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ABSTRACT
Android has a dominating share in the mobile market and
there is a significant rise of mobile malware targeting An-
droid devices. Android malware accounted for 97% of all
mobile threats in 2013 [26]. To protect smartphones and
prevent privacy leakage, companies have implemented vari-
ous host-based intrusion prevention systems (HIPS) on their
Android devices. In this paper, we first analyze the imple-
mentations, strengths and weaknesses of three popular HIPS
architectures. We demonstrate a severe loophole and weak-
ness of an existing popular HIPS product in which hackers
can readily exploit. Then we present a design and imple-
mentation of a secure and extensible HIPS platform — “Pa-
tronus”. Patronus not only provides intrusion prevention
without the need to modify the Android system, it can also
dynamically detect existing malware based on runtime in-
formation. We propose a two-phase dynamic detection algo-
rithm for detecting running malware. Our experiments show
that Patronus can prevent the intrusive behaviors efficiently
and detect malware accurately with a very low performance
overhead and power consumption.

1. INTRODUCTION
We now live in a mobile digital era and smartphones are

becoming indispensable as they are being used as personal
communication and computing devices. Unfortunately, smart-
phones are also becoming hackers’ biggest target [44]. An-
droid is an open source operating system for mobile devices.
Its market share has reached around 80 percent of all smart-
phone shipments in the second quarter of 2013 [35]. Due to
its large market share, it becomes the major target for hack-
ers. A recent report [26] indicated that 97 percent of these
threats targeted Android devices. Furthormore McAfee [39]
showed that 17,000 new Android malware were found in the
second quarter of 2013. All these indicate that Android de-
vices are facing an explosive growth of malware threat.
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Permission mechanism is the primary security protection
in Android. When an Android user installs a mobile appli-
cation (app for short), the system will alert the user about
the required permissions of that app. But this mechanism
does not provide an adequate level of security. As shown
in [28, 31, 38, 16], there are plenty of Android permission
abuses. Due to the working mechanism and the open source
nature of Android system, it is easy to write malware vari-
ants which can bypass the detection of anti-virus software.
Recently, researchers [59, 48] have shown that some of the
existing anti-virus software cannot effectively detect mal-
ware variants which were generated by simple transforma-
tions. Most of the existing anti-virus engines are using static
analysis and malware signatures [62, 32] for detection. To
make up for the limitations of static analysis, several sys-
tems [24, 55, 8] aim to detect the runtime behaviors by us-
ing dynamic analysis. However, these systems are mainly for
post-mortem analysis and with a high likelihood, the mal-
ware under investigation may have already infected many
devices. Furthermore, for these dynamic analysis systems,
how to automatically trigger the malicious behaviors is still
an ongoing research problem [58, 47]. Therefore, the security
community has been advocating the use of a host-based in-
trusion prevention system (HIPS), which is an installed soft-
ware on a mobile device to monitor suspicious activities, and
to block and report malicious behaviors by analyzing events
at realtime. HIPS can be installed on mobile devices to pro-
vide protection against apps which have runtime malicious
behaviors. HIPS can also dynamically intercept the apps
at runtime and notify users when the malware invoke some
dangerous application program interfaces (APIs). In fact,
the use of HIPS is gaining popularity and has been imple-
mented in products like Jinshan Mobile Duba [9], LBE [10],
360 Mobile Safe [13], etc.

In general, there are three approaches to implement HIPS
in Android, they are: (1) system patching, (2) application
repackaging and (3) API hooking. System patching is to
modify the Android operating system with new permission
management functions. Application repackaging is to disas-
semble a mobile app, add new policy enforcement to it, and
then repackage the mobile app as a new app. API hooking
is to intercept mobile app’s API calls at runtime so as to in-
spect malicious behaviors. Each of these approaches has its
own limitations and may bring new vulnerabilities. In Sec-
tion 3, we present in detail the implementation issues as well
as weaknesses of these three popular HIPS implementations.

Given the limitations of static and/or dynamic analysis,
as well as weaknesses of existing HIPS products, we propose



an enhanced HIPS called Patronus, which not only performs
a secure policy enforcement, but can also dynamically detect
existing malware using runtime information. To guarantee
the ease of deployment, Patronus does not require any mod-
ifications on the Android firmware or mobile apps. Patronus
performs runtime policy enforcement on the system level to
inspect malicious behaviors. Moreover, Patronus provides a
host-based runtime detection which can halt malicious be-
haviors execution. We make the following contributions:
• To the best of our knowledge, this is the first work

which systematically analyzes three popular frameworks
of HIPS and exposes various security vulnerabilities of
these existing HIPS architectures. We also illustrate
how to exploit the vulnerability of a popular HIPS
product so as to bypass malware detection.
• We design and implement a secure architecture Pa-

tronus, which can prevent mobile malware intrusions
and can detect malware at runtime. Patronus ad-
dresses the security issues we reveal in the current
HIPS products and effectively prevent intrusions.
• We design and implement a two-phase detection algo-

rithm based on the runtime intrusion information to
detect existing malware. The algorithm can determine
and prevent malware at runtime (online), while tradi-
tional signature-based static method can only achieve
this in an offline manner.

The rest of the paper is organized as follows: Section 2
introduces the necessary background on Android. In Sec-
tion 3, we present the strengths and weaknesses of three
popular HIPS implementations. In Section 4, we propose
our Patronus system, and describe the method to prevent
intrusions as well as proposing a two-phase algorithm for
dynamic malware detection. In Section 5, we present our
experimental results to illustrate the effectiveness and per-
formance of Patronus. Section 6 presents the related work
and the conclusion is given in Section 7.

2. BACKGROUND
In this section, we introduce the architecture of Android

system, its binder inter-process communication mechanism,
as well as the Dalvik Virtual Machine and the Native Develop-
ment Kit in Android. This background is essential to un-
derstand how one can create a HIPS for Android devices.

