
Cloud-based Push-Styled Mobile Botnets: A Case Study of
Exploiting the Cloud to Device Messaging Service

Shuang Zhao Patrick P.C. Lee John C.S. Lui Xiaohong Guan Xiaobo Ma Jing Tao

ABSTRACT
Given the popularity of smartphones and mobile devices, mobile
botnets are becoming an emerging threat to users and networkop-
erators. We propose anewform of cloud-based push-styled mobile
botnets that exploits today’s push notification services asa means
of command dissemination. To motivate its practicality, wepresent
a new command and control (C&C) channel using Google’s Cloud
to Device Messaging (C2DM) service, and develop aC2DM bot-
netspecifically for the Android platform. We present strategies to
enhance itsscalability to large botnet coverage and itsresilience
against service disruption. We prototype a C2DM botnet, andper-
form evaluation to show that the C2DM botnet isstealthyin gen-
erating heartbeat and command traffic,resource-efficientin band-
width and power consumptions, andcontrollable in quickly deliv-
ering a command to all bots. We also discuss how one may de-
ploy a C2DM botnet, and demonstrate its feasibility in launching an
SMS-Spam-and-Click attack. Lastly, we discuss how to generalize
the design to other platforms, such as iOS or Window-based sys-
tems, and recommend possible defense methods. Given the wide
adoption of push notification services, we believe that thistype of
mobile botnets requires special attention from our community.

1. INTRODUCTION
With the advent of mobile Internet access, we have seen signif-

icant technological advancement of smartphones and mobilede-
vices. This provides a fertile ground for hackers to realizebotnets1

in a mobile network. In recent years, we have seen many real-
life examples of mobile botnets. In 2009, a mobile botnet Sym-
bOS.Yxes [1] was discovered in the Symbian platform, which used
the conventional HTTP-based C&C channel for communication.
In December 2010, the first iPhone botnet Ikee.B [2] was found
in the wild. It targeted jailbroken iPhones and pulled commands
from a HTTP server. In the same year, the first Android botnet
named GEINIMI [3] emerged. It also used a HTTP-based C&C
channel for command dissemination. In 2011, a Short Messaging
Service (SMS)-based mobile botnet named ZeuS [4] was found in

1A botnetis a network of compromised computers calledbotsthat
are remotely controlled by abotmaster.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

the Blackberry, Symbian, and Windows Mobile platforms. It used
an SMS-based C&C channel to communicate with the botmaster.
In September 2011, an Android bot calledAnserverBotwas identi-
fied and it was the first Android bot that used public blogs as C&C
servers [5]. In late January 2012, an Android botnet disguised as
the game application “Madden NFL 12” [6] and used the Internet
Relay Chat (IRC) as its C&C channel. All these incidents indicate
that mobile botnets have become an emerging threat for usersand
network operators.

From a botmaster’s perspective, how to deploy a stealthy and
robust mobile botnet is an interesting issue; from an operator’s per-
spective, understanding the deployment strategy of a mobile bot-
net is critical for defending against malicious attacks on an op-
erational network. Our key observation is that many smartphone
platforms provide thepush notification service, which comprises
a cloud of push-based messaging servers that are responsible for
relaying messages from application servers to mobile applications.
There are various deployments of this service in different platforms,
such as Google’s Cloud to Device Messaging (C2DM) service for
Android [7], Apple’s Push Notification Service (APNS) [8] for iOS,
Microsoft’s Push Notification Service (MPNS) for Windows Mo-
bile [9], Blackberry’s Push Service (BPS) [10], and Nokia’sNo-
tifications API (NNA) for Symbian and Meego devices [11]. Ar-
chitectures of these push notification services have one common
feature: application servers first send a notification message with
an intended receiver (or the target mobile device) to one of the
cloud-based messaging servers, which thenpushesthe message to
the target mobile device. The push notification service eliminates
the needs of application servers to keep track of the state ofa mo-
bile device (i.e., active or offline). Furthermore, mobile devices
do not need to periodically probe the application servers for mes-
sages, thereby reducing the workloads of the application servers.
While the push notification service simplifies the mobile applica-
tion development, it can also be exploited by attackers in building
a highly potentandstealthymobile botnet compared to traditional
HTTP, IRC, or SMS botnets.

The aim of this paper is to expose such kind of potential at-
tack scenario. As a proof of concept, we consider Google’s C2DM
service for the Android platform, and realize a cloud-basedpush-
styled mobile botnet using the push notification service as aC&C
channel. We named it asC2DM botnet, which involves no direct
communication between the botmaster and various bots, but instead
exploits Google’s C2DM service as a relay. The botmaster candis-
seminate probes and commands to the bots via the C2DM service,
and the botnet traffic can be “hidden” within the C2DM traffic of
other legitimate mobile applications. This makes the C2DM botnet
stealthy. In summary, we make several contributions in motivating
the practicality of this new form of mobile botnets:

• Design and implementation of a cloud-based push-styled mo-
bile botnet. We build a C2DM botnet for the Android platform us-
ing Google’s C2DM push notification service as the C&C channel.
We propose a multiple-username strategy to enhance itsscalability
to a large botnet size, and propose how to make the botnetresilient
against service disruption due to account unregistration.
• Performance evaluation of the C2DM botnet.We extensively
evaluate the C2DM botnet design, and show its (i)stealthiness
in generating heartbeat and command traffic by hiding its exis-
tence under other legitimate C2DM traffic, (ii)resource efficiency
in bandwidth and power consumptions compared to traditional IRC
and HTTP bots, and (iii)controllability in disseminating commands
to all bots within a short period of time.
• Demonstration of C2DM bot propagation and attack. We
show how hackers can infect and propagate a C2DM bot using le-
gitimate mobile applications, and show how this botnet can launch
an effective SMS-Spam-and-Click attack.
• Extension to other mobile platforms.We discuss how the C2DM
botnet can be extended to other platforms, such as iOS and Mi-
crosoft Windows.
• Recommendation of potential defense strategies.We suggest
detection and defense strategies against this underlying threat.

The rest of the paper proceeds as follows. §2 reviews related
work. §3 presents an overview for the C2DM service. §4 presents
the design and implementation of a C2DM botnet along with strate-
gies that enhance its scalability and fault tolerance. §5 presents
evaluation results for the C2DM botnet. §6 discusses how an at-
tacker may propagate a C2DM bot and feasibly launch an attack.
§7 shows how to generalize the C2DM botnet design to other plat-
forms. §8 discusses potential defense strategies, and §9 concludes.

2. RELATED WORK
There are a number of studies in the literature on mobile botnets.

Traynor et al. [12] study how a mobile botnet launches a DDoS
attack against a cellular network core. They show that a small-size
mobile botnet is sufficient to cause nationwide outages. Singh et al.
[13] propose a mobile botnet using Bluetooth as a C&C channel.
The commands are disseminated from one bot to another withinthe
radio range of bluetooth. Their experiments show that commands
from the botmaster can reach about 2/3 of bots in 24 hours. Xiang
et al. [14] discuss the single point of failure problem in traditional
centralized HTTP botnets. They propose a mobile botnet named
URL Flux to make a traditional HTTP-based botnet more resilient
against existing defense solutions. In URL Flux, the botmaster dis-
seminates commands by putting them on a social network website.
When a bot is about to pull a command, it generates hundreds of
usernames and combines them with the social network website’s
domain name into hundreds of URLs. The bot then requests these
URLs one by one until it finds the valid one, and then retrievesthe
command.

