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Abstract

This paper studies a cooperative multi-agent
multi-armed stochastic bandit problem where
agents operate asynchronously – agent pull times
and rates are unknown, irregular, and hetero-
geneous – and face the same instance of a K-
armed bandit problem. Agents can share re-
ward information to speed up the learning pro-
cess at additional communication costs. We pro-
pose ODC, an on-demand communication proto-
col that tailors the communication of each pair
of agents based on their empirical pull times.
ODC is efficient when the pull times of agents
are highly heterogeneous, and its communication
complexity depends on the empirical pull times
of agents. ODC is a generic protocol that can
be integrated into most cooperative bandit algo-
rithms without degrading their performance. We
then incorporate ODC into the natural extensions
of UCB and AAE algorithms and propose two
communication-efficient cooperative algorithms.
Our analysis shows that both algorithms are near-
optimal in regret.

1 INTRODUCTION

Asynchronous multi-agent multi-armed bandit (MAMAB)
settings arise naturally in several applications. For instance,
in online advertising with multiple heterogeneous servers,
server processing capabilities and speeds are often differ-
ent. Furthermore, the times that servers receive recommen-
dation requests are often unknown and irregular. Another
example is clinical trials with multiple labs in collabora-
tion, where trial times depend on client visit times, which
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vary from lab to lab. In other large-scale distributed learn-
ing scenarios, such as IoT devices cooperating to learn an
underlying environment, agents can be asynchronous in na-
ture due to task arrangements or hardware limits.

This paper studies a MAMAB setting where agents with
unknown asynchronous decision times cooperate to im-
prove their learning performance. Concretely, we consider
a system where a group of M agents, A = {1, ...,M},
cooperate to solve the same instance of a K-armed bandit
problem. An agent repeatedly chooses an arm from the arm
set to pull and receives a stochastic reward from it. Agents
have different numbers of decision rounds (pull times) at
arbitrary unknown times. Each agent aims to minimize its
individual regret – the cumulative difference between the
reward received by the agent and the expected reward of
the best arm in the arm set. Agents cooperate by shar-
ing reward information with each other, and their goal is
to together minimize the group regret – the total amount
of individual regret among the M agents. Cooperation
among agents, however, comes with an additional com-

munication cost, which can be expensive for some appli-
cations when agents are geographically dispersed or have
limited power/bandwidth resources for communication.

Prior studies (Yang et al., 2021, 2022) have shown that it
is possible to achieve near-optimal group regret by imme-
diately broadcasting rewards. In an asynchronous setting
where agents have different pull speeds, immediate broad-
casts can incur unnecessary communication costs. With
immediate broadcast communication, an agent can receive
multiple reward-sharing messages from another agent be-
tween its two decision rounds; these messages could have
been accumulated (buffered) by that agent and sent all at
once, incurring lower communication overhead. Hence, for
a group of asynchronous agents, tailoring the message ex-
change protocol between each pair of agents can yield bet-
ter communication efficiency.

This paper aims to reduce communication costs over that
of the immediate broadcast communication protocol (IBC)
while achieving the same order of regret. The lack of syn-
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chronization between agents, however, poses a challenge
on determining the timing of communication. Specifically,
agents are uncertain of other agents’ learning progress at
any time due to the arbitrary asynchronicity of agent pull
times and hence need to trade-off communication costs to
learn this information for better cooperation. One might
apply the idea of coordinated cooperative learning, e.g.,
the leader-follower framework, which has proven to be effi-
cient in prior studies (Kolla et al., 2018; Dubey et al., 2020;
Wang et al., 2020) of the synchronous MAMAB problem.
However, unknown and irregular agent pull speeds hinder
the application of coordinated cooperative learning. This
can lead to a scenario where agents chosen to be in charge
of exploration, leaders, are slow (have small pull rates), and
agents chosen to perform exploitation are fast (have large
pull rates), which can incur high regret. Another alterna-
tive is customizing spontaneous communication between
agents, where each agent deliberately chooses its commu-
nication frequency to other agents according to their pull
rates. However, efficient implementation of customized
spontaneous communication is not possible since agents do
not have prior knowledge of the pull times of others.

Contributions. This paper develops On-Demand Com-
munication (ODC), an efficient protocol for the asyn-
chronous cooperative MAMAB model, where unique tech-
nical challenges are introduced by the unknown, irregu-
lar, and different decision times of agents. By the de-
sign of ODC, we address the challenge of reducing the
number of communications among asynchronous agents.
Specifically, ODC reduces the number of communications
by tailoring the times communications occur between each
pair of agents based on their empirical pull times. More
importantly, ODC is generic and can be used with most
cooperative bandit algorithms. We propose two decen-
tralized MAMAB algorithms, UCB-ODC and AAE-ODC,
which combine ODC with natural extensions of UCB and
AAE algorithms respectively. Our analysis shows that both
UCB-ODC and AAE-ODC achieve near-optimal group re-
gret upper bounds of O(

P
i:�i>0 log(N)/�i), where N ⌘P

j2A Nj is the total number of decision rounds of all
agents, Nj is the total number of decision rounds of agent
j, and �i is the suboptimality gap of arm i.

Under ODC, communication complexity, i.e., the total num-
ber of messages sent among agents, depends on the spe-
cific decision times of agents. We show that the communi-
cation complexity of ODC is O(

P
j,j02A min{Nj , Nj0}),

which depends on the agents with the fewest decision
rounds. This communication complexity is much smaller
than that of the immediate broadcast communication pro-
tocol (IBC), O(MN), when agent pull times are highly
heterogeneous. Moreover, following prior ideas on the
synchronous MAMAB setting, one has the option to tune
message transmission rates under ODC by allowing mes-
sages to vary in size to further reduce the communica-

tion complexity. For example, if the number of obser-
vations in a message is doubled after each communi-
cation, the communication complexity of ODC becomes
O(
P

j,j02A min{logNj , logNj0}). In this way, our asyn-
chronous policy can recover the state-of-the-art logarith-
mic communication complexity when applied to the syn-
chronous MAMAB setting.

Our experimental results verify our theoretical observations
and demonstrate that ODC is especially advantageous when
agent pull speeds are highly diversified, and when there ex-
ist many slow agents.

Prior Work. We review the most relevant work here and
refer to Appendix A for extended literature review. The
most relevant work considers asynchronous bandit agents
cooperating in a fully decentralized manner (Yang et al.,
2021, 2022; Sankararaman et al., 2019; Féraud et al., 2019).
The model in Yang et al. (2021, 2022) assumes each agent
periodically make decisions at different known frequen-
cies. Our paper assumes that pulling times are unknown
and irregular. Sankararaman et al. (2019) study a gossip
protocol, i.e., an agent can only communicate with one
other agent at each time. Last, Féraud et al. (2019) studies
the scenario where the goal is to identify the best arm in-
stead of minimizing regret. More broadly there is extensive
prior work on MAMAB with synchronous agents either in
a fully decentralized setting, e.g., (Szorenyi et al., 2013;
Chawla et al., 2020; Landgren et al., 2016; Buccapatnam
et al., 2015; Martı́nez-Rubio et al., 2019; Madhushani et al.,
2021; Cesa-Bianchi et al., 2016), or using coordinated co-
operative approach (Shi et al., 2021a; Wang et al., 2019,
2020; Bar-On and Mansour, 2019; Chakraborty et al.,
2017; Dubey et al., 2020; Kolla et al., 2018). In the syn-
chronous MAMAB setting, the batch approach (a.k.a., dou-
bling epoch, phase, buffer) (Perchet et al., 2016; Gao et al.,
2019) has been used to achieve logarithmic communica-
tion complexity, e.g, by Agarwal et al. (2021); Shi et al.
(2021b); Boursier and Perchet (2019). There are also works
on asynchronous multi-agent learning in related fields such
as federated linear bandit (Li and Wang, 2022; He et al.,
2022) and online convex optimization with full informa-
tion or semi-bandit feedback (Cesa-Bianchi et al., 2020;
Jiang et al., 2021; Joulani et al., 2019; Bedi et al., 2019;
Della Vecchia and Cesari, 2021).

2 ASYNCHRONOUS MULTI-AGENT
BANDITS

We study an asynchronous version of the cooperative
multi-agent multi-armed bandit (MAMAB) problem with
a set A = {1, ...,M} of M independent agents and a set
K = {1, ...,K} of K arms. Each arm i 2 K is asso-
ciated with a mutually independent sequence of i.i.d. re-
wards, taken to be Bernoulli with mean 0  µ(i)  1.
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Let i⇤ = argmaxi2K µ(i) denote the optimal arm. Define
the suboptimality gap of arm i as �i ⌘ µ(i⇤) � µ(i) and
let � ⌘ mini2K\{i⇤} �i denote the smallest suboptimality
gap in the arm set.

Agents operate asynchronously. Let Nj be the total number
of decisions made by agent j; agent j 2 A pulls arms at
time slots t

j
1, t

j
2, ..., and t

j
Nj

, where both Nj and the time
slots are not known by any agent including agent j. We
make no assumptions about when agents pull arms and the
total number of pulls they make. One agent may pull many
arms within an arbitrary interval, while another agent might
not pull any arm. Furthermore, agents are allowed to join,
leave, and re-join the system at arbitrary times. Let T ⌘
maxj2A t

j
Nj

denote the learning horizon of the entire group
of agents and N ⌘

P
j2A Nj denote the total number of

decisions among all agents over the time horizon.

We consider the problem where there are no collisions; i.e.,
agent always receives a Bernoulli reward with mean µ(i)
from arm i 2 K, irrespective of the actions of other agents.
Each agent j 2 A pulls one arm at time t 2 {tj1, t

j
2, ..., t

j
Nj

}
with the goal of minimizing its cumulative regret. The ex-
pected cumulative regret of a single agent j is defined as

E[Rj
Nj

] = µ(i⇤)Nj � E
⇥X

t2{tj1,t
j
2,...,t

j
Nj

}
xt(I

j
t )
⇤
,

where I
j
t 2 K is the arm pulled by agent j at time t, re-

ward xt(I
j
t ) is taken from Bernoulli distribution with value

0 or 1, and the expectation is taken over the randomness
of agent’s decisions and arm rewards. We denote the num-
ber of times agent j pulls arm i by time t as nt

j(i), and the
number of decisions agent j makes by time t as n

t
j . We

assume that every agent can reliably communicate with ev-
ery other agent to share their observations. Let n̂t

j(i) denote
the empirical number of observations of arm i that agent j
has at time t, either by pulling the arm, or obtained from
other agents, and let n̂t

j denote the total empirical num-
ber of observations agent j has at time t. The objective
of the cooperative MAMAB problem is to minimize ex-
pected group regret, defined as E[R] =

P
j2A E[Rj

Nj
],

while maintaining low communication overhead. Let C de-
note the total number of messages sent by agents in horizon
T , as in Wang et al. (2020); Yang et al. (2021, 2022). We
precisely define the information included in a message in
Definition 1 in §3.1.

3 ALGORITHM DESIGN

In §3.1, we first elaborate the design and provide intuition
behind the On-Demand Communication (ODC) protocol.
Then, we incorporate ODC into bandit algorithms and pro-
pose two communication-efficient cooperative bandit algo-
rithms: UCB-ODC (§3.2) and AAE-ODC (§3.3).

3.1 ODC: On-Demand Communication Protocol

We present the On-Demand Communication (ODC) proto-
col (ODC) summarized in Algorithm 1. The core idea of
ODC is to leverage the fact that agents pull arms at different
rates to reduce communication complexity while achieving
the same order of regret achieved by algorithms that imme-
diately share rewards. Consider a scenario with a fast and
a slow agent. By fast, we mean the agent pulls many arms
while a slow agent pulls very few arms during the same
time horizon. If agents immediately share their observa-
tions, the fast agent incurs a large communication overhead
by sending multiple messages between two consecutive de-
cision rounds of the slow agent. In fact, the fast agent can
reduce communication overhead while achieving the same
regret if it aggregates the instantaneous rewards during the
slow agent’s non-decision period and sends the information
all at once prior to the slow agent’s next decision round.
Hence, different agent pull rates motivate a new commu-
nication protocol that reduces communication complexity
by scheduling communication times for each pair of agents
according to their pull rates.

Given the above motivation, one idea is to allow each agent
to receive other observations at a rate proportional to its
pull rate. In our asynchronous MAMAB model, it is chal-
lenging to tailor communication timings because agent pull
times are irregular and unknown. A straightforward way to
achieve this is to allow agents to request observations from
other agents prior to pulling arms. However, requests intro-
duce extra communication overhead, i.e., fast agents may
make too many requests to slow agents before they obtain
new reward information to share.

The idea implemented in ODC is to treat each observation
sharing message as an exchange demand. Specifically, we
let each agent j maintain a set of binary valued exchange
demand variables (Ej!1

, E
j!2

, ..., E
j!M ). Once agent j

receives a message from agent j0, it sets exchange demand
E

j!j0 to True. Then, when agent j acquires new infor-
mation it responds back to agent j0 and resets E

j!j0 to
False. If agent j acquires new information while E

j!j0

is False, agent j buffers it for agent j0 while waiting for
the exchange demand to be set to True. Specifically, the
buffer maintained for agent j0 records the following infor-
mation for each arm i: (1) the number of observations of i
that agent j acquires by pulling it since the last time agent
j sent a message to agent j0, denoted as b

j!j0
n (i), (2) the

cumulative reward over the observations of arm i that agent
j acquires from pulling it since the last round agent j sends
a message to j

0, denoted as b
j!j0
µ (i). After agent j sends

the buffered information in a message to agent j0, it renews
the buffer by resetting b

j!j0
n (i), bj!j0

µ (i), 8i 2 K, to zero.