2.1 Android Architecture
Android is an open source operating system for mobile de-

vices developed by Google. The system consists of five func-
tional layers: (1) kernel, (2) libraries, (3) runtime support,
(4) application framework and (5) applications. Figure 1
presents the Android architecture. Android utilizes Linux
as the core kernel with various drivers for hardware commu-
nication. The libraries layer contains native libraries such as
libc or OpenGL so as to support higher application layers.
The runtime layer consists of the Dalvik Virtual Machine
(DVM) with various runtime libraries. DVM is a special
Java virtual machine to execute Android apps. Application
framework layer contains basic services to provide activity
management, SMS management, etc. Lastly, all Android
apps are running on top of these layers.

Android apps are mostly written in Java using the An-
droid SDK , and DVM is responsible for interpreting and
executing these apps. Each app is running within its own
DVM. The Android system assigns a unique ID for each

Figure 1: Architecture of Android system.

DVM to achieve process (or app) isolation. This sandboxing
mechanism provides the basic security protection between
apps. Android also provides a special inter-process commu-
nication mechanism called the Binder. Each app has to go
through the Binder (which is in the kernel layer) so as to
communicate with other apps or services.

Besides using DVM sandbox, permission is another secu-
rity mechanism provided by Android. Only when an app has
explicitly declared its permissions in its AndroidManifest.xml
file, then the app can use the corresponding APIs. Moreover,
when installing an app, the system will display a dialog win-
dow to alert users about the declared permissions of that
app. However, most users usually accept these permission
alerts without paying much attention at installation. Once
the installation is completed, the system will not warn users
in later invocations. Many Android malware take advantage
that most users are negligent and simply accept the permis-
sion alerts, so the malware can often obtain enhanced per-
missions (e.g., sending premium SMS messages to subscribe
chargeable service in the background).

2.2 Binder Mechanism
Binder is a specialized inter-process communication (IPC)

mechanism in Android. Since apps are running in their own
DVM sandboxes, they need to communicate through the
Binder so as to utilize others’ services. Figure 2 shows the
basic flow of the Binder mechanism. For instance, if an
app wants to send an SMS message, it should first (1) con-
tact the Service Manager which contains the information
of all registered services. The Service Manager will provide
a handler to communicate with the ISms Service which is
responsible for sending SMS messages. Once the app has
the handler, it can (2) ask the ISms Service to send SMS
messages, then (3) the ISms Service will process the re-
quest and send the message through the SMS Driver. Note
that all communications have to go through the Binder by
sending transactions with the required information (i.e., the
parcel). Transaction is a communication procedure between
two processes. In Android, the Binder transaction is used
to send service requests (which is represented by a transac-
tion code) to the corresponding processes. There are two
stages to complete a transaction. First, the Binder will de-
liver a data parcel to the destination process containing the
receiver information (i.e., transaction descriptor). Secondly,
after completing the request, the received process will save
the result in a reply parcel. In the above example of send-
ing an SMS message, there are two transactions and they
are completed in three steps. The first transaction requests
for the ISms Service handler. The second transaction re-
quests for sending an SMS message. In the second trans-
action, the data parcel contains the ISms Service descriptor
(com.android.internal.telephony.ISms) and information



Figure 2: Binder IPC mechanism.

(e.g., destination address and text content) for sending an
SMS message. In the third step, the ISms Service sends
the request and saves the result in a reply parcel.

Note that this procedure is similar to the client-server
communication model. Apps are on the client side and they
are executing within their own sandboxes, while various ser-
vices are on the server side and they are managed by the
Service Manager. The System Services are a group of ser-
vices related to the Android system (e.g., Account Manager
Service, Battery Service and Network Management Service).
Moreover, an app can export its service to the public by
registering to the Service Manager. This special Binder
mechanism not only provides a flexible inter-process com-
munication framework, but also isolates apps and services
so as to protect the system.

2.3 DVM & Native Development Kit
Dalvik Virtual Machine (DVM) is a special component in

the Android system. The apps are written in Java and com-
piled into a bytecode file (i.e., class file) with Android SDK.
These bytecodes will be converted to Dalvik executable files
(i.e., dex file) before installation. To instantiate an app,
the DVM will interpret and run the app in a different vir-
tual machine. In order to integrate with other C/C++ na-
tive libraries, Android provides the Native Development Kit
(NDK) for developers to implement parts of the app using
native code such as C/C++. Moreover, Java Native In-
terface (JNI) provides a bridge between the Java code and
C/C++ code so developers can invoke native code easily.
Therefore, for the system, DVM can use native libraries
(e.g., OpenGL, libbinder, libc) to support its execution.

3. HIPS
In this section, we discuss three popular frameworks to

implement host-based intrusion prevention systems (HIPS):
(1) system patching, (2) application repackaging and (3) API
hooking. In particular, we present their implementations,
strengths and weaknesses. We also demonstrate how to by-
pass a popular HIPS product.

3.1 System Patching
Before Android 4.3, there was no HIPS integrated in the

Android OS, and users have experienced various forms of
permission abuses since malware can take advantage of the
system loopholes to achieve permission escalation. Because
Android is an open source project, researchers and compa-
nies have developed patches for the Android system [53].
In fact, some third-party system images [7] have integrated
with these patches and they can manage the permission us-
age for each app. Some mobile phone vendors (e.g., Huawei)
also provide patched images for their phones and users can
install these modified images on their devices. In Android
4.3, Google also provides system patching. For example,
there is a hidden function called App Ops [45], which is a
form of HIPS and by using App Ops, one can disable cer-

tain permissions of an app. However, this App Ops has been
removed in Android 4.4.

