I/O Efficient Algorithms for Exact Distance Queries on Disk-Resident Dynamic Graphs

Yishi Lin, Xiaowei Chen, John C.S. Lui
Department of Computer Science & Engineering, The Chinese University of Hong Kong
{yslin, xwchen, cslui}@cse.cuhk.edu.hk

Abstract—Point-to-point shortest distance queries are fundamental to large graph analytics. Motivated by the need for low-latency distance queries in large-scale “dynamic” graphs, we consider the problem of answering exact shortest distance queries on disk-resident scale-free dynamic graphs. Our query processing uses the canonical labeling method, which is a special 2-hop distance labeling for fast distance queries. In this paper, we propose two I/O efficient algorithms to update the canonical labeling.

To the best of our knowledge, our proposed methods are the first practical disk-based methods to “incrementally update” the canonical labeling on dynamic graphs. We also show how to answer distance queries on the latest network based on outdated labels and new edges. Extensive experiments demonstrate the efficiency of our methods. Our update methods are an order of magnitude faster than reconstructing the canonical labeling. When the number of new edges is small, say less than 1% of the previous number of edges, our query algorithm based on outdated labels provides exact shortest distance and the query time is comparable to other query algorithms using latest labels.

1. Introduction

Shortest distance computation is fundamental in many large graph analytics, online social network analytics, or computer network applications [1]. For example, to analyze a large graph, we often need to compute closeness centrality, diameter, etc. Many of these applications require efficient computation of shortest distances. For instance, in online social networks (OSNs), users may request a list of users sharing common interests. The efficiency of recommendation algorithms based on shortest distances also relies on fast distance query.

To substantially reduce the latency for answering distance queries, a series of works focused on building space-efficient data structures for fast distance query. In the seminal work [2], Cohen et al. first proposed the idea of 2-hop labeling, a data structure for answering Point-to-Point (P2P) shortest distance. Cohen et al. proved that finding the 2-hop labeling with minimum size is NP-hard. Researchers have proposed various methods to efficiently construct small-sized 2-hop labeling. Some recent works include [3], [4], [5], [6], [7]. Akiba et al. proposed the Pruned Landmark Labeling (PLL) [5], and an incrementally update method Dynamic PLL [6]. Jiang et al. proposed the disk-based Hop-Doubling Labeling method for static scale-free networks [7]. To the best of our knowledge, Dynamic PLL is the state-of-the-art method to efficiently process incremental graph updates, and Hop-Doubling Labeling is the state-of-the-art method for disk-based static graphs. Note that PLL and Hop-Doubling Labeling are essentially special cases of the canonical labeling formally defined in [3].

Challenges: In this work, we consider how to efficiently answer exact distance queries on disk-resident graphs which are both dynamic and scale-free. We use the canonical labeling to answer distance queries. We summarize the challenges as follows. First, to answer exact distance queries, how can we efficiently update the canonical labeling of the graph? Second, the graph may change quickly, how can we answer exact distance queries before the update finishes? The issue is how we can design an I/O efficient algorithm to update the labeling and at the same time, quickly answer exact distance queries.

Contributions: To the best of our knowledge, there is no existing work that could efficiently answer distance queries on disk-resident dynamic graphs via 2-hop labeling. For example, the Dynamic PLL [6] cannot handle disk-resident graphs, and the work proposing Hop-Doubling Labeling [7] does not consider dynamic graphs. In this paper, our contributions are:

- We propose a single edge update algorithm that processes each inserted edge, and efficiently updates the canonical labeling. We also present several refinements which further speed up the single edge update method.
- We propose a batch update algorithm which takes a batch of inserted edges as input, and update the canonical labeling.
- We propose a method to answer distance queries toward the most updated graph using only outdated canonical labeling and a set of new edges. This is useful when we decide not to update the labeling stored on disk, or when we are in the progress of updating the canonical labeling.
- We conduct extensive experiments using real scale-free networks. Experimental results show that both of our update methods could run up to an order of magnitude faster than reconstructing the labels. And, given that the number of new edges is not too large, the performance of our query algorithm based on out-dated labels is comparable with that of query algorithm based on latest labels.