Definition 1 A message sent from agent j to agent j
0

is a

set of K tuples: {(bj!j0
n (i), bj!j0

µ (i)), 8i 2 K}.
1

1If an agent buffers n observations, the number of observa-
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Algorithm 1 ODC for Agent j

1: Initialization: exchange demands Ej!j0  True, 8j0 2 A, buffers bj!j0
n (i)  0, bj!j0

µ (i)  0, 8j0 2 A, 8i 2 K, number of
communications cj!j0  1, 8j0 2 A, buffer thresholds f(cj!j0) f(1), 8j0 2 A

2: for t = 1...T do
3: if t is a decision time slot of agent j, i.e., t 2 {tj1, ..., t

j
Nj

} then . decision making

4: Run an underlying bandit algorithm: pull arm Ijt according to e.g., UCB, or AAE, and receive instantaneous reward xt(I
j
t )

5: Update the parameters of the underlying bandit algorithm, e.g., empirical mean rewards, number of observations
6: for each agent j0 2 A do
7: Update the buffer for agent j0: bj!j0

n (Ijt ) bj!j0
n (Ijt ) + 1, bj!j0

µ (Ijt ) bj!j0
µ (Ijt ) + xt(I

j
t )

8: if Ej!j0 is True and
P

i2K bj!j0
n (i) � f(cj!j0) then . information sharing

9: Share the buffered information with j0, i.e., send a message as defined in Definition 1, Set cj!j0  cj!j0 + 1

10: Set exchange demand Ej!j0  False and renew the buffer for agent j0

11: Update buffer threshold f(cj!j0), e.g., double it f(cj!j0) 2f(cj!j0 � 1) or keep it the same
12: end if
13: end for
14: end if
15: for each new message received from any agent j0 2 A do . message processing

16: Update the parameters of the underlying bandit algorithm, e.g., empirical mean rewards, number of observations
17: if agent j has buffered f(cj!j0) observations for j0, i.e.,

P
i2K bj!j0

n (i) � f(cj!j0) then
18: Share information by sending a message as defined in Definition 1 to j0, Set cj!j0  cj!j0 + 1, renew buffer for j0

19: Update buffer threshold f(cj!j0), e.g., double it f(cj!j0) 2f(cj!j0 � 1) or keep it the same
20: else
21: Set exchange demand Ej!j0  True

22: end if
23: end for
24: end for

(a) ODC with static buffer thresholds, i.e., buffer thresholds are
updated according to f(1) 1, f(c) f(c� 1)

(b) ODC with doubling buffer thresholds, i.e., thresholds are up-
dated according to f(1) 1, f(c) 2f(c� 1)

Figure 1: Examples of two agents with arbitrary decision times

ODC also implements thresholds on the buffer sizes2, i.e.,
a buffer must contain at least as many observations as the
buffer threshold, that together with exchange demands de-
termine whether an agent should send a message to another
agent. Specifically, each agent j maintains a set of posi-
tive integer valued variables (cj!1

, ..., c
j!M ) denoting the

number of communications from agent j to other agents.
The buffer threshold, f(cj!j0), is a positive and monotoni-
cally increasing function of the number of communications
c
j!j0 . After agent j sends a message to agent j0 when

the communication counter is c
j!j0 , the communication

counter is incremented by one and the buffer threshold for
the next communication is f(cj!j0 + 1). Possible can-
didates for the buffer threshold function include f(c) =

tions and cumulative reward of each arm take value in {0, ..., n}
and require log(n+ 1) bits.

2One may apply the batch/epoch setting techniques in syn-
chronous MAMAB literature to the buffer threshold setting here.

a, c = 1, 2, . . ., where a is a positive integer, and f(c) =
a
c�1

, c = 1, 2, . . ., where a > 1 is a positive integer. The
first example produces a constant buffer threshold and the
second allows buffer threshold to increase exponentially
each time a message is sent. Under ODC, an agent j sends
a message to agent j0 if Ej!j0 is True and agent j has
buffered at least f(cj!j0) observations for agent j0.

In Figure 1, we provide simple examples of two agents
with arbitrary decision time. To illustrate how ODC (Algo-
rithm 1) works, we describe the communication schedule
for the example in Figure 1b. Agent 1 first sends a mes-
sage to agent 2 at time t

1
1, sets exchange demand E

1!2 to
False, sets c

1!2 to 2, and updates f(c1!2) to 2. At t12
and t

1
3, agent 1 pulls arms and buffers the obtained obser-

vations because E
1!2 is False. At t21, agent 1 receives

a message from agent 2, replies with a message contain-
ing the observations obtained at t12, t13, renews the buffer,
sets c

1!2 to 3, and updates f(c1!2) to 4. At t14, t15, t16,
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agent 1 pulls arms and buffers the obtained observations.
At t23, agent 1 receives a message from agent 2; instead of
replying with a message, agent 1 sets the exchange demand
E

1!2 to True at this time because it only buffered three
observations while the buffer threshold f(c1!2) is 4. At
t
1
7, agent 1 obtains an additional observation and satisfies

the buffer threshold; hence, it sends a message to agent 2,
renews the buffer, sets E1!2 to False, sets c1!2 to 4, and
updates f(c1!2) to 8.

Last, we note that ODC can handle agent arrivals and depar-
tures. Agent notifies the others when it departs or goes of-
fline. When agent j receives a departure notice from agent
j
0, it sets exchange demand E

j!j0 to False, so it will
buffer information for j0. When an agent (re)joins the sys-
tem, it notifies all other agents. When agent j receives a
join notice from agent j0, it (re)initializes exchange demand
E

j!j0 to True so that the observations buffered during
agent j0’s leaving can be sent to it to (re)start cooperation.

3.2 UCB-ODC: Cooperative UCB with ODC

In this section, we present UCB-ODC, a fully decentral-
ized cooperative MAMAB algorithm that samples accord-
ing to a natural extension of the Upper Confidence Bound
(UCB) algorithm and uses ODC for communications. Un-
der UCB-ODC, agent j computes an empirical mean re-
ward, µ̂(i, n̂t

j(i)), over n̂
t
j(i) observations of agent j for

each arm i 2 K. Note that the value of n̂t
j(i) not only con-

sists of instantaneous rewards agent j received from pulling
arm i, but it also includes information agent j received from
other agents. Under UCB-ODC, agent j also maintains a
confidence interval for arm i centered on its empirical mean
value, µ̂(i, n̂t

j(i)), with width defined as

CI
t
j(i) ⌘

q
↵ log(1/�tj)/(2n̂

t
j(i)), (1)

where ↵ and �
t
j are algorithm parameters. With prob-

ability at least 1 � (�tj)
↵, the true reward mean, µ(i),

lies in its confidence interval, i.e., µ(i) 2 [µ̂(i, n̂t
j(i)) �

CI
t
j(i), µ̂(i, n̂

t
j(i)) + CI

t
j(i)]. Further discussion and anal-

ysis of the confidence interval can be found in Bubeck and
Cesa-Bianchi (2012).

Under UCB-ODC, agent j selects the arm with the largest
upper confidence bound at each decision round, i.e.,

I
j
t ⌘ argmax

i2K
µ̂(i, n̂t

j(i)) + CI
t
j(i), t 2 {tj1, ...t

j
Nj

}.

Upon receiving an instantaneous reward for the selected
arm I

j
t , UCB-ODC updates the reward mean estimate and

confidence interval of I
j
t . In the meantime, agent j fol-

lows ODC checking exchange demands, buffer thresholds,
and accordingly buffering the information or sending mes-
sages. The pseudocode of UCB-ODC is in Appendix E.

3.3 AAE-ODC: Cooperative AAE with ODC

We propose AAE-ODC, which combines ODC with a natu-
ral extension of the Active Arm Elimination (AAE) algo-
rithm (Even-Dar et al., 2006). Agents executing AAE-ODC
together maintain a dynamic candidate set to keep track of
arms likely to be the optimal arm, where the candidate set
is updated using the confidence intervals as defined in (1).
Specifically, the candidate set initially contains all arms.
When agents observe or receive rewards, they recompute
the confidence intervals of arms; if an arm’s confidence in-
terval completely falls below that of any other arm, it is
removed from the candidate set as it is unlikely to be the
optimal arm. Formally, arm i is removed from the candi-
date set at time t if for any agent j:

9i0 2 K s.t. µ̂t
j(i) + CI

t
j(i) < µ̂

t
j(i

0)� CI
t
j(i

0).

Once an arm is eliminated by an agent, the agent broadcasts
the index of the eliminated arm, so that other agents can
keep updating the candidate set. At each decision round,
agent j pulls from the candidate set the arm that agent j has
fewest observations. Once the candidate set size reduces
to one, agents have completed the exploration task having
identified optimal arm with high probability, and they do
not need information from one another anymore. Hence,
agents under AAE-ODC stop their communication once the
candidate set size shrinks to one. The cooperation policy
of AAE-ODC follows the ODC protocol and is summarized
in the pseudocode of AAE-ODC in Appendix F.

4 ANALYSIS OF REGRET AND
COMMUNICATION COMPLEXITY

When agents are asynchronous and pull arms in arbi-
trary time slots, the performance of a cooperative ban-
dit algorithm depends on how much agents can cooperate
with each other. A unique technical challenge in the re-
gret analysis of UCB-ODC and AAE-ODC is bounding the
additional number of times agents pull suboptimal arms
due to delayed observation sharing while waiting for ex-
change demands between asynchronous agents or waiting
for buffer thresholds to be satisfied. To facilitate the regret
analysis, we let ⌧i denote the time slot such that

N (i)+M �
X

j2A
n
⌧i
j (i) > N (i) �

X
j2A

n
⌧i�1
j (i),

for each suboptimal arm i 2 K\{i⇤}, where for UCB-ODC,
N (i) = (2↵ logN)/�2

i , and for AAE-ODC, N (i) =
(8↵ logN)/�2

i .

4.1 Regret Results

Theorem 1 (Expected Group Regret under ODC) With

algorithm parameters �
t
j = 1/nt

j � 1/N , ↵ � 2, and

buffer thresholds being updated according to a positive
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and monotonically increasing function f , we have:

(a) the expected group regret of UCB-ODC satisfies

E[R]  3KM +
X

i2K:�i>0

⇣2↵ logN

�i
+
X

j2A
F

j
i �i

⌘
, (2)

where F
j
i is a non-negative variable defined as

3

F
j
i = min

n⇣ X

j02A\{j}

f(cj
0!j

⌧i )
⌘
,
2↵ logN

�2
i

o
; (3)

(b) the expected group regret of AAE-ODC satisfies

E[R]  3KM +
X

i2K:�i>0

⇣8↵ logN

�i
+
X

j2A
G

j
i�i

⌘
, (4)

where G
j
i is a non-negative variable defined as

G
j
i = min

n⇣ X

j02A\{j}

f(cj
0!j

⌧i )
⌘
,
8↵ logN

�2
i

o
. (5)

The proofs of Theorem 1(a) and 1(b) deal with each sub-
optimal arm i, and upper bounds the extra number of times
each agent pulls arm i after time ⌧i. A formal proof is given
in Appendix B. In the following, we highlight important
properties of the regret results under ODC.

Remark 1 (Regret characterization by total number of de-

cision rounds.) We observe that the expected regret in The-

orem 1 is characterized by N , the total number of decision

rounds among all agents in the learning horizon. This is

in contrast to the synchronous agent setting where regret is

usually presented as a function of the learning horizon T

and the total number of agents M . When agent pull rates

significantly differ from each other, Theorem 1 provides

a much tighter regret bound than those derived for syn-

chronous settings, as N can be much smaller than M ⇥ T .

Remark 2 (Regret optimality.) When buffer thresholds are

set to a small constant a, i.e., f(cj!j0) = a, c
j!j0 =

1, 2, . . . , 8j, j0, then F
j
i , 8i, j (resp. G

j
i , 8i, j) is bounded

by constant Ma, and UCB-ODC (resp. AAE-ODC)

achieves a provable optimal regret upper bound. To show

this, we derive the following lower bound on group regret

by adopting the proof techniques for the asymptotic lower

bound for single-agent bandits, e.g., (Bubeck and Cesa-

Bianchi, 2012, Theorem 2.2):

E[R] = ⌦
⇣X

i2K:�i>0

logN

�i

⌘
. (6)

The proof of (6) is given in Appendix C. Then, since F
j
i

(resp. G
j
i ) is a constant 8i, j, one observes that the regret

of UCB-ODC in (2) (resp. of AAE-ODC in (4)) is near-

optimal compared to the lower bound (6), up to two con-

stant terms, i.e., 3KM and
P

i,j F
j
i (resp.

P
i,j G

j
i ).

3We drop t from notations cj!j0

t and Ej!j0

t in algorithm pre-
sentations for brevity. The precise notations are used in analysis.