To install these HIPS in Android, users need to update to
Android 4.3, or install the patched system image from their
vendors. However, as shown in the latest report [30], only
10% of Android phones are powered by Android 4.3 or 4.4.
Furthermore, if users want to install any patched image,
they have to find the appropriate third-party system im-
ages which match with their phone models. For this reason,
many users often opt not to install these patches. These im-
ply that there are a large percentage of smartphones which
are vulnerable. Moreover, because one has to use App Ops

to disable permission before launching the apps, systems like
App Ops cannot prevent intrusions at runtime. Hence, even
with system patches, many Android phones are still vulner-
able to malware attack.

3.2 Application Repackaging
Android application package file (or apk file) is a zip file

which contains Dalvik executable file (classes.dex) and
other resource files (e.g., images or audio). An app needs to
declare its permission usage in the AndroidManifest.xml file
within the apk package so as to use the corresponding APIs.
Thus, to prevent an app using sensitive APIs, one can delete
certain permission declarations in the AndroidManifest.xml
and repackage it as a new apk file. App Shield [5] is an app
to manage app permission using this technique.

Since the Dalvik executable file is converted from the Java
bytecode, it is easy to be reversed to readable codes. In
fact, several tools [14, 4, 25] provide assembling and disas-
sembling functions on dex files. Hence, one can disassemble
the dex file into readable codes, modify the program logic
and then assemble and repackage it into a new apk file. By
using this repackaging method, HIPS can be implemented
by inserting stubs around sensitive Android APIs so as to
perform policy enforcement without modifying the Android
system. For instance, if an app needs to get the current loca-
tion by utilizing the GPS function, it has to use the request

LocationUpdates API. So one can add code into the app to
check the GPS permission before invoking this API. Aura-
sium [54] and RetroSkeleton [21] are two projects using this
form of application repackaging to inspect sensitive APIs to
reinforce the Android permission policy.

Although application repackaging does not need to mod-
ify the Android system, there are some major drawbacks.
The first major drawback is on incomplete security cover-
age. Since a function can be implemented by different ap-
proaches (i.e., calling different APIs), so it is possible to
miss policy enforcement unless we know all possible APIs
in realizing a function. For example, using the Java Reflec-
tion, one can invoke APIs and bypass the stubs. Secondly,
disassembling technique can only work on dex file. If ap-
plication developers use native code (e.g., binary libraries
written in C or C++) to implement some functionalities,
application repackaging cannot monitor these native library
calls. Hence, application repackaging cannot fully prevent
malware intrusion. Furthermore, malware writers can ex-
ploit bugs in the disassembling tools [50, 3] to conceal their
malicious functions. In summary, application repackaging
cannot fully prevent malware intrusion.

3.3 API Hooking
Generally, API hooking is to intercept API calls in order



to inspect the behaviors of a calling app. For Android, apps
must go through the Binder to call other services, so the
hooking method can be implemented on the Binder commu-
nication. The basic flow of using API hooking to implement
HIPS can be summarized as: (1) gaining root or system
privilege; (2) injecting a shared library object file (i.e., so

file) to the target process; (3) carrying out hooking on tar-
get APIs; (4) loading policy enforcement function. Let us
describe in detail the Android API hooking process.

3.3.1 Overview of API Hooking
Due to the sandboxing protection, API hooking requires

root or system privilege to hook on functions in the libraries
of the target processes. There are several approaches [1, 29]
to gain root or system privileges. Basically, these tools ex-
ploit the Android system and get root or system privileges.
In order to ensure the security, the tools will also install an
app called Superuser on the phones to manage the autho-
rizations of higher privileges to certain apps. Furthermore,
the system loopholes can be easily patched by using hook-
ing methodology [41]. Hence, malware cannot exploit the
loopholes to infect system.

The hooking operation has to be conducted in the native
code. To achieve this, we inject a shared library file (so file)
to achieve the hooking. Inline hooking [34] and ptrace are
two methods to inject an so file. However, the implemen-
tation of inline hooking on ARM platform is more difficult
than on the x86 platform. Therefore, we use ptrace to at-
tach the target process so as to modify the registers in the
target process to execute our shellcode. In the shellcode, we
utilize dlopen and dlsym functions to inject an so file into
the target memory. The shellcode will also invoke an entry
function in the injected so file to carry out API hooking.

We can use the API hooking on Android to intercept any
Java method. In particular, we can modify the global ob-
ject (gDvm) in the libdvm.so library of DVM to intercept a
target method. gDvm maintains the structure of every class
and method at runtime. There is a variable called insns

in gDvm for each method specifying the address of the corre-
sponding Java method. So, we can find the target method in
the loaded classes (gDvm->loadedClasses) and replace the
method insns to point to the function in the injected so’s li-
brary. Hence, when one calls the intercepted APIs, the DVM
will execute our own methods. After executing our meth-
ods, we can call back the original APIs. One can implement
policy checking and enforcement in Java and compile them
into a jar package. So the injected library can easily load
the logics in the jar file.

Most of existing HIPS on mobile devices are implemented
by “hooking on the client side”. Let us elaborate on this
approach and we will also illustrate its deficiency.

3.3.2 API Hooking on the Client Side
In Section 2, we explain the client-server model in the

Binder communication. To realize HIPS via API hooking
on the client side is to hook the shared libraries of the nor-
mal apps so as to perform policy enforcement. To do this, we
need to first understand the workflow of the Binder trans-
action on the client side. To illustrate, consider that we use
the following codes to send an SMS message:

SmsManager smsManager = SmsManager.getDefault();
smsManager.sendTextMessage(

"phoneNumber", null, "message", null, null
);

Figure 3: Call graph of ISms Binder transaction on
the client side.