This is the outline of our paper. Section II gives preliminaries. We present the single edge update method in Section III, the batch update method in Section IV, and the query algorithm based on outdated labels in Section V. We show experimental results in Section VI. Section VII concludes.

11. Preliminaries

A. Notations

Static graph: A static network can be modeled as a graph \(G = (V, E) \) with \(n = |V| \) nodes and \(m = |E| \) directed edges. For a node \(v \in V \), we denote its out-neighbor (resp. in-neighbor) by \(N^+(v) \) (resp. \(N^-(v) \)). For two nodes \(u \) and \(v \), we denote the distance of the shortest path from \(u \) to \(v \) by \(d(u, v) \). If \(u \) cannot reach \(v \), let \(d(u, v) = + \infty \). We focus on unweighed graphs (or networks) in this paper.

Dynamic graph: For a network, we denote its snapshot at time

Please note that the last paragraph of the document contains some symbols that are not properly rendered in this text representation.
Definition 2

Problem definition: In this paper, given snapshots of a dynamic network, we focus on how to efficiently answer point-to-point (P2P) distance queries on the latest snapshot. To be more specific, our goal is to provide I/O efficient algorithms to answer queries about \(d(u, v) \), for \(u, v \in V \).

Computation model: The analysis of our disk-based algorithm is based on the external memory model [8]. Let \(M \) denote the memory size and \(B \) denote the block size. We assume \(1 \leq B \ll M \). The I/O cost of reading or writing \(N \) elements is denoted by \(\text{scan}(N) = \Theta(N/B) \). The I/O cost for sorting \(N \) elements is denoted by \(\text{sort}(N) = O(N \log M/B) \).

B. 2-Hop Labeling

We first introduce the general idea of answering distance query for “static graphs” via 2-hop labeling [2]. For a given graph \(G \), we first preprocess it and construct the 2-hop labeling for it. The 2-hop labeling is defined as follows.

Definition 1 (2-hop Labeling). In a 2-hop labeling, every node \(u \in V \) has an out-label \(L_{\text{out}}(u) \) and an in-label \(L_{\text{in}}(u) \). Label \(L_{\text{out}}(u) \) contains a set of out-entries in the form of \((v, d)\), which denotes the shortest distance from \(u \) to \(v \) is \(d \). Similarly, label \(L_{\text{in}}(u) \) contains a set of in-entries in the form of \((v, d)\), which denotes the shortest distance from \(v \) to \(u \) is \(d \). If node \(x \) can reach node \(y \), we require that there exist \((w, d_1) \in L_{\text{out}}(x) \) and \((w, d_2) \in L_{\text{in}}(y) \) such that \(d(x,y) = d_1 + d_2 \). We say that the pair \((x,y)\) is covered by \(w \), or the (distance) of node pair \((x,y)\) is covered by entries \((w,d_1) \in L_{\text{out}}(x) \) and \((w,d_2) \in L_{\text{in}}(y) \).

The set of labels for all nodes is denoted by \(L \).

C. Hop-Doubling Labeling

Recently, Jiang et al. proposed a Hop-Doubling Labeling technique for answering distance queries on unweighted scale-free “static” networks. They proposed an I/O efficient labeling algorithm for disk-resident graphs. Since we are interested in extending this work to answer distance queries for disk-based scale-free dynamic graphs, we first briefly review the main results in [7]. The Hop-Doubling Labeling algorithm first ranks nodes according to the “product” of their in-degree and out-degree, where the highest rank is given to the node with the largest product. Then, the algorithm iteratively generates label entries to cover node pairs with increasing distances. Let \(r \) denote the ranking of nodes, the Hop-Doubling Labeling algorithm generates the canonical labeling based on \(r \).

Jiang et al.[7] proved that given an unweighted scale-free static graph \(G \), the number of entries generated for any vertex is \(O(h) \), where \(h \) is assumed to be a small integer based on the properties of scale-free networks. The intuition behind the small label size is as follows. We say a path \(p \) is hit by a node \(v \) if \(p \) passes through it. Intuitively, for a scale-free network, a significantly large fraction of long shortest paths could be hit by a small number of top degree nodes. The Hop-Doubling Labeling algorithm tries to place high degree nodes into labels of relevant nodes, so that a small number of label entries could cover a large fraction of distance queries. Moreover, for every node \(u \), there exists a small set of nodes in its neighborhood so that all short shortest paths passing through \(u \) could be hit by these nodes. The Hop-Doubling Labeling method determines a very small number of label entries to cover queries about node pairs with small distance.

