
Enpublic Apps: Security Threats Using iOS Enterprise and
Developer Certificates

Min Zheng
†
, Hui Xue

§
, Yulong Zhang

§
, Tao Wei

§
and John C.S. Lui

†

† The Chinese University of Hong Kong, § FireEye Inc.

ABSTRACT
Compared with Android, the conventional wisdom is that
iOS is more secure. However, both jailbroken and non-
jailbroken iOS devices have number of vulnerabilities. For
iOS, apps need to interact with the underlying system using
Application Programming Interfaces (APIs). Some of these
APIs remain undocumented and Apple forbids apps in App
Store from using them. These APIs, also known as “private
APIs”, provide powerful features to developers and yet they
may have serious security consequences if misused. Further-
more, apps which use private APIs can bypass the App Store
and use the “Apple’s Enterprise/Developer Certificates” for
distribution. This poses a significant threat to the iOS e-
cosystem. So far, there is no formal study to understand
these apps and how private APIs are being encapsulated.
We call these iOS apps which distribute to the public using
enterprise certificates as “enpublic” apps. In this paper, we
present the design and implementation of iAnalytics, which
can automatically analyze “enpublic” apps’ private API us-
ages and vulnerabilities. Using iAnalytics, we crawled and
analyzed 1,408 enpublic iOS apps. We discovered that: 844
(60%) out of the 1408 apps do use private APIs, 14 (1%) app-
s contain URL scheme vulnerabilities, 901 (64%) enpublic
apps transport sensitive information through unencrypted
channel or store the information in plaintext on the phone.
In addition, we summarized 25 private APIs which are cru-
cial and security sensitive on iOS 6/7/8, and we have filed
one CVE (Common Vulnerabilities and Exposures) for iOS
devices.

1. INTRODUCTION
As of the end of 2013, Apple has attracted around 800

million iOS users [21] and there are over one million apps in
the iOS App Store [12]. According to Apple’s“Creating Jobs
Through Innovation” report[4], there are more than 275,000
registered iOS developers in the U.S. Despite the popularity,
few iOS malware have been discovered [32]. In addition,
it was reported [24] that iOS is more secure than Android

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distribut-
ed for profit or commercial advantage, and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
ASIA CCS’15, April 14–17, 2015, Singapore..
Copyright c⃝ 2015 ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714593 .

due to its controlled distribution channel and comprehensive
apps review. However, there are still potential risks for iOS
systems.

In February 2012, Apple banned all apps from Qihoo [3],
a prominent Chinese vendor for anti-virus software, web
browser and search engine. This major incident happened
because Qihoo used iOS private APIs and encrypted the
function calls in its iOS apps, and Apple has a policy that
forbids any non-Apple apps in its App Store from using pri-
vate APIs. Shortly after that, the story developed further
when Qihoo received a“double blow” [20] from Apple, which
banned every single Qihoo app from iOS app store after an
official warning. The reason for this double blow was rather
new: Qihoo released their“enterprise”apps to the public but
Apple restricts the enterprise apps to be used by employees
of that company only, instead of everyone in public.

So what are private APIs and enterprise apps? Why Apple
is so vigilant on their usages? In fact, iOS apps on any non-
jailbroken device can be classified into two categories based
on how they are being distributed. Apps which are distribut-
ed through the Apple’s App Store are the most common to
users and we call them as “normal” apps. The other cateory
is the “enterprise” or “developer” apps which are distributed
under the enterprise/developer certificates. Note that these
“enterprise” and“developer” apps are not distributed via the
App Store, hence, they are not regulated by the Apple’s re-
view process [2]. Often, iOS apps use Apple’s Application
Programming Interfaces (APIs) to interact with the iOS sys-
tem for system resources and services. Some of these iOS
APIs are “private” in the sense that only apps developed by
Apple (Apple apps) can use them and other apps using these
private APIs are not allowed on the Apple App Store. These
apps using private APIs can only be distributed using the
“enterprise” or “developer” certificates which grant a limited
number of developers or employee users per enterprise (or
company). Public APIs are often used to interact with iOS
system for resource allocation or service request. Private
APIs, however, are much more powerful comparing to the
public ones. To illustrate, consider an iOS 6.0 device. A
normal app can call the public Twitter APIs to post a tweet
on the user’s Twitter homepage (Fig. 1), and the user must
consent by clicking the “Post” button. However, by using
private APIs, the app can post the tweet without notifying
the user [35] at all.

Given that private APIs have powerful functionalities, once
abused, private APIs may become formidable weapons for
malicious attackers. Although they are undocumented and
Apple’s review process scrutinizes apps rigorously to search

Figure 1: Screenshot for Legitimate Twitter App

for private APIs, hackers still manage to learn them by
analyzing iOS frameworks directly and found sophisticated
means [35, 27] which can bypass the review process. Since
there is no review process for apps under enterprise/devel-
oper certificates, therefore, attackers may take advantage of
this venue to distribute malware through the web. In ad-
dition, authors in [34] and [29] show that infecting a large
number of iOS devices through botnets is feasible. They
have demonstrated that a compromised computer can be
instructed to install enterprise apps or developer apps on
iOS devices. This shows that there are number of ways to
infect iOS devices, and App Store’s review process is not
sufficient to protect iOS devices.
Although Apple only allows the enterprise apps and devel-

oper apps to be used by company employees and developers,
many vendors do use this method to distribute their apps to
the public (e.g., GBA emulator [11]). In addition, hackers
do use this channel to distribute malware [36]. It seems that
Apple does not have an ideal method to monitor and manage
these wild enterprise and developer apps. Although Apple
can remotely revoke the enterprise or developer certificates,
hackers can resign the app, rename the app’s Bundle name
or change the system time (e.g., Pangu [19] uses an invalid
enterprise certificate for jailbreak) to bypass the revoking
process. In addition, if the enterprise apps contain vulner-
abilities (e.g., URL scheme flaw and heart bleed), they be-
come valuable targets to attackers as the private APIs that
they use make them more powerful as compared with ordi-
nary apps from iOS apps. As more users and enterprises
use iOS devices, there is a constant push to create enpublic
apps, this is exactly the motivation of this paper because we
need to warm the developers (and users) before we see the
epidemic spread of this form of malware.
When enterprise apps or developer apps are distributed

to the public, we refer to such apps as “enpublic” apps. In
order to understand the security landscape of enpublic apps,
we propose a security evaluation mechanism for iOS enpub-
lic apps. Researchers and anti-virus companies can use our
mechanism to detect and analyze malicious iOS enpublic
apps. Customers can also use this mechanism to evaluate
the risk of the enpublic apps before installation.
The main contributions of the paper are:

• We present a detailed study of threats using private
APIs within enpublic apps, and show the gap between
Apple’s regulations and the abuse of enterprise and de-
veloper certifications. To the best of our knowledge,

this paper is the first to investigate the abuse of enter-
prise and developer certificates.