The first line is to query the ISms service (ISms handler)
from the Service Manager. When calling the sendTextMes-

sage, the system will call the sendText method of the ISms

handler. Figure 3 depicts the partial function call graph
of a Binder transaction for sending an SMS message. On
the call path, there is a JNI method, native transact,
which bridged with the android_os_BinderProxy_transact
on the side of the native code. Finally, the transaction will
end with the talkWithDriver function on the client side.
Because the native transact method is the last method
at the Java level, we can intercept it for hooking. Because
it is a JNI method, the insns pointer in gDvm points to
the address of the corresponding native function (android_
os_BinderProxy_transact). Thus, we can store the origi-
nal address, and replace the method pointer with our imple-
mentation inside the injected so file. After inspecting this
transaction using our policy enforcement module, we can call
back the original API, android_os_BinderProxy_transact.
As shown in Figure 2, all apps are forked by a process called
zygote. Therefore, instead of injecting an so file into any
app, we can simply inject it to zygote at booting time. By
using this approach, we can perform policy enforcement on
any transactions which use the intercepted method.

Although the implementation of API hooking on the client
side is straightforward and has been implemented in com-
mercial systems [10, 9], this approach has a severe security
limitation. This approach cannot ensure the security of the
HIPS because the hooking operations are done in the same
sandbox of the app. This implies that every operation can
be modified and bypassed by the app itself. Therefore, it
is dangerous if the malware writer discovers this HIPS im-
plementation. Let us now demonstrate how to bypass this
popular HIPS implementation.

3.4 Vulnerability of Existing HIPS Products
There are a number of existing HIPS products (e.g., [10,

9]) available in the market. In here, we show how to by-
pass these HIPS and elaborate on the vulnerability of the
client-based hooking architecture (or Client HIPS). Client
HIPS is one of the most popular Android anti-virus and
protection architecture. For example, some HIPS products
(e.g., LBE [10]) have more than ten million users. Moreover,
Client HIPS has been pre-installed in a number of Android
phones (e.g., Xiaomi smartphone).

By examining the memory structure of the installed apps
and the services, we can determine whether app processes
have been injected with an so file and a jar file. Figure 4
illustrates the memory structure of a normal app. There
are injected so file and jar file which do not belong to
the app. This implies that the Client HIPS is using the



Figure 4: Memory structure of an app.

Figure 5: Workflow to bypass client HIPS.

client side API hooking to perform policy enforcement. By
checking the insns value in the gDvm, the pointing address
of native transact is 0x6CC4FED8. In addition, from the
mapped memory regions of apps, we find that the address of
native transact resides in 0x6CC47000-0x6CC52000 region
which mapped to /data/data/com.client_hips/app_hips/

libclient.so file. Therefore, we can confirm that the sys-
tem intercepts the native transact method in android.os.

Binder class and points to the injected library.
Based on the discussion in Section 3.3, we know that the

Client HIPS is in the same sandbox with the app. There
are several ways to bypass the HIPS system. Firstly, we can
modify the insns back to the original one to make sure that
the transaction will not go through the policy enforcement.
Secondly, because the native transact method is inter-
cepted, malware writers can create their own transact imple-
mentation to bypass all the interceptions. Figure 5 demon-
strates the workflow to bypass the Client HIPS. We imple-
ment our native pwnTransact method to send transactions
to the target service directly. Therefore, Client HIPS cannot
capture these transactions through intercepting transact

method. In summary, malware writers can use the technique
described above to determine the existence of Client HIPS
(by examining the current mapped memory region /proc/

[pid]/maps file). This shows that hooking on the client side
cannot effectively prevent intrusions.

4. PATRONUS
In this section, we present our system, Patronus, a secure

architecture which can prevent suspicious transactions and
dynamically detect malware based on runtime transaction
information. One advantage of Patronus is that we do not
need to modify the Android system or repackage apps, and
this facilitates easy deployment of our system. We present
the system design of Patronus, and the methodologies used
for intrusion prevention and dynamic detection.

4.1 API Hooking on the Server Side
As stated in Section 3.4, API hooking on the client side

has a number of deficiencies. We also illustrated how to
bypass detection if HIPS is implemented via API hooking on
the client side. To overcome these security issues, Patronus
complements the API hooking by realizing it both on the
client side and the server side. Let us first present our design

Figure 6: Call graph of ISms Binder transaction on
the server side.
and implementation of API hooking on the server side.

There are two approaches to conduct API hooking on the
server side. The first approach is via the Java API hooking,
and the second approach is to hook the Service Manager.
Figure 6 shows that the transaction goes through the Binder
driver from the client side to the server side and will be exe-
cuted by the ISms service. There is a JNI between the native
method and the Java method. Therefore, the first approach
of Java API hooking is to replace the address of this Java
method, execTransact, in the DVM global object to our
policy enforcement functions. Afterward, the hooking func-
tion will call back the original function if our policy accepts
this transaction. Note that using this approach, some of the
services could not be protected by the policy enforcement.
Because we only hook the Java method of JNI, the intercep-
tion will be invalid when the service uses native codes (e.g.,
camera service in Android is only implemented by the native
codes). Therefore, this hooking method can only intercept
subset of API calls.

The second approach of API hooking provides a more
comprehensive solution, which is to intercept the Service

Manager. In Section 2, we explained that the Service Man-

ager manages all registered services. When an app wants
to utilize a service, it should first communicate with the
Service Manager to query for the handler of the service.
Therefore, we can intercept the Service Manager and reply
back to the app with a handler which points to the service of
HIPS for policy enforcement. Figure 6 shows the basic flow
of hooking on the Service Manager (as illustrated in red
lines). When an app queries the ISms Service from the in-
tercepted Service Manager, it will get the handler of HIPS’
hooked Service, and when an app uses the handler to send
an SMS message, the hooked Service will first check with
the Policy Service, then an accepted transaction will return
to the original ISms service to complete the SMS message
sending operation.