Remark 3 (Impact of buffer thresholds.) The setting of

buffer thresholds influences the trade-off between commu-

nication complexity and group regret. Remark 2 shows

that UCB-ODC and AAE-ODC have near-optimal regrets

if buffer thresholds are set to be small (compared to

log(N)/�2
). If buffer thresholds are simply set to be al-

ways large, one can reduce the communication complexity

while incurring higher regret. Depending on specific sce-

narios, e.g., as in Remark 4, buffer thresholds can be wisely

set to achieve low communication while not degrading the

regret much.

Remark 4 (Performance in synchronous setting.) When

applied to a MAMAB setting with synchronous agents

where every agent makes a decision at every time slot,

our asynchronous algorithm AAE-ODC recovers a near-

optimal regret O(
P

i2K:�i>0 log(N)/�i) with logarith-

mic communication complexity by setting a doubling

buffer threshold whose size is proportional to the number

of arms remaining in the candidate set, C, i.e., f(c) =
|C|2c�1

, c = 1, 2, . . .. We show this in Appendix B.3 and

discuss the recovery of logarithmic communication com-

plexity in Remark 8.

4.2 Communication Complexity

Remark 5 (Communication Complexity under IBC)
The communication complexity of MAMAB algorithms

using immediate broadcasting communication (IBC) is

C =
X

j2A

X
j02A\{j}

Nj .

Theorem 2 (Communication Complexities under ODC)
When buffer thresholds are updated according to a positive

and monotonically increasing function f , the communica-

tion complexities of UCB-ODC and AAE-ODC satisfy:

C 
X

j2A

X
j02A\{j}

min{Cj , Cj0}+ 1, (7)

where Cj is the largest integer in set {1, ..., Nj} such that

(a) for UCB-ODC

⇣ CjX

c=1

f(c)
⌘
 Nj ; (8)

(b) for AAE-ODC

⇣ CjX

c=1

f(c)
⌘
 min

n
2K+

X

i2K

8↵ logNj

max{�2
i ,�

2} , Nj

o
. (9)

Proofs of Theorem 2(a) and 2(b) are in Appendix D.

Corollary 1 When buffer thresholds f(c) = a, c =
1, 2, . . ., a is a positive integer, we have:
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Table 1: Summary of Results (all regret bounds are problem-dependent and we omit the 1/� factor)

Pull Times Buffer Thres. Group Regret Communication #

UCB-ODC Async., Sync. Constant O(K logN) O(
P

j,j02A min{Nj , Nj0})
AAE-ODC Async., Sync. Constant O(K logN) O(

P
j,j02A Kmin{logNj , logNj0}/�2)

AAE-ODC Sync. Doubling O(K logN) O(
P

j,j02A log[Kmin{logNj , logNj0}/�2])

(a) the communication complexity of UCB-ODC is

O

⇣ X

j,j02A
min

n⌅Nj

a

⇧
,
⌅Nj0

a

⇧o⌘
;

(b) the communication complexity of AAE-ODC is

O

⇣ X

j,j02A
min

nj
K logNj

a�2

k
,

j
K logNj0

a�2

ko⌘
.

Corollary 2 When buffer thresholds f(c) = a
c�1

, c =
1, 2, . . ., a > 1 is a positive integer, we have:

(a) the communication complexity of UCB-ODC is

O

⇣ X

j,j02A
min

�
bloga(Nj)c, bloga(Nj0)c

 ⌘
;

(b) the communication complexity of AAE-ODC is

O

⇣X

j,j02A
min

nj
loga

⇣
K logNj

a�2

⌘k
,

j
loga

⇣
K logNj0

a�2

⌘ko⌘
.

In what follows, we highlight the significance of the com-
munication complexity results of ODC.

Remark 6 (Communication complexity characterization

by number of decision rounds.) A major contribution of

Theorem 2 is the generalization of the communication com-

plexity analysis to the asynchronous-agent setting where

the upper bound depends on the number of decision rounds

of the agents instead of the length of time horizon. More

specifically, the communication complexity of ODC implic-

itly depends on the total number of decisions by all agents,

N . In general when agent pull rates differ significantly

from each other, N is much smaller than M ⇥ T , and The-

orem 2 provides a much tighter upper bound than previous

results relying on T .

Remark 7 (Performance with asynchronous agents.) ODC

is able to deal with heterogeneous pull rates, since com-

munication can be tailored for on-demand transmissions.

Especially, under ODC, the number of communications be-

tween each pair of agents depends on the slower agent;

while, under IBC, the number of communications between

each pair of agents is dominated by the faster agent. For

example, consider a two-agent system where agent j
fast

is

a fast agent that pulls arms much more often than a slow

agent j
slow

, i.e., Njfast � Njslow . By Theorem 2, the number

of messages sent by ODC is at most 2Njslow + 2, while, by

Remark 5, the number of messages sent under immediate

communication can be as large as Njfast +Njslow .

Remark 8 (Recovery of logarithmic communication com-

plexity in synchronous setting.) When our asynchronous

ODC protocol is applied to a MAMAB setting with syn-

chronous agents, i.e., Nj = T, 8j 2 A, Corollary 2 im-

plies that we can recover a O(M2 log T ) communication

complexity by doubling buffer threshold after each message

transmission.

Remark 9 (Double logarithmic communication complex-

ity of AAE-ODC) As shown in Theorem 2(b), the commu-

nication complexity of AAE-ODC depends logarithmically

on the total number of decision rounds among all agents,

N , and therefore depends logarithmically on the learn-

ing horizon, T , when the suboptimality gaps are large,

e.g., �i � 1/
p

Nj , 8j 2 A, i 2 K \ {i⇤}. This is

because AAE-ODC stops communication once the explo-

ration task completes, i.e., once the candidate set size be-

comes one. Corollary 2(b) further shows that double log-

arithmic communication complexity can be achieved if the

buffer thresholds of AAE-ODC are set to be doubling.

Note that ODC also works for the scenario that communi-
cation has a deterministic delay and that each agent only
has access to a local subset of the K arms, as in Yang et al.
(2022); Chawla et al. (2020); Yang et al. (2021). We pro-
vide regret and communication complexity analysis of both
algorithms for such scenario in Appendix G and H.

5 NUMERICAL EXPERIMENTS

In this section, we first study the impact of differ-
ences in agent pull rates (Experiment 1) and number
of slow agents in the system (Experiment 2) on com-
munication complexity and group regret. We com-
pare UCB-ODC and AAE-ODC with their counterparts
that use immediate broadcast communication, labeled
UCB-IBC and AAE-IBC

4 in the first two experiments
with buffer thresholds set to one to better demonstrate the
insights of ODC. In Experiment 3, we study the four above
algorithms when buffer thresholds are allowed to double

4
UCB-IBC and AAE-IBC are essentially the same as

CO-UCB and CO-AAE respectively proposed in Yang et al.
(2022).
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(a) UCB Communication (b) AAE Communication (c) UCB and AAE Regret

Figure 2: Experiment 1 — impact of the heterogeneity of agent speeds. Forty agents with fixed mean sampling probability
and increasing sampling probability ratio between fast and slow agents.

(a) UCB Communication (b) AAE Communication (c) UCB and AAE Regret

Figure 3: Experiment 2 — impact of the number of slow agents. Increasing the number of slow agents while fixing the
expected total number of decisions in the entire system.

after each communication. We present supplementary ex-
periments and provide more insights on simulation results
in Appendix I.

Experimental Setup. In our experiments, there are M =
40 agents each with K = 16 arms with Bernoulli rewards
whose means are uniformly and randomly taken from Ad-

Clicks (Avito, 2015). We set ↵ = 3 for all algorithms and
report values averaged over 30 independent trials. We re-
port the average cumulative group regret after T = 80, 000
time slots for three experimental scenarios.

Experiment 1. In this experiment, we study the impact
of differences in agent pull rates on communication com-
plexity and group regret. Specifically, we fix the expected
total number of decisions in the entire system by fixing the
mean sampling probabilities among 40 agents, and we in-
crease the sampling probability ratio between fast and slow
agents from 10⇥ to 30⇥ with a step size of 5. Specifi-
cally we fix the sampling probability of each slow agent at
0.01 and vary that of each fast agent from 0.1 to 0.3 with
step size 0.05. Note that we maintain the mean sampling
probability among agents at 0.085. Hence the number of
fast (resp. slow) agents decreases (resp. increases) as the
sampling probability ratio increases.

Figures 2a and 2b report the total amount of communica-
tion under the immediate broadcast communication (IBC)
and the ODC protocols. We distinguish three types of com-
munications: (1) between fast and slow agents (orange),
(2) among slow agents (yellow), and (3) among fast agents
(blue). Figures 2a and 2b show that ODC reduces the

amount of communications in all three categories but most
notably between fast and slow agents. The amount of com-
munication between fast and slow agents increases under
IBC while remaining relatively constant under ODC as the
sampling probability ratio between fast and slow agents
increases. This demonstrates that ODC is communication
efficient when there is large difference in the pull rates
of fast and slow agents. Figure 2c shows that UCB-ODC
and AAE-ODC exhibit similar group regrets to those of
UCB-IBC and AAE-IBC respectively.

Experiment 2. Next, we study the impact of the number
of slow agents on communication complexity and group re-
gret while fixing the expected total number of decisions in
the entire system. We fix the number of fast agents at 5 and
increase the number of slow agents from 5 to 30 with steps
of 5. The sampling probability of a fast agent is always
0.8. As the expected total number of decisions is fixed at
300, 000, the sampling probability of slow agents decreases
from 0.2 to 0.034 as the number of slow agents increases.

Figure 3 reports the results of Experiment 2. Fig-
ures 3a and 3b show that the number of communica-
tions of UCB-IBC and AAE-IBC increase significantly as
the number of slow agents increases even though the ex-
pected total number of decisions does not change; while the
amount of communication of UCB-ODC and AAE-ODC do
not change much as the number of slow agents increases.
Figure 3c shows that UCB-ODC and AAE-ODC still achieve
similar group regrets as UCB-IBC and AAE-IBC respec-
tively even though they require fewer message exchanges
for cooperation.
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Experiment 3. Finally, we study the performance of
the four policies, UCB-IBC, UCB-ODC, AAE-IBC, and
AAE-ODC, all with doubling buffer thresholds, which we
denote as UCB-IBC-D, UCB-ODC-D, AAE-IBC-D, and
AAE-ODC-D, in a system with one fast agent with sam-
pling probability one and nine slow agents with sampling
probabilities 0.001. Table 2 summarizes the results, which
again verifies our theoretical observation that ODC reduces
the communications between asynchronous agents while
achieving similar group regrets as IBC.

Table 2: Experiment 3

Communication Group Regret
UCB-IBC-D 629± 2 1474± 89
UCB-ODC-D 563± 6 1514± 114
AAE-IBC-D 629± 2 2679± 254
AAE-ODC-D 564± 5 2672± 225

6 CONCLUSION AND FUTURE
DIRECTION

This paper presented a communication protocol for effi-
cient cooperation in asynchronous multi-agent bandits set-
tings. The communication protocol explicitly adjust the
amount of cooperation in proportion to agent pull rates and
could be integrated into an underlying bandit algorithm.
We combined the proposed communication protocol with
two bandit algorithms and analyzed their performance in
terms of regret and communication complexities.

A limitation of this work is that we assume all messages
are sent through reliable communication, e.g., TCP proto-
col. ODC suffers potential performance degradation when
it is used under unreliable communication, e.g., UDP pro-
tocol. Specifically, ODC suffers performance degradation if
there is packet loss in communication. For example, after
agent j sends a message to agent j0 and sets E

j!j0  
False, if this sharing message is lost without reaching
agent j0, then the cooperation between agent j and j

0 will
end. This is because from both agents’ perspectives, each
other’s exchange demands are both False. Designing
a loss-tolerant communication protocol for asynchronous
MAMAB is an interesting open problem.

Acknowledgements

We thank the anonymous reviewers for their useful com-
ments. Yu-Zhen Janice Chen (yuzhenchen@cs.umass.edu)
and Don Towsley’s (towsley@cs.umass.edu) research is
supported by U.S. Army Research Laboratory under Co-
operative Agreement W911NF-17-2-0196 (IoBT CRA).
The work of Xuchuang Wang (xcwang@cse.cuhk.edu.hk),
Xutong Liu (liuxt@cse.cuhk.edu), and John C.S. Lui
(cslui@cse.cuhk.edu.hk) was supported in part by the
RGC’s GRF 14215722. Mohammad Hajiesmaili’s
(hajiesmaili@cs.umass.edu) research is supported by

NSF CAREER-2045641, CPS-2136199, CNS-2106299,
and CNS-2102963. Correspondence to: Lin Yang
(linyang@nju.edu.cn).

References

Agarwal, M., Aggarwal, V., and Azizzadenesheli, K.
(2021). Multi-agent multi-armed bandits with limited
communication. arXiv preprint arXiv:2102.08462.

Avito (2015). Avito Context Ad Clicks. https://www.
kaggle.com/c/avito-context-ad-clicks.

Bar-On, Y. and Mansour, Y. (2019). Individual regret in co-
operative nonstochastic multi-armed bandits. Advances

in Neural Information Processing Systems, 32.

Bedi, A. S., Koppel, A., and Rajawat, K. (2019). Asyn-
chronous online learning in multi-agent systems with
proximity constraints. IEEE Transactions on Signal and

Information Processing over Networks, 5(3):479–494.

Besson, L. and Kaufmann, E. (2018). Multi-player bandits
revisited. In Algorithmic Learning Theory, pages 56–92.
PMLR.

