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Abstract—In online social networks (OSNs), users may want
to enhance their social visibility, as it can make their contents,
i.e., opinions, videos, pictures, etc., attract attention from more
users. Motivated by this, we propose a mechanism, where the
OSN operator provides a “social visibility boosting service” to
incentivize “transactions” between requesters (users who seek
to enhance their social visibility via adding new “neighbors”)
and suppliers (users who are willing to be added as a new
“neighbor” of any requester when certain “rewards” is provided).
We design a posted pricing scheme for the OSN provider to
charge the requesters who use such boosting service, and reward
the suppliers who contribute to such boosting service. The OSN
operator keeps a fraction of the payment from requesters and
distributes the remaining part to participating suppliers “fairly”
via a scheme based on the Shapley value. The objective of the
OSN provider is to select the price and supplier set to maximize
the revenue under the budget constraint of requesters. We first
show that the revenue maximization problem is not simpler
than an NP-hard problem. We then decompose it into two sub-
routines, prove the hardness of each sub-routine, and eventually
design computationally efficient approximation algorithms to
solve the revenue maximization problem. We conduct extensive
experiments to evaluate our proposed algorithms.

I. Introduction
OSNs such as YouTube, Instagram, Twitter, Facebook, etc.,

serve as important platforms for users to share their informa-
tion or content to friends or followers, e.g., users on Facebook
can share their opinions or status to their friends via the
friendship network. Users on YouTube can share their videos
to their subscribers via the subscriber network. A user’s friends
or followers can further share the information or content of this
user to their friends or followers. Hence, the information or
content of a user can be propagated (or “socially visible”) to
his friends or followers, or even multi-hop friends or followers.

Often times, users want to enhance their social visibility,
as it can make their contents, i.e., opinions, videos, pictures,
etc., attract attention from more users, which in turn may
bring higher commercial benefit to them. We call a user who
wants to enhance social visibility as a requester. One way

to enhance a requester’s social visibility is to attract some
new friends or followers. It is well known that the OSN
is under the “rich gets richer” phenomenon, which makes
it difficult for requesters, especially those with low social
visibility, to attract new friends or followers. But when finical
incentive is provided, some users will be willing to be added
as requesters’ new friends or followers. We call such users as
suppliers. Hence, requesters can provide financial incentives
to enhance their social visibility. This paper aims to answer
the following fundamental question: How to set appropriate
financial incentives to incentivize the “transaction” between
requesters and suppliers?

We propose a mechanism, where the OSN operator pro-
vides a “social visibility boosting service” to incentivize the
transaction between requesters and suppliers. The visibility
boosting service is sold via a posted normalized pricing
scheme (p, q), where p 2 [0, 1] and q 2 [0, 1]. Here, p is the
price of per unit social visibility improvement that the OSN
operator charges a participating requester, and q is the price of
per unit contribution in improving social visibility of partici-
pating requesters that the OSN operator pays to a participating
supplier. We consider the case that each participating supplier
adds links to all participating requesters and requesters has a
budget to add b 2 N+ new friends or followers. Requesters and
suppliers decide whether to participate or not by comparing
their valuations to the posted prices (p, q). We consider a
proportional transaction fee scheme, i.e., the OSN operator
keeps a fraction of the payment from requesters, and distribute
the remaining part (we call it “reward”) to suppliers. The
objectives of the OSN operator are: (1) select the price (p, q)
and supplier set so to maximize the total amount of transaction
fees or equivalently maximize his revenue; (2) divide the
reward “fairly” to all suppliers. We address challenges in
achieving the above two objectives and our contributions are:

• Formulate a mathematical model to quantify social visi-
bility. To the best of our knowledge, we are the first to
propose a posted pricing scheme and formulate a revenue
maximization problem for visibility boosting service.

• We decomposed it into two sub-routines, where one
focuses on selecting the optimal set of suppliers, and
the other focuses on selecting the optimal price. We
propose approximation algorithms to solve the problem
with provable theoretical guarantee .
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• We show how to divide the reward to suppliers fairly via
the Shapley value concept.

• We conduct experiments on real-world social network
datasets, and the results validate the effectiveness and
efficiency of our algorithms.

II. Model & Problem Formulation

A. The Social Visibility Model

Online Social Network. Consider an OSN which is char-
acterized by an unweighted and directed graph G , (U , E),
where U , {1, . . . , U} denotes a set of U 2 N+ users and
E ✓ U ⇥ U denotes a set of edges between users. Note that a
directed edge from user u 2 U to user v 2 U is denoted by
(u, v) 2 E . For example, this social network model captures
the Twitter social network, the Facebook social network (each
undirected edge between user u and v is represented by two
directed edges (u, v) and (v, u)). We focus on the case that
there is no self-loop edges, i.e., (u, u) /2 E , 8u 2 U .