Short Message Service (SMS) can also be used as a C&C medium
for mobile botnets. Zeng et al. [15] use SMS messages for C&C to
build mobile botnets. They leverage on the P2P topological struc-
ture in the botnet to reduce the number of SMS messages being sent
and shorten the time delay for delivering SMS commands. Genget
al. [16] propose an improved SMS-based mobile botnet. They di-
vide bots into normal bots and regional bot servers to build aP2P
network in order to reduce the forward and search consumptions,
and enhance the robustness of the botnet. Hua et al. [17] design a
SMS-based mobile botnet and evaluate its construction under dif-
ferent topologies. Their simulations show that in a botnet contain-
ing 20,000 bots, a command from the botmaster could be covertly
disseminated to over 90% of all bots, and each bot only needs to

send no more than four SMS messages during the dissemination.
Weidman [18] design a transparent C&C channel for a SMS-based
botnet, in which the bot can intercept and read commands fromin-
coming SMS messages before the messages are presented to users.
Mulliner and Seifert [19] combine the Kademlia P2P network with
an SMS-HTTP hybrid approach as the C&C channel for a mo-
bile botnet, in which the communication is split into HTTP and
SMS parts. During command dissemination, the botmaster puts
the encrypted commands on some website, and notifies some ran-
dom bots via SMS to download and decrypt the commands, and
then forward the commands to other bots. We want to emphasize
that one disadvantage of SMS-based botnets is in the cost incurred
when sending commands via SMS, especially if the botnet is of
large scale. Also, the use of SMS may eventually alert users and
mobile operators since sending/receiving SMS messages mayincur
payment to mobile phone operators.

Several botnet detection methods used in traditional wireline net-
works are also applicable to detect centralized IRC- and HTTP-
based mobile botnets. Akiyama et al. [20] propose to detect bot-
nets based on different metrics of botnet behaviors. Choi etal. [21]
propose to detect botnets by differentiating botnet requests from le-
gitimate DNS traffic. Gu et al. [22] detect similar C&C activities
of bots with centralized servers. They later propose a botnet de-
tection framework known as BotMiner [23] to cluster similarbot-
net traffic. Specifically for mobile botnets, Vural et al. [24] use
a forensics-based approach: they first model normal activities of
mobile users, and use the model results to identify the abnormal
activities of malware or botnets.

3. OVERVIEW OF C2DM
We now describe Google’s cloud-based push-styled messaging

service, or theCloud to Device Messaging(C2DM) service (as il-
lustrated in Figure 1). It enables third-party developers to send push
notifications to their mobile applications on Android devices.

Android App

in Device

App Server

C2DM

Server

(1)

C2DM

Username

3

C2DM Username +

Registration ID

(2)

Registration

ID

App Register
Send Data

Sign up:

C2DM
Username + Passw

ord +

Package name

(4a) C2DM
Username

&
Passw

ord

(4b) Authorizatio
n Token

(4c) Data
+ Regist

ratio
n

ID
+Authorizatio

n Token

Persistent C2DM Connection

Using Device s Logged in

Google Account

(5a)C2DM

Connection Alive:

Send Data

(5b) C2DM

Connection Not

Alive: Wait for

C2DM Connection

to Send Data

C2DM Connection

Pre-work

Figure 1: C2DM architecture and its workflow.

To bootstrap the C2DM service, the application developer has to
first sign up for an account. This is done by providing the C2DM
server with the following:C2DM username, password, and the
package nameof the mobile application. Once the account is estab-
lished, the developer can embed the C2DM username in the mobile
application, and distribute the application, say, via the official An-
droid Market or other third-party marketplaces.

We now elaborate the workflow of the C2DM service as depicted
in Figure 1. When the mobile application is first launched in amo-
bile device, it will perform the following steps.
• Step (1): The mobile application registers itself to one of the
C2DM servers using the C2DM username, which was provided by

the application developer, as well as thedevice ID, which uniquely
identifies the Android device that hosts the application.
• Step (2): The C2DM server provides a uniqueregistration ID
to the mobile application. The registration ID is a byte string that
enables the C2DM server to identify the application runningon a
specific Android device.
• Step (3): The mobile application sends this registration ID, to-
gether with its C2DM username, to the application server, which
will then record this registration ID in its database.
• Step (4): When the application server needs to send data to a
mobile device, it sends the C2DM username and password to the
C2DM server (Step (4a)), and gets an authorization token if the
username and password are valid (Step (4b)). The authorization to-
ken will be used to notify a set of mobile devices in the database.
The application server then sends a C2DM request, which contains
the notification message, the registration ID of a mobile applica-
tion, and the authorization token to the C2DM server (Step (4c)).
Note that the message in Step (4c) is sent on aper-devicebasis.
Thus, if there arek devices that need the notification, then the ap-
plication server will sendk messages to the C2DM server.
• Step (5): Upon receiving the message, the C2DM server looks
for the specific Android device based on the registration ID.If the
C2DM connection of that device is alive, then the C2DM server
will send the notification message to the mobile applicationon that
device (Step (5a)); if the mobile device is disconnected, then the
C2DM server will store the notification message, and send themes-
sage to the application on the mobile device when the device re-
establishes its connection with the C2DM server (Step (5b)). Note
that Step (5) implies that there is apersistent C2DM connectionbe-
tween the C2DM server and the Android device that subscribesto
the C2DM service.

Google’s C2DM service provides a flexible solution for devel-
opers to send lightweight messages to mobile applications without
requiring mobile devices to connect to their servers periodically to
pull for messages. Google manages the storage and forwarding of
messages. Thus, it simplifies the mobile application design, and
reduces the network traffic and battery usage of mobile devices.
C2DM maintains a persistent TCP connection for each mobile de-
vice with a C2DM server, and the time interval for each heart-
beat message of this persistent connection is around 15-30 min-
utes depending on the device state (i.e.,ACTIVIT, IDLE, SYNC,
NOSYNC). When a new C2DM message arrives, the mobile de-
vice will wake up the mobile application to receive the message.

The C2DM service is available for a device running on Android
2.2 or higher versions. The device must have the Market (now
Google changes its name to Play Market) application installed and
at least one logged-in Google account [7]. Market is one of the
factory-installed applications in the Android platform, along with
otherpopular mobile applications like Google Maps, Gmail, etc.
Users are required to log in with a Google account and enable the
C2DM service when using these applications. There are also many
other popular applications which rely on the C2DM service, such
as Instagram, Facebook for Android, and LINE. Thus, we expect
that the C2DM service is enabled in majority of Android devices.

4. DESIGN OF A C2DM BOTNET
This section presents the design and implementation of a C2DM

botnet. Our design is based on the official and open C2DM archi-
tecture. To ease our presentation, we first discuss a baseline archi-
tecture for a C2DM botnet. Then we present an enhanced architec-
ture that has a stronger stealthiness property. Finally, weaddress
the scalability and fault-tolerance issues.

