations on movies, books,
and music albums. It has approximately 6 million registered users as of 2009 [Zhao et al. 2011].
Each user of Douban maintains three lists for books, movies and music albums respectively. Xiami
is a popular website devoted for music streaming service and music recommendation, and has ap-
proximately 1.7 million users as of 2011 [Wang et al. 2012]. Each user of Xiami maintains a list
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Fig. 8. (Wiki-vote and p2p-Gnutella) Compared NRMSE of distribution estimates of the node pairs in S
(2) by the common

interest count for different methods.
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(1) , S(1) , and S

(2) .

of his/her favorite artists. Fig. 10 shows statistics of users’ interests in Xiami and Douban, which
is measured based on 101,401 unique Douban users and 524,283 unique Xiami users sampled by a
RW. On average, a Xiami user is interested in 8.76 artists, and a Douban user in 96.03 items consist-
ing of 46.26 movies, 29.43 books, and 20.34 music albums. To measure interest similarities of users
in Xiami and Douban, we collected 171,860 Xiami user pairs and 50,700 Douban user pairs from

the set S, 105,736 Xiami user pairs and 85,631 Douban user pairs from the set S(1), and 359,522

Xiami user pairs and 96,361 Douban user pairs from the set S(2). As shown in Fig. 11, we observe

that user pairs in S
(1) and S

(2) have much more common interests than user pairs in S, and user

pairs in S
(2) have a fewer common interests than user pairs in S

(1). This is also true for three dif-
ferent kinds of interests, movies, books, music albums in Douban, which is shown in Fig. 12. This
indicates that users in Xiami and Douban tend to connect to ones with the similar interests.

7. RELATED WORK

Let us provide a brief summary on related work. Singla et al. [Singla and Richardson 2008] reveal
that significant homophily is present in the MSN Messenger network based on the study of user
pairs’ similarities in terms of their Web search topics, and personal characteristics such as their
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Fig. 11. (Xiami and Douban) Statistics of users’ common interests.

ages and locations. Similar results also are found in [Leskovec and Horvitz 2008]. There are also
works on measuring the distance statistics of user pairs in OSNs [Leskovec et al. 2005; Leskovec
and Horvitz 2008; Kwak et al. 2010]. Leskovec et al. [Leskovec et al. 2005] show that the effective
diameter for a range of real networks gradually decreases as the network grows, which contra-
dicts the basic assumption of existing network evolution models. Previous graph sampling work
focuses on designing accurate and efficient methods for measuring graph characteristics, such as
the node degree distribution [Stutzbach et al. 2009; Rasti et al. 2009; Gjoka et al. 2010; Ribeiro
and Towsley 2010; Ribeiro et al. 2012] and the topology of nodes’ groups [Kurant et al. 2011b].
These sampling methods have been widely applied to characterize complex networks, such as P2P
networks [Massoulié et al. 2006; Gkantsidis et al. 2006; Stutzbach et al. 2009; Rasti et al. 2009],
and OSNs [Mislove et al. 2007; Ahn et al. 2007; Gjoka et al. 2010; Gjoka et al. 2011; Kurant
et al. 2011a]. Leskovec and Faloutsos [Leskovec and Faloutsos 2006] conducted simulations on
several real networks to study relations between characteristics of the original graph and the sub-
graph generated by different sampling methods. We summarize previous graph sampling work as
follows: Breadth-First-Search (BFS) introduces bias towards high-degree nodes that is unknown
and difficult to remove in general graphs [Achlioptas et al. 2005; Kurant et al. 2010; 2011]. RW is
biased to sample high degree nodes, however its bias is known and can be corrected for [Heckathorn
2002; Salganik and Heckathorn 2004]. Compared to UVS, RW has smaller estimation errors for the
characteristics of high degree nodes, especially for networks where UVS is costly (e.g., Flickr, Face-
book, and MySpace) [Ribeiro and Towsley 2010]. Compared to RW that reweights sampled values
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Fig. 12. Statistics of users’ common interested movies, books, and music albums in Douban.

to obtain an unbiased estimate of graph characterizes, Metropolis-Hasting RW (MHRW) [Zhong
and Shen 2006; Stutzbach et al. 2009; Gjoka et al. 2010] modifies the RW procedure using the
Metropolis-Hasting technique, which aims to sample each node uniformly. The accuracy of RW
and MHRW is compared in [Rasti et al. 2009; Gjoka et al. 2010], and in a variety of experiments es-
timates obtained by RW are shown to be consistently more accurate than or equal to that of MHRW.
The mixing time of RW determines the efficiency of the sampling, and it is found practically much
larger than commonly believed [Mohaisen et al. 2010] for many OSNs. There are a lot of work to
decrease the mixing time [Boyd et al. 2004; Ribeiro and Towsley 2010; Avrachenkov et al. 2010;
Kurant et al. 2011a; Gjoka et al. 2011]. To the best of our knowledge, this paper is the first to study
and provide a sound theoretical analysis of the problem of sampling node pairs with constraints in
the graph.