Social Visibility. Denote a directed path in graph G as
~p , (u0 ! u1 ! ... ! un), where (ui, ui+1) 2
E , 8i 2 {0, . . . , n � 1}, and ui 6= uj , 8i, j. Note that
ui 6= uj , 8i, j captures that there is no self-loop edges or
circles in the path. Denote a set of all directed edges on path
~p as F(~p) , {(u0, u1), (u1, u2), ..., (un�1, un)}. Let L(~p)
denote the length (or number of hops) of path ~p, which can
be expressed as L(~p) = |F(~p)|. Let P(u, v;G) denote the set
of all directed paths (without circles) from user u to user v in
G. Let D(u, v;G) denote the distance from user u to user v
in graph G. We define D(u, v;G) as the length of the shortest
path from u to v, i.e.,

D(u, v;G) ,
(

min
~p2P(u,v;G)

L(~p), if P(u, v;G) 6= ;

+1, if P(u, v;G) = ; .
Namely, when there is no directed path from u to v, the
distance from u to v is infinite. The d-visible set of user u
is defined as the set of all users to whom user u is d-visible,
formally

V(u, d;G) , {v|v 2 U , D(v, u;G)  d}.

Let ⌧ 2 N+ denote the social visibility threshold of an OSN.
Based on ⌧ , we define the notation of visibility.

Definition 1. The visibility of user u is the cardinality of his
⌧ -visible set.

For example, Fig. 1 shows that, user 4’s 2-visible set is
{3, 5, 6} and 3-visible set is {3, 5, 6, 7}. With a social visibility
threshold of ⌧ = 2, user 4’s visibility is 3.

Fig. 1. An example of online social network.

B. Pricing The Social Visibility
The pricing scheme. A “requester” is a user in the set U who
seeks to increase his visibility by requesting other users to be
his new incoming neighbors. Let R ✓ U denote a set of all
requesters. A “supplier” is a user in the set U who is willing
to be a new incoming neighbor of any requester. Let S ✓ U
denote a set of all suppliers. For the ease of presentation, we
assume that R\S = ;, this captures that a user can not be both
requester and supplier. We consider the general case that there
are some users who are neither requesters nor suppliers, i.e.,
R [ S ✓ U . The OSN operator provides a “social visibility
boosting service” to incentivize the “transaction” between
requesters and suppliers. The visibility improvement service
is sold at via a posted pricing scheme (p, q), where p 2 [0, 1]
and q 2 [0, 1]. Here, p is the price of per unit social visibility
improvement that the OSN operator charges a participating
requester (i.e., requesters who use this social visibility boost-
ing service), and q is the price of per unit contribution in
improving social visibility of participating requesters that the
OSN operator pays to a participating supplier. We consider
the case that each participating supplier will add links to all
participating requesters.
Requesters’ decision model. Each requester u 2 R has a
per unit valuation (i.e., the per unit price that requester u is
willing to pay) of pu 2 [0, 1] on the improvement of his social
visibility. A requester will use the social visibility boosting
service if his per unit valuation is not below the per unit
price, i.e., pu � p. Let eR(p) denote a set of all participating
requesters under price p, formally

eR(p) , {u|pu � p, u 2 R}.

Due to financial budget on boosting service, each requester
can afford to add at most b 2 N+ incoming neighbors.
Supplier’s decision model. Each supplier u 2 S has a per
unit valuation (i.e., the per unit price that supplier u is willing
to participate) of qu 2 [0, 1] on the per unit contribution
in improving social visibility of participating requesters. Let
M denote a set participating suppliers, where |M|  b.
Let eG(p,M) denote the new graph after adding edges from
participating suppliers to participating requesters. eG(p,M)
can be expressed as: eG(p,M) = (U , E [ ( eR(p) ⇥ M)).
Let Iu(p,M) denote the improvement of social visibility of
requester u 2 eR(p). It can be expressed as:

Iu(p,M) ,
���V(u, ⌧ ; eG(p,M)) \ V(u, ⌧ ;G)

��� .
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Then, the total improvement of social visibility of all partici-
pating requesters is I(p,M) , P

u2 eR(p) Iu(p,M). Quantify-
ing the contribution to I(p,M) among participating suppliers
is a non-trivial problem. There are two underlying challenges:
(1) some participating suppliers may have a larger number of
follower while others may have a small number of followers;
(2) the network structure poses an externality effect, causing
the contribution of participating suppliers being correlated.
To incentivize suppliers to participate, one needs to divide
I(p,M) fairly among suppliers. Let � denote a “fair” divi-
sion mechanism, which prescribes a contribution denoted by
�u(p,M) for each participating supplier. In order to avoid
distracting readers, we defer the detail explanation of � to the
next section. Given the fair division mechanism �, a supplier
is willing to participant in the social visibility boosting service
if his per unit valuation does not exceed the per unit price that
the OSN operator pays, i.e., qu  q. Let eS(p) denote a set of
all potential participating suppliers under price q, formally

eS(q) , {u|qu  q, u 2 S}.