Bistritz, I. and Bambos, N. (2020). Cooperative multi-
player bandit optimization. Advances in Neural Infor-

mation Processing Systems, 33:2016–2027.

Bistritz, I. and Leshem, A. (2018). Distributed multi-player
bandits-a game of thrones approach. Advances in Neural

Information Processing Systems, 31.

Boursier, E. and Perchet, V. (2019). Sic-mmab: synchro-
nisation involves communication in multiplayer multi-
armed bandits. Advances in Neural Information Process-

ing Systems, 32.

Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis
of stochastic and nonstochastic multi-armed bandit prob-
lems. In Foundations and Trends® in Machine Learning,
pages 1–122.

Bubeck, S., Li, Y., Peres, Y., and Sellke, M. (2020). Non-
stochastic multi-player multi-armed bandits: Optimal
rate with collision information, sublinear without. In
Conference on Learning Theory, pages 961–987. PMLR.

Buccapatnam, S., Tan, J., and Zhang, L. (2015). Infor-
mation sharing in distributed stochastic bandits. In 2015

IEEE Conference on Computer Communications (INFO-

COM), pages 2605–2613. IEEE.

Cesa-Bianchi, N., Cesari, T., and Monteleoni, C. (2020).
Cooperative online learning: Keeping your neighbors
updated. In Algorithmic Learning Theory, pages 234–
250. PMLR.

Cesa-Bianchi, N., Gentile, C., Mansour, Y., and Minora,
A. (2016). Delay and cooperation in nonstochastic ban-
dits. In Conference on Learning Theory, pages 605–622.
PMLR.



On-Demand Communication for Asynchronous Multi-Agent Bandits

Chakraborty, M., Chua, K. Y. P., Das, S., and Juba, B.
(2017). Coordinated versus decentralized exploration in
multi-agent multi-armed bandits. In IJCAI, pages 164–
170.

Chawla, R., Sankararaman, A., Ganesh, A., and Shakkot-
tai, S. (2020). The gossiping insert-eliminate algorithm
for multi-agent bandits. In International Conference on

Artificial Intelligence and Statistics, pages 3471–3481.
PMLR.

Della Vecchia, R. and Cesari, T. (2021). An efficient al-
gorithm for cooperative semi-bandits. In Algorithmic

Learning Theory, pages 529–552. PMLR.

Dubey, A. et al. (2020). Cooperative multi-agent bandits
with heavy tails. In International Conference on Ma-

chine Learning, pages 2730–2739. PMLR.

Dubey, A. and Pentland, A. (2020). Differentially-private
federated linear bandits. Advances in Neural Information

Processing Systems, 33:6003–6014.

Even-Dar, E., Mannor, S., Mansour, Y., and Mahadevan,
S. (2006). Action elimination and stopping conditions
for the multi-armed bandit and reinforcement learning
problems. Journal of machine learning research, 7(6).
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A LITERATURE REVIEW

Collision or no collision. One of the extensively studied MAMAB settings is the collision scenario (Wang et al., 2020;
Boursier and Perchet, 2019; Shi et al., 2021b; Bistritz and Leshem, 2018; Bubeck et al., 2020; Besson and Kaufmann,
2018), where agents receive zero or degraded rewards if they pull the same arm simultaneously. This setting well models
the opportunistic spectrum access applications with multiple users, where the objective is to choose the best channels while
avoiding users communicate through the same channel at the same time. On the other hand, the MAMAB setting with no

collision (Shi et al., 2021a; Wang et al., 2019, 2020; Bar-On and Mansour, 2019; Chakraborty et al., 2017; Dubey et al.,
2020; Szorenyi et al., 2013; Chawla et al., 2020; Landgren et al., 2016; Buccapatnam et al., 2015; Martı́nez-Rubio et al.,
2019; Bistritz and Bambos, 2020; Madhushani et al., 2021; Chakraborty et al., 2017; Cesa-Bianchi et al., 2016; Hillel
et al., 2013; Dubey et al., 2020; Yang et al., 2021, 2022; Sankararaman et al., 2019; Féraud et al., 2019) has also attracted
increasing research interest. In the MAMAB setting with no collision, agents receive independent rewards without any
degradation even when they pull the same arm. This setting is more suitable for modeling applications like recommender
systems, clinical trials, robotic taget searching, etc. In this paper, we focus on the no collision setting.

Cooperate with or without a coordinator. Regarding cooperation methods in cooperative MAMAB, there are two
broad categories of prior work: (1) cooperation with coordinator (Shi et al., 2021a; Wang et al., 2019, 2020; Bar-On
and Mansour, 2019; Chakraborty et al., 2017; Dubey et al., 2020), which utilizes a central server or elects leaders among
agents to coordinate the learning process. (2) cooperation without coordinator (Szorenyi et al., 2013; Chawla et al., 2020;
Landgren et al., 2016; Buccapatnam et al., 2015; Martı́nez-Rubio et al., 2019; Bistritz and Bambos, 2020; Madhushani
et al., 2021; Chakraborty et al., 2017; Cesa-Bianchi et al., 2016; Hillel et al., 2013; Dubey et al., 2020; Yang et al.,
2021, 2022; Sankararaman et al., 2019; Féraud et al., 2019), which addresses a decentralized learning scenario where
agents communicate with each other to improve their learning performance. In this work, we consider the cooperation

without coordinator (decentralized) approach in an asynchronous MAMAB setting where agent pull times and speeds
being unknown, irregular, and different, hinders the application of a coordination approach.

Reward assumptions. Similar to standard bandit problem, various reward assumptions are studied in decentralized co-
operative MAMAB model. For example, Szorenyi et al. (2013); Chawla et al. (2020); Landgren et al. (2016); Buccapatnam
et al. (2015); Martı́nez-Rubio et al. (2019) consider stochastic bandit, Dubey et al. (2020) studies stochastic bandit with
heavy tails, and Cesa-Bianchi et al. (2016) considers non-stochastic bandit. In this work, we consider arms with stochastic
rewards and assume they have Bernoulli distributions.

Homogeneous or heterogeneous arm sets. In decentralized cooperative MAMAB model, agents can have homoge-
neous arm sets or heterogeneous arm sets. Homogeneous arm sets setting (Szorenyi et al., 2013; Landgren et al., 2016;
Buccapatnam et al., 2015; Martı́nez-Rubio et al., 2019), i.e., same set of arms is available to each agent, is more extensively
studied. Regarding heterogeneous arm sets scenario, there are two different notions of heterogeneous arm sets as far as
we notice. One refer to the scenario where agents have access to the same set of arms but each agent receive different
expected reward from the same arm, e.g., in Hossain et al. (2021). This setting models the opportunistic spectrum access
application and mobile sensor environment estimating application, where the geographical location of agents influence the
rewards they receive from the same arm. The other definition of heterogeneous arm sets models the scenario that agents
receive same expected rewards from the same arm but each agent only have access to a subset of all the arms, e.g, in Yang
et al. (2022); Chawla et al. (2020); Yang et al. (2021). In this work, we mainly consider homogeneous arm sets setting. We
provide extension of our results to account for agents pulling from different but overlapping subsets of arms in Appendix.

Synchronous or asynchronous agents. In decentralized cooperative MAMAB model, agents can operate synchronously
or asynchronously. The synchronous setting (Szorenyi et al., 2013; Chawla et al., 2020; Landgren et al., 2016; Buccapatnam
et al., 2015; Martı́nez-Rubio et al., 2019) is more extensively studied. In the synchronous setting, there is a common clock
among all agents, and every agent pulls an arm at every time slot. Yang et al. (2021, 2022); Sankararaman et al. (2019);
Féraud et al. (2019) addresses MAMAB with asynchronous agents. The model in Yang et al. (2021, 2022) assumes
each agent periodically make decisions at different known frequencies. Sankararaman et al. (2019) assumes each agent is
equipped with a Poisson clock and agent pull when its clock rings. Féraud et al. (2019) assumes there is a distribution
determining which agent becomes active at each time slot. Our paper assumes that pulling times are unknown, irregular,
and not necessarily stochastic. Last, asynchronous multi-agent learning has also been studied in related fields such as
online (convex) optimization with full information or semi-bandit feedback (Cesa-Bianchi et al., 2020; Jiang et al., 2021;
Joulani et al., 2019; Bedi et al., 2019; Della Vecchia and Cesari, 2021).
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Communication schemes. Many different types of communication has been studied in decentralized cooperative
MAMAB literature. For example, Szorenyi et al. (2013) considers peer-to-peer network and let each agent communicate
to only a fixed number of agents at each round. Chawla et al. (2020); Sankararaman et al. (2019) considers a gossip-style
communication, where agents are assumed located on a graph and agents can only communicate with their neighbors. The
gossip-style communication can be used to model the scenario that users in a social network explore restaurants and make
recommendations to their friends. In Buccapatnam et al. (2015); Yang et al. (2021, 2022), each agent is allowed to imme-
diately broadcast the rewards to all other agents. In this work, we consider that each agent is allowed to communicate with
every other agent and design a communication protocol that is efficient when agents operate asynchronously. The proposed
on-demand communication protocol, ODC, is a fundamentally different idea from previously considered communication
protocols in decentralized cooperative MAMAB literature, such as immediate broadcasting, peer-to-peer (Dubey and Pent-
land, 2020), consensus-based (Martı́nez-Rubio et al., 2019), and gossip-style (Sankararaman et al., 2019) communication,
under which agents spontaneously transmit information.

B PROOF OF THEOREM 1

B.1 Proof of Theorem 1(a)

To proceed with the proof of expected group regret of UCB-ODC, we first state some intermediary lemmas and then use
the lemmas to upper bound the group regret. The first two lemmas are regarding two types of decisions, namely Type-I
and Type-II.

Definition 2 At any decision round t, the decision of agent j is a Type-I decision if the following equation holds

µ(i) 2 [µ̂t
j(i)� CIt

j(i), µ̂
t
j(i) + CI

t
j(i)], 8i 2 K; (10)

otherwise the decision is a Type-II decision.

Lemma 1 At any decision round t, an agent j makes a Type-I decision with a probability at least 1� 2K�
t
j
↵

.

Proof of Lemma 1: By Hoeffding’s inequality, the probability that the true mean value of arm i is larger than the upper
confidence bound or smaller than the lower confidence bound when agent j makes a decision at time t can be bounded by

P
"
|µ(i)� µ̂(i, n̂t

j(i))| >

s
↵ log(1/�tj)

2n̂t
j(i)

#
 2�tj

↵
.

Hence, the probability that (10) holds for all arm i 2 K is lower bounded by 1�
P
i2K

2�tj
↵
= 1� 2K�

t
j
↵. ⇤

By Lemma 1, with probability at most 2K�
t
j
↵, an agent makes a Type-II decision at a decision round. With �

t
j = 1/nt

j �
1/N , the expected number of Type-II decisions made by all agents over the entire time horizon, denoted by E[QII] is upper
bounded by

E[QII] 
X

j2A

NjX

l=1

2K�
tjl
j

↵

=
X

j2A

NjX

l=1

2K

(n
tjl
j )↵

(a)

X

j2A

2K

↵� 1

⇣
1� 1

(Nj)↵�1

⌘ (b)
 2KM. (11)

In (11), (a) holds because l  n
tl
j for each l and (b) holds if ↵ � 2.

Lemma 2 If agent j 2 A makes a Type-I decision and pulls suboptimal arm i 2 K by the UCB-ODC algorithm, at that

decision round t we have

n̂
t
j(i) 

2↵ log(1/�tj)

�2
i

.

Proof of Lemma 2: If agent j 2 A makes a Type-I decision and pulls suboptimal arm i 2 K at time t by the UCB-ODC
algorithm, we have

2CIt
j(i) � �i. (12)



Yu-Zhen Janice Chen, Lin Yang, Xuchuang Wang, Xutong Liu, Mohammad Hajiesmaili, John C. S. Lui, Don Towsley

Because otherwise,

µ̂(i⇤) + CI
t
j(i

⇤) � µ(i⇤) = µ(i) +�i > µ(i) + 2CIt
j(i) > µ̂(i) + CI

t
j(i),

contradicting the fact that arm i is pulled by UCB-ODC as it has the highest UCB. Rewrite (12) using the definition of
CI

t
j(i) in (1), we have

n̂
t
j(i) 

2↵ log(1/�tj)

�2
i

.

⇤
Recall that nt

j(i) denotes the number of times agent j has pulled arm i up to time t. In the cooperative learning process,
there must exist a time slot ⌧i for each subooptimal arm i 2 K \ {i⇤} such that

2↵ logN

�2
i

+M �
X

j02A
n
⌧i
j0 (i) >

2↵ logN

�2
i

�
X

j02A
n
⌧i�1
j0 (i). (13)

The number of times arm i pulled after time ⌧i are considered as extra number of pulls. These extra pulls are because of
three possible causes: 1) Type-I decision due to delayed transmission for waiting for exchange demands, 2) Type-I decision
due to delayed transmission for waiting for buffer thresholds to be satisfied, 3) Type-II decisions.