4.1 Baseline C2DM Botnet Architecture
We first describe the baseline architecture of a C2DM botnet,as

shown in Figure 2. Before building a C2DM botnet, the botmaster
first bootstraps a C2DM service as for other normal C2DM appli-
cations (see §3). Then the steps of how a new bot joins the C2DM
botnet and how the botmaster disseminates commands can be done
as follows (referring to Figure 2).
• Bot registration (Steps (1) to (3)): When a new bot joins a
C2DM botnet, it first registers itself to one of the Google C2DM
servers with the following information: (i) the package name and
the C2DM username, both of which are embedded by the botmaster
in the distributed malware package, and (ii) the Google’s account
ID of the mobile device. If the registration is successful, then the
C2DM server will return a unique registration ID to the bot. Fi-
nally, the bot sends the registration ID and the C2DM username to
the botmaster’s C&C server, which will then record this registra-
tion ID in its database for future command dissemination.
• Command dissemination(Steps (a) to (c)): The botmaster dis-
seminates commands to all registered mobile bots via a C&C server.
The C&C server first authenticates itself to the C2DM server by
using its Google’s account ID and password. After authentication,
the C2DM server will return an authorization token to the C&C
server, which then constructs a C2DM request foreachmobile de-
vice (or bot). The request contains the command by the botmaster,
the registration ID of the bot, and the authorization token.The
C&C server then sends the request to the C2DM server. Based on
the registration ID, the C2DM server will push the message tothe
bot. Note that theC2DM service only allows one registration ID
in each C2DM request. This implies that sending commands to
multiple bots requires the C&C server to send multiple requests.
We will discuss how to scale up a botnet and control the message
dissemination in §4.3, and how to control message delivery in §5.3.

BotBotmaster

C&C Server

C2DM

Server

(1)

C2DM Username

Package Name

b

C2DM Username & Password,

Registration ID,

Command

3

C2DM Username,

Registration ID

(a)

Command

(c)

Command

(2)

Registration

ID

Bot Registration

Command Dissemination

Figure 2: Baseline architecture of a C2DM botnet.

4.2 Enhanced C2DM Botnet Architecture
In the baseline architecture, each bot needs to directly send its

registration ID to the C&C server. This increases the possibility
of being detected and reveal the identity of the C&C server. To
improve the stealthiness, the enhanced architecture eliminates the
direct communication between a bot and its botmaster.

Before building a C2DM botnet, the botmaster needs to sign
up two C2DM accounts: (i)C2DM username_M, which is used
by the botmaster’s C&C server to send messages to its bots, and
(ii) C2DM username_B, which is used by the bots to send mes-
sages to the C&C server. The botmaster needs to register itself to a
C2DM server usingC2DM username_B to obtain a registration

ID, which will later be used by the bots to send C2DM messages
to the C&C server. We assume thatC2DM username_M, C2DM
username_B, and the botmaster’s registration IDs are all embed-
ded in the malware package.

Bot

C2DM

Server

(1)

C2DM Username_M,

Package Name

a

C2DM Username_M & Password,

Registration ID of Bot,

Command

3

C2DM Username_B & Password,

Registration ID of Botmaster,

Message(C2DM Username_M

and Registration ID of Bot)

(b)

Command

(2)

Registration ID

Bot Registration
Command Dissemination

(4)

C2DM Username_M,

Registration ID of BotBotmaster

Figure 3: Enhanced architecture of a C2DM botnet.

Figure 3 depicts the enhanced architecture. The steps of botreg-
istration and command dissemination are revised as follows.
• Bot registration (Steps (1) to (4)). When a new bot joins a
C2DM botnet, it registers itself to one of the C2DM servers us-
ing its package name andC2DM username_M. If the registration
is successful, then the C2DM server will return a unique registra-
tion ID to the bot. Then the bot uses the account ofC2DM user-
name_B and the botmaster’s registration ID (both of which are
embedded in the malware package) to send its own registration ID
andC2DM username_M to the botmaster, which records the in-
formation for later command dissemination.
• Command dissemination(Steps (a) to (b)). To disseminate com-
mands to all registered mobile bots, the C&C server constructs a
C2DM request foreachbot. Unlike the baseline architecture, this
request now contains the accountC2DM username_M, the reg-
istration ID of the bot, and the command. The C&C server sends
the request to the C2DM server, which will then be pushed to the
corresponding bot based on the registration ID.
Remark on stealthiness and reliability. One major advantage
of the enhanced architecture is that during the bot registration pe-
riod, the bot sends its registration ID and C2DM username to the
C&C server via the C2DM server. Thus, it is stealthier than the
baseline architecture. However, one shortcoming of the enhanced
architecture is that it relies on the botmaster’s registration ID for
communication, and Google may revoke any registration ID that is
maliciously used. Although our experience is that Google seldom
explicitly un-registers registration IDs, there is no guarantee that a
registration ID will remain valid permanently. If the registration ID
is revoked, then the bots cannot send messages to the botmaster.
We will discuss how to overcome this issue in §4.4.

4.3 Scaling up the C2DM Botnet
As mentioned in §4.1, each C2DM request can only be sent to

a single device. Also, some quota limits may be posed on the rate
of push messages that can be delivered. For example, Google’s
C2DM service limits each account to send no more than 200,000
push messages per day [7]. Furthermore, when signing up for a
new C2DM service, one needs to specify the estimated peak queries
per second (QPS), which is a short-term push rate permitted for an
application. In C2DM, there are four choices for QPS: “0 - 5”,“6
- 10”, “11-100” and “> 100”. To ensure that the C2DM botnet is
stealthy, we assume that the QPS of a C2DM botnet is less than 100
to avoid drawing Google’s attention.

For a small-scale C2DM botnet, 200,000 push messages per ac-

count per day should suffice to disseminate commands to all the
bots, and it takes only a short duration to disseminate commands to
the whole botnet under our QPS requirement. We will discuss the
controllability and estimate the time needed to disseminate com-
mands to most of the bots in §5.3. However, using one C2DM
account to maintain a botnet becomes problematic if (i) the botnet
is of large size, or (ii) the botnet needs to send more than 200,000
push messages per day.

To build a large-scale C2DM botnet, we propose to usemultiple
C2DM usernamesto decompose a large botnet into several smaller
subnets. Each of these subnets uses a unique C2DM username
to communicate with its own bots. We elaborate how to incor-
porate multiple C2DM usernames into a C2DM botnet, using the
enhanced architecture as an example, as shown in Figure 4. Here,
a bot joins the botnet using atwo-phaseC2DM registration pro-
cess. The bot first registers to a C2DM server using an initialuser-
name, and then sends its own registration ID to the botmastervia
the C2DM service (Step (1)). The botmaster, upon receiving the
C2DM message, chooses one of the pre-defined C2DM usernames
and sends it to the bot via C2DM (Steps (2) to (4)). Then the bot
re-registers to a C2DM server with the new C2DM username and
sends the new registration ID to the botmaster via C2DM (Steps (5)
to (6)). The botmaster will then use the new registration ID to send
commands to the bot.

New Bot

Botmaster

C2DM

Server

(1) Register C2DM with

initial username, and send

registration ID to Botmaster
(4) New

Username

username_2

username_n

...

(2)Registration ID

of New Bot

(3) New Username

(5) Re-register C2DM with new

username, and send new

registration ID to the Botmaster

(6) Registration ID with

New Username of New Bot
username_1

Figure 4: Registration in a large-scale enhanced C2DM botnet.

4.4 Handling Account Un-registration
Each botnet must deal with the single-point-of-failure problem.

We now discuss how a C2DM botnet can self-configure in case a
core component fails. In a C2DM botnet, we argue that the C&C
server, though important, is not the core factor to considerdue to
two reasons. First, bots communicate with the C&C server only
once during their registration. Once a botnet is built, botswill not
directly communicate with the C&C server, so it is quite stealthy.
Second, one may use well-known social networking websites such
as Twitter, Facebook to set up a C&C server to enhance the stealth-
iness [14, 25].