• We propose both static and dynamic analysis tech-
niques to detect iOS private APIs, URL schemes vul-
nerability and sensitive information leakage. We sum-
marized 25 private APIs which are crucial and securi-
ty sensitive on iOS 6/7/8, and we have filed one CVE
(Common Vulnerabilities and Exposures) for iOS de-
vices.

• In our evaluation, we discovered that 844 out of the
1408 enpublic apps we studied do use private APIs. 14
apps contain URL scheme vulnerabilities and 901 apps
transport sensitive information through unencrypted
channel.

2. BACKGROUND
In this section, we briefly provide some background in-

formation about iOS developer programs and itms-services
installation.

2.1 iOS Developer Programs
iOS developers use development tools like Xcode and iOS

simulators to develop apps. To distribute their apps to le-
gal (or non-jailbroken) iOS devices, app developers must
join the iOS developer programs[6]. There are three type-
s of iOS developer programs: standard program, enterprise
program and university program. Tab. 1 depicts the distri-
bution capability of these three programs. Note that all
three programs allow developers to test their apps on de-
vices. They differ in how developers can distribute their
apps. Developers under the standard program can release
their apps on the App Store or distribute the apps through
the ad hoc channel. For the enterprise program, developers
can distribute their apps through the ad hoc channel and the
in-house channel (we will explain the ad hoc and in-house
distribution channels in the next subsection). Apps devel-
oped under the university program cannot be distributed in
any of these three channels.

Although Apple only allows the enterprise apps and de-
veloper apps to be used by company employees and devel-
opers, many vendors or malware writers do use this method
to distribute their apps or malware to the public [36]. The
advantage of using enterprise certificate and developer cer-
tificate is that developers can use private APIs to achieve
advanced functionalities (e.g., screen recording). In addi-
tion, instead of the App Store, developers can maintain the
installed apps on their own servers, so that they can update
these apps any time without the review process. Further-
more, Apple banned many kinds of apps (e.g., pornographic
app) on App Store. By using enterprise certificate or devel-
oper certificate, it becomes possible to distribute these kinds
of apps.

2.2 Ad Hoc and In-House Distribution

2.2.1 Ad hoc distribution
Ad hoc is a Latin phrase which means “for this”. Both the

standard program and the enterprise program can use the
ad hoc channel to distribute iOS apps. These apps are .ipa
files which contain app runtime resources and an ad hoc pro-
visioning profile. Fig. 2 shows the architecture of the ad hoc

Program Test apps on iOS devices App Store Ad Hoc In–house

Standard Program Yes Yes Yes No
Enterprise Program Yes No Yes Yes
University Program Yes No No No

Table 1: iOS Developer Programs and their Distribution Capability

Figure 2: Ad Hoc Provisioning Profile

provisioning profile, each profile contains the ID of the test-
ed app, certificate of the developer, and the unique device
IDs (UDIDs) of designated devices. The provisioning profile
only allows the iOS app to be installed on these designated
devices. In order to register designated devices, developers
need to specify the UDIDs of designated devices and reg-
ister them in the iOS Dev Center [14] before distribution.
Note that each development account can register at most
100 devices per membership year. After the registration,
developers or testers can install the ad hoc .ipa file on the
designated devices through the iTunes or via the iOS RPC
communication library (e.g., libimobiledevice [17]). There-
fore, hackers may register more than one developer account
for enpublic app distribution. The advantage of using this
method is Apple cannot easily revoke all the certificates.

2.2.2 In-house distribution

Figure 3: In–house Provisioning Profile

Enterprise program can also use the in-house channel to
distribute iOS apps on iOS devices. The enterprise apps
contain app runtime resources and an in-house provisioning
profile. Fig. 3 shows the architecture of the in-house provi-
sioning profile. The major difference between an ad hoc pro-
file and an in-house profile is that an ad hoc profile serves no
more than 100 designated devices, whereas in-house profile
may serve unlimited number of devices. Besides using the i-
Tunes for distribution, the in-house distribution can use the
itms-service as another distribution channel. This service
supports an over-the-air installation of custom-developed in-
house apps without using the iTunes or the App Store. All
it needs is just a web server, an iOS app in .ipa format
(built for release/production with an enterprise provision-
ing profile), and an XML manifest file which instructs the
device to download and install the apps. In fact, developers

can provide a simple web link which triggers the installation
process, for instance:

<a href=‘‘itms-services://?action=downloadmanifest&
url=http://www.example.com/manifest.plist’’>
Install App

During the installation, the device contacts“ocsp.apple.com”
to check the status of the distribution certificate used to sign
the provisioning profile. In addition, once it is issued, distri-
bution provisioning profiles have 12 months validity before
expiration. After that, the profile will be removed and the
app cannot be launched. Fig. 4 illustrates the whole instal-
lation process. When a user clicks the “Install” button, the
iOS system will automatically install the enterprise app and
profile on the device.

3. SYSTEM DESIGN AND METHODOLO-
GY

To detect and analyze enpublic apps, we designed iAna-
lytics, a security evaluation system for iOS enterprise/de-
veloper apps. iAnalytics first collects enpublic apps from
the Internet. Then the system can perform private API de-
tection and app vulnerability detection for the downloaded
enpublic apps. At the high level, the workflow for iAnalytics
is as follows:

• iAnalytics has an .ipa crawler for enpublic apps. Be-
cause enpublic apps use “itms–service” for installation,
the .ipa crawler will also search the Internet with
the related keyword, i.e., “itms-services://?action=
downloadmanifest”. When finding a suspicious “itms–
service” link, the .ipa crawler will parse the .plist file
and crawl the related enpublic app from the HTTP or
HTTPS sever.

• After collecting .ipa files, iAnalytics uses two detec-
tors for security evaluation: one for analyzing the pri-
vate API usage, and the other for app vulnerability
analysis.

• For private API detection, iAnalytics first generates a
private APIs list from iOS SDK. Then iAnalytics us-
es a private API detector to detect private API calls
according to the private APIs list. Note that because
there is no app review process for enpublic apps, the
app can use any dynamic loading techniques (e.g., NS-
Bundle and dlopen()) to load the private framework-
s at runtime. Therefore, in addition to checking the
static links of frameworks, iAnalytics also analyzes the
dynamic loading behaviors at runtime.

• For app vulnerability detection, iAnalytics uses an app
vulnerability detector which focuses on detecting the
URL scheme vulnerability and sensitive information

Figure 4: The Process of Itms–service Installation

leakage. URL scheme is a protocol for websites or app-
s to communicate with other apps. An URL scheme
with a faulty logic design may cause serious conse-
quences. For sensitive information leakage, personal
information, when transported or stored without be-
ing encrypted, can be sniffed or extracted by attackers.

• Finally, iAnalytics summarizes the findings and gener-
ates analysis reports of these enpublic apps to security
analysts.

Fig. 5 depicts the workflow of our system.