We first examine Type-I decision cases. Note that n̂t
j(i) is the total number of observations of arm i agent j possessed at

time t, including both the number of times agent j pulls arm i and some or all number of times other agents in A pull arm i.
We define Bj!j0

t (i) as the number of reward samples of arm i stored in agent j’s buffer for agent j0 (and not yet been sent)
at time t, and define B

j!j0

t as the total number of observations stored in agent j’s buffer for agent j0 at time t. Consider
an agent j 2 A and a suboptimal arm i such that, at time ⌧i,

2↵ logN

�2
i

�
2↵ log 1/�⌧ij

�2
i

� n̂
⌧i
j (i) = n

⌧i
j (i) +

X

j02A\{j}

n
⌧i
j0 (i)�B

j0!j
⌧i (i) (14)

(a)
>

2↵ logN

�2
i

�
X

j02A\{j}

B
j0!j
⌧i (i) (15)

=
2↵ logN

�2
i

�
X

j02A\{j}

B
j0!j
⌧i (i)1

Ej0!j
⌧i

=false
�

X

j02A\{j}

B
j0!j
⌧i (i)1

Ej0!j
⌧i

=true
(16)

(b)
� 2↵ logN

�2
i

�
X

j02A\{j}

B
j0!j
⌧i (i)1

Ej0!j
⌧i

=false
�

X

j02A\{j}

f(cj
0!j

⌧i )1
Ej0!j

⌧i
=true

, (17)

where inequality (a) is because of (13); inequality (b) is because, for agent j0 2 A \ {j} such that Ej0!j
⌧i = true, we

have f(cj
0!j

⌧i ) � B
j0!j
⌧i � B

j0!j
⌧i (i) � 0. According to Lemma 2, such an agent j makes Type-I decisions to pull arm i

after time ⌧i.

In the following, we bound the extra number of times agent j pulls arm i to make up for the delayed transmission from
other agents j

0. For an agent j0 2 A \ {j} such that Ej0!j
⌧i = false, if Bj0!j

⌧i (i) < f(cj
0!j

⌧i ), agent j has to make
at most f(cj

0!j
⌧i ) extra pulls of i to make up for agent j0’s delay; if B

j0!j
⌧i (i) � f(cj

0!j
⌧i ), agent j can receive those

observations from j
0 once agent j buffers f(cj!j0

⌧i ) observations for j0 and sends a message to j
0. Hence, because of the

delayed transmission from agents j
0 2 A \ {j} : Ej0!j

⌧i = false, agent j pulls arm i after time ⌧i at most following
number of times:

X

j02A\{j}

f(max{cj
0!j

⌧i , c
j!j0

⌧i })1
Ej0!j

⌧i
=false


X

j02A\{j}

f(cj
0!j

⌧i )1
Ej0!j

⌧i
=false

, (18)

where the inequality is because, by the definition of the ODC, for any pair of agents j, j0 2 A at any time t, if Ej0!j
t =

false, 1 � c
j0!j
t � c

j!j0

t � 0. On the other hand, agents j0 2 A \ {j} such that Ej0!j
⌧i = true delay transmission

of
P

j02A\{j} B
j0!j
⌧i (i)1

Ej0!j
⌧i

=true
observations of i to agent j at time ⌧i due to waiting for the buffer thresholds to be

satisfied. To make up for this type of delay, agent j pulls arm i after time ⌧i at most following number of times:
X

j02A\{j}

f(cj
0!j

⌧i )1
Ej0!j

⌧i
=true

. (19)
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By (18) (19) and Lemma 2, agent j contributes at most F j
i extra numbers of pullings of arm i after time ⌧i, where

F
j
i = min

n⇣ X

j02A\{j}

f(cj
0!j

⌧i )
⌘
,
2↵ logN

�2
i

o
. (20)

We now examine Type-II decision case. According to Lemma 1 and (11), the expected number of Type-II decisions made
by all agents over the entire time horizon is upper bounded by 2KM . Since, in our case, �i  1, 8i 2 K, the regret
incurred by Type-II decisions is upper bounded by 2KM .

The expected group regret can be bounded by

E[R] =
X

j2A
E[Rj

Nj
] =

X

j2A

X

i2K
�iE[nT

j (i)] =
X

i2K
�i

⇣X

j2A

NjX

`=1

P[Ij
tj`

= i]
⌘

(21)

 2KM +
X

i2K
�i

⇣2↵ logN

�2
i

+M +
X

j2A
F

j
i

⌘
 3KM +

X

i2K:�i>0

⇣2↵ logN

�i
+
X

j2A
F

j
i �i

⌘
. (22)

This completes the proof of Theorem 1(a).

B.2 Proof of Theorem 1(b)

Similar to the analysis of regret of UCB-ODC in previous subsection, we utilize intermediary lemmas regarding Type-I and
Type-II decisions to upper bound the group regret. Agent j makes a Type-I decision if (10) holds, otherwise it is a Type-II
decision.

As AAE-ODC also selects arms based on confidence interval as defined in (1), Lemma 1 holds for AAE-ODC. That is, the
upper bound of the expected number of Type-II decisions (11) also holds for AAE-ODC.

Lemma 3 If agent j 2 A makes a Type-I decision and pulls suboptimal arm i 2 K by AAE-ODC algorithm, at that

decision round t we have

n̂
t
j(i) 

8↵ log(1/�tj)

�2
i

. (23)

Proof of Lemma 3: If agent j 2 A makes a Type-I decision and pulls suboptimal arm i 2 K at time t by AAE-ODC

algorithm, we have

2CIt
j(i

⇤) + 2CIt
j(i) � �i. (24)

Because otherwise,

µ̂(i⇤)� CIt
j(i

⇤) = µ̂(i⇤) + CI
t
j(i

⇤)� 2CIt
j(i

⇤)

� µ(i⇤)� 2CIt
j(i

⇤) = µ(i) +�i � 2CIt
j(i

⇤)

> µ(i) + 2CIt
j(i) � µ̂(i) + CI

t
j(i), (25)

contradicting the fact that arm i is pulled by AAE-ODC as it is in the candidate set (if (25) holds, arm i should not be in
the candidate set). Since AAE-ODC pulls the arm with least observations in the candidate set, we have n̂

t
j(i)  n̂

t
j(i

⇤) and
thereby CIt

j(i) � CI
t
j(i

⇤). Rewrite 4CIt
j(i) � �i using the definition of CIt

j(i) in (1), we obtain

n̂
t
j(i) 

8↵ log 1/�tj
�2

i

.

⇤
We then upper bound the group regret of AAE-ODC by similar steps in previous subsection.

Let ⌧i be the time slot for suboptimal arm i that

8↵ logN

�2
i

+M �
X

j02A
n
⌧i
j0 (i) >

8↵ logN

�2
i

�
X

j02A
n
⌧i�1
j0 (i). (26)
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Consider an agent j and a suboptimal arm i such that at time ⌧i,

8↵ logN

�2
i

�
8↵ log 1/�⌧ij

�2
i

� n̂
⌧i
j (i) = n

⌧i
j (i) +

X

j02A\{j}

n
⌧i
j0 (i)�B

j0!j
⌧i (i) (27)

(a)
>

8↵ logN

�2
i

�
X

j02A\{j}

B
j0!j
⌧i (i)1

Ej0!j
⌧i

=false
�

X

j02A\{j}

B
j0!j
⌧i (i)1

Ej0!j
⌧i

=true

(b)
� 8↵ logN

�2
i

�
X

j02A\{j}

B
j0!j
⌧i (i)1

Ej0!j
⌧i

=false
�

X

j02A\{j}

f(cj
0!j

⌧i )1
Ej0!j

⌧i
=true

, (28)

where B
j!j0

t (i) denotes the number of reward samples of arm i stored in agent j’s buffer for agent j0 (and not yet been
sent) at time t; Bj!j0

t denotes the total number of observations stored in agent j’s buffer for agent j0; inequality (a) is
because of (26); inequality (b) is because, for agent j0 2 A\{j} such that Ej0!j

⌧i = true, we have f(cj
0!j

⌧i ) � B
j0!j
⌧i �

B
j0!j
⌧i (i) � 0. According to Lemma 3, such an agent j makes Type-I decisions to pull arm i after time ⌧i.

In the following, we bound the extra number of times agent j pulls arm i to make up for the delayed transmission from
other agents j

0. For an agent j0 2 A \ {j} such that Ej0!j
⌧i = false, if Bj0!j

⌧i (i) < f(cj
0!j

⌧i ), agent j has to make
at most f(cj

0!j
⌧i ) extra pullings of i to make up for agent j0’s delay; if Bj0!j

⌧i (i) � f(cj
0!j

⌧i ), agent j can receive those
observations from j

0 once agent j buffers f(cj!j0
⌧i ) observations for j0 and send a message to j

0. Hence, because of the
delayed transmission from agents j

0 2 A \ {j} : Ej0!j
⌧i = false, agent j pulls arm i after time ⌧i at most following

number of times:
X

j02A\{j}

f(max{cj
0!j

⌧i , c
j!j0

⌧i })1
Ej0!j

⌧i
=false


X

j02A\{j}

f(cj
0!j

⌧i )1
Ej0!j

⌧i
=false

, (29)

where the inequality is because, by the definition of the ODC, for any pair of agents j, j0 2 A at any time t, if Ej0!j
t =

false, 1 � c
j0!j
t � c

j!j0

t � 0. On the other hand, agents j0 2 A \ {j} such that Ej0!j
⌧i = true delay transmission

of
P

j02A\{j} B
j0!j
⌧i (i)1

Ej0!j
⌧i

=true
observations of i to agent j at time ⌧i due to waiting for the buffer thresholds to be

satisfied. To make up for this type of delay, agent j pulls arm i after time ⌧i at most following number of times:

X

j02A\{j}

f(cj
0!j

⌧i )1
Ej0!j

⌧i
=true

. (30)

By (29) (30)) and Lemma 3, agent j contributes at most Gj
i extra numbers of pulls of arm i after time ⌧i, where

G
j
i = min

n⇣ X

j02A\{j}

f(cj
0!j

⌧i )
⌘
,
8↵ logN

�2
i

o
. (31)

We now examine Type-II decision case. According to Lemma 1 and (11), expected number of Type-II decisions made by
all agents over the entire time horizon is upper bounded by 2KM . Since, in our case, �i  1, 8i 2 K, the regret incurred
by Type-II decisions is upper bounded by 2KM .

The expected group regret can be bounded by

E[R] =
X

j2A
E[Rj

Nj
] =

X

j2A

X

i2K
�iE[nT

j (i)] =
X

i2K
�i

⇣X

j2A

NjX

`=1

P[Ij
tj`

= i]
⌘

(32)

 2KM +
X

i2K
�i

⇣8↵ logN

�2
i

+M +
X

j2A
G

j
i

⌘
 3KM +

X

i2K:�i>0

⇣8↵ logN

�i
+
X

j2A
G

j
i�i

⌘
. (33)

This completes the proof of Theorem 1(b).
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B.3 Recovery of near-optimal regret in synchronous setting

When applied to a MAMAB setting with synchronous agents where every agent makes a decision at every time slot, our
asynchronous algorithm AAE-ODC can recover a near-optimal regret

O

⇣ X

i2K:�i>0

logN/�i

⌘

with the buffer thresholds set to be doubled and proportional to the number of arms remaining in the candidate set, C, i.e.,
f(cj!j0) = |C|⇥ 2c

j!j0�1
, 8j, j0 2 A, cj!j0 = 1, 2, . . ..

Note that, in a synchronous setting, the exchanges demands Ej!j0 and E
j0!j are both always true. This is because both

exchange demands are true at the beginning, and every time agent j sends a message to agent j0, agent j0 also sends a
message to agent j as the buffer thresholds for all (pairs of) agents are the same in a synchronous setting.

Consider the time ⌧i for a suboptimal arm i such that

8↵ logN

�2
i

+M �
X

j02A
n
⌧i
j0 (i) >

8↵ logN

�2
i

�
X

j02A
n
⌧i�1
j0 (i). (34)

Consider an agent j such that at time ⌧i,

8↵ logN

�2
i

�
8↵ log 1/�⌧ij

�2
i

� n̂
⌧i
j (i) = n

⌧i
j (i) +

X

j02A\{j}

n
⌧i
j0 (i)�B

j0!j
⌧i (i).

Under AAE-ODC, the maximum extra number of times agent j pulls arm i after time ⌧i is at most f(c⌧i). Because
after agent j makes f(c⌧i) number of observations it sends a message to all other agents and receives the outstanding
observations of arm i,

P
j02A\{j} B

j0!j
⌧i (i).

Hence, the total amount of extra number of times agents pull arm i after time ⌧i can be upper bounded by

X

j2A
f(c⌧i)

(a)

X

j2A
n
⌧i
j (i) +K

(b)
 8↵ logN

�2
i

+M +K, (35)

where inequality (a) is because, by setting the buffer thresholds to be doubled and proportional to the number of arms
remaining in the candidate set, the current buffer threshold of an agent, f(c⌧i), is smaller than or equal to K plus the
amount of observations that agent have ever made before ⌧i, i.e., f(c⌧i)  n

⌧i
j (i) + K; inequality (b) is because of the

definition of ⌧i in (34).

C ASYMPTOTIC GROUP REGRET LOWER BOUND FOR ASYNCHRONOUS MAMAB

The proof techniques for single-agent multi-armed bandit, e.g., in Bubeck and Cesa-Bianchi (2012), and those for syn-
chronous multi-agent multi-armed bandit, e.g., in Dubey et al. (2020), can be applied to asynchronous multi-agent multi-
armed bandit by slight modification. For completion of analysis, we provide the details as follows.