Optimal pricing to maximize revenue. Under the posted
pricing scheme, the revenue of the OSN operator is:

R(p, q,M) , pI(p,M)� qI(p,M).

We consider a proportional transaction fee scheme, i.e., the
OSN operator keeps a fraction (1�↵) of requesters’ payment
pI(p,M), where ↵ 2 (0, 1) and is fixed. This is equivalent to
imposing q = ↵p. We next formulate a revenue maximization
problem to select p, q and M.

Problem 1 (Optimal pricing to maximize revenue). Select
p, q and M to maximize the revenue of the OSN operator:

max
p,q,M

R(p, q,M)

s.t. M ✓ eS(q), |M|  b,

q = ↵p, p 2 [0, 1], q 2 [0, 1].

III. Algorithms For Optimal Pricing
Due to page limit, all technical proofs to lemmas and

theorems are presented in our supplementary file [1].

A. Hardness Analysis
Hardness analysis. To illustrate the hardness of Problem 1,
we consider a sub-problem of Problem 1 with given pricing
parameters (p, q), which is stated as follows:

Problem 2 (Optimal supplier set M). Given p and q such
that q = ↵p with 0  ↵  1, select M to maximize the
revenue of the OSN operator:

max
M

R(p, q,M)

s.t. M ✓ eS(q), |M|  b.

Theorem 1. Problem 2 is NP-hard to solve.

Note that Problem 2 is a sub-problem of Problem 1. Namely,
Problem 1 is harder than Problem 2.

Our approach. To address Problem 1, we decompose it
into two sub-problems, which each sub-problem serves as a
subroutine. In particular, Problem 2 is the first sub-problem.
As Theorem 1 shows that Problem 2 is NP-hard, we aim
to design an approximation algorithm which we denote as
OptSupplierSet(p, q) (its detail is postponed to Section
III-B). Algorithm OptSupplierSet(p, q) takes the prices
(p, q) as an input, and returns an approximately optimal set
of suppliers under (p, q). We use OptSupplierSet(p, q)
as an oracle to search for the optimal pricing scheme (p, q).
Formally, we aim to solve the following sub-problem:

Problem 3 (Optimal price p, q). Given the algorithm
OptSupplierSet(p, q), select (p, q) so to maximize the
revenue of the OSN operator:

max
p,q

R(p, q,OptSupplierSet(p, q))

s.t. q = ↵p, p 2 [0, 1], q 2 [0, 1].

We aim to design an approximation algorithm for Prob-
lem 3, which we denote as OptPrice(OptSupplierSet)
(its detail is postponed to Section III-C). One needs
to supply OptPrice with algorithm OptSupplierSet,
and OptPrice(OptSupplierSet) returns an approx-
imately optimal (p, q). We next proceed to present
the design and analysis of OptSupplierSet(p, q) and
OptPrice(OptSupplierSet).

B. Design & Analysis of OptSupplierSet(p, q)

Submodular analysis. First, note that once p and q are given,
the set of participating requesters eR(p) and the set of potential
participating suppliers eS(q) are also set. Our objective is to
select M 2 eS(q) with the constraint |M|  b, so as to
maximize the objective function of Problem 2, i.e., revenue
R(p, q,M), where p and q are given and q = ↵p. The
following theorem shows the sub-modularity and monotonicity
of R(p, q,M) with respect to M.

Theorem 2. Given p and q, such that q = ↵p, the revenue
R(p, q,M) is monotonously increasing and submodular with
respect to M.

The OptSupplierSet(p, q) algorithm. Based on Theorem
2, Algorithm 1 specifies a greedy algorithm to implement
OptSupplierSet(p, q). The core idea of Algorithm 1 is
that we select suppliers one by one. Each time we select the
supplier that achieves the largest marginal improvement in the
revenue.