Ipa Crawler

iOS Private APIs
Detector

App Vulnerability
Detector

Analysis Report

Figure 5: Workflow of iAnalytics

4. IOS PRIVATE APIS DETECTION
In this section, we first give a brief introduction to pri-

vate APIs, then we show the methodology of obtaining the
private APIs list. Finally, we present the implementation of
iOS private APIs detector.

4.1 Introduction to Private APIs
iOS Private APIs are undocumented application program-

ming interfaces of the iOS frameworks and they are prohib-
ited by the App Store’s review process. These private APIs
are methods of framework classes which have no declaration
in class header files. Apple emphasized that these private
APIs should only be used by the class internally or the iOS
system apps [2]. However, when third-party apps use these
private APIs, they have enhanced capabilities (e.g., post-
ing tweets, sending emails, and sending SMS without user’s
consent on iOS [35].) In addition, because there is no ap-
plication review process in iOS enterprise/developer apps,

anyone can distribute their private API apps through this
channel.

4.2 Private APIs list
Since the private APIs are the methods of frameworks

which have no declaration in the class header files, one can
use the following methodology to extract them:

• We first download and install the specific iOS SDK
(e.g., iOS 7.1) from Apple’s development website[13].

• Then we extract all the frameworks from iOS SDK, for
example, UIKit framework can be found at /Applica-
tions/Xcode.app/Contents/Developer/ Platforms/i-

PhoneSimulator.platform/Developer/ SDKs/iPhoneS-

imulator7.1.sdk/ System/Library/Frameworks/

UIKit.framework/UIKit. All of the iOS frameworks
are Mach–O file format [18]. By using class–dump[7],
which is a command–line tool for extracting the Objective-
C information stored in Mach-O files, one can retrieve
all the method names and parameters from these Mach–
O files. Note that these methods are the API calls,
which include both public and private API calls in iOS
frameworks.

• Based on Apple’s official documents[1], we obtain all
the public API calls of a specific SDK version.

• Once we have obtained all private and public APIs call
set from Step 2 and public API calls set from Step 3,
we can extract the private API calls set of the specific
SDK version.

4.3 iOS Private APIs Detector
For iOS private API detection, we use both static and

dynamic methodologies to analyze the iOS enpublic apps.

4.3.1 Static Analysis
We built a static analysis tool on top of CCTool[5]. CC-

Tool is an open source project of Apple for analyzing Mach-
O format files. This project contains several tools such as
otool, nm and strings. However, for private API detection,
these tools are not compact and readable. They can on-
ly retrieve the basic information of the Mach-O format file

and do not have the logic of detecting private APIs. There-
fore, we enhance CC-Tool by adding several new features
(e.g., private API detection and dynamic loading behavior
detection), then build our static analysis of iOS private API
detector on top of these modules.
The static analysis process works in the following steps:

• iOS Private APIs Detector can analyze the framework/li-
brary loading and determine which framework/library
contains private API calls.

• For suspicious framework/library, iOS private API de-
tector will analyze the method symbols and then com-
pare with the private APIs list. If the detector finds
private API calls, it will generate a report for the user.

• If the detector finds dynamic loading behavior (e.g.,
methods which call NSBundle and dlopen()) of the
app, we use the dynamic analysis of iOS private API
Detector.

For example, an enterprise app, “com.tongbu.tui”, stati-
cally loads several sensitive frameworks:

/System/Library/PrivateFrameworks/
SpringBoardServices.framework

/System/Library/PrivateFrameworks/
MobileInstallation.framework

/System/Library/Frameworks/IOKit.framework
...

SpringBoardServices and MobileInstallation are private
frameworks which contain spring board information and in-
stalled package information. As long as an app uses APIs
in these two frameworks, they are private APIs. Although
IOKit framework does not belong to the private frameworks,
there is no public API calls in this framework. Therefore,
any API calls in this framework also belong to private APIs.
Another example is“net.qihoo.360msafeenterprise”. This

app does not load any private frameworks. However, some
public frameworks also have private APIs. For instance:
“net.qihoo.360msafeenterprise” uses _CTTelephonyCen-

terAddObserver API call of /System/Library/Framework-
s/CoreTelephony.framework to monitor the incoming tele-
phone calls and SMS messages.

4.3.2 Dynamic Analysis
Because there is no app review process, enpublic apps can

use any dynamic loading techniques at runtime. For exam-
ple, NSBundle is a dynamic loading class in Objective-C. It
is similar to Java reflection [15] which can dynamically load
other frameworks. Another dynamic loading technique is to
use private C functions, such as dlopen() and dlsym(), to
dynamically load and execute methods of iOS frameworks.
For these apps with dynamic loading behavior, we use Cydia
Substrate[9] (a hooking framework) to hook the low level
library call _dlopen() method and _dlsym() method on an
jailbroken iOS device. Because the low level implementa-
tion of NSBundle also uses _dlopen() method and _dlsym()

method, there is no need to hook the related methods of
NSBundle. To illustrate, the logic of _dlopen() hooking is
shown below:

//declare the origional funciton of dlopen
void * (*_dlopenHook)(const char * __path, int __mode);

//implement the replaced dlopen function
void * $dlopenHook(const char * __path, int __mode)
{
NSLog(@"iAnalytics:␣Loading␣%s␣framework", __path);
return _dlopenHook(__path,__mode); //call orig
}
//do hooking
%ctor {
MSHookFunction((void *)MSFindSymbol(NULL,"_dlopen"),
(void *)$dlopenHook, (void **)&_dlopenHook);
}

We first obtain a declaration of the original hooked func-
tion and implement the function used to replace the original
one accordingly. We then use “MSFindSymbol” to obtain
the address of hooked function and use “MSHookFunction”
to replace the hooked function. In the implementation of
replaced function, the app outputs the loading methods and
frameworks to the system log. We collect the related log
information from “/var/log/syslog”. This way, the iAna-
lytics can detect invocations of private APIs.

5. APP VULNERABILITY DETECTION
Since enpublic apps can use private APIs, they are more

powerful, and potentially more damaging, as compared with
apps in App Store. In this situation, once plagued by vulner-
abilities, enpublic apps become severe threats to iOS users.
Attackers may leverage such vulnerabilities to craft danger-
ous attacks. In this section, we examine two vulnerabilities
found in iOS enpublic apps and show how to detect them.

5.1 URL Scheme Vulnerability Detection
A URL scheme vulnerability arises when an app has an

unsafe URL scheme logic design and the hacker could send
malicious URL requests to the devices. A URL scheme vul-
nerability may cause memory corruption or malicious action-
s without user’s authorization. In this part, we first briefly
explain what URL scheme vulnerability is and present our
URL scheme vulnerability detector.