Let EK denote the class of K-armed bandit where each arm has a Bernoulli reward distribution and there is no collision,
i.e., reward realization of arms is not influenced by actions of agents. Let ⌫ = (P1, ..., PK) 2 EK , ⌫0 = (P 0

1, ..., P
0
K) 2 EK

be two K-armed bandit instances such that Pi = P
0
i , 8i 2 K\{k}, where k is a suboptimal arm. Specifically, P 0

k is chosen
to be Bernoulli(µk+�) and � > �k. Let ⇡ denote a consistent cooperative policy for asynchronous M -agent multi-armed
bandit. We have the following divergence decomposition:

DKL(P⌫⇡,P⌫0⇡) = E⌫⇡

"
log

dP⌫⇡

dP⌫0⇡

⇣
I
j:tj1=1
1 , x1(I

j:tj1=1
1 ), ..., I

j:tjnj
=T

T , xT (I
j:tjnj

=T

T )
⌘#

=
X

i2K
E⌫⇡

2

4
X

j2A
n
T
j (i)

3

5DKL(Pi, P
0
i ) = E⌫⇡

2

4
X

j2A
n
T
j (k)

3

5DKL(Pk, P
0
k), (36)
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where n
T
j (i) is the total number of times agent j pulls arm i, and P⌫⇡, P⌫0⇡ are the distributions of the action-reward

history induced by the interaction of policy ⇡ with bandit instances ⌫ and ⌫
0 respectively.

By high-probability Pinsker inequality, we have the following for any event A:

DKL(P⌫⇡,P⌫0⇡) � log
1

2(P⌫⇡(A) + P⌫0⇡(Ac))
. (37)

Let R and R
0 be the (group) regret obtained by policy ⇡ on bandit instances ⌫ and ⌫

0 respectively given the asynchronous
pulling times of agents (tj1, t

j
2, ...t

j
Nj

), 8j 2 A. By (36) (37) and by choosing A =
nP

j2A n
T
j (k) � 1

2

P
j2A Nj =

N
2

o
,

we have

R+R
0 � N

2
�kP⌫⇡(A) +

N

2
(���k)P⌫0⇡(A

c) � N

2
min{�k,���k}(P⌫⇡(A) + P⌫0⇡(A

c))

� N

4
min{�k,���k} exp (�DKL(P⌫⇡,P⌫0⇡))

=
N

4
min{�k,���k}⇥ exp

0

@�E⌫⇡

2

4
X

j2A
n
T
j (k)

3

5DKL(Pk, P
0
k)

1

A . (38)

Rearranging (38) and taking limit inferior, we have

lim inf
N!1

E⌫⇡

hP
j2A n

T
j (k)

i

log(N)
� 1

DKL(Pk, P
0
k)

lim inf
N!1

log(N min{�k,���k}
R+R0 )

log(N)

� 1

DKL(Pk, P
0
k)

✓
1� lim sup

N!1

log(R+R
0)

log(N)

◆
.

By the fact that ⇡ is consistent, we have some constants � > 0 and C� ,

lim inf
N!1

E⌫⇡

hP
j2A n

T
j (k)

i

log(N)
� 1

DKL(Pk, P
0
k)

✓
1� lim sup

N!1

a logN + logC�

log(N)

◆
. (39)

Plugging (39) into the definition of group regret, we have

lim inf
N!1

R

log(N)
� lim inf

N!1

P
i E⌫⇡

hP
j2A n

T
j (k)

i
�i

log(N)
�
X

i

�i

DKL(Pi, P
0
i )
.

This completes the proof.

D PROOF OF THEOREM 2

D.1 Proof of Theorem 2(a)

We claim that, according to the rules of ODC, an agent j 2 A would not send in total more than

min{Cj , Cj0}+ 1

messages to agent j0 2 A \ {j}, where

Cj = max
n
C 2 {1, ..., Nj} :

⇣ CX

c=1

f(c)
⌘
 Nj

o
,

upper bounds the number of times agent j can fulfill the buffer thresholds when buffer thresholds are updated according to
a monotonically increasing function f .

Suppose Cj  Cj0 . Under ODC, the number of observations in buffer
P

i2K b
j!j0
n (i) must be greater than or equal to the

buffer threshold f(c) when (right before) agent j sends the c-th message to agent j0. Hence, agent j can send in total at



On-Demand Communication for Asynchronous Multi-Agent Bandits

most Cj messages to agent j0 when Cj  Cj0 . Because if agent j sends in total more than Cj messages, e.g., Cj + 1

messages, to agent j0, that means at least one message transmission violates the rule of ODC as
⇣PCj+1

c=1 f(c)
⌘
> Nj .

Suppose Cj > Cj0 . Under ODC, the exchange demand E
j!j0 must be true when (right before) an agent j sends a

message to agent j0. According to the rules of ODC, the exchange demand E
j!j0 is set to true when: 1) during algorithm

initialization, 2) agent j0 sends agent j a message. Agent j0 can send agent j at most Cj0 messages when Cj > Cj0 for
otherwise it must violate the buffer thresholds rule of ODC. Hence, Ej!j0 is set to true at most Cj0 + 1 times. Then,
agent j can send agent j0 in total at most Cj0 + 1 messages if agent j follows the exchange demand rule of ODC.

Now take into account the communications between all pairs of agents, we have the communication complexity:

C 
X

j2A

X
j02A\{j}

min{Cj , Cj0}+ 1.

This completes the proof.

D.2 Proof of Theorem 2(b)

We first upper bound the expected total numbers of Type-I decisions and Type-II decisions made by an agent before
AAE-ODC stops communication, and then we follow similar steps in previous subsection to upper bound the communica-
tion complexity of AAE-ODC.

Note that agent j makes a Type-I decision if (10) holds, otherwise it is a Type-II decision. By Lemma 1 and (11), the
expected number of Type-II decisions made by an agent in the entire learning horizon is upper bounded by 2K. By
Lemma 3, with �

t
j = 1/nt

j � 1/Nj , the expected number of Type-I decisions made by an agent j before the candidate set
size reduces to one can be upper bounded by

X

i2K

8↵ logNj

max{�2
i ,�

2} .

Note that, Nj is the total number of decisions made by agent j. Hence, the expected number of decisions an agent j makes
before agents stop communicate with one another can be upper bounded by

min
n
2K +

X

i2K

8↵ logNj

max{�2
i ,�

2} , Nj

o
.

Then, we claim that, under AAE-ODC, an agent j 2 A would not send in total more than

min{Cj , Cj0}+ 1

messages to agent j0 2 A \ {j}, where

Cj = max
n
C 2 {1, ..., Nj} :

⇣ CX

c=1

f(c)
⌘
 min

n
2K +

X

i2K

8↵ logNj

max{�2
i ,�

2} , Nj

oo
,

upper bounds the number of times agent j executing AAE-ODC can fulfill the buffer thresholds when buffer thresholds are
updated according to a monotonically increasing function f .

Suppose Cj  Cj0 . Under ODC, the number of observations in buffer
P

i2K b
j!j0
n (i) must be greater than or equal to the

buffer threshold f(c) when (right before) agent j sends the c-th message to agent j0. Hence, agent j executing AAE-ODC
can send in total at most Cj messages to agent j0 when Cj  Cj0 . Because if agent j sends in total more than Cj messages,
e.g., Cj + 1 messages, to agent j0, that means at least one message transmission violates the rule of ODC or AAE-ODC as⇣PCj+1

c=1 f(c)
⌘
> min

n
2K +

P
i2K

8↵ logNj

max{�2
i ,�

2} , Nj

o
.

Suppose Cj > Cj0 . Under ODC, the exchange demand E
j!j0 must be true when (right before) an agent j sends a

message to agent j0. According to the rules of ODC, the exchange demand E
j!j0 is set to true when: 1) during algorithm

initialization, 2) agent j0 sends agent j a message. Agent j0 can send agent j at most Cj0 messages when Cj > Cj0 for
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otherwise it must violate the buffer thresholds rule of ODC. Hence, Ej!j0 is set to true at most Cj0 + 1 times. Then,
agent j can send agent j0 in total at most Cj0 + 1 messages if agent j follows the exchange demand rule of ODC.

Now take into account the communications between all pairs of agents, we have the communication complexity:

C 
X

j2A

X
j02A\{j}

min{Cj , Cj0}+ 1.

This completes the proof.

E PSEUDO CODE OF UCB-ODC

We present UCB-ODC in Algorithm 2.

Algorithm 2 The UCB-ODC Algorithm for Agent j

1: Initialize: exchange demands Ej!j0  True, 8j0 2 A \ {j}, buffers bj!j0
n (i)  0, bj!j0

µ (i)  0, 8j0 2 A \ {j}, i 2 K,
number of communications cj!j0  1, 8j0 2 A \ {j}, buffer thresholds f(cj!j0)  f(1), 8j0 2 A \ {j}, UCB parameters
n̂j(i) = 0, µ̂j(i) = 0, 8i 2 K, nj = 0, �tj = 1/nj , ↵ � 2

2: for t = 1...T do
3: if t is a decision time slot of agent j, i.e., t 2 {tj1, ..., t

j
Nj

} then
4: Pull arm Ijt with highest UCB, i.e., Ijt ⌘ argmaxi2K µ̂(i) + CI

t
j(i), and receive instantaneous reward xt(I

j
t )

5: Increase n̂j(I
j
t ) and nj by 1, and update the empirical mean value, µ̂(Ijt ), with instantaneous reward xt(I

j
t )

6: Reconstruct the UCBs based on the updated values of n̂j(It), nj , and µ̂j(I
j
t ) by using Equation (1)

7: for each agent j0 2 A \ {j} do
8: Update the buffer for agent j0: bj!j0

n (Ijt ) bj!j0
n (Ijt ) + 1, bj!j0

µ (Ijt ) bj!j0
µ (Ijt ) + xt(I

j
t )

9: if Ej!j0 is True and
P

i2K bj!j0
n (i) � f(cj!j0) then

10: Share the buffered information with j0, i.e., send a message as defined in Definition 1, Set cj!j0  cj!j0 + 1

11: Set exchange demand Ej!j0  False and renew the buffer for agent j0

12: Update buffer threshold f(cj!j0), e.g., double it f(cj!j0) 2f(cj!j0 � 1) or keep it the same
13: end if
14: end for
15: end if
16: for each new message received from any agent j0 2 A \ {j} do
17: Increase n̂j(i), 8i 2 K and update empirical means, µ̂j(i), 8i 2 K, according to the information in the message
18: Execute Line (6) to reconstruct UCBs
19: if agent j has buffered f(cj!j0) observations for j0, i.e.,

P
i2K bj!j0

n (i) � f(cj!j0) then
20: Share information by sending a message as defined in Definition 1 to j0, Set cj!j0  cj!j0 + 1, renew buffer for j0

21: Update buffer threshold f(cj!j0), e.g., double it f(cj!j0) 2f(cj!j0 � 1) or keep it the same
22: else
23: Set exchange demand Ej!j0  True

24: end if
25: end for
26: end for
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F PSEUDO CODE OF AAE-ODC

We present AAE-ODC in Algorithm 3.

Algorithm 3 The AAE-ODC Algorithm for Agent j

1: Initialize: exchange demands Ej!j0  True, 8j0 2 A \ {j}, buffers bj!j0
n (i)  0, bj!j0

µ (i)  0, 8j0 2 A \ {j}, i 2 K,
number of communications cj!j0  1, 8j0 2 A \ {j}, buffer thresholds f(cj!j0)  f(1), 8j0 2 A \ {j}, AAE parameters
n̂j(i) = 0, µ̂j(i) = 0, 8i 2 K, nj = 0, �tj = 1/nj , ↵ � 2, candidate set C = {1, 2, ...,K}

2: for t = 1...T do
3: if t is a decision time slot of agent j, i.e., t 2 {tj1, ..., t

j
Nj

} then
4: Recompute confidence intervals CIt

j(i), 8i 2 K as defined in (1)
5: for i 2 C do
6: if |C| > 1 and 9i0 2 K s.t. µ̂t

j(i) + CI
t
j(i) < µ̂t

j(i
0)� CI

t
j(i

0) then
7: Eliminate arm i from the candidate set, i.e., C  C \ {i}
8: Broadcast index of arm i to all agents j 2 A
9: end if

10: end for
11: Pull arm Ijt from the candidate set C with the least observations, and receive instantaneous reward xt(I

j
t )

12: Increase n̂j(I
j
t ) and nj by 1, and update empirical mean, µ̂(Ijt ), with instantaneous reward xt(I

j
t )

13: if |C| > 1 then
14: for each agent j0 2 A \ {j} do
15: Update the buffer for agent j0: bj!j0

n (Ijt ) bj!j0
n (Ijt ) + 1, bj!j0

µ (Ijt ) bj!j0
µ (Ijt ) + xt(I

j
t )

16: if Ej!j0 is True and
P

i2K bj!j0
n (i) � f(cj!j0) then

17: Share the buffered information with j0, i.e., send a message as defined in Definition 1, Set cj!j0  cj!j0 + 1

18: Set exchange demand Ej!j0  False and renew the buffer for agent j0

19: Update buffer threshold f(cj!j0), e.g., double it f(cj!j0) 2f(cj!j0 � 1) or keep it the same
20: end if
21: end for
22: end if
23: end if
24: for each new message received from any agent j0 2 A \ {j} do
25: if it is an elimination notice of arm i then
26: Eliminate arm i from the candidate set, i.e., C  C \ {i}
27: else
28: Increase n̂j(i), 8i 2 K and update empirical means, µ̂j(i), 8i 2 K, according to the information in the message
29: if agent j has buffered f(cj!j0) observations for j0, i.e.,

P
i2K bj!j0

n (i) � f(cj!j0) then
30: Share information by sending a message as defined in Definition 1 to j0, Set cj!j0  cj!j0 +1, renew buffer for j0

31: Update buffer threshold f(cj!j0), e.g., double it f(cj!j0) 2f(cj!j0 � 1) or keep it the same
32: else
33: Set exchange demand Ej!j0  True

34: end if
35: end if
36: end for
37: end for
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G ACCOUNTING FOR COMMUNICATION DELAY

Suppose message transmission between agents suffers a deterministic delay, d. In the following, we discuss how the
communication delays affect the group regrets and communication complexities of UCB-ODC and AAE-ODC.