Note that many malware have the network capability.
However, hooking the Binder cannot monitor the network
APIs because network function in Android relies on socket
IPC, and the network APIs of Android (e.g., Apache HTTP
Client and HTTPURLConnection) use socket to setup HTTP
connections with servers. Hence, any app can communi-
cate with a remote server without using the Binder if they
have declared the android.permission.INTERNET permis-
sion in the AndroidManifest.xml. One approach to mon-
itor network behaviors is to intercept socket related APIs.
For example, java.net.Socket is a class used by other in-
ternet APIs. In Patronus, we use the technique of hooking
on the client side to intercept the connect method in the
java.net.Socket class to monitor the behaviors. Note that
apps can also use network via the native socket function



Figure 7: Architecture of Patronus.

call. Although we can use ptrace to inspect the socket and
connect functions to cover this case, this will bring much
overhead. Because we want to create a HIPS on mobile
phones which are resource constrained, we use the technique
of hooking on the client side to intercept the connect method
in the java.net.Socket class to monitor the behaviors.

4.2 System Design of Patronus
In Section 3, we presented and demonstrated the weak-

nesses of existing host-based intrusion prevention system on
Android. In order to overcome these security problems and
provide better functionalities, we set the following two de-
sign goals for Patronus: (1) It should dynamically prevent
suspicious malware intrusions and can detect malware using
runtime information (i.e., transaction information); (2) the
architecture needs to be extensible and provides a flexible
methodology to detect malware without modifying Android
system or the need to repackage apps. Figure 7 depicts the
architecture of Patronus. The system consists of four com-
ponents: (a) Patronus application, (b) Patronus service, (c)
injected files and (d) policy database.
• Patronus Application: A process which is responsible
for displaying the user interface, initiates the Patronus Ser-
vice and injects so or jar files. Specifically, Patronus Ap-
plication uses the ptrace to inject a shellcode so as to load
the so or jar files, which will be injected in the zygote on
the client side and the Service Manager on the server side.
• Patronus Service: A process which is launched as the
start of the system and it is a sticky service, which means
that the service will not be killed by the system even in
the condition with limited memory resources. Hence, this
process is always available and we use it to detect any mal-
ware which registers at installation. Patronus Service will
intercept all transactions on the server side by receiving the
redirected transactions from the hooked Service Manager so
as to perform policy enforcement and dynamic detection.
Furthermore, Patronus Service is the owner of the policy
database process and it has permission to read and write
the database. For malware, they cannot modify the policy
database due to the file system protection of Linux system.
Patronus Service will also record all runtime information
(i.e., transaction parcels) in a temporary file so that the sys-
tem can perform the dynamic detection.
• Injected files: There are two types of injected files. In-
jected files on the client side and injected files on the server
side. Because malware can access injected files on the client
side, these injected files only have the read permission on
the policy database so as to avoid modification by the mal-
ware. The injected files on the client side use the method
explained in Section 3.3.2 to intercept the native transact

method. These injected files will first check the transaction

policy in the database which resides on the client side. By
checking the transaction policy, Patronus can inspect and
prevent intrusions before they arrive at the server side. Us-
ing the approach of API hooking on the server side which
we explained in Section 4.1, the injected files on the server
side will intercept execTransaction method of the Service

Manager. So whenever there is any query from the client
side, it will reply the Patronus service handler back to all
queries. Therefore the transactions on the server side will
first arrive at the Patronus Service, and they will be checked
based on the policy database before dispatching these trans-
actions to the corresponding servers. In our current imple-
mentation, we implement our policy checking and enforce-
ment in API hooking, and use the Android SDK (e.g., Popup
Window class to show a popup window on the apps).
• Policy database: This database contains the policy en-
forcement rules for each type of transaction of all apps. In
our current implementation, we store these rules in an XML

file. Using the Patronus Service, users can block transactions
from some untrusted apps. Specifically, Patronus App com-
municates with Patronus Service to write the user-defined
policy into the policy database. Users can enable some
trusted apps (e.g., Google apps) or deny some transactions
(e.g., sendText, requestLocationUpdates) if they do not
intend to request these sensitive services. Due to the secu-
rity consideration, this policy database belongs to the Pa-
tronus Service user and can only be modified by the trusted
Patronus Service. Hence, with the protection of Linux file
system, malicious app cannot destroy the policy database.

With these four components, Patronus can inspect the
transactions either on the client side or on the server side.
By analyzing each transaction, Patronus can prevent intru-
sions and detect malware.

4.3 Intrusion Prevention
Patronus can inspect transactions dynamically and will

notify users if it encounters some intrusive transactions. In
the Android system, there are hundreds of transaction types.
The intrusive transactions are the transactions which can
invoke some dangerous behaviors, for example, some mal-
ware subscribe premium service by sending an SMS mes-
sage, and some spyware steal the location information using
GPS service. Table 1 lists some intrusive transactions with
the transaction descriptors, codes and codes name. For in-
stance, the requestLocationUpdates transaction in the an-

droid.location.ILocationManager can gain the location
information based on GPS. When this intrusive transaction
is not initiated by users or without users’ permissions, Pa-
tronus will alert the users using a popup window so that the
users can pay attention to this transaction. Users can also
deny this transaction at runtime. Patronus will monitor the
transaction stream based on the intrusive transaction list. It
is important to note that users or security analysts can add
and/or delete rules in the Patronus policy database to ignore
some intrusive transaction from some apps. For example, a
third-party SMS mobile app can send, read and write SMS
messages. If users are certain about the authenticity and se-
curity of this mobile app, users can delete rules for this SMS
related intrusive transactions in order to eliminate the popup
alerts. Also, the list is defined by the system (i.e., anti-virus
software) which contains the sensitive transactions. Legiti-
mate transactions (e.g., opening window, changing Activity
status) will not have any malicious behaviors.