5.1.1 Introduction to URL Scheme Vulnerability
By using URL schemes, web pages running in Safari or

iOS apps can integrate with system apps or third–party app-
s. For example, the tel:// scheme can be used to launch
the telephone app. For instance, a website may contain the
following HTML script and a user browses it using Safari on
iOS:

<iframe src="tel://123456789"></iframe>

When fed with the URL scheme of telephone app, Safari
will launch the telephone app with the “123456789” as the
parameter. After launching, the telephone app requests for
user’s authorization to make a call. This is a correct log-
ic design from a security perspective, because a malicious
website should not be able to initiate a phone call without
notifying the user. However, if the app does not perform
the authorization check for the URL scheme, it causes secu-
rity problems. For example, [25] reported that if the website
contains the following HTML script:

<iframe src= "skype://123456789?call"> </iframe>

The older version of Skype will automatically start a call
when the user browses a malicious website using the Safari
browser. Therefore, developers need to pay attention to the
logic design of URL scheme. Otherwise, attackers may use
the vulnerability of URL scheme to implement attacks.

5.1.2 Detection Methodology
We describe our methodology for URL Scheme vulnera-

bility detection in the paragraphs below:

• We parse Plist to obtain the URL scheme informa-
tion from the Info.plist file of the .ipa package.
In the Info.plist file, the URL scheme information
is stored in the CFBundleURLTypes array. By parsing
this array, we can extract CFBundleURLName and CF-

BundleURLSchemes.

• If an iOS app has the CFBundleURLSchemes, it will call
the [application:handleOpenURL] method in the ap-
plication delegate class. We disassemble the app
and then perform a recursive search from the [appli-
cation:handleOpenURL] method. If the app invokes
any private API calls, we catch it. Then security ana-
lysts can analyze this potential vulnerable app.

• iAnalytics performs fuzzy testing for iOS apps with
URL schemes. After obtaining the CFBundleURLSchemes
from Info.plist file, our system generates random
strings or customized fuzz templates with correspond-
ing URL schemes. Then we test these URL schemes
through libimobiledevice on an iOS device with the
installed apps. We then record the system log (e.g.,
crash report) for analysts.

We have performed the analysis above and discovered sev-
eral apps with URL Scheme vulnerabilities. We will further
describe our findings in Sec. 6.

5.2 Sensitive Information Leakage Detection
Apps may transmit or store personal identifiable informa-

tion like device ID, user name, password, phone number,
address and location information to third party companies.
It is very dangerous that the sensitive information is trans-
formed or stored by plain text, because attackers can easily
obtain it by sniffing the network or through USB connec-
tion. In addition, because enpublic apps can obtain more
sensitive personal data by using private APIs, they are more
dangerous than normal apps. For personal information leak-
age detection, iAnalytics focuses on HTTP and local data
storage.

5.2.1 Sensitive Information Leakage on HTTP
For analyzing HTTP packets, we set the tested device’s

HTTP proxy to our system. Then iAnalytics uses libi-

mobiledevice library to launch the tested apps and sends
random user events to the tested apps. If the tested app
generates HTTP connection, the HTTP packets will be sent
to our system for analysis. After getting the data, iAna-
lytics searches string patterns of system information (e.g.,
UDID, MAC address, IMEI and IMSI) and personal infor-
mation (e.g., telephone number, location information and
password) from the HTTP packets. If the system finds any-
thing related to sensitive information, it will report it to
analysts.

Figure 6: USB connection verification

5.2.2 Sensitive Information Leakage on Local Data
Storage

iOS RPC communications library (e.g., libimobiledevice)
can be used to obtain apps’ data through an USB connec-
tion. Although apps in iOS are seperated by sandbox me-
chinism, the mechinism has no effect for iOS RPC com-
munications library. An PC based application can extract
all of apps’ data without any permission and user’s knowl-
edge. Using iAnalytics, we discovered a bug in the iOS RPC
communications: in iOS 7.0, Apple added a new feature to
prevent untrusted USB connection (see Fig. 6). However, it
only has effect on iTunes software. Other applications can
still use iOS RPC communications library to obtain the app
data even if the user choose “Don’t Trust”. Therefore, our
system uses libimobiledevice library to extract the apps’
data from the iOS devices and then search for sensitive in-
formation from the apps’ data. If the system finds anything
related to sensitive information, it will generate a report to
a security analyst.

6. EVALUATION
We crawled 1408 enpublic apps from the Internet. We

obtained the “Development Region” by parsing apps’ In-
fo.plist files. The “Development Region” indicates the ge-
ographic location of the apps development. Most enpublic
apps are from United States, China, England and France,
as shown in Tab .2. In this section, we report the statis-
tics of private API usage and app vulnerabilities found in
these apps. We also provide case studies of representative
enpublic apps.

Country # of apps

United States 660
China 361
England 223
France 62
Others 102
All 1408

Table 2: Statistics of Development Region

6.1 Private API Statistics and Case Studies
Within the 1,408 enpublic apps we crawled, 844 (60%) use

private APIs. For example, some enpublic apps use the pri-
vate APIs of CoreTelephony.framework to monitor phone
call and SMS messages. After obtaining the sensitve infor-
mation, enpublic apps can send them to the hacker’s sever
in the background. Some iOS 3rd-party market (non-App s-

tore markets) apps use the private APIs of MobileInstalla-
tion.framework and SpringBoardServices.framework to
manage and install 3rd-party iOS apps on iOS devices. In
addition, enpublic apps are able to remotely install other
apps to the devices without user’s knowledge. Many en-
public apps use the private APIs of Message.framework to
get the IMSI (International mobile Subscriber Identity) and
IMEI (International Mobile Station Equipment Identity) of
the device. Because these IDs are globally unique, after ob-
taining these IDs, hackers are able to link it to a real-world
identity [33] so users’ privacy will be compromised. Tab. 3
summarizes the private API usages list found in our crawled
apps1. Note that we have found 22 new dangerous private
APIs which are not mentioned in [35] and [27]. These APIs
are crucial and security sensitive on iOS 6/7/8 devices. If
users do not pay any attention to them, their personal infor-
mation can be easily leaked to the hacker. To demonstrate
how dangerous the private APIs are, we present several case
studies below.

6.1.1 Phone Call & SMS Message Monitoring and
Blocking

As mentioned in Sec. 1, Qihoo released their “enterprise”
apps to the public. Apple halted Qihoo by revoking the “en-
terprise” certificates [3]. Qihoo implemented some functions
that rely on private APIs, which is prohibited from distri-
bution on App Store. Note that one can still find Qihoo’s
“enterprise” app from the Internet today. Although the cer-
tificate became invalid, we can resign the app with our own
certificate, then install it on the iOS devices and analyze it.
Qihoo’s enterprise app is called “MobileSafeEnterprise”

and the package name is“net.qihoo.360msafeenterprise”. This
app uses both static and dynamic approaches to invoke pri-
vate APIs. First, “MobileSafeEnterprise” can monitor and
block incoming phone calls and SMS messages. The method-
ology is using the private API, CTTelephonyCenterAddOb-
server() method of coreTelephony.framework to register
a call back method of the TelephonyCenter. When the
phone receives a phone call, ”MobileSafeEnterprise” will get
a “kCTCallIdentificationChangeNotification” call back. In
this call back, ”MobileSafeEnterprise” uses CTCallCopyAd-

dress()method to obtain the telephone number of the caller
and then use CTCallDisconnect() method to hang up the
phone call. For incoming SMS messages, “MobileSafeEn-
terprise” will receive a “kCTMessageReceivedNotification”
call back. In this call back, “MobileSafeEnterprise” uses
[[CTMessageCenter sharedMessageCenter] incoming

MessageWithId: result] method to obtain the sender’s
telephone number and the text of SMS messages.
Note that some private API invocations in“MobileSafeEn-

terprise” used dynamic loading techniques and our system
detects such behaviors successfully. We also find that even
in the latest iOS 7.1, developers or attackers can still use
private APIs to monitor incoming phone calls and SMS mes-
sages. We have notified Apple about this security problem
and Apple Inc. has been working on a fix which is to be
released in future updates.