D. Incremental Maintenance Objective

In reality, many real-networks (e.g., online social networks) are growing. In order to efficiently answer distance queries in the latest network \(G \), we need a 2-hop labeling of \(G \). One straightforward strategy is to reconstruct the 2-hop labeling based on the latest graph \(G \). However, for disk-based graphs, it is extremely time consuming even with the state-of-the-art method. For example, in our experiments, the Hop-Doubling Labeling algorithm [7] takes almost three hours to construct a 2-hop labeling for a graph with 3.2 million nodes and 9.4 million edges. Another problem is that one cannot answer distance queries efficiently until the construction finishes.

In this paper, we propose two methods to incrementally update the canonical labeling, each has its own merits. Suppose we have a canonical labeling \(L^t \) for graph \(G_{t-1} \) based on rank \(r \). Unless we state otherwise, we assume that \(|L_{\text{out}}^t(u)| \) and \(|L_{\text{in}}^t(u)| \) are small for all \(u \in V \). The labeling \(L^t \) is constructed by storing the following information for each node \(u \):

- \(L_{\text{out}}(u) \) and \(L_{\text{in}}(u) \) are small for all \(u \in V \), let handle\((u,v)\) denote the node with the highest rank among nodes in all shortest path from \(u \) to \(v \). In the canonical labeling, label \(L_{\text{out}}(u) \) contains \((v,d)\) if and only if handle\((u,v)=v\) and \(d(u,v)=d \). Label \(L_{\text{in}}(v) \) contains \((u,d)\) if and only if handle\((u,v)=u\) and \(d(u,v)=d \).

The definition of the canonical labeling guarantees that all distance queries could be answered correctly. Also, the labeling is minimal, meaning that every entry is necessary for answering some distance queries. Suppose in Figure 1, nodes with smaller id have higher rank, then, the labeling in Figure 1 is a canonical labeling based on the rank.
generated by the Hop-Doubling Labeling method is one example. Our goal is to update $L_t^{u,v}$ and obtain an r-based canonical labeling for the latest graph. Note that we reuse the rank r computed in past snapshots for good reasons. First, while a scale-free network grows, high degree nodes (high rank nodes) tend to receive more links, which is justified by the preferentially attachment [9]. Hence, it is safe to assume that high rank nodes in past snapshots tend to have high rank in the latest snapshot. And, these high rank nodes still hit a great fraction of long shortest paths in the latest network. Thus, in the updated labeling based on r, the label size for every node is still small. Second, it helps us to keep the labeling minimal. We reuse rank r in both of our update methods, and our experiments show only a small increase in the label size.

III. Single Edge Update for Dynamic Networks

In this section, we consider how to efficiently update canonical labeling when a new edge is inserted into the graph. Let G_{t-1} be the old graph and $L_t^{u,v}$ be its corresponding label. Suppose $L_t^{u,v}$ is based on the rank r. We use G to denote the new graph with the new edge e_{xy}. Without loss of generality, we assume $x \neq y$ and $e_{xy} \notin E_{t-1}$. The update method has two phases, the patch generation phase and the patch merge phase. In the patch generation phase, we aim to create a minimal set of supplementary labels so that we could correctly answer all distance queries. Let P be the set of newly created entries, we refer to it as the patch of labels. Patch P could be kept in memory or written to disk. In the patch merge phase, we merge patch labels P with $L_t^{u,v}$ and obtain L. In order to keep the labeling L minimal, we also remove entries in $L_t^{u,v}$ which are no longer necessary for any distance query.