Algorithm 1 OptSupplierSet(p, q)

1: init M = ;
2: for t = 1 to b do
3: u⇤  argmaxu2eS(q) R(p, q,M [ {u})�R(p, q,M)
4: M M [ {u⇤}
5: end for
6: return M̂⇤  M
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The following theorem presents the theoretical guarantees
for Algorithm 1.

Theorem 3. Given p and q, such that q = ↵p. The output
M̂⇤ of Algorithm 1 satisfies: We have

R(p, q,M̂⇤) �
✓
1� 1

e

◆
R(p, q,M⇤),

where M⇤ denotes the optimal set of suppliers via exhaustive
search.

C. Design & Analysis of OptPrice(OptSupplierSet)

Discretized search. The optimal pricing scheme of Problem
3 is not easy to obtain. One challenge is that the closed-form
expression of the objective function of Problem 3 w.r.t. p and
q is not available. Thus, we resort to the discretized search
method. Note that q = ↵p. We therefore discretize the domain
of p, i.e., [0, 1], uniformly: A(✏) , {0, ✏, 2✏, . . . , b1/✏c ✏, 1} ,
where ✏ 2 (0, 1] is price search step. The OSN operator
can control ✏ to adjust the number of points in A(✏). The
OSN operator can use discretized search method to select the
optimal price in A(✏), denoted by p⇤DS. Algorithm 2 outlines
this discretized search algorithm. We denote q⇤DS = ↵p⇤DS. The
set of supplier is then M̂⇤(p⇤DS, q

⇤
DS).

Algorithm 2 OptPrice(OptSupplierSet)

1: Rev 0
2: for p 2 A(✏) do
3: q  ↵p
4: M OptSupplierSet(p, q)
5: if R(p, q,M) � Rev then
6: p⇤DS  p, q⇤DS  q,M̂⇤(p⇤DS, q

⇤
DS) M

7: Rev R(p, q,M)
8: end if
9: end for

10: return p⇤DS, q
⇤
DS,M̂⇤(p⇤DS, q

⇤
DS)

IV. Algorithms for Fair Division of Contribution

Our results so far can locate the approximate optimal
price and supplier set, i.e., (p⇤DS, q

⇤
DS,M̂⇤(p⇤DS, q

⇤
DS)). The

remaining issue is how to divide the contribution among
participating suppliers fairly. As we mentioned in Section II
that a “fair” division mechanism is important to incentivize
the participation of suppliers. Given the approximate optimal
solution (p⇤DS, q

⇤
DS,M̂⇤(p⇤DS, q

⇤
DS)), the OSN operator needs

to divide a total contribution of social visibility improve-
ment I(p⇤DS,M̂⇤(p⇤DS, q

⇤
DS)) among all participating suppliers.

Note that the naive equal division, i.e., participating suppliers
equally share I(p⇤DS,M̂⇤(p⇤DS, q

⇤
DS)) is not a fair division. This

is because: (1) some participating suppliers may have a larger
number of follower while others may have a small number
of followers; (2) the network structure poses an externality
effect, causing the contribution of participating suppliers being
correlated. To achieve fair division, we apply the Shapley
value [2] to divide I(p⇤DS,M̂⇤(p⇤DS, q

⇤
DS)). Formally, each

participating supplier u 2 M̂⇤(p⇤DS, q
⇤
DS) gets the following

share of profit:

�u(p
⇤
DS,M̂⇤(p⇤DS, q

⇤
DS))

=
X

M✓M̂⇤(p⇤
DS,q

⇤
DS)\{u}

|M|!(|M̂⇤(p⇤DS, q
⇤
DS)|� |M|� 1)!

|M̂⇤(p⇤DS, q
⇤
DS))|!

⇥ (I(p⇤DS,M [ {u})� I(p⇤DS,M)).

Readers can refer to [2] for why Shapley value achieves fair
division.

One challenge is that the computational complexity of
evaluating �u(p⇤DS,M̂⇤(p⇤DS, q

⇤
DS)) is exponential in the car-

dinality of M̂⇤(p⇤DS, q
⇤
DS). To address this computational chal-

lenge, we propose to use the sampling algorithm [3] to
approximate �u(p⇤DS,M̂⇤(p⇤DS, q

⇤
DS)). Let � = (u1, · · · , ueb)

denote an ordering of the participating suppliers, where eb =
min{b, |M̂⇤(p⇤DS, q

⇤
DS)|} and ui 2 M̂⇤(p⇤DS, q

⇤
DS) denotes the

participating supplier in the i-th order. Denote the set of
players ranked before player i in the order � as

S�
i , {all players ranked before ui in the order �}.