6.1.2 Collecting the Information of Installed Apps
For the network traffic monitoring,“MobileSafeEnterprise”

uses private APIs of UIKit.framework and SpringBoard-

1Starting May 1, 2013, the App Store will no longer accept
new apps or app updates that access UDIDs. [22]

Services.framework to get the names and bundle IDs of
running apps. The methodology is using SBSSpringBoard-

ServerPort() method of UIKit.framework to get the serv-
er port of the SpringBoard. Then it uses SBSCopyAppli-

cationDisplayIdentifiers() method of SpringBoardSer-
vices.framework to get the array of current running app
bundle IDs. By using this private API, the app can record
the running time and frequency of other apps. In addition,
by analyzing the SDK of iOS 7.X and 8.X, we have found
another private API called allApplications() in the Mo-

bileCoreServices.framework . This private API can be
used to get all the bundle IDs of installed apps which in-
clude both running and unstarted apps. After getting the
installed app list, hackers can sell them to analytic or ad-
vertisement companies, or hackers can analyze and exploit
vulnerabilities of these installed apps so to launch persistent
attack on these devices.

6.1.3 User Events Monitoring and Controlling
We encountered another interesting enpublic app called“i-

Control”. This app can monitor and control user events (e.g.,
touches on the screen, home button press and volume button
press) in the background on iOS 5.X and 6.X. For monitor-
ing, it uses the GSEventRegisterEventCallBack() method
of GraphicsServices.framework to register call backs for
system wide user events. After that, every user event will
invoke this call back method. In this call back, the app can
get the user event information by parsing the IOHIDEven-

tRef structure. For controlling, the app first uses SBFront-
mostApplicationDisplayIdentifier() method of Spring-
BoardServices.framework to get the app at the front. After
that, the app uses GSSendEvent() method of GraphicsSer-
vices.framework to send the user events to the front app.
Attackers can use such mechanisms for malicious purposes.
For example, potential attackers can use such information to
reconstruct every character the victim inputs (e.g., stealing
user’s password). In addition, attackers can use this app as
a trojan to control the victim’s non-jailbroken phone from
remote.

Fortunately, Apple fixed these monitoring and controlling
private APIs on iOS 7.0 by adding permission controls. How-
ever, after analyzing the private APIs of IOKit.framework ,
we have discovered another call back registration method of
user events: IOHIDEventSystemClientRegisterEventCall-
back(). After registration, the app can still monitoring the
system wide user events in the background on iOS 7.0. We
have reported this issue to Apple. Apple applied a CVE
(Common Vulnerabilities and Exposures) for us [8] and fixed
this flaw on iOS 7.1.

6.1.4 iOS 3rd-party App Installation and 3rd-party
Markets

It is different from Cydia which targets only jailbroken
devices, we have found several 3rd-party app markets (e.g.,
SearchForApp and Rabbit Assistant) which target both non-
jailbroken and jailbroken iOS devices. These markets are
enpublic apps and these apps use similar techniques for app
management and installation. For app management, these
apps use MobileInstallationLookup() method of Mobile-
Installation.framework to get the pList information of in-
stalled apps from the iOS system. After that, they use SB-

SCopyLocalizedApplicationNameForDisplayIdentifiermethod
and SBSCopyIconImagePNGDataForDisplayIdentifiermethod

of SpringBoardServices.framework to get the app names
and icons. For app installation, it is interesting that these
market apps have several ways to install 3rd-party apps on
both jailbroken and non-jailbroken iOS devices. For jail-
broken iOS devices, since there is no app signature verifi-
cation, they use MobileInstallationInstall method and
MobileInstallationUninstall method of MobileInstal-

lation.framework to install and uninstall other 3rd-party
apps. For non-jailbroken iOS devices, these market apps
use “itms-services” (mentioned in Sec. 2) to install oth-
er enpublic apps or pirated apps. Because some companies
release their apps in enterprise/developer version for beta
testing, these 3rd-party app markets collected them and re-
lease them on their markets. Although customers can get
the apps for free on non-jailbroken devices, they are tak-
ing high security risks (e.g., personal information leakage,
remotely monitoring and control) of using these apps. For
more discussion about pirated apps, please refer to Sec. 7.

6.1.5 Phishing Attack and Unlimited Background Run-
ning

We have found another interesting enpublic app called
“Buddy Pro”. This is an app which can get the location
of incoming phone calls. It has several interesting features:
First, it can run in the background forever. Second, it can
auto start after system rebooting. Thirdly, it can pop up
a dialog on the incoming call screen to show the location
information. These features are dangerous in that a hack-
er can use them to launch a phishing attack on the user.
Note that running app in the background is very important
for phishing apps, because the app needs to stay alive for
monitoring sensitive information (e.g., keystrokes or finger
movement). However, in iOS, all running tasks are under
a strict time limit (around 600 seconds for iOS 6 and 180
seconds for iOS 7/8) for processing.
By analyzing the app using our system, we find two ways

for the app to run in the background forever and one way
for the app to auto start after rebooting:

• The app can use AVAudioPlayer to play a silent mu-
sic in the background and uses a property called Au-

dioSessionProperty_OverrideCategoryMixWithOthers.
By using this property, the silent music can be played
with other music without being detected. In addition,
the app will not appear on the music panel. Hence,
the app can run continuously without being detected.

• The app can use two undocumented UIBackground-
Modes, Continuous and unboundedTaskCompletion, to
run in the system background forever. Generally s-
peaking these two undocumented UIBackgroundModes
can only be used by system apps, so third-party apps
cannot bypass the App Store review if they use un-
documented UIBackgroundModes. However, authors
in [35, 27] showed that it is possible to bypass the re-
view process and it would be dangerous that an app
can monitor phone call events in the background forv-
er.

• The app can use a UIBackgroundMode called VOIP

(Voice -Over -Internet Protocol) to start automatical-
ly after the system rebooting. Because an app VOIP
needs to maintain a persistent network connection so
that it can receive incoming calls and other relevan-
t data. In order to ensure that the VOIP services

Figure 7: Real AppStore Login Dialog

Figure 8: Fake AppStore Login Dialog

are always available, the iOS system will relaunch the
VOIP app in the background immediately after sys-
tem boot. Therefore, unless the customer terminates
the app manually, the app can always monitor phone
call events even after rebooting the device.