On the other hand, we need to ensure the robustness of the C2DM
service in a C2DM botnet. If the C2DM service is unavailable,then
the communication between the botmaster and bots will be cutoff.
One way this may happen is that the C2DM service used by the bot
is bannedandun-registeredby Google. When a bot registers to a
C2DM server, it is required to provide both its package name and
C2DM username. In our experiments, we find that when we sign up
for a C2DM service, the package name need not be unique. In other
words, one can sign up for the C2DM service using the same pack-
age name as other existing applications. This implies that Google

is not likely to ban specific package names from the C2DM ser-
vice, as it may unexpectedly ban other legitimate services.On the
other hand, the C2DM username may be banned from any C2DM
service, and this can shut down the communication of the entire
C2DM botnet.

To overcome service disruption due to the un-registration of the
C2DM username, one can again leverage the multiple-username
strategy proposed in §4.3. The main idea of such a strategy isto
set up several backup C&C servers, and if a bot has not received
any messages from the botmaster for a pre-defined duration (e.g.,
one week), then it will communicate with one of the backup C&C
servers and query whether it needs to change its C2DM username.
If it gets a new username, it will use the new username to register
to the C2DM service again and sends the new registration ID to
the C&C server in order to re-join the botnet. We point out that
the backup C&C server also possesses the stealthiness property be-
cause bots seldom communicate with it.

5. EVALUATION
In the previous section, we showed that the C2DM botnet com-

munication protocol possesses the stealthiness property:there is
no direct communication between the botmaster (or C&C server)
and bots. In fact, all communication and command dissemination
are carried out via the C2DM service. In this section, we takea
closer examination on the stealthiness property by measuring (a)
the heartbeat overhead of maintaining a C2DM persistent connec-
tion; (b) the capability of hiding command dissemination among le-
gitimate C2DM traffic, and (c) resource (i.e., bandwidth andpower)
consumption on mobile devices. We also explore thecontrollability
of a C2DM botnet: if a C&C server wants to disseminate a com-
mand, then what is theminimum timeneeded for the botmaster to
claim, with a high probability, that all bots receive the command?

5.1 Stealthiness in Control/Data Plane
We first examine the stealthiness of a C2DM botnet in terms of

network traffic. System operators can perform online/offline net-
work traffic analysis to detect a botnet [22, 23], and examinethe
following suspicious behaviors: (i) connecting to some unautho-
rized servers (i.e., C&C servers) using domain names, URLs,or IP
addresses, and (ii) communicating with one or more servers with
certain periodic patterns or with an abnormally high frequency. For
example, a traditional HTTP bot will connect to a C&C server with
an unauthorized domain name or IP address, and periodicallypull
commands from the C&C server. These periodic connections can
expose the presence of a bot. An advanced HTTP bot may use
URL flux [14], which uses authorized domain names such as “twit-
ter.com” to pull commands, but frequent connections can also be
classified as abnormal behavior.

We expect that a C2DM botnet has high stealthiness with the fol-
lowing intuition. In the baseline architecture (see §4.1),a bot con-
nects to a C&C server onlyonce, i.e., when sending its registration
ID. Then during the keep-alive period, the bot will never communi-
cate with the C&C server. In the enhanced architecture (see §4.2),
a bot connects to a C&C server only when the registration ID isun-
registered (see §4.4). Thus, the probability for a C2DM botnet to
expose a bot or the C&C server is kept at minimum. In the follow-
ing, we examine the stealthiness of a C2DM botnet by measuring
the network traffic in bothcontrol and data planes. We implement
a C2DM bot in the Android emulator [26], while the measurement
results are also applicable for real Android phone devices.
Stealthiness of heartbeat traffic. We first look into the control
plane, and focus on the periodic heartbeat messages. Note that if
an Android phone enables any legitimate C2DM service, then it

will connect to a C2DM server with a persistent TCP connection
and sends periodic heartbeat messages to a C2DM server to check
for any new push message. We compare the C2DM heartbeat traf-
fic of two Android phones, one being installed with a C2DM bot
and another being a clean Android phone. Both Android phones
are installed with a number of legitimate applications thatrequire
the C2DM service. Figure 5 shows the traffic patterns of heart-
beat messages under different settings, where the x-axis isthe time
(with unit in minutes) and the y-axis is the traffic volume (with unit
in bytes). Figures 5(a) and 5(c) show the heartbeat traffic patterns
for a phone with a C2DM bot, while Figures 5(b) and 5(d) show
the heartbeat traffic patterns for clean a mobile phone, withthree or
five legitimate C2DM applications, respectively. We observe that
the traffic patterns of these settings arealmost identical, since all le-
gitimate mobile applications which use the C2DM service share the
same persistent TCP connection per device. This allows a C2DM
bot to hide itself under legitimate C2DM heartbeat traffic. Since
a C2DM bot relies on the existing C2DM service of the mobile
phone, if the C2DM service is not enabled, then the bot will be
dormant and will not generate any C2DM heartbeat traffic.

0 50 100
0

500

time(minute)

tr
af

fi
c(

b
yt

e)
(a) Device with C2DM Bot, Gmail
and Google Maps

0 50 100
0

500

time(minute)

tr
af

fi
c(

b
yt

e)

(b) Clean device with Gmail, Google
Maps

0 50 100
0

500

time(minute)

tr
af

fi
c(

b
yt

e)

(c) Device with C2DM Bot, Gmail,
Google Maps, Facebook, LINE and
Instagram

0 50 100
0

500

time(minute)

tr
af

fi
c(

b
yt

e)

(d) Clean device with Gmail, Google
Maps, Facebook, LINE and Instagram

Figure 5: C2DM traffic: (a) and (c) are traffic for a C2DM bot;
(b) and (d) are traffic for clean devices, with 3 or 5 apps.

Stealthiness of command dissemination.We examine the stealth-
iness of a C2DM botnet in the data plane. Note that many Android
phones typically come with a number ofpre-installedapplications
such as Gmail, Google Maps, Google Play, or somepopular ap-
plications like Facebook, LINE, Whatsapp, etc. All these applica-
tions use C2DM services. Upon installation, the C2DM bot knows
which of these legitimate C2DM applications are installed in the
mobile phone, and this provides valuable information to enhance
its stealthiness. For example, in [27], authors indicate the interar-
rival time of Gmail messages is about 0.53 hours. Thus, if a bot-
master disseminates commands with an average interarrivaltime
longer than those of the legitimate C2DM applications, thenit is
easy to hide the existence of a C2DM bot.

We perform experiments by installing a C2DM bot into an An-
droid phone that is pre-installed with Gmail and Google Maps. We
then measure the data traffic generated by the bot and the legitimate
applications Gmail and Google Maps as follows. During the exper-
iment, the C&C server sends commands to the bot. In the same
measurement period, the phone also receives several email notifi-
cations from Gmail and check-in notifications from Google Maps.
Figure 6 shows the data traffic generated by the bot and the legiti-
mate applications in one particular measurement. We observe that
the C2DM botnet traffic only occupies less than 20% of the overall
data traffic. The size of each C2DM botnet traffic burst is alsovery
small, in the range of 200-400 bytes. This shows the stealthiness

property of a C2DM botnet in the data plane.

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

time(minute)

tr
af

fic
(b

yt
e)

Overall C2DM Traffic

C2DM Bot Traffic

Figure 6: C2DM traffic generated by a C2DM bot and legiti-
mate applications.