Table 1: Intrusive Transaction List
TD TC TC Name

com.android.internal 4 sendData
.telephony.ISms 5 sendText

. . . . . .
com.android.internal 1 dail
.telephony.ITelephony 2 call

28 getCellLocation
. . . . . .

android.location 1 requestLocationUpdates
.ILocationManager 5 getLastLocation
. . . . . . . . .

TD: Transaction Descriptor, TC: Transaction Code

Figure 8: Alert of intrusive transaction (sendText).

Patronus uses two procedures to ensure the system se-
curity. The first is on the client side. Before the intrusive
transaction goes through the Java layer and the native layer,
Patronus will first inspect the transaction and check if there
is any permission affiliated with this transaction. If there is
no pre-defined policy, Patronus will pop up a window as an
alert. The alert contains the transaction type, calling app
of the transaction and transaction content (e.g., destination
number and content of the SMS message) if needed. If the
user allows this transaction, this transaction will proceed to
the server side. The Patronus Service will not perform the
second inspection. If the server finds that the transaction
was not checked by the injected files on the client side, this
implies that the app attempts to bypass the system or uses
the native code. Then Patronus Service will perform policy
enforcement to ensure the security of the transaction.

In Section 3.4, we illustrated several methods to bypass
some existing HIPS. Patronus can easily detect and defend
against these type of attacks. Firstly, if the malware at-
tempts to bypass the transaction inspection on the Java
layer, the system will perform the second inspection on the
server side. Since the second verification is on the server
side, the malware cannot bypass this step due to the pro-
cess isolation feature in Android. Secondly, the Patronus
policy database is also an important component of the sys-
tem. The policy database can be read by any app but only
Patronus has the write permission to the database. This
mechanism guarantees that the policy database will not be
compromised or contaminated by malware. Hence, Patronus
provides a secured and complete intrusion prevention func-
tionality. Consider the same mobile app (the one we dis-
cussed in Section 3.4) which bypassed the detection of a
commercial HIPS product. When we execute this app on a
mobile phone with Patronus, our system can intercept the
intrusive transaction and the alert will popup, as shown in
Figure 8.

4.4 Dynamic Detection
Besides intrusion prevention, Patronus can detect mal-

ware at runtime and block malicious behaviors before the
malware infects the system. By using the runtime infor-
mation to detect malware, Patronus can determine malware
accurately and defend against obfuscation effectively. The

dynamic detection consists of two steps: (1) malware trans-
action forensics and (2) two-phase dynamic detection.

4.4.1 Malware Transaction Forensics
Malware transaction forensics is a procedure to trigger the

malicious behaviors and to collect the runtime transaction
information. This can help the system to conduct dynamic
detection. It includes two steps: malware triggering and
malware transaction tagging.

Once the app is determined to be a potential malware
(using existing static and dynamic analysis), the analysts
can execute the malware on a test phone with the Patronus
system. The analysts can manually trigger the malicious
behaviors, and the system will record the transaction infor-
mation (i.e., transaction descriptor and transaction code).
If the transaction is an intrusive transaction, Patronus also
records the content of the transaction parcel.

After collecting the transactions, the analysts can tag
the malicious transactions in the set of suspicious intru-
sive transactions. The malicious transactions are used to
invoke malicious behaviors by malware, such as sending pre-
mium SMS message, tracking location information and steal-
ing contact information. Because the contents of transac-
tions are evidence of malicious behaviors, these will be used
to determine the type of malware we are analyzing. We
want to emphasize that malware transaction tagging will not
add more workload for analysts since we only tag malicious
transactions and the system already filtered many other le-
gitimate transactions. In our experiments, the number of
intrusive transactions for a malware is less than five and
most of them are tagged as malicious transactions. Let us
now define transaction footprint, which we use for malware
detection.

Definition 1. A transaction footprint is a set of transac-
tion information tuples S = {T1, T2, . . . , Tn} over runtime
transactions where:
• The index represents the unique id of the combination

of transaction descriptor and code.
• The transaction information tuple Ti = (Ni, Fi, Ci),

where Ni is the number of invocations of transaction i,
Fi is the boolean flag tagging the malicious transaction
i, Ci represents the content of the transaction parcel.

We can use the transaction footprint for dynamic detec-
tion. Firstly, it describes the runtime behaviors of a group of
similar malware. Secondly, it also contains evidence of ma-
licious transactions. Due to these two factors, we propose
a two-phase dynamic detection method to effectively detect
the malware on an Android mobile phone at runtime.

4.4.2 Two-phase Dynamic Detection
The dynamic detection contains two phases: correlation

detection and transaction footprint comparison. Because
only the intrusive transactions can initiate malicious behav-
iors. For efficiency, the detection will be triggered when the
system encounters an intrusive transaction. The system will
use the transaction footprint collected at runtime and the
malware footprint to detect the malware.
Phase one. Define V as the transaction vector over a trans-
action footprint S where V = [v1, v2, . . . , vn], (vi = Ni). In
phase one, we collect Vruntime which is a transaction vec-
tor over the transaction footprint for the runtime app. Let



Vmalware be the transaction vector over the transaction foot-
print in malware transaction forensics. In Patronus, we use
the Pearson correlation as the similarity score r so as to de-
termine the correlation between the app and our malware
samples. Formally, the similarity score r is:

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
.

where X = Vruntime, Y = Vmalware

(1)

Because transactions of an app represent the behaviors
when interacting with other apps, the higher r implies that
the known malware in our database and the mobile app
under testing are very similar. The system will calculate r
with the transaction footprint in the malware database.
Phase two. If there is any r higher than a pre-defined
threshold (the threshold we use in our experiment was set
as 0.9), we treat the detected app as a suspicious app. For
the suspicious app, we conduct the phase-two detection to
ensure the accuracy of our detection. In phase two, Patronus
will use the content of malicious transactions [C1, C2, . . . , Ci],
(Fi = true) in the transaction footprint S to perform further
verification. The system will compare the decisive fields in
the content of each intrusive transaction from the suspicious
app with the selected footprints. The decisive fields are val-
ues indicating the malicious behaviors. In general, the con-
tent of a transaction contains several fields, the semantics of
the fields for each transaction can be different. For example,
sendText transaction has four fields which indicate the des-
tination address, source address, text and intent flag. The
decisive fields for a malicious transaction are values which
determine the malicious properties. For example, the desti-
nation field (number of premium SMS service) is the decisive
field of a malicious sendText transaction.