In“Buddy Pro”app, we have found two dangerous private
API calls : CFUserNotificationCreate() and CFUserNoti-

ficationReceiveResponse() of CoreFoundation.framework
. These two private APIs can create and pop up interactive
dialogs on the foremost screen and then receive user’s re-
sponse. Unlike UIAlertView class, the app can only pop up
dialogs on its own screen. Using CFUserNotificationCre-

ate() and CFUserNotificationReceiveResponse(), one ap-
p can always pop up dialogs to the foremost screen (includes
other apps’ screen and home screen) in the background. This
is very dangerous, because hackers can easily build a “phish-
ing” app to steal users’ accounts. In order to demonstrate,
we built an example “phishing” app. This “phishing” app

can pop up a fake login dialog (to differentiate, we changed
the letter “K” to lower case) in the AppStore app (Fig. 7
and Fig. 8). In addition, we built such a “phishing” app
and disguised it as the Twitter app. If the user opens this
“phishing” app, it will run in the background forever and
it will auto start after rebooting. In addition, it will moni-
tor the runtime process information of the system. What’s
more, by using the “CVE-2014-4423” vulnerability [23], the
”phishing” could get information about the currently-active
iCloud account, including the name of the account. When
the user opens the AppStore app, it will pop up a fake login
dialog on the foremost screen. After the user enters his pass-
word, the“phishing”app will send the user’s password to the
remote server. Note that the demo used the 7.1 version of
iOS system on a non-jailbroken iPhone 5s device.

6.2 App Vulnerabilities Statistics and Case S-
tudies

Within the 1408 enpublic apps, we have found 14 (1%)
apps containing URL scheme vulnerabilities. Most of the
scheme vulnerabilities crash the corresponding app. Howev-
er, there are two interesting cases, “PandaSpace” and “iDe-
vice Tool” that may become targets for exploits. For sen-
sitive information leakage, 901 (64%) enpublic apps trans-
form sensitive information through unencrypted HTTP or
store the information in plain text on the phone. Tab. 4
shows the statistics of UDID, MAC address, IMEI, IMSI,
telephone number, GPS (Global Position System), installed
app list and password leakage through HTTP and local data
storage. After obtaining the personal information, hackers
can sell them to analytic or advertisement companies. In ad-
dition, they can implement advanced persistent attack after
getting the installed app list or password.

Unencrypted Data # of apps % of apps

UDID 453 50.3%
MAC address 183 20.3%
IMEI 97 10.8%
IMSI 28 3.1%
Telephone number 86 9.5%
GPS 52 5.8%
Installed app list 54 6.0%
Password 3 0.3%

Table 4: Statistics of Unencrypted Data Leakage

6.2.1 Remotely Install 3rd-party Apps
“PandaSpace” is a 3rd-party market app. As we men-

tioned before, these 3rd-party markets are enpublic apps
which can manage and install other 3rd-party apps. We
found that attackers can remotely exploit the URL scheme
vulnerability of “PandaSpace” to install any 3rd-party apps
on jailbroken iOS devices. By parsing the .plist file, we
found “PandaSpace” contains URL schemes. We recursively
scan the private API calls in the handleOpenURL() method
of the app. We found a dangerous API call, MobileInstal-
lationInstall(), in the handle URL scheme method. After
that, we analyzed the handleOpenURL() function of “Pan-
daSpace” manually. We found that when “PandaSpace” re-
ceives a valid .ipa file download URL, it will download the
.ipa file from this URL and then install it on the device.
Attackers may use this URL scheme to install other apps on

victims’ iOS devices. For example, attackers can create a
malicious website with the following HTML script:

<iframe src="PandaSpace://http://bbx.sj.***.com
/iphonesoft/detail.aspx?action=show&f_id=%@">
</iframe>

When victims visit this malicious webiste using Safari,
“PandaSpace” will download the app and install it on the
phone. Although using the URL scheme vulnerability of
“PandaSpace” can not directly install 3rd-party apps on a
non-jailbroken iOS devices, attackers can use this vulnera-
bility to trick users to install other enpublic apps.

6.2.2 System Log Leakage
“iDevice Tool” is an enpublic app used by developers to

debug iOS systems. It uses several private APIs to gain sys-
tem information (e.g., UDID, mac address and system logs).
We found that hackers can use the URL scheme vulnerabil-
ity of “iDevice Tool” to email all the system information to
a specific email address. For example, when the user visits
a malicious website with the following content:

<iframe src= "idevicetool://emailLog?email=example
@example.com&filter=TextFilter&appname=AppName
"> </iframe>

“iDevice Tool” will send the system log of “AppName” to
the email address, “example@example.com”.

6.2.3 Location Information Leakage
“Sina weather forecast” is a weather report app. It has

both App Store version and enterprise version. In the en-
terprise version, it uses GPS (Global Positioning System) to
get the location of the user and then uses private API to
get the system information (e.g., UDID) of the device. Af-
ter that, it sends these sensitive information to its server in
plain text. For example, here is the captured HTTP request:

POST http://forecast.sina.cn/app/update.php?device
=iPhone&uid=32aee18d40fcb4c24e5988c76b4e9f0
d84fb8***&os=ios6.1.2&city=CHXX0***&pver=3.249
&pt=2&token=ff0007a31c005916d5e45b360481f1
1e05b40f010405731e94c8&pid=free

This HTTP leaks the UDID (“32aee18d40fcb4c24e5988c-
76b4e9f0d84fb8***”), iOS version (“6.1.2”) and location in-
formation (the city number, “CHXX0***”). If the server’s
information is leaked (e.g., through heart bleed attack), at-
tackers can easily get the user’s location through the UDID.

6.2.4 Username and Password Leakage
“eHi Taxi” is an iOS app providing services to call a tax-

i. It provides an App Store version and also an enterprise
version. However, both versions have the same vulnerability
that they transfer the user’s phone number, name and pass-
word in plain text through HTTP, as shown in the captured
HTTP post:

POST: http://myehilogin.1hai.cn/Customer/Login/Log-
inMobile
TextView: LoginName=5109318***&LoginPassword=pass***

Hence, attackers can easily sniff and harvest these private
information. After getting user’s account, hackers can call
taxis using victim’s money. In addition, the victim may use
the same account for other apps. Therefore, hackers may
launch advanced persistent attack to these devices. Note
that this vulnerability is not specific to enpublic apps.

7. DISCUSSION
In this section, we first discuss about pirated apps on iOS.

Then we discuss the limitation of our system and possible
improvements.