5.2 Efficiency in Resource Consumption
One major difference between a conventional PC-based botnet

and a mobile botnet is that the latter needs to consider resource
consumption, especially for bandwidth and power, because most
mobile phones have limited network and battery capacities.If a
mobile bot significantly consumes bandwidth or battery resources,
then it may draw unnecessary attention of users and reveal the pres-
ence of a bot. We now evaluate and compare the bandwidth and
power consumptions of a C2DM botnet with other mobile botnets
that use traditional IRC and HTTP as C&C channels.

5.2.1 Bandwidth Consumption
We install a C2DM bot, an IRC bot and three HTTP bots (with

time intervals for pulling commands from the C&C server as 5,10,
and 30 minutes) into five different Android phone emulators.We
then measure the traffic consumption of each Android phone for
one hour. To do a fair comparison, we compare the overhead in
the control plane (in other words, we assume these bots have the
same bandwidth consumption in disseminating commands). Thus,
the traffic consumption of each bot depends on two factors: (a) the
time interval of heartbeat connections, and (b) the volume of the
traffic of each heartbeat connection. Figure 7 depicts the heartbeat
traffic of these three types of bots.
• C2DM bot: The time interval of the heartbeat connections of the
C2DM service is in the range of 15 to 30 minutes depending on
the state of the mobile phone. In our experiment, the time inter-
val is around 28 minutes. The traffic of each heartbeat message is
between 250 and 300 bytes. Note that if the phone has are other
legitimate applications which also use the C2DM service, then the
bot will use the existing heartbeat connection and will not generate
any extra heartbeat traffic.
• IRC bot: The IRC bot uses theping-pong mechanismto keep
alive, such that it sends a ping request to the C&C server and waits
for the response from the C&C server. This can be treated as the
heartbeat connection [28]. The time interval of the ping-pong con-
versations can be customized and is usually between 30 and 600
seconds as set in most of today’s IRC server software. Note that
the ping-pong interval cannot be too large, or it will imposeheavy
burden on the IRC server to maintain many persistent connections
for a long time. In our experiment, the IRC bot is implemented
based on PircBot [29], and the C&C server is built using the open-
source IRC server software named beware-ircd [30] with default
settings, where the ping-pong interval is 90 seconds and thetraffic
generated by each ping-pong conversation is around 200 bytes.
• HTTP bot: Unlike C2DM and IRC bots, a HTTP bot does not
use any persistent TCP connection to keep alive with the C&C
server, so it cannot receive commands instantly and has to con-
nect to the C&C server from time to time to pull for commands.
We regard this periodic pull-command connection as its heartbeat
connection. The traffic of each pull-command connection is about

1000 bytes even when there is no command. This size is much
larger than those of C2DM and IRC bots because the HTTP bot has
to re-establish a TCP connection each time and transmit packets to
complete the TCP 3-way handshake. HTTP packets are also larger
than TCP packets in general due to the additional application-layer
payload. In addition, the time interval of the pull-commandcon-
nections affects the average delay of command dissemination. For
example, if the time interval for pulling commands is set toX min-
utes, then the average time delay for each bot to receive a newcom-
mand will beX/2 minutes. In our experiment, we set the bot to
periodically retrieve commands from the C&C server using HTTP
requests to imitate the pull-command behaviors of a HTTP bot.

0 20 40 60
0

500

1000

1500

2000

time(minute)

tr
af

fi
c(

b
yt

e)

 HTTP Traffic
IRC Traffic
C2DM Traffic

Figure 7: Heartbeat bandwidth consumption for C2DM, IRC
and HTTP bots.

Figure 7 shows the result with the pull-command interval setto
10 minutes. We summarize the results here. The average traffic rate
of the C2DM heartbeat connections is 900 bytes/hour, while those
of the IRC and HTTP heartbeat connections are 5,760 bytes/hour
(i.e., 6.4 times) and 7,200 bytes/hour (i.e., 8 times), respectively.
This shows that a C2DM bot generates significantly less heartbeat
traffic and hence bandwidth resources.

5.2.2 Power Consumption
We now evaluate and compare the power consumptions of C2DM,

IRC, and HTTP bots. Our evaluation is built on [31], which pro-
pose power estimation models for different components on the ba-
sis of an Android HTC Dream phones. Here, we focus on the power
consumption in thecommunicationcomponent, including WiFi and
3G, during the heartbeat period of each type of bots.
WiFi power consumption. To measure the WiFi power consump-
tion, we install each bot in an Android phone emulator running on
a PC, which is connected to a C&C server over a university WiFi
network. We install Wireshark on the same PC, and capture all
packets of the emulator in order to calculate the transmission time.

Figure 8 shows the power states of WiFi transmissions in an
Android HTC phone. The WiFi power consumption depends on
the number of packets sent/received per second, while the packet
size has limited influence [31]. When a phone connects to a WiFi
network and stays idle, it is in the “low” power state. When it
sends/receives data, it switches to either the “ltransmit”or “htrans-
mit” state, according to the transmission speed of the packets; when
it finishes sending/receiving data, it will switch back to the previ-
ous state. In our experiment, the maximum packet speeds of all
types of bots are below 15 packets per second, so the only in-
volved power states during our experiments are “ltransmit”and
“low” power states, as shown in Figure 8.

We calculate the power consumption (in Joules) during heartbeat
transmission in one hour of each bot based on Equation (1), assum-
ing that the total time span of transmitting packets2 in one hour is

2We do not consider the power consumption of the “low” power
state since every phone which connects to the Internet with WiFi
will stay in the ”low” power state while idle.

htransmitltransmit Low high

No data

Send/Receive data

Traffic more

than 15 packets/s

Traffic less than

8 packets/s No data

1000mW 1000mW710mW20mW

Send/Receive data

Figure 8: Wi-Fi power states of Android HTC Dream [31].

Tl and the power of the “ltransmit” state isPl:

W = Pl · Tl. (1)

Suppose that it takes timet (in seconds) for a bot to transmit all
packets in each heartbeat connection. Let the heartbeat interval be
λ (in seconds). We have:

Tl = t · 3600 · λ−1. (2)

Thus, we get:

W = Pl · t · 3600 · λ−1. (3)

Table 1 shows the WiFi power consumption for heartbeat trans-
mission of each bot in one hour, such that the inputs are basedon
our measurements (some results are obtained in §5.2.1). Note that
for the HTTP bot, its packet transmission timet for each heartbeat
connection is longer than those of C2DM and IRC bots, as it needs
to set up a TCP connection with 3-way handshake. From Table 1,
we observe that under the WiFi power model, the C2DM bot con-
sumes theleastamount of power resources compared to HTTP and
IRC bots.

Type of Bot t (in sec) λ (in sec) W (in mJ)

C2DM 0.1 1680 214.3
IRC 0.1 90 4000.0

HTTP (5min) 0.3 300 3600.0
HTTP (10min) 0.3 600 1800.0
HTTP (30min) 0.3 1800 600.0

Table 1: WiFi power consumption of each bot in one hour.

3G power consumption.To measure the 3G power consumption,
we install each bot on a real Android phone that is connected to a
C&C server over an operational 3G data network. We use tcpdump
to capture all data packets within the Android phone.