By using the above two-phase detection, Patronus can de-
tect malware based on the runtime information effectively
and prevent the malware before it infects the system or steal
users’ privacy. Since the transaction information we obtain
have more semantic information than the low-level system
calls using the ptrace-based dynamic analysis system, this
makes Patronus achieving a much higher accuracy in de-
tecting intrusive apps. Furthermore, because one transac-
tion procedure usually only contains tens of system calls, the
performance overhead of transaction-based detection will be
less than system-call-based detection. Moreover, traditional
static analysis systems have to scan the apps offline, while
Patronus can perform detection online.

5. LARGE SCALE EVALUATION
In this section, we analyze the capabilities of intrusion

prevention and dynamic detection on large number of mobile
apps. We also evaluate the performance overhead and power
consumption introduced by Patronus.

5.1 Capability Evaluation
We downloaded the top 500 legitimate mobile apps from

Google Play and use them as the base for our evaluation
database. In addition, we also collected three malware fam-
ilies from [2] and [11] including 213 BaseBridge samples, 9
FakeAV samples and 15 MobileTx samples. We also define an
intrusive transaction list (https://www.cse.cuhk.edu.hk/
~mssun/pub/intrusive_transaction_list.pdf) including 49

Table 2: Top 10 Intrusive Transactions
Transaction Name Total #

CALL_TRANSACTION 3,508
REGISTER_RECEIVER_TRANSACTION 2,960
START_ACTIVITY_TRANSACTION 1,734
TRANSACTION_getDeviceId 1,732
GET_CONTENT_PROVIDER_TRANSACTION 1,400
QUERY_TRANSACTION 1,303
TRANSACTION_getSubscriberId 333
TRANSACTION_requestLocationUpdates 228
INSERT_TRANSACTION 139
TRANSACTION_getCallState 90

Table 3: Transaction Statistics
Service Top 500 BaseBridge FakeAV MobileTx

PackageManager 0 0 0 0
Telephony 90 0 0 0
TelephonyRegistry 52 1 0 17
ContentProvider 4,996 131 0 0
LocationManager 228 7 0 25
ActivityManager 6,156 295 0 98
AudioService 9,781 1,453 37 40
Sms 0 0 0 49
PhoneSubInfo 2,208 622 0 0
NotificationManager 639 336 161 0
PhoneStateListener 0 0 0 0

Total transaction 724,185 66,229 548 3,920
Intrusive transaction 24,150 2,845 198 229
Percentage 3.33% 4.30% 3.61% 5.84%

transactions within eleven services.
To evaluate Patronus, we automatically install the top

500 legitimate apps and malware samples into Android de-
vice (Nexus 5) with Patronus installed. Then we use monkey

tool [12] to generate 500 pseudo-random user events such
as clicks, touches, gestures or system-level events, into the
device to trigger various behaviors. Patronus will record the
transactions which are in the intrusive transaction list. Ta-
ble 2 shows the top ten intrusive transactions and their total
numbers recorded in our evaluation. Most of these trans-
actions are dangerous and related with privacy operation.
For example, CALL_TRANSACTION, GET_CONTENT_PROVIDER_

TRANSACTION, QUERY_TRANSACTION and INSERT_TRANSACTION

are operations (e.g., querying and updating) on databases
which may contain users’ personal information. While TRANS
ACTION_requestLocationUpdates can get current location
information. Table 3 depicted detailed statistics of these in-
trusive transactions on all our downloaded apps. Note that
the percentage of intrusive transaction is only around 4%.
Therefore, the alert notifications of intrusive transaction will
not annoy users in practice.

To evaluate the capability of dynamic detection, we first
conduct transaction forensics on the malware families in our
evaluation database. We automatically run these malware
samples along with 500 legitimate apps to analyze the ef-
fectiveness of our detection algorithm. During the testing,
we also generated 500 pseudo-random user events such as
clicks, touches, or gestures for each app so to trigger dif-
ferent routines. We calculate the distribution of correlation
scores and they are illustrated in Figure 9. From this dis-
tribution, we choose 0.9 as our threshold in the two-phase
detection which effectively separate malware and legitimate
app. Table 4 shows the detection results of malware samples
within the legitimate apps. We compute the true positive
(TP), true negative (TN), false positive (FP), false negative
(FN), precision and F-score to illustrate our results. From
these results, we observe that only few legitimate apps is re-
ported as malware in the first phase of detection. We like to

https://www.cse.cuhk.edu.hk/~mssun/pub/intrusive_transaction_list.pdf
https://www.cse.cuhk.edu.hk/~mssun/pub/intrusive_transaction_list.pdf


Table 4: Detection Results
Malware # of Samples TP TN FP FN Precision F-score

BaseBridge 213 186 495 5 27 0.87 0.92
FakeAV 9 9 500 0 0 1 1
MobileTx 15 11 494 6 4 0.65 0.69
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Figure 9: Distribution of correlation scores for Base-

Bridge, FakeAV and MobileTx samples.

note that for MobileTx families, some of the samples crashed
in testing due to the bugs of the malware. Therefore, we ob-
tained four false negative in our evaluation. In summary,
Patronus can effectively prevent intrusions and detect exist-
ing malware.