7.1 Pirated Apps on Non–jailbroken iOS De-
vices

As we mentioned in Sec. 2, iOS apps have four distribu-
tion ways: test apps on iOS devices, App Store, ad hoc and
in–house channels. The first distribution channel is for de-
bugging iOS apps only, developers need to use XCode and
USB connection to install iOS apps. Customers usually in-
stall iOS apps from the second channel, the Apple Store.
Given that Apple has the review process for apps on Ap-
p Store, we assume apps on Apple Store are genuine ones.
However, pirated apps can use ad hoc and in–house channels
to distribute to non–jailbroken iOS devices. For example, a
malware developer can extract a paid iOS app from a jail-
broken iOS device and package it into an .ipa file. He or she
can then use the developer key from iOS developer program
or iOS enterprise program to resign the .ipa file. After that
customers may install the pirated apps through iTunes or
itms–services without paying for them. In addition, because
hackers have already reverse engineered the iTunes proto-
col, so that they can install the .ipa files on non–jailbroken
iOS devices without iTunes [17] [16]. Although ad hoc dis-
tribution has a 100 device install limit, hackers can rename
the Bundle name of the app, iTunes will then treat the re-
named app as a new app with another 100 device limitation.
Therefore, hackers can use this method to attract customers
to download free pirated apps which are not free in Apple
Store from their third–party markets, and then use adver-
tisement to gain money. In this case, both iOS developers
for the original app and Apple become victims.

7.2 Limitation and Future Work
Because enterprise iOS apps observe no regulation on us-

ing dynamic loading techniques, it is difficult for traditional
static analysis methodologies to get the payload behavior be-
fore execution. Therefore, our system uses dynamic analysis
to handle the dynamic loading behavior. However, dynamic
analysis may not have a good code coverage since an app
may have hundreds or thousands execution paths. Dynamic
analysis can only explore a single execution path at a time
and it is hard for the dynamic analysis system to trigger the
expected result without the right input. Currently, we use
simple behavior trigger techniques (e.g., launching the app,
making a telephone call and locking the screen), so iAnalyt-
ics cannot guarantee complete code coverage of all dynamic
loading behaviors. A possible improvement is to perform
symbolic execution to compute all of the feasible paths and
we are considering this in our future work.
For unencrypted sensitive information leakage, we only fo-

cus on the HTTP protocol and plain text data. However,
apps may use other protocols to transfer unencrypted da-
ta or simple encrypted data through network sockets. In

addition, iOS system has several internal communication
techniques (e.g., shared keychain access and custom URL
scheme). If the app does not encrypt the data or it has a
faulty logic design, it is possible for other apps to sniff or
hijack the exchanged data. For capturing sockets and the
data of internal communication, the system needs to pro-
vide hooking service on the related methods, triggering the
behavior, having simple decryption engine and determining
the transferred data structure. We plan to address such ex-
tension in our future work.

8. RELATED WORK
There have been number of works which aim to bypass the

code signing and app review process of Apple App Store.
A common method is to Jailbreak [31][10][28] the system
so to obtain the root privilege and permanently disable the
code signing mechanism. In addition, hackers distribute iOS
malware on jailbroken devices [32]. Although jailbreaking is
feasible [26], it is getting more and more difficult because
Apple actively fixes known vulnerabilities and iOS becomes
more mature. Despite the increasing difficulty of exploiting
iOS, our findings show that it is possible to distribute apps
without jailbreaking iOS. However, it is worth noting that
our approach can still take advantage of the vulnerabilities
utilized by other jailbreaking methods to compromise iOS.

C. Miller [30] discovered that iOS code signing mechanism
could be bypassed, allowing attackers to allocate a writeable
and executable memory buffer. A malicious app can exploit
this vulnerability to generate and execute attack code at
runtime. However, Apple has fixed this issue and blocked
apps using such kind of methods to dynamically load and
launch malicious payload. T.Wang [35] puts forward anoth-
er novel approach to evade the app review process by making
the apps remotely exploitable and introduing malicious con-
trol flows by rearranging signed code. Because these control
flows are dynamically generated when the attackers try to
exploit those apps, Apple will not discover them during the
app review process. However, this vulnerability has been
fixed by Apple as well. Authors in [34] and [29] show that
infecting a large number of iOS devices through botnets is
possible. By exploiting the design flaws of iTunes and the
device provisioning process, they demonstrate that a com-
promised computer can be instructed to install “enpublic”
apps on iOS devices. These works show that iOS devices
can be infected and App Store’s review process is not ade-
quate for protecting iOS devices. Our work further shows
that iOS vulnerabilities exist.

The work closest to ours is by J. Han etc. [27]. They pro-
pose to launch attacks on non-jailbroken iOS devices from
third-party application by exploiting private APIs. Com-
pared with their work, our work is more systematic and we
show there is another channel to distribute malicious app-
s except the App Store. Our focus is not just to exploit
private APIs, but also illustrate other vulnerabilities. More-
over, we performed systematic analysis on large number of
iOS apps, and in particular, we applied our analysis upon
iOS 7/8, which has not been studied before.

9. CONCLUSION
In this paper, we present the security landscape of iOS

enpublic apps and their usage of private APIs. In order
to understand their security impact, we designed and im-

plemented a mechanism which evaluate the overall security
status of enpublic apps by combining static semantic checks
and runtime detection technologies. Our results show that
844 (60%) out of the 1408 enpublic apps do use private APIs.
14 (1%) apps contain URL scheme vulnerabilities, 901 (64%)
enpublic apps transport sensitive information through unen-
crypted channel or store private information in plain text on
the devices. In addition, we summarized 25 private APIs on
iOS 6/7/8 which have security vulnerabilities and we have
filed one CVE for iOS devices.

10. ACKNOWLEDGMENTS
We would like to thank our shepherd, Jin Han, and the

anonymous reviewers for their valuable comments. We also
thank Raymond Wei, Dawn Song, and Zheng Bu for their
valuable help on writing this paper.

11. REFERENCES
[1] API Reference of iOS Frameworks, 2014.

https://developer.apple.com/library/ios/naviga

tion/#section=Resource%20Types&topic=Reference.

[2] App store review guidelines.
https://developer.apple.com/appstore/resources

/approval/guidelines.html.

[3] Apple Bans Qihoo Apps From iTunes App Store,
February, 2012. http:

//www.techinasia.com/apple-bans-qihoo-apps/.

[4] Apple, Creating Jobs Through Innovation, 2012.
http://www.apple.com/about/job-creation/.

[5] CCTool.
http://www.opensource.apple.com/source/cctools.

[6] Choosing an iOS Developer Program, 2014. https:

//developer.apple.com/programs/start/ios/.

[7] Class-dump.
http://stevenygard.com/projects/class-dump.

[8] CVE-2014-1276 IOKit HID Event, 2014.
http://support.apple.com/en-us/HT202935.

[9] Cydia Substrate. http://www.cydiasubstrate.com.

[10] Evad3rs, evasi0n jailbreaking tool, 2013.
http://evasi0n.com/.

[11] How Apple’s Enterprise Distribution Program was
abused to enable the installation of a GameBoy
emulator, 2014.
http://www.imore.com/how-gameboy-emulator-

finding-its-way-non-jailbroken-devices.

[12] How Many Apps Are in the iPhone App Store.
http://ipod.about.com/od/iphonesoftwareterms/

qt/apps-in-app-store.htm.