Based on [3], the �u(p⇤DS,M̂⇤(p⇤DS, q
⇤
DS)) can be rewritten as

�u(p
⇤
DS,M̂⇤(p⇤DS, q

⇤
DS))

= E�⇠Uniform(⌦)[I(p
⇤
DS,S�

i [ {u})� I(p⇤DS,S�
i )], (1)

where ⌦ denotes a set of all participating suppliers, and
Uniform(⌦) denotes a uniform distribution over ⌦. Based
on Equation 1, Algorithm 3 outlines a sampling algorithm to
approximate �u(p⇤DS,M̂⇤(p⇤DS, q

⇤
DS)).

Algorithm 3 Approximating �u(p⇤DS,M̂⇤(p⇤DS, q
⇤
DS))

1: �̂u = 0
2: for k = 1 to K do
3: generate a ordering � uniformly at random from ⌦
4: �̂u  [(k � 1)�̂u + I(p⇤DS,S�

i [ {u})� I(p⇤DS,S�
i )]/k

5: end for
6: return �̂u

Theorem 4. The output �̂�n of Algorithm 3 satisfies

|�̂u � �u(p
⇤
DS,M̂⇤(p⇤DS, q

⇤
DS))|

 max�2⌦[I(p⇤DS,S�
i [ {u})� I(p⇤DS,S�

i )]p
K

r
1

2
ln

2

�
,

with a probability of at least 1� �, where � 2 (0, 1].

V. Performance Evaluation
A. Experimental Settings
Datasets. We evaluate our algorithms on two public datasets,
i.e., Blogs [4] and DBLP [5], whose overall statistics is
summarized in Table I.
Parameter setting. To reflect the real-world setting that only
a small portion of users in an OSN is interested in the
social visibility boosting service, we select � fraction of users
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TABLE I
STATISTICS OF FOUR DATASETS.

datasets #nodes #links type ⌧ �
Blogs 1,224 19,025 directed 2 0.5
DBLP 10,000 55,734 undirected 2 0.05

uniformly at random from the user population U as requesters
R, and another � fraction as suppliers S , where � 2 [0, 0.5].
Valuation pu is sampled from Beta distribution B(3, 6) for
each requester u 2 R, and valuation qu is sampled from Beta
distribution B(6, 3) for each supplier u 2 S . Throughout the
experiments, we fixed ↵ = 0.6, i.e., the OSN operator keeps
40% of the payment from the requesters as the transaction fee.

B. Evaluating OptSupplierSet

Under each given pricing scheme (p, q), we compare our
OptSupplierSet algorithm, i.e., Algorithm 1, with the
following two baselines: (1) Brute which selects the optimal
set of participating suppliers via exhaustive search; and (2)
TopVis which selects suppliers with the top-b social visibility
from the potential supplier set. Note that algorithm Brute is
computationally expensive, we only experiment it on small
dataset Blogs. Figure 2 shows the revenue achieved by dif-
ferent methods of finding optimal supplier set, where we fix
search step as ✏ = 0.025. From Figure 2, one can observe that
the revenue under our OptSupplierSet algorithm is nearly
the same as that under the Brute algorithm on dataset Blogs,
and outperforms heuristic algorithm TopVis on both datasets.
This implies a high accuracy of our OptSupplierSet in
approximating the optimal supplier set.

(a) Blogs (b) DBLP

Fig. 2. Revenue under different methods to find optimal supplier set.

VI. Related Work
The notion of social visibility defined in this paper is closely

related to social influence [6]–[9]. One key difference is that
when a user is visible to a set of users, it does not mean
this user can influence this set of users. The objective of
influence maximization problem is to find a subset of nodes
that could maximize the spread of information under certain
influence diffusion models. But our problem focuses on the
pricing of social visibility service. The idea of adding new
links to enhance social visibility is closely related to link
prediction [10]–[12], and friend recommendation [13]–[16],
The objectives of link prediction and friend recommendation

are to predict future or missing links. However, our work adds
links that can improve social visibility. Note that such links
may have nothing to do with predicting the future or missing
links.

VII. Conclusions
This paper proposes a mechanism where the OSN operator

prices its social visibility boosting service judiciously to
maximize his revenue. We formulate a revenue maximization
problem for the OSN operator to select the parameter of the
posted pricing scheme. We show that the revenue maximiza-
tion problem is not simpler than an NP-hard problem. We
decomposed it into two sub-routines, where one focuses on
selecting the optimal set of suppliers, and the other one focuses
on selecting the optimal prices. We prove the hardness of each
sub-routine, and eventually design a computationally efficient
approximation algorithm to solve the revenue maximization
problem. We conduct experiments on public datasets to vali-
date the superior performance of our proposed algorithms.
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