Figure 9 shows the power states of 3G transmissions of an An-
droid HTC phone. The 3G power consumption depends on the traf-
fic volume. When the state is IDLE, the phone cannot send/receive
any data through 3G, and it consumes almost no power. In the
CELL_FACH state, it can send/receive a few hundred bytes of data
per second, and waits for 6 seconds before switching back to the
IDLE state. If the traffic rate is much larger than the transmission
speed of the CELL_FACH state, then the power state will enterthe
CELL_DCH state, and the phone will wait for 4 seconds before
switching back to the CELL_FACH state. The CELL_DCH has a
higher transmission speed and higher power consumption than the
CELL_DCH state.

CELL_DCH

Idle for 6s

Send/Receive data

570mW401mW

CELL_FACHIDLE
Idle for 4s

DL Queue>119 bytes or

UL Queue>151 bytes

Figure 9: 3G power states of an Android HTC Dream [31].

We calculate the 3G power consumption during heartbeat trans-
mission in one hour of each bot based on Equation (4), assuming

that the power consumption in the IDLE state is zero, the datatrans-
mission time in CELL_FACH isTf , the idle time in CELL_FACH
is Tfi, the data transmission time in CELL_DCH isTd, the idle
time in CELL_DCH isTdi, the power in CELL_FACH isPf , and
the power in CELL_DCH isPd:

W = Pf · (Tf + Tfi) + Pd · (Td + Tdi). (4)

As in the WiFi analysis, we lett (in seconds) be the packet trans-
mission time in each heartbeat connection, andλ (in seconds) be
the interval of keep-alive connections. For C2DM and IRC bots,
their heartbeat traffic volumes are generally small (see §5.2.1), so
they remain in the CELL_FACH state (i.e., low power) during the
heartbeat connections. Thus, the 3G power consumptions forC2DM
and IRC bots are:

W = Pf · (t + 6) · 3600 · λ−1. (5)

On the other hand, for the HTTP bot, its heartbeat traffic volume
is larger (see §5.2.1), and it will stay in the CELL_FACH state (i.e.,
high power). Thus, the 3G power consumption of the HTTP bot is:

W = Pf · 6 · 3600 · λ−1 + Pd · (t + 4) · 3600 · λ−1. (6)

Table 2 shows the 3G power consumption for heartbeat transmis-
sion in one hour for each type of bots. Note that the packet trans-
mission timet for the HTTP bot is about 1 second in 3G, which is
larger than 0.3 seconds in WiFi, since the TCP round-trip delay is
more significant in 3G than in WiFi. Similar to WiFi, the C2DM
bot consumes theleastamount of 3G power among all types of bot.

Type of Bot t (in sec) λ (in sec) W (in mJ)

C2DM 0.1 1680 4892.2
IRC 0.1 90 97844.0

HTTP (5min) 1 300 63072.0
HTTP (10min) 1 600 31536.0
HTTP (30min) 1 1800 10512.0

Table 2: 3G power consumption of each bot in one hour.

5.3 Controllability
We now explore the following question: if the botmaster wants

to send a command toN mobile bots, what is the minimum time
T ∗ needed such that with a high probabilityp, all theseN bots have
received the command? We say that a botnet has goodcontrollabil-
ity if T ∗ is small for givenN andp. Enabling good controllability
is important for a botnet, for instance, when the botmaster wants to
launch a synchronized jamming or DDoS attack. Here, we seek to
show that a C2DM botnet can have good controllability.

Let T̂k be the random variable of the time duration that a bot-
master needs to send a notification to thekth bot via the C2DM
service.T̂k can be expressed as:

T̂k = (k − 1)δ + τ̂k, k = 1, . . . , N, (7)

whereδ is the time between two consecutive C2DM requests gen-
erated by the botmaster, andτ̂k is the random variable of the time
duration of sending a request from the botmaster via the C2DMser-
vice to thekth bot. In our measurement, we setδ = 1/50 seconds,
implying that the botmaster generates 50 requests to the C2DM ser-
vice per second. Note that this is significantly below our 100QPS
requirement to avoid alerting the C2DM service (see §4.3).

Note thatτ̂k is related to the network conditions, phone status,
C2DM server load, etc. We perform two experiments to measure
the probability distribution of̂τi in both WiFi and 3G networks,

using the similar setups in §5.2.1. Figure 10(a) shows the mea-
surement results for the WiFi experiment. We find that in 60%
of time, a command is delivered within 2 seconds; and in 95% of
time, a command is delivered within 2 minutes. Figure 10(b) shows
the measurement results for the 3G experiment. In 53% of time, a
command is delivered within 5 seconds; in 99% of time, it can be
delivered in 2 minutes.

0 30 60 90 120 150 180
0

0.2
0.4
0.6
0.8

1

time delay (second)

re
ce

ip
t r

at
io

(%
)

(a) t in WiFi

0 30 60 90 120
0

0.2
0.4
0.6
0.8

1

time delay (second)

re
ce

ip
t r

at
io

(%
)

(b) t in 3G

Figure 10: Probability distribution function of time delay τ̂ for
bots to receive a C2DM message: (a) WiFi (b) 3G.

Let T̂ be the random variable forall bots to receive the same
command from the botmaster. We can expressT̂ as:

T̂ = max
i∈{1,..,N}

{T̂k} = (N−1)δ + max
i∈{1,..,N}

{τ̂k}. (8)

To ease our analysis, we approximateτ̂k as an independent and
identically distributed exponential random variable withparameter
µ, which denotes the average command arrival rate to a bot. Letfτ∗

be the probability density function ofmaxi∈{1,..,N}{τ̂k}. Using
order statistics [32], we have:

fτ∗(t) = N
`

1 − e−µt
´N−1

µe−µt for t ≥ 0. (9)

To find T ∗ such that with a high probabilityp all N bots have
received the command, we can numerically evaluate the following
expression to obtainTd:

Z Td

t=0

fτ∗(t) = p. (10)

Finally, T ∗ = (N−1)δ + Td. To illustrate, we consider a C2DM
botnet withN = 10000 bots,δ = 1/50 seconds,1/µ is 21.7 sec-
onds for WiFi, and 18.9 seconds for 3G (the latter two are based
on our measurements in Figures 10(a) and 10(b), respectively). Ta-
ble 3 shows different values ofT ∗ under different probability re-
quirementsp. In summary, it takes less than 8 minutes to reach all
bots in a large-scale C2DM botnet. This shows the good controlla-
bility of a C2DM botnet.

p T ∗ (WiFi) T ∗ (3G)

0.80 432.4 sec 402.4 sec
0.90 448.7 sec 416.6 sec
0.95 464.3 sec 430.2 sec

Table 3: Controllability: value of T ∗ under different probabil-
ity guarantees.

6. BOTNET DEPLOYMENT AND ATTACK
In this section, we present the details of deploying a C2DM bot-

net from an attacker’s perspective. As a proof of concept, wealso
implement a small-scale C2DM botnet. We demonstrate how it can
be injected into legitimate mobile applications and used tolaunch
a real-life spamming attack.

6.1 Deployment
Infection. We first explain how we infect a target Android applica-
tion with a C2DM bot. Note that the infection approach we describe
here is also applicable for adding any types of malicious code.

A typical Android application is composed of multiple object
files and packaged into a single file with .apk extension. Eachob-
ject file contains executable bytecode designed for the runtime en-
vironment called the Dalvik Virtual Machine. To inject malicious
code into a target Android application, one cannot directlyoperate
on the application’s source code that is generally unavailable. In-
stead, one candisassemblethe bytecode of the target application
into assembly-like code calledSmalicode, using the official An-
droid Apktool software [33].