8. CONCLUSIONS

In this work we systemically study the problem of estimating characteristics of the node pairs in S,

S
(1), and S

(2) for ones with/witout the complete graph topology. We propose two kinds of sampling
methods based on UVS and RW techniques, and prove that they are consistent estimators. Our
simulation results show that RW based methods and UVS based methods almost have the similar
accuracy, especially for the sampling methods for S(1). Finally we apply our methods to Foursquare,
Douban and Xiami OSNs, and discover that there is a strong tendency for users to connect to others
with common interests.
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Appendix

LEMMA 8.1. [Roberts and Rosenthal 2004; Jones 2004; Lee et al. 2012] Given that the undi-
rected graph G = (V,E) is connected and non-bipartite. Let ui be the i-th node sampled by a
RW, where 1 ≤ i ≤ n and n be the number of samples. Denote by π = (πv, v ∈ V ) the sta-

tionary distribution of the RW, where πv = dv

2|E| . Then, for any function f(v) : V → R, where
∑

∀v∈V f(v) < ∞,

lim
n→∞

1

n

n
∑

i=1

f(ui)
a.s.−−→

∑

∀v∈V

f(v)πv .

LEMMA 8.2. [Meyn and Tweedie 2009, Theorem 17.2.1] [Ribeiro and Towsley 2010] Given
that the undirected graph G = (V,E) is connected and non-bipartite. Let (ui, vi) be the i-th edge
sampled by a RW, where 1 ≤ i ≤ n and n be the number of samples. Then, for any function
f(u, v) : V × V → R, where

∑

∀(u,v)∈E f(u, v) < ∞,

lim
n→∞

1

n

n
∑

i=1

f(ui, vi)
a.s.−−→ 1

|E|
∑

∀(u,v)∈E

f(u, v).

8.1. Proof of Theorem 3.1

We have the following equation for each i = 1, . . . , n, and k = 1, . . . ,K

E

[

1(F (ui, vi) = ak)

m(ui, vi)

]

=
∑

[u,v]∈S(2)

π
(2)
[u,v] ×

1(F (u, v) = ak)

m(u, v)

=
∑

[u,v]∈S(2)

1(F (u, v) = ak)

M
(6)

=
ω
(2)
k

m̄
. (7)

The second equation holds because (2), and the last equation holds because
∑

[u,v]∈S(2)1(F (u, v)=

ak) = |S(2)|ω(2)
k , and m̄ = M

|S(2)|
. Meanwhile,

Var

[

1(F (ui, vi) = ak)

m(ui, vi)

]

=
∑

[u,v]∈S(2)

π(2)
u,v ×

1(F (u, v) = ak)

m2(u, v)
− (ω

(2)
k )2

m̄2

=
∑

[u,v]∈S(2)

1(F (u, v) = ak)

Mm(u, v)
− (ω

(2)
k )2

m̄2
. (8)

Similar to (7) and (8), we have

E

[

1

m(ui, vi)

]

=
1

m̄
, (9)

and

Var

[

1

m(ui, vi)

]

=
∑

[u,v]∈S(2)

1

Mm(u, v)
− 1

m̄2
. (10)

Denote

ξk,1 =
m̄

n

n
∑

i=1

1(F (ui, vi) = ak)

m(ui, vi)
, and ξk,2 =

m̄H

n
.
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Then, from (7) and (9) we have

E[ξk,1] = ω
(2)
k , and E[ξk,2] = 1.

Application of the law of large numbers yields limn→∞ ξk,1
a.s.−−→ ω

(2)
k and limn→∞ ξk,2

a.s.−−→ 1.

Therefore we have limn→∞ ω̂
(2)
k = limn→∞

ξk,1

ξk,2

a.s.−−→ ω
(2)
k .

Since IWVS samples node pairs independently, we have the following equation from (8)

Var[ξk,1] =
m̄2

n

∑

[u,v]∈S(2)

1(F (u, v) = ak)

Mm(u, v)
− (ω

(2)
k )2

m̄2

=
1

n





m̄

|S(2)|
∑

[u,v]∈S(2)

1(F (u, v) = ak)

m(u, v)
− (ω

(2)
k )2





≤ 1

n

(

m̄ω
(2)
k − (ω

(2)
k )2

)

.