[13] iOS Dev Center. https://developer.apple.com/de

vcenter/ios/index.action.

[14] iOS Dev Center, 2014. https://developer.apple.co

m/devcenter/ios/index.action.

[15] Java Reflection. http:

//docs.oracle.com/javase/tutorial/reflect/.

[16] Kuai Yong iOS device management, 2014.
http://www.kuaiyong.com/eg_web/index.html.

[17] Libimobiledevice: A cross-platform software protocol
library and tools to communicate with iOS devices
natively, 2014. http://www.libimobiledevice.org/.

[18] OS X ABI Mach-O File Format Reference.
https://developer.apple.com/library/mac/docume

ntation/DeveloperTools/Conceptual/MachORuntime

/Reference/reference.html.

[19] Pangu Jailbreak, 2014. http://pangu.io/.

[20] Qihoo Double Blow as iOS Apps Banned by Apple,
China Warns of Anti-Competitive Practices, January,
2013. http://www.techinasia.com/qihoo-apps-

banned-apple-app-store/.

[21] Tim Cook to shareholders: iPhone 5s/c outpace
predecessors, Apple bought 23 companies in 16
months.
http://appleinsider.com/articles/14/02/28/tim-

cook-at-shareholder-meeting-iphone-5s-5c-

outpace-predecessors-apple-bought-23-

companies-in-16-months.

[22] Using Identifiers in Your Apps, 2013. https://deve

loper.apple.com/news/index.php?id=3212013a.

[23] Vulnerability Summary for CVE-2014-4423, 2014.
http://web.nvd.nist.gov/view/vuln/detail?vuln

Id=CVE-2014-4423.

[24] When Malware Goes Mobile.
http://www.sophos.com/en-us/security-news-

trends/security-trends/malware-goes-

mobile/why-ios-is-safer-than-android.aspx.

[25] D. Chell. iOS Application (In)Security. 2012.

[26] D. Goldman. Jailbreaking iphone apps is now legal.
CNN Money. Retrieved, pages 09–11, 2010.

[27] J. Han, S. M. Kywe, Q. Yan, F. Bao, R. Deng,
D. Gao, Y. Li, and J. Zhou. Launching generic attacks
on ios with approved third-party applications. In
Applied Cryptography and Network Security, pages
272–289. Springer, 2013.

[28] Y. Jang, T. Wang, B. Lee, , and B. Lau. Exploiting
unpatched ios vulnerabilities for fun and profit. In
Proceedings of the Black Hat USA Briefings, Las
Vegas, NV, August 2014.

[29] B. Lau, Y. Jang, C. Song, T. Wang, P. H. Chung, and
P. Royal. Injecting malware into ios devices via
malicious chargers. In Proceedings of the Black Hat
USA Briefings, Las Vegas, NV, August 2013.

[30] C. Miller. Inside ios code signing. In Proceedings of
Symposium on SyScan, 2011.

[31] C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo,
and R.-P. Weinmann. IOS Hacker’s Handbook. John
Wiley & Sons, 2012.

[32] F. A. Porter, F. Matthew, C. Erika, H. Steve, and
W. David. A survey of mobile malware in the wild. In
Proceedings of the 1st ACM SPSM. ACM, 2011.

[33] E. Smith. iphone applications & privacy issues: An
analysis of application transmission of iphone unique
device identifiers (udids). 2010.

[34] W. Tielei, J. Yeongjin, C. Yizheng, C. Simon, L. Billy,
and L. Wenke. On the feasibility of large-scale
infections of ios devices. In Proceedings of the 23rd
USENIX conference on Security Symposium, pages
79–93. USENIX Association, 2014.

[35] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee. Jekyll
on ios: when benign apps become evil. In Presented as
part of the 22nd USENIX Security Symposium, pages
559–572, 2013.

[36] C. Xiao. Wirelurker: A new era in ios and os x
malware. 2014.

Available Available Available
Method Framework Usage on iOS

6.X
on iOS
7.X

on iOS
8.0

[[UIDevice currentDevice] U– UIKit Get the UDID of the device. Yes No No
niqueIdentifier]
CTSIMSupportCopyMobile– coreTelephony Get the IMSI of the device. Yes No No
SubscriberIdentity()
CTSettingCopyMyPhoneN– coreTelephony Get the telephone number of the Yes No No
umber() device.
CTTelephonyCenterAddOb– coreTelephony Register call back of SMS mes– Yes Yes Yes
server() sages and incoming phone calls.
CTCallCopyAddress() coreTelephony Get the telephone number of the Yes Yes Yes

phone call.
CTCallDisconnect() coreTelephony Hang up the phone call. Yes No No
[[CTMessageCenter shar– coreTelephony Get the text of the incoming Yes Yes Yes
edMessageCenter] incom– SMS message.
ingMessageWithId: result]
[[NetworkController shared– Message Get the IMEI of the device. Yes No No
Instance] IMEI]
SBSCopyApplicationDispla– SpringBoardServices Get the array of current running Yes No No
yIdentifiers() app bundle IDs.
SBFrontmostApplicationDi– SpringBoardServices Get the front most app port. Yes No No
splayIdentifier()
SBSCopyLocalizedApplicati– SpringBoardServices Get the app name from the Yes Yes Yes
onNameForDisplayIdentifier() bundle ID.
SBSCopyIconImagePNG– SpringBoardServices Get the app icon from the Yes Yes Yes
DataForDisplayIdentifier() bundle ID.
SBSLaunchApplicationWit– SpringBoardServices Launch the app using bundle ID. Yes No No
hIdentifier()
MobileInstallationLookup() MobileInstallation Get the pList information of Yes Yes Yes

installed iOS apps.
MobileInstallationInstall() MobileInstallation Install .ipa file on jailbroken iOS Yes Yes Yes

devices.
MobileInstallationUninstall() MobileInstallation Uninstall app on jailbroken iOS Yes Yes Yes

devices.
GSEventRegisterEventCall– GraphicsServices Register call back for system Yes No No
Back() wide user events.
GSSendEvent() GraphicsServices Send user events to the app port. Yes No No
IOHIDEventSystemClientR– IOKit Register call back for system wide Yes Yes No
egisterEventCallback() user events.
CFUserNotificationCreate() CoreFoundation Pop up dialogs to the foremost Yes Yes Yes

screen.
CFUserNotificationReceive– CoreFoundation Receive the user input from the Yes Yes Yes
Response() dialog.
allApplications() MobileCoreServices Get the bundle ID list of installed No Yes Yes

iOS apps.
publicURLSchemes() MobileCoreServices Get the URL schemes list of Yes Yes Yes

installed iOS apps.
continuous UIBackgroundMode Run in the background forever. Yes Yes Yes
unboundedTaskCompletion UIBackgroundMode Run in the background forever. Yes Yes Yes
VOIP (not a private API) UIBackgroundMode Auto start after rebooting. Yes Yes Yes

Table 3: Statistics of Private API Usage