5.2 Performance Evaluation
To measure the overhead introduced by Patronus, we use

Quadrant Standard Edition v2.1.1 [6] to evaluate the general-
purpose benchmark for CPU, memory, I/O, 2D and 3D
graphics. The experiments are conducted on a LG Nexus
5 (Qualcomm Snapdragon 800 2.26GHz CPU, Adreno 330
450MHz GPU, 2300mAH battery) running Android 4.4.2
(KitKat) on a Linux 3.4.0 kernel. Table 5 shows the bench-
mark results. The “Baseline” means that the benchmarking
was done on the device without Patronus. Compared with
the baseline, Patronus only has a small impact on all but
I/O intensive apps. However, we want to note that I/O op-
erations are not the main operations for many mobile apps.

Because Patronus inspects transactions, we implement a
transaction intensive app to evaluate its performance. The
test app uses IPhoneSubInfo transaction to request device
ID (transaction #: 1). The app will repeatedly send the
transaction for one thousand times. We calculate the exe-
cution time of these transactions. The time on the device
without Patronus is 890 milliseconds, while the execution
time for a device with the Patronus installed increase to 988
milliseconds. This shows that the presence of Patronus will
only bring about 11.1% performance overhead.

We also measure the battery overhead introduced by Pa-
tronus. We conduct two sets of experiments. In the first
experiment, we check the battery usage of a fully-charged
Nexus 5 in the standby mode for 24 hours. The device with-
out Patronus has 94% battery left, and the device with Pa-
tronus installed shows 93%. This shows that Patronus only
introduces a slight overhead. In the second experiment, we
keep playing games on a fully-charged Nexus 5 for one hour.
The results show that the device with Patronus uses 3%
more battery than the original setting. In summary, Pa-
tronus not only provides a comprehensive intrusion protec-
tion, but also has a negligible impact on power consumption.

6. RELATED WORK
There is a growing interest on how to provide security and

privacy on smartphones. For Apple’s iOS, Wang et al. [51]
discovers a severe security architecture problem. While most
security issues are also observed on the Android platform.

Table 5: Benchmark Results
Test Baseline Patronus Overhead

Total 8,914 8,285 7.1%
CPU 20,383 20,205 0.9%
Memory 14,354 13,211 8.0%
I/O 7,274 6,482 10.9%
2D 333 330 0.1%
3D 2,230 2,195 1.6%

Permission re-delegation problem is discussed in [20, 31] and
some researchers propose possible solutions [28, 16, 22, 36].
Felt et al. [27, 15] systematically analyzes the permission
abuse problem. AdRisk [33] reveals the potential privacy
risks of advertisement libraries. Luo et al. [37] identifies the
problem of Android WebView component. Zhou et al. [63]
conducts a comprehensive study on the characterization and
evolution of Android malware. Wu et al. [52] and Zheng
et al. [60] analyze the security issues on the customized
firmwares. Our study mainly focuses on the dynamic de-
tection of Android malware and Android protection.

There are a number of works which propose to use HIPS
on the PC platform [46, 43, 42]. However, the architectures
of PC and mobile devices are very different. Therefore, few
systems are proposed and targeted specifically for mobile
operating systems. FireDroid [49] is a ptrace-based system
call interception system. Because system calls are low level
function calls interacting with kernel, one API call can gen-
erate a number of system calls. Therefore, ptrace-based
system cannot accurately intercept all intrusive operations.
TaintDroid [24] and PiOS [23] can track runtime privacy
leaks on Android and iOS. DroidScope [55] provides a Dalvik
semantic view for dynamic analysis. CrowDroid [18] is a de-
tection system based on runtime system call. VetDroid [57]
utilizes permission usage to study undesirable dynamic be-
haviors. AppIntent [56] aims to detect privacy leakage using
symbolic execution to reduce the code search space. An-
droid DDI [40] introduces the method to instrument the
DVM. These systems are for malware dynamical analysis
which are mainly used by malware analysts. However, our
system aims to prevent intrusions on the user end. Aura-
sium [54] and RetroSkeleton [21] are two host-based systems
which use repackaging technique. FlaskDroid [17] provides
mandatory access control on SE Android. Compared with
our system, they need to either repackage the apps or modify
the system structure.

For static analysis, some systems aim to detect suspicious
apps, zero-day malware and evaluate anti-virus software.
DroidMOSS [62] and DroidRanger [65] can identify the po-
tential repackaged apps or zero day malware in the third-
party markets. DroidAnalytics [61] proposes a three-level
signature to analyze malware to defend against obfuscation.
ADAM and DroidChameleon [59, 48] discuss approaches to
bypass anti-virus engines. MAST [19] analyzes the market-
scale malware. Zhou et al. [64] proposes a system to find
content leaks and pollution vulnerabilities. These systems
can help the analysts to investigate the malicious behaviors
at the code level.

7. CONCLUSION & FUTURE WORK
In this paper, we systematically analyze three popular

frameworks of HIPS, and discuss their implementations, strengths
and weaknesses. We also demonstrate how to bypass a pop-
ular HIPS software in the market. Moreover, we propose



a secure HIPS architecture and implement Patronus which
can prevent intrusion and can dynamically detect malware.
With the two-phase dynamic detection, Patronus utilizes
runtime information to detect existing malware. We conduct
extensive experiments to demonstrate the intrusion preven-
tion and dynamic detection capabilities of Patronus, and
demonstrate the Patronus only incurs small overhead in ex-
ecuting mobile apps. For future work, we plan to utilize
cloud service along with uploaded runtime information col-
lected by Patronus to improve the detection capability.
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