The last inequality holds because of
∑

[u,v]∈S(2)1(F (u, v) = ak) = |S(2)|ω(2)
k and m(u, v) ≥ 1.

Similarly, from (10) we have

Var[ξk,2] =
m̄2

n

∑

[u,v]∈S(2)

1

Mm(u, v)
− 1

m̄2

=
1

n





m̄

|S(2)|
∑

[u,v]∈S(2)

1

m(u, v)
− 1





≤ 1

n
(m̄− 1).

Using Chebyshev’s inequality, we obtain

P
(

|ξk,1 − ω
(2)
k | ≤ ǫω

(2)
k

)

≥ 1− 1

nǫ2

(

m̄

ω
(2)
k

− 1

)

,

andP (|ξk,2 − 1| ≤ ǫ) ≥ 1− 1
nǫ2

(m̄−1). Then we have inequalities (1−ǫ)ω
(2)
k ≤ ξk,1 ≤ (1+ǫ)ω

(2)
k

and 1 − ǫ ≤ ξk,2 ≤ 1 + ǫ with probability P
(

|ξk,1 − ω
(2)
k | ≤ ǫω

(2)
k

)

+ P (|ξk,2 − 1| ≤ ǫ) −

P
(

|ξk,1 − ω
(2)
k | ≤ ǫω

(2)
k or |ξk,2 − 1| ≤ ǫ

)

, which is not smaller than 1 − 1
nǫ2

(

m̄

ω
(2)
k

+ m̄− 2

)

.

Therefore, we have the following inequalities

1− ǫ

1 + ǫ
ω
(2)
k ≤ ω̂

(2)
k ≤ 1 + ǫ

1− ǫ
ω
(2)
k

with probability at least 1− 1
nǫ2

(

m̄

ω
(2)
k

+ m̄− 2

)

.

8.2. Proof of Theorem 4.1

This sampling method can be viewed as a regular RW over the graph G(2) = (V (2), E(2)), where

V (2) = {[u, v] : u, v ∈ V } and E(2) = {([u, v], [x, y]) : (u, x), (v, y) ∈ E}. When G(2) is

connected and non-bipartite. Then RW performed over G(2) exhibits a stationary distribution πS =
(π[u,v] : u, v ∈ V ), where π[u,v] is computed as π[u,v] =

dudv

4|E|2 , u, v ∈ V . From Lemma 8.1, we
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have

lim
n→∞

1

n

n
∑

i=1

1(F (ui, vi) = ak)1(ui 6= vi)

dui
dvi

a.s.−−→
∑

∀(u,v)∈V (2)

1(F (u, v) = ak)1(u 6= v)

dudv
π[u,v]

=
1

4|E|2
∑

∀[u,v]∈S

1(F (u, v) = ak)

=
|V |(|V | − 1)

4|E|2 ωk

and

lim
n→∞

J

n

a.s.−−→
∑

∀(u,v)∈V (2)

1(u 6= v)

dudv
π[u,v] =

|V |(|V | − 1)

4|E|2 .

Therefore we have limn→∞ ω̂
(⋆)
k

a.s.−−→ ωk.

8.3. Proof of Theorem 4.2

From Lemma 8.2, we have

ω̂
(1⋆)
k

a.s.−−→ 1

|E|
∑

∀(u,v)∈E

1(F (ui, vi) = ak)

=
1

2|E|
∑

∀(u,v)∈S(1)

1(F (u, v) = ak)

= ω
(1)
k .

8.4. Proof of Theorem 4.3

Suppose that the NRW is currently at edge (u, v) with probability distribution π(u,v), then edge

(u′, v′) ∈ E is selected with probability p(u′,v′) computed as

p(u′,v′) =
∑

(u,v)∈N(u′,v′)

π(u,v)P
NRW
(u,v),(u′,v′) =

|N(u′,v′)|
M

= π(u′,v′).

Therefore πE is the stationary distribution of a Markov chain with transition matrix PNRW. When

G is connected and non-bipartite, Ĝ is also connected and non-bipartite. A node (u, v) (an edge in

G) in graph Ĝ connects to du + dv − 2 nodes in Ĝ, its degree in Ĝ is du + dv − 2, and NRW can

be viewed as a regular RW on graph Ĝ, therefore, from [Lovász 1993] we find that the probability
of NRW being at an edge (u, v) ∈ E converges to πE .