For UCB-ODC (resp. AAE-ODC), we consider time slot ⌧i for each suboptimal arm i such that (13) (resp. (26)) holds, and
consider agent j such that, at time ⌧i, (17) (resp. (28)) holds; by Lemma 2 (resp. Lemma 3), agent j makes Type-I decisions
to pull arm i after time ⌧i. In the following, we upper bound the extra number of times (under deterministic communication
delays) agent j pulls arm i to make up for the delayed transmission of observations from other agents.

Recall that Bj!j0

t (i) denotes the number of reward samples of arm i stored in agent j’s buffer for agent j0 (and not yet
been sent) at time t, and B

j!j0

t denotes the total number of observations stored in agent j’s buffer for agent j0 at time t.
For an agent j0 2 A \ {j} such that Ej0!j

⌧i = false, if Bj0!j
⌧i (i) < f(cj

0!j
⌧i ), agent j has to make at most f(cj

0!j
⌧i )

extra pulls of i to make up for agent j0’s delay. If Bj0!j
⌧i (i) � f(cj

0!j
⌧i ), agent j can send a message to j

0 once agent j
buffers f(cj!j0

⌧i ) observations for j0; the message takes d time slots to reach agent j0, and the reply from agent j0 with the
outstanding observations takes d time slots to reach agent j. During the 2d time slots, agent j makes at most 2d pulls on
arm i. Hence, because of the delayed transmission from agents j0 2 A \ {j} : Ej0!j

⌧i = false, agent j pulls arm i after
time ⌧i at most following number of times:

X

j02A\{j}

2d+ f(max{cj
0!j

⌧i , c
j!j0

⌧i })1
Ej0!j

⌧i
=false


X

j02A\{j}

2d+ f(cj
0!j

⌧i )1
Ej0!j

⌧i
=false

, (40)

where the inequality is because, by the definition of the ODC, for any pair of agents j, j0 2 A at any time t, if Ej0!j
t =

false, 1 � c
j0!j
t � c

j!j0

t � 0. On the other hand, agents j0 2 A \ {j} such that Ej0!j
⌧i = true delay transmission

of
P

j02A\{j} B
j0!j
⌧i (i)1

Ej0!j
⌧i

=true
observations of i to agent j at time ⌧i due to waiting for the buffer thresholds to be

satisfied. To make up for this type of delay, agent j pulls arm i after time ⌧i at most following number of times:
X

j02A\{j}

f(cj
0!j

⌧i )1
Ej0!j

⌧i
=true

. (41)

Therefore, the upper bound of expected group regret of UCB-ODC under deterministic communication delay d has the
same form as (2) in Theorem 1(a) but with F

j
i defined as follows:

F
j
i = min

n⇣ X

j02A\{j}

2d+ f(cj
0!j

⌧i )
⌘
,
2↵ logN

�2
i

o
. (42)

The upper bound of expected group regret of AAE-ODC under deterministic communication delay d has the same form
as (4) in Theorem 1(b) but with G

j
i defined as follows:

G
j
i = min

n⇣ X

j02A\{j}

2d+ f(cj
0!j

⌧i )
⌘
,
8↵ logN

�2
i

o
. (43)

Under ODC, any agent j needs the exchange demand E
j!j0 to be set to true to be allowed to send a message to another

agent j0. Communication delay would never increase the number of times exchange demands be set to true. Hence,
the communication complexity upper bounds in Theorem 2(a) and Theorem 2(b) still hold for UCB-ODC and AAE-ODC
respectively under deterministic communication delay d.

H ACCOUNTING FOR HETEROGENEOUS ARM SETS

Agents having different but overlapping arm sets is a practical scenario in MAMAB. In the following, we discuss how to
generalize UCB-ODC and AAE-ODC to account for heterogeneous arm sets.

H.1 Model Formulation

We need additional notations for formulating heterogeneous arm set scenario. In this scenario, agents receive the same
expected rewards from the same arms but each agent only has access to a local subset of the K arms, as in Yang et al.



On-Demand Communication for Asynchronous Multi-Agent Bandits

(2022); Chawla et al. (2020); Yang et al. (2021). Specifically, agent j 2 A has access to a subset of arms Kj ✓ K known

to every agent. We refer to arms in Kj as local arms of agent j. Let Kj = |Kj |. Without loss of generality, we assume that
at least two arm sets overlap; i.e., 9j, j0 2 A s.t. Kj \Kj0 6= ;.

Let i⇤j = argmaxi2Kj µi denote the local optimal arm of agent j. Let Ai denote the set of agents whose local arm
set includes arm i, i.e., Ai ⌘ {j 2 A : i 2 Kj}. Let A⇤

i denote the set of agents whose local optimal arm is i, i.e.,
A⇤

i ⌘ {j 2 Ai : i = i
⇤
j} and let A⇤

�i = Ai \ A⇤
i . Note that A⇤

i or A⇤
�i may be empty. Let A(j) denote the set of agents

that share arms with agent j, i.e., A(j) ⌘ [i2KjAi \ {j}. Let Mi = |Ai|, M⇤
i = |A⇤

i |, M⇤
�i = |A⇤

�i|, and M
(j) = |A(j)|.

Let �(i⇤j , i) denote the suboptimality gap of arm i in agent j’s local arm set Kj , i 2 Kj . We further denote the smallest
suboptimality gap of arm i as �̃i and denote the agent that contains �̃i as j̃i, i.e.,

�̃i ⌘
(
minj2A⇤

�i
�(i⇤j , i), A⇤

�i 6= ;,
0, otherwise,

and j̃i ⌘
(
argminj2A⇤

�i
�(i⇤j , i), A⇤

�i 6= ;,
0, otherwise.

The expected cumulative regret of each agent j becomes

E[Rj
Nj

] = µ(i⇤j )Nj � E[
X

t2{tj1,t
j
2,...,t

j
Nj

}
xt(I

j
t )].

Expected group regret is E[R] =
P

j2A E[Rj
Nj

].

H.2 Algorithm

We present the extension of UCB-ODC in Algorithm 4.

Algorithm 4 The UCB-ODC Algorithm for Agent j (with heterogeneous arm sets)
1: Input: other agents’ local arm sets (K1, ...,KM )

2: Initialize: exchange demands Ej!j0  True, 8j0 2 A(j), buffers bj!j0
n (i)  0, bj!j0

µ (i)  0, 8j0 2 A(j), i 2 Kj \ Kj0 ,
number of communications cj!j0  1, 8j0 2 A(j), buffer thresholds f(cj!j0)  f(1), 8j0 2 A(j), UCB parameters n̂j(i) = 0,
µ̂j(i) = 0, 8i 2 Kj , nj = 0, �tj = 1/nj , ↵ � 2

3: for t = 1...T do
4: if t is a decision time slot of agent j, i.e., t 2 {tj1, ..., t

j
Nj

} then
5: Pull arm Ijt with highest UCB, i.e., Ijt ⌘ argmaxi2Kj µ̂(i) + CI

t
j(i), and receive instantaneous reward xt(I

j
t )

6: Increase n̂j(I
j
t ) and nj by 1, and update the empirical mean value, µ̂(Ijt ), with instantaneous reward xt(I

j
t )

7: Reconstruct the UCBs based on the updated values of n̂j(It), nj , and µ̂j(I
j
t ) by using Equation (1)

8: for each agent j0 2 A
Ijt

do

9: Update the buffer for agent j0: bj!j0
n (Ijt ) bj!j0

n (Ijt ) + 1, bj!j0
µ (Ijt ) bj!j0

µ (Ijt ) + xt(I
j
t )

10: if Ej!j0 is True and
P

i2Kj\Kj0
bj!j0
n (i) � f(cj!j0) then

11: Share the buffered information with j0, i.e., send a message as defined in Definition 1, Set cj!j0  cj!j0 + 1

12: Set exchange demand Ej!j0  False and renew the buffer for agent j0

13: Update buffer threshold f(cj!j0), e.g., double it f(cj!j0) 2f(cj!j0 � 1) or keep it the same
14: end if
15: end for
16: end if
17: for each new message received from any agent j0 2 A(j) do
18: Increase n̂j(i), 8i 2 Kj \Kj0 and update empirical means, µ̂j(i), 8i 2 Kj \Kj0 , according to the message
19: Execute Line (7) to reconstruct UCBs
20: if agent j has buffered f(cj!j0) observations for j0, i.e.,

P
i2Kj\Kj0

bj!j0
n (i) � f(cj!j0) then

21: Share information by sending a message as defined in Definition 1 to j0, Set cj!j0  cj!j0 + 1, renew buffer for j0

22: Update buffer threshold f(cj!j0), e.g., double it f(cj!j0) 2f(cj!j0 � 1) or keep it the same
23: else
24: Set exchange demand Ej!j0  True

25: end if
26: end for
27: end for
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We present the extension of AAE-ODC in Algorithm 5. Note that, in heterogeneous arm sets setting, each agent needs to
maintain a candidate set; two agents stop communicating once both of their candidate set sizes reduce one.

Algorithm 5 The AAE-ODC Algorithm for Agent j (with heterogeneous arm sets)
1: Input: Other agents’ local arm sets (K1, ...,KM )

2: Initialize: exchange demands Ej!j0  True, 8j0 2 A(j), buffers bj!j0
n (i)  0, bj!j0

µ (i)  0, 8j0 2 A(j), i 2 Kj \ Kj0 ,
number of communications cj!j0  1, 8j0 2 A(j), buffer thresholds f(cj!j0)  f(1), 8j0 2 A(j), AAE parameters n̂j(i) = 0,
µ̂j(i) = 0, 8i 2 Kj , nj = 0, �tj = 1/nj , ↵ � 2, candidate sets Cj = Kj and Cj0 = Kj0 , 8j0 2 A(j)

3: for t = 1...T do
4: if t is a decision time slot of agent j, i.e., t 2 {tj1, ..., t

j
Nj

} then
5: Recompute confidence intervals CIt

j(i), 8i 2 Kj as defined in (1)
6: for i 2 Cj do
7: if |Cj | > 1 and 9i0 2 Kj s.t. µ̂t

j(i) + CI
t
j(i) < µ̂t

j(i
0)� CI

t
j(i

0) then
8: Eliminate arm i from the candidate set, i.e., Cj  Cj \ {i}
9: Broadcast index of arm i to all agents j 2 Ai

10: end if
11: end for
12: Pull arm Ijt from the candidate set Cj with the least observations, and receive instantaneous reward xt(I

j
t )

13: Increase n̂j(I
j
t ) and nj by 1, and update empirical mean, µ̂(Ijt ), with instantaneous reward xt(I

j
t )

14: for each agent j0 2 A
Ijt

that |Cj0 | > 1 or |Cj | > 1 do

15: Update the buffer for agent j0: bj!j0
n (Ijt ) bj!j0

n (Ijt ) + 1, bj!j0
µ (Ijt ) bj!j0

µ (Ijt ) + xt(I
j
t )

16: if Ej!j0 is True and
P

i2Kj\Kj0
bj!j0
n (i) � f(cj!j0) then

17: Share the buffered information with j0, i.e., send a message as defined in Definition 1, Set cj!j0  cj!j0 + 1

18: Set exchange demand Ej!j0  False and renew the buffer for agent j0

19: Update buffer threshold f(cj!j0), e.g., double it f(cj!j0) 2f(cj!j0 � 1) or keep it the same
20: end if
21: end for
22: end if
23: for each new message received from any agent j0 2 A(j) do
24: if it is an elimination notice of arm i from agent j0 then
25: Eliminate arm i from the candidate set, i.e., Cj0  Cj0 \ {i}
26: else
27: Increase n̂j(i), 8i 2 Kj \Kj0 and update empirical means, µ̂j(i), 8i 2 Kj \Kj0 , according to the message
28: if agent j has buffered f(cj!j0) observations for j0, i.e.,

P
i2Kj\Kj0

bj!j0
n (i) � f(cj!j0) then

29: Share information by sending a message as defined in Definition 1 to j0, Set cj!j0  cj!j0 +1, renew buffer for j0

30: Update buffer threshold f(cj!j0), e.g., double it f(cj!j0) 2f(cj!j0 � 1) or keep it the same
31: else
32: Set exchange demand Ej!j0  True

33: end if
34: end if
35: end for
36: end for
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H.3 Analysis of Regret and Communication Complexity

Expected Group Regret of UCB-ODC under Heterogeneous Arm Sets. With algorithm parameters �tj = 1/nt
j � 1/N

and ↵ � 2, the expected group regret of UCB-ODC under heterogeneous arm sets satisfies

E[R]  3KM +
X

i2K:�̃i>0

 
4↵ logN

�̃i

+
X

j2A⇤
�i

min

(⇣ X

j02Ai\{j}

f(cj
0!j

⌧i )
⌘
,
2↵ logN

�2(i⇤j , i)

)
�(i⇤j , i)

!
. (44)

Recall that A⇤
�i is the set of agent with arm i as a local suboptimal arm. Following similar arguments in the proof of

Lemma 2, if agent j 2 A⇤
�i makes a Type-I decision and pulls arm i 2 Kj by UCB-ODC algorithm at time t, we have that

n̂
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Without loss of generality, we let A⇤
�i = {jm : m = 1, 2, ...,M�i}, where �(i⇤j1 , i) � �(i⇤j2 .i) � · · · � �(i⇤jM�i

, i) and
M�i = |A⇤

�i|. Agent jM�i needs the most number of observations of arm i to differentiate it from its local optimal arm
because jM�i is agent with the smallest �(i⇤j , i) among all j 2 A⇤

�i. Though jM�i is the agent in A⇤
�i that needs the

most number of observations of arm i, each time agent jM�i pulls arm i in fact incur the smallest regret than each time
other agents in A⇤

�i pull arm i because it has the smallest �(i⇤j , i) among all j 2 A⇤
�i. When those agents jm 2 A⇤

�i with
largest �(i⇤jm , i)s make the most number of pulls of arm i, the largest regret on arm i is incurred with the same number of
times arm i being pulled. With �
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Consider time slot ⌧i for each suboptimal arm i such that
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where B
j!j0

t (i) denotes the number of reward samples of arm i stored in agent j’s buffer for agent j0 (and not yet been
sent) at time t; Bj!j0

t denotes the total number of observations stored in agent j’s buffer for agent j0. By (45), such agent
j 2 A�i makes Type-I decisions to pull arm i after time ⌧i.