A. Patch Generation

In the patch generation phase, we create a minimal set P of label entries to reflect the graph update. A key fact for the distance change after an edge addition is that, for nodes u and v, $d(u,v) < d_{t-1}(u,v)$ if and only if every shortest path from u to v in G passes through the new edge e_{xy}. Let $\text{Source}(e_{xy}) = \{u \mid d(u,v) < d_{t-1}(u,v)\}$ be the set of nodes whose distances to y decrease after the insertion of e_{xy}.

With a patch P achieving the above objective, for any nodes u and v such that $d(u,v) < +\infty$, the shortest distance between them is covered by handle(u,v). Therefore, for all $u, v \in V$, we have $d(u,v) = \text{QUERY}(L_t^{u,v} \cup P) = \min\{d_1 + d_2(\{u, v\}) L_t^{u,v}(u) \cup \text{Pout}(u), (w, v) \in L_t^{u,v}(v) \cup P(v)\}$. We now provide a lemma describing how to efficiently find handles that should be placed into P.

Lemma 1. Suppose $u \in \text{Source}(e_{xy})$ and $v \in \text{Sink}(e_{xy})$, and $w = \text{handle}(u,v)$. We have $(w, d_{t-1}(w, x)) \in L_t^{u,v}(x)$ and/or $(w, d_{t-1}(w, y)) \in L_t^{u,v}(y)$.

Proof: If $w = x$ or $w = y$, the lemma holds naturally according to the definition of the canonical labeling. Now, assume $w \neq x$ and $w \neq y$. From $w = \text{handle}(u,v)$ and the fact that every shortest path from u to v now passes through e_{xy}, we can conclude that $w = \text{handle}(u,v)$ and/or $w = \text{handle}(v,x)$. Moreover, because none of the shortest paths from u to v passes through e_{xy} in G, we know $d_{t-1}(u, x) = d(u, x)$ and $d_{t-1}(w, x) = \text{handle}(u,v)$. Similarly, $\text{handle}(v,y) = \text{handle}(y,v)$. From the definition of the handle, we have $(w, d_{t-1}(w, x)) \in L_t^{u,v}(x)$ if $w = \text{handle}(u,v)$, and we have $(w, d_{t-1}(w, y)) \in L_t^{u,v}(y)$ if $w = \text{handle}(y,v)$.

With a slight abuse of notation, we also consider $L_t^{u,v}$ and $L_t^{u,v}$ as subsets of nodes in V. From Lemma 1, for any $u \in \text{Source}(e_{xy})$ and $v \in \text{Sink}(e_{xy})$, set $L_t^{u,v}(x) \cup L_t^{u,v}(y)$ contains handle(u,v). The key idea for generating entries in P is that, in order to correctly answer all distance queries from a node in $\text{Source}(e_{xy})$ to a node in $\text{Sink}(e_{xy})$, we need to place entries containing relevant handles to relevant nodes labels. Moreover, our goal is to keep P minimal. We now describe the rules to generate patch entries. For $u \in \text{Source}(e_{xy})$, we insert $(u \rightarrow w, d(u,w))$ into P if $w = \text{handle}(u,w)$, $d(u,w) < d_{t-1}(u,w)$. Such a node w must be in $L_t^{u,v}(y)$. For $v \in \text{Sink}(e_{xy})$, we insert $(v \rightarrow w, d(v,w))$ into P if $w = \text{handle}(v, w)$, $d(v,w) < d_{t-1}(w,v)$. Node w must be in $L_t^{u,v}(x)$. To illustrate, consider Figure 2. The patch entries are $P_{in} = \{(5 \rightarrow 6, 2), (4 \rightarrow 6, 3)\}$ and $P_{out} = \{(5 \rightarrow 3, 2), (4 \rightarrow 3, 3), (9 \rightarrow 3, 4), (10 \rightarrow 3, 4)\}$. The following corollary holds from Lemma 1.

Corollary 1. Set P achieves Objective 1 so we could answer arbitrary distance query correctly with $L_t^{u,v} \cup P$. Moreover, $L_t^{u,v} \cup P$ is a superset of the canonical labeling based on r.

Now we provide a lemma showing that set P is minimal.

Lemma 2. The patch P is minimal, i.e., one will not correctly answer some distance queries if we remove any entry in P.

Proof: We first study entries in P_{in}. Suppose