8.5. Proof of Theorem 4.4

NRW can be viewed as a regular RW over the graph Ĝ = (V̂ , Ê), where the node set V̂ = {(u, v) :
(u, v) ∈ E}, the edge set Ê = {((u, v), (u, v′)) : (u, v) ∈ E, (u, v′) ∈ E, v 6= v′}. When Ĝ is
connected and non-bipartite, NRW exhibits a stationary distribution πE = (π(u,v) : (u, v) ∈ E),

where π(u,v) is π(u,v) = du+dv−2
M

. For ê = ((u, u′), (v, v′)) an edge in Ê, where u and v are two
different nodes, define

Φ(ê) =
1(F (u, v) = ak) + 1(F (v, u) = ak)

2m(u, v)
.
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Let Q be a random variable with probability distribution P (Q = 0) = P (Q = 1) = 0.5. Define

Ψ(ê, Q) =
1(F (u, v) = ak)

m(u, v)
(1−Q) +

1(F (v, u) = ak)

m(u, v)
Q.

Denote by êi = ((xi−1, yi−1), (xi, yi)) (1 ≤ i ≤ n) edges in Ĝ sampled by NRW, where
(xi−1, yi−1) and (xi, yi) are edges in the original graph G visited by NRW at steps i − 1 and i.
Let u′

i and v′i be the two distinct nodes in (xi−1, yi−1) and (xi, yi) respectively. Let Qi be a random
variable with probability distribution P (Qi = 0) = P (Qi = 1) = 0.5. Since NRW generates a
node pair [ui, vi] at step i as [ui, vi] = [u′

i, v
′
i] when Qi = 0, and [ui, vi] = [v′i, u

′
i] when Qi = 1,

we have

ω̂
(2⋆)
k =

1

H

n
∑

i=1

1(F (ui, vi) = ak)

m(ui, vi)
=

1

H

n
∑

i=1

Ψ(êi, Qi)

where H =
∑n

i=1
1

m(ui,vi)
. For ê = ((u, u′), (v, v′)) an edge in Ê, where u and v are two different

nodes, denote Γ(ê) = {i : êi = ê, 1 ≤ i ≤ n}. When Ĝ is connected and non-bipartite, we easily
show that limn→∞ |Γ(ê)| = ∞. Then,

lim
n→∞

1

n

n
∑

i=1

Ψ(êi, Qi)

= lim
n→∞

1

n

∑

ê∈Ê

∑

i∈Γ(ê)

1(F (u, v) = ak)

m(u, v)
(1 −Qi) + lim

n→∞

1

n

∑

ê∈Ê

∑

i∈Γ(ê)

1(F (v, u) = ak)

m(u, v)
Qi

= lim
n→∞

1

n

∑

ê∈Ê

1(F (u, v) = ak)

m(u, v)

∑

i∈Γ(ê)

(1 −Qi) + lim
n→∞

1

n

∑

ê∈Ê

1(F (v, u) = ak)

m(u, v)

∑

i∈Γ(ê)

Qi.

Since random variables Qi are drawn from (0, 1) uniformly and independently, application of the

law of large numbers yields limn→∞

∑
i∈Γ(ê) Qi

|Γ(ê)| = limn→∞

∑
i∈Γ(ê)(1−Qi)

|Γ(ê)| = 1
2 . Then we have

lim
n→∞

1

n

n
∑

i=1

Ψ(êi, Qi) = lim
n→∞

1

n

∑

ê∈Ê

|Γ(ê)|1(F (u, v) = ak) + 1(F (v, u) = ak)

2m(u, v)

= lim
n→∞

1

n

∑

ê∈Ê

|Γ(ê)|Φ(ê)

= lim
n→∞

1

n

n
∑

i=1

Φ(êi).

From Lemma 8.2, we have

lim
n→∞

1

n

n
∑

i=1

Φ(êi)
a.s.−−→ 1

|Ê|
∑

∀(ê)∈Ê

Φ(ê)

=
2

M

∑

∀[u,v]∈S(2)

m(u, v) · 1(F (u, v) = ak)

2m(u, v)

=
1

M
|S(2)|ω(2)

k .
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Therefore

lim
n→∞

1

n

n
∑

i=1

Ψ(êi, Qi)
a.s.−−→ 1

M
|S(2)|ω(2)

k . (11)

Similarly, from Lemma 8.2 we have

lim
n→∞

H
a.s.−−→ 1

|Ê|
∑

∀u6=v,((u,u′),(v,v′))∈Ê

1

m(u, v)

=
1

M

∑

∀[u,v]∈S(2)

m(u, v)× 1

m(u, v)

=
1

M
|S(2)|. (12)

From (11) and (12), we have limn→∞ ω̂
(2⋆)
k

a.s.−−→ ω
(2)
k .
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