In the following, we bound the extra number of times agent j 2 A�i pulls arm i to make up for the delayed transmission
from other agents j0 2 Ai. For an agent j0 2 Ai \ {j} such that Ej0!j

⌧i = false, if Bj0!j
⌧i (i) < f(cj
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where the inequality is because, by the definition of the ODC, for any pair of agents j, j0 2 A at any time t, if Ej0!j
t =

false, 1 � c
j0!j
t � c
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observations of i to agent j at time ⌧i due to waiting for the buffer thresholds to be

satisfied. To make up for this type of delay, agent j pulls arm i after time ⌧i at most following number of times:
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Hence, agent j 2 A�i incur at most
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extra regret by pulling arm i after time ⌧i.

As for Type-II decisions, Lemma 1 still holds under heterogeneous arm sets. Thus, the expected regret incurred under
Type-II decisions can still be upper bounded by 2KM .

Combining the regret upper bounds for Type-II and Type-I decisions, we obtain Eq. (44).

Expected Group Regret of AAE-ODC under Heterogeneous Arm Sets. With algorithm parameters �tj = 1/nt
j � 1/N

and ↵ � 2, the expected group regret of AAE-ODC under heterogeneous arm sets satisfies
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The analysis of the expected group regret of AAE-ODC under heterogeneous arm sets follows similar steps as the analysis
for UCB-ODC.

Communication Complexity of UCB-ODC under Heterogeneous Arm Sets. When buffer thresholds are updated
according to a positive and monotonically increasing function f , the communication complexity UCB-ODC under
heterogeneous arm sets satisfies:

C 
X

j2A

X
j02A(j)\{j}

min{Cj , Cj0}+ 1, (55)

where Cj is the largest integer in set {1, ..., Nj} such that
⇣PCj

c=1 f(c)
⌘
 Nj .

Under ODC, any agent j needs the exchange demand E
j!j0 to be set to true to be allowed to send a message to another

agent j0. Having heterogeneous arm sets would never increase the number of times exchange demands be set to true.
Under heterogeneous arm sets, an agent j may make f(cj!j0) observations but still cannot fulfill the buffer threshold
because some of those observations may not be of arm i 2 Kj \Kj0 and we need

P
i2Kj\Kj0

b
j!j0
n (i) � f(cj!j0).

Communication Complexity of AAE-ODC under Heterogeneous Arm Sets. When buffer thresholds are updated
according to a positive and monotonically increasing function f , the communication complexity AAE-ODC under
heterogeneous arm sets satisfies:
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(a) UCB Group Regret (b) UCB Comm Between (c) UCB Comm Slow (d) UCB Comm Fast

(e) AAE Group Regret (f) AAE Comm Between (g) AAE Comm Slow (h) AAE Comm Fast

Figure 4: Experiment 1 — impact of the heterogeneity of agent speeds. Comparison between IBC and ODC with
buffer thresholds set to one as well as IBC and ODC with buffer thresholds set to be doubling. For communication com-
plexities, we present the numbers of communications between fast and slow agents, among slow agents, and among fast
agents separately in different subfigures. Note that, in Subfigures (b)(c)(d) and (f)(g)(h), the Y axis is in Log scale.

I SUPPLEMENTARY EXPERIMENTAL RESULTS

In this section, we present supplementary numerical experimental results to provide more insights about ODC protocol.

I.1 Performance of ODC with constant or doubling buffer thresholds

(a) UCB Regret

(b) UCB Comm

Figure 5: Experiment 4 — A
system with agents that have ex-
ponentially large differences in
their sampling probabilities

In the Experiment 1 and Experiment 2 results presented in Section 5, we observe
that, when agent pull speeds are highly diversified and when there exist many slow
agents, the on-demand rule of ODC saves communication overheads in contrast to
IBC while achieving similar group regrets as IBC when both of them have con-
stant buffer thresholds. In Figure 4 and Figure 6, we compare the performance
of both IBC and ODC with both constant (size one) buffer thresholds (denoted as
AAE-IBC, AAE-ODC, UCB-IBC, UCB-ODC) and doubling buffer thresholds (de-
noted as AAE-IBC-D, AAE-ODC-D, UCB-IBC-D, UCB-ODC-D) under Experiment
1 and Experiment 2 setups respectively.

From Figures 4(a), 4(e) and Figures 6(a), 6(c), we observe that, with doubling
buffer thresholds, both policies under IBC and under ODC have higher group regrets
than those with constant buffer thresholds. From the communication complexities re-
sults in Figure 4 and Figure 6, we observe that, with doubling buffer thresholds, both
policies under IBC and under ODC incur logarithmic communication overheads than
those with constant buffer thresholds. With doubling buffer thresholds, policies un-
der ODC incur slightly smaller communication overheads than policies under IBC
but the improvements are not as significant as when their buffer thresholds are all set
to be constant. This is because the ratio of sampling probabilities between fast and
slow agents are at most 30 times in both experimental setups; hence, when doubling
buffer thresholds is applied, the effect of the on-demand rule of ODC is diminished.

The advantage of the on-demand rule of ODC is obvious, even with doubling buffer thresholds applied, when the differences
of pull rates are exponentially large, as shown in Experiment 4 (Figure 5). Figure 5 shows the results of simulations of a
system with 10 agents, where there is a fast agent with sampling probability set to be always 1 and nine slow agents with
sampling probabilities initially set to be 0.1 and halved after each message transmission. We report the cumulative group
regret and number of communication over T = 8, 000, 000 rounds. Figure 5(b) shows that UCB-ODC-D effectively saves
communication overheads and Figure 5(a) shows that UCB-ODC-D still achieves similar group regrets as UCB-IBC-D.



Yu-Zhen Janice Chen, Lin Yang, Xuchuang Wang, Xutong Liu, Mohammad Hajiesmaili, John C. S. Lui, Don Towsley

(a) UCB Group Regret (b) UCB Comm (c) AAE Group Regret (d) AAE Comm

Figure 6: Experiment 2 — impact of the number of slow agents in the system. Comparison between IBC and ODC with
buffer thresholds set to one as well as IBC and ODC with buffer thresholds set to be doubling. Note that, in Subfigures (b)
and (d), the Y axis is in Log scale.

(a) Individual Regret Mean (b) Individual Regret Mean

Figure 7: Experiment 1 — impact of the heterogeneity of
agent speeds.

(a) Individual Regret (b) Individual Regret

Figure 8: Experiment 2 — impact of the number of slow
agents in the system.

I.2 Individual Regrets in Experiment 1 and Experiment 2

In asynchronous MAMAB setting, individual agent’s expected regret varies as the pulling times and the total number of
decision rounds of the agent, Nj , vary.

For Experiment 1 and Experiment 2 in Section 5, we add Figure 7 and Figure 8 respectively here to provide experimental
observations about individual regrets. Specifically, Figure 7 (for Experiment 1) contains two bar charts to present the
mean and variance of individual regrets in between fast agents and in between slow agents after T = 80, 000 time slots.
The height of a bar shows the individual regret mean of agents with same sampling probability and the error bar on each
bar denotes mean plus/minus one standard deviation of the individual regrets of agents with same sampling probability.
Figure 8 (for Experiment 2) contains two scatter charts on which each dot represents the individual regret of an agent.

Following are the experimental observations about individual regret.

In Experiment 1, we fix the sampling probability of each slow agent and vary the sampling probability of fast agents. In
Figure 7, the individual regret mean among slow agents stays almost the same when the difference in sampling probabilities
of fast and slow agents increases; the variance of individual regrets among slow agents also stays almost the same. The
individual regret mean of fast agents increases as the sampling probability of fast agent increases while the variance of
individual regrets among fast agents stays almost the same.

In Experiment 2, we fix the number of fast agents as well as the sampling probability of fast agents and increase the number
of slow agents. In Figure 8, dots are clustered into two groups; the five dots with larger individual regrets are of the fast
agents, and the other dots with smaller individual regrets are of the slow agents.

Figure 7 and Figure 8 show that ODC achieve similar regret performance as IBC not only in terms of group regret but also
in terms of individual regrets.
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I.3 Performance of ODC under different types of asynchronicity

In this subsection, we study the performance of ODC under three more variants of asynchronicity, which are different from
the stochastic asynchronicity considered in Experiments 1, 2, and 3.

Experiment 5. In this experiment, we study the impact of agents going offline and online, which models wireless sensing
devices with sleeping/active modes for power saving. Specifically, there are five slow agents each with sampling probability
0.2 and five fast agents each with sampling probability 0.8. Fast agents, while having high pull rates when they are online,
may go offline for a long time. Specifically, fast agents stay online or offline both according to a geometric distribution
with parameter 0.01 in this experiment. We report the number of communications and group regret after T = 80, 000 time
slots averaged over 30 independent trials in Table 3.

Table 3: Experiment 5

Communication Group Regret
UCB-IBC (2.1604± 0.0247)⇥ 106 2442± 267
UCB-ODC (1.0119± 0.0135)⇥ 106 2225± 232
AAE-IBC (2.1605± 0.0209)⇥ 106 6788± 412
AAE-ODC (1.0105± 0.0165)⇥ 106 6957± 446

Experiment 6. In this experiment, we study the impact of less learning horizons overlapping among agents. We have five
slow agents each with sampling probability 0.1 and five fast agents each with sampling probability 0.7. In Experiment 6(a),
we let the five slow agents go online from the very beginning and let the five fast agents go online at time slot t = 40, 000.
We do the other way around in Experiment 6(b) – we let the five fast agents go online from the very beginning and let
the five slow agents go online at time slot t = 40, 000. We report the number of communications and group regrets after
T = 80, 000 time slots averaged over 30 independent trials in Tables 4 and 5 respectively.

Table 4: Experiment 6(a)

Communication Group Regret
UCB-IBC (1.6196± 0.0025)⇥ 106 1931± 257
UCB-ODC (0.8332± 0.0021)⇥ 106 2052± 228
AAE-IBC (1.6199± 0.0024)⇥ 106 3906± 813
AAE-ODC (0.8325± 0.0023)⇥ 106 5021± 641

Table 5: Experiment 6(b)

Communication Group Regret
UCB-IBC (2.7000± 0.0025)⇥ 106 2803± 283
UCB-ODC (1.2804± 0.0022)⇥ 106 2568± 285
AAE-IBC (2.5073± 0.4978)⇥ 106 6264± 568
AAE-ODC (1.2797± 0.0023)⇥ 106 6741± 447

Experiment 7. In this experiment, we study the impact of non-stationary asynchronicity. Specifically, we have ten agents
and the sampling probability of agent j follows a sine function, sin(✓j + t/30), where the phase shifts ✓j = j/5, j 2
{1, ..., 10} are different for different agents. We report the number of communications and group regrets after T = 80, 000
time slots averaged over 30 independent trials in Table 6.

Table 6: Experiment 7

Communication Group Regret
UCB-IBC (2.2936± 0.0020)⇥ 106 2411± 296
UCB-ODC (1.5762± 0.0021)⇥ 106 2335± 224
AAE-IBC (2.2934± 0.0023)⇥ 106 7327± 341
AAE-ODC (1.5764± 0.0026)⇥ 106 7526± 422

Results of Experiment 5, 6, and 7 in Table 3, 4, 5, and 6 support our theoretical and experimental observations that ODC
incurs less communication than IBC while achieving similar group regret, and further show that ODC is affective under
various kinds of asynchronicity.