After disassembling an Android application, one can accessa
manifest file called AndroidManifest.xml, which describesthe meta-
data of an Android application, including the name, permissions,
activities, and services. It also specifies themain activity, which
is the first activity that will start when the application is launched,
with a tag called “android.intent.action.MAIN”. An attacker can
modify the tag to change the main activity of the target application
to start the malicious activity (i.e., the C2DM bot program). The
malicious activity should run in the background so that the infected
application appears to behave normally. In addition, the attacker
needs to modify AndroidManifest.xml to add extra permissions for
the malicious activity. For the C2DM bot, we add the admission
“com.google.android.c2dm.permission.RECEIVE”.
Propagation. One way to propagate the infected target applica-
tion is to upload it to the official Android Market, but the infected
application may be blocked due to the checking procedure. Anat-
tacker can upload the infected application to some third-party mar-
kets such as HiAPK and AppChina. In China and some Middle East
countries, the Android Market may have low download bandwidth
or may be blocked [34], so users may have to rely on third-party
markets to download applications. This makes the propagation of
an infected application feasible.
Implementation. We implement a proof-of-concept C2DM bot
prototype and inject it into a popular application called Facebook
for Android, which uses many permissions including the C2DM
access, full Internet access, read contact data, and GPS. This fea-
ture enables us to inject the C2DM bot into the application with-
out requiring extra permissions. First, we note that the permission
“com.google.android.c2dm.permission.RECEIVE” for the C2DM
service is not as sensitive as other permissions, such as sending
SMS and receiving SMS, in drawing attention of users. Duringthe
installation, this permission is represented as “receive data from In-
ternet” (see Figure 11(a)), which is hidden in a collapsed list. Users
may not notice this permission is included. Figure 11(b) shows that
once the application is launched, the C2DM bot service will start
in background and it can receive commands from the botmastervia
the C2DM service.

6.2 Attack Demonstration
We conduct a trial study on deploying a C2DM botnet in reality

and launching a spamming attack known as theSMS-spam-and-
click attack. Our goal is to demonstrate the threat of a mobile botnet
in practice, using our C2DM botnet as a motivating example.

Specifically, we recruited 10 volunteers and installed C2DMbots
into their Android phones. Thus, we construct a real-life, small-
scale C2DM botnet with 10 bots. These bots will generate an SMS
message containing a URL that refers to a website under our control
for data collection. We then experiment three different forms of
attacks:
• Random spamming: Each of the 10 bots sends 10 SMS mes-

(a) Installation (b) Startup

Figure 11: Injecting a C2DM bot into the Facebook applica-
tion.

sages to 10 different registered phone numbers selected at random.
We are interested in finding how many people will click our URL
link. Note that this attack is similar to the conventional spamming
attack. In our experiment, none of the 100 people clicked ourlink,
which means that the conventional spamming attack may not re-
ceive a high number of clicks.
• Contacts spamming: Each of the 10 bots now sends an SMS
message to 10 known people who are in the phone’s contact list.
The result is that 23 out of 100 people clicked our URL, and this
shows that exploiting friendship in an attack can enhance the click
success rate.
• Man-in-the-middle spamming: Each of the 10 bots monitors
the SMS conversation of the compromised mobile phone, and the
bot sends an SMS message to the contacted person on the other end.
We instruct each bot to send a maximum of 10 SMS messages. Our
experiments show that 45% of contacted persons clicked the URL.
This shows that the man-in-the-middle spamming can also have a
high success rate.

7. EXTENSION TO OTHER PLATFORMS
We mention in §1 that many platforms other than Android pro-

vide push notification services and can be exploited as well.We
now elaborate how to extend a C2DM botnet to other platforms.

The push notification services of other platforms are similar to
C2DM in the architectural design, as shown in Figure 12. When
an application launches in a mobile device, it needs to register to
the push service to get a unique ID (it may have different names
in different platforms, e.g.,device tokenin iOS andpush URIin
Windows), and then sends it to the application server. When the
application server wants to send a push notification to an applica-
tion, it sends the ID together with the payload to a push server,
which then forwards the payload to the application.

App Server

Push

Server

(1)

Register

(3) ID

(2)

ID

App Register

Send Notification

(4)

ID
and Payload

(5)

Payload

App in Device

Figure 12: Architecture of push notification service.

Table 4 compares different push notification services, includ-
ing Google’s C2DM, Apple’s Push Notification Service (APNS),
Microsoft’s Push Notification Service (MPNS), Blackberry’s Push
Service (BPS), and Nokia’s Notification API (NNA). The maxi-
mum payload size of APNS is 256 bytes, which is the smallest
among all, but it still suffices for a typical botnet command.In
terms of request quota, for APNS and NNA, they do not set any
limit on the number of push notifications that the application server
can send per day. For MPNS, the quota is unlimited for an authen-
ticated web service, and 500 per day per device for unauthenticated
ones. To authenticate a web service, a developer needs to apply
for a certificate from a certificate authority and upload it toWin-
dows Phone Marketplace. For BPS, it has two versions: Essential
and Plus. Their difference is that the Plus version supportsdeliv-
ery status report. The quotas of the Essential and Plus versions
are unlimited and 100,000 for free per day. Thus, compared tothe
C2DM platform, botnets on other platforms in general have better
scalability due to less strict quota limits.

Service Max. Payload Quota (per Day)
C2DM 1 KB 200,000
APNS 256 Bytes Unlimited
MPNS 3 KB (+ 1KB Header) Unlimited (authenticated)

500 (unauthenticated)
BPS 8 KB Unlimited (Essential version)

100,000 free (Plus version)
NNA 1.5 KB Unlimited

Table 4: Comparison of push notification services.

Similar to C2DM, each push request of other push notification
services can be sent to one device only (see §4.1). Thus, the con-
trollability of a botnet in other platforms is also determined by the
QPS limitation, as discussed in §5.3.

In summary, we believe that it is feasible to extend the C2DM
botnet design to other push notification platforms. Furthermore, the
botnets on such platforms share the same properties as the C2DM
botnet, such as stealthiness, resource efficiency, and controllability.

8. RECOMMENDATIONS ON DEFENSE
In this section, we discuss possible defense strategies against a

C2DM botnet, or more generally, push-styled mobile botnetsde-
ployable in today’s push notification platforms. While we have yet
identified this kind of botnets in the wild, our work suggeststhat
their eventual existence is anticipated.

We point out that most existing botnet detection methods can-
not effectively detect push-styled mobile botnets. Since both push-
styled bots and legitimate applications connect to officialpush no-
tification servers to receive messages, it is non-trivial for anomaly-
based detection methods (e.g., BotSniffer [22]) and mining-based
detection methods (e.g., BotMiner [23]) to separate botnettraffic
from other legitimate application traffic. In the following, we sug-
gest possible defense strategies against push-styled mobile botnets.

Based on our C2DM botnet design, a bot will send its unique
ID to the botmaster directly, or via push notification servers, dur-
ing its registration. Thus, we may deploy a sandbox system ina
mobile device to monitor the network behavior of an application.
The sandbox system can check whether an application sends data
to suspicious addresses or sends suspicious requests to push noti-
fication servers. Since many legitimate applications also send data
to legitimate addresses or push notification servers, this defense
mechanism requires further traffic analysis to confirm the existence
of a push-styled bot.

Our experience is that not every mobile device platform has strict
authority management over push notifications. Users may unnec-
essarily enable certain applications to support push notification ser-
vices. Specifically, in Android, the permission of receiving C2DM
messages “com.google.android.c2dm.permission.RECEIVE” is not
anative permission, which starts with “android.permission.”. Thus,
it has not been considered as sensitive as other native permissions
which may incur monetary costs to users or require access to private
information, such as “android.permission.SEND_SMS” and “an-
droid.permission.RECEIVE_SMS”. We suggest that the permis-
sion of receiving C2DM messages should also be treated as one
of the sensitive permissions. If an application requires this per-
mission, then it should be examined to ensure that the permission
is actually required for its functions. In addition, the manifest
file AndroidManifest.xml of the application should be checked to
see whether there is more than one C2DM receiver. In this case,
the application may have been injected with some unauthorized
C2DM receivers. Furthermore, one can consider fuzzy hashing
technique[35] to detect repackaged applications in the third-party
markets to combat botnet propagation.

9. CONCLUSION
Push notification services have provided great convenienceand

flexibility for applications to receive light messages fromapplica-
tion servers. In this paper, we propose the design of a novel cloud-
based push-styled mobile botnet, which exploits the push notifi-
cation service for lightweight command dissemination. We take
Google’s C2DM service for the Android platform as a motivating
example to construct this type of mobile botnets. We demonstrate
how a C2DM botnet can feasibly utilize Google’s C2DM service
as a C&C channel, and justify how its design can be made scalable
and resilient against service disruption. Through in-depth evalua-
tion, we show that the C2DM botnet is stealthy, resource-efficient,
and controllable. We prototype the C2DM botnet and demonstrate
how it can be deployed in reality. Finally, we provide recommenda-
tions on potential defense strategies against such push-styled mo-
bile botnets in general.

10. REFERENCES
[1] A. Apvrille. Symbian worm yxes: Towards mobile botnets?In 19th

Annual EICAR Conference, France, 2010.
[2] P. Porras, H. Saïdi, and V. Yegneswaran. An analysis of the ikee. b

iphone botnet.Security and Privacy in Mobile Information and
Communication Systems, pages 141–152, 2010.

[3] Lookout Inc. Security alert: Geinimi, sophisticated new android
trojan found in wild, 2010.http://blog.mylookout.com/
blog/2010/12/29/geinimi_trojan.

[4] Trend Micro Inc. Zeus targets mobile users.
http://blog.trendmicro.com/zeus-targets-
mobile-users, 2011.

[5] X. Jiang. Security Alert: AnserverBot, New Sophisticated Android
Bot Found in Alternative Android Markets.http:
//www.csc.ncsu.edu/faculty/jiang/AnserverBot/,
Sep 2011.

[6] Kaspersky Inc. Irc bot for android.http://www.securelist.
com/en/blog/208193332/IRC_bot_for_Android, 2012.

[7] Google Inc. Android Cloud to Device Messaging Framework.
http://code.google.com/android/c2dm.

[8] Apple Inc. Local and Push Notification Programming Guide.
http://developer.apple.com/library/mac/
documentation/NetworkingInternet/Conceptual/
RemoteNotificationsPG/RemoteNotificationsPG.
pdf, 2011.

[9] Microsoft Inc. Push Notifications Overview for Windows Phone.
http://msdn.microsoft.com/en-
us/library/ff402558(v=vs.92).aspx.

[10] Reserach In Motion Inc. Blackberry push service.
http://http://us.blackberry.com/developers/
platform/pushapi.jsp.

[11] Nokia Inc. Notifications api.https://projects.developer.
nokia.com/notificationsapi/wiki.

[12] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger, P. McDaniel, and
T. La Porta. On Cellular Botnets: Measuring the Impact of Malicious
Devices on a Cellular Network Core. InProc. of ACM CCS, 2009.

[13] K. Singh, S. Sangal, N. Jain, P. Traynor, and W. Lee. Evaluating
Bluetooth as a Medium for Botnet Command and Control. InProc. of
DIMVA, 2010.

[14] C. Xiang, F. Binxing, Y. Lihua, L. Xiaoyi, and Z. Tianning. Andbot:
Towards Advanced Mobile Botnets. InProc. of USENIX LEET,
pages 11–11. USENIX Association, 2011.

[15] K.G. Zeng, Y.and Shin and X. Hu. Design of SMS
Commanded-and-Controlled and P2P-structured Mobile Botnet. In
Proc. of ACM WiSec, 2012.

[16] G. Geng, G. Xu, M. Zhang, Y. Yang, and G. Yang. An improvedsms
based heterogeneous mobile botnet model. InInformation and
Automation (ICIA), 2011 IEEE International Conference on, pages
198–202. IEEE, 2011.

[17] J. Hua and K. Sakurai. A SMS-based Mobile Botnet Using Flooding
Algorithm. In Proc. of IFIP WISTP, 2011.

[18] G. Weidman. Transparent Botnet Command and Control for
Smartphones over SMS. InShmoocon, 2011.

[19] C. Mulliner and J.P. Seifert. Rise of the iBots: 0wning aTelco
Network. InProc. of IEEE MALWARE, pages 19–20, 2010.

[20] M. Akiyama, T. Kawamoto, M. Shimamura, T. Yokoyama,
Y. Kadobayashi, and S. Yamaguchi. A Proposal of Metrics for Botnet
Detection Based on its Cooperative Behavior. InProc. of SAINT
Workshops, pages 82–82. Ieee, 2007.

[21] H. Choi, H. Lee, H. Lee, and H. Kim. Botnet Detection by
Monitoring Group Activities in DNS Traffic. InProc. of IEEE CIT,
2007.

[22] G. Gu, J. Zhang, and W. Lee. BotSniffer: Detecting Botnet Command
and Control Channels in Network Traffic. InProc. of NDSS, 2008.

[23] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner: Clustering
Analysis of Network Traffic for Protocol-and Structure-Independent
Botnet Detection. InProc. of USENIX Security, 2008.

[24] I. Vural and H. Venter. Mobile Botnet Detection Using Network
Forensics. InFuture Internet Symposium, 2010.

[25] E. Kartaltepe, J. Morales, S. Xu, and R. Sandhu. Social
Network-Based Botnet Command-and-Control: Emerging Threats
and Countermeasures. InProc. of ACNS, 2010.

[26] Android Developers.http://developer.android.com.
[27] Tim Hopper. My email analytics.

http://www.stiglerdiet.com/2012/04/05/my-
email-analytics/.

[28] J. Oikarinen and D. Reed. Internet relay chat protocol.RFC 1459,
1993.

[29] P. Mutton. Pircbot 1.2. 5 java irc api: Have fun with java. Java
Developer’s Journal, 8(12):26–32, 2003.

[30] Beware ircd.http://ircd.bircd.org.
[31] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R.P. Dick, Z.M. Mao, and

L. Yang. Accurate Online Power Estimation and Automatic Battery
Behavior Based Power Model Generation for Smartphones. InProc.
of ACM CODES+ISSS, pages 105–114. ACM, 2010.

[32] Herbert A. David.Order Statistics, 2nd Ed.Wiley-Interscience, 1981.
[33] Apktool.

http://code.google.com/p/android-apktool/.
[34] S. Ye. Android Market is Currently Blocked in China. Here are your

Alternatives, Sep 2011.
http://techrice.com/2011/10/09/android-market-
is-currently-blocked-in-china-here-are-your-
alternatives/.

[35] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Droidmoss: Detecting
repackaged smartphone applications in third-party android
marketplaces. InACM Conference on Data and Application Security
and Privacy, 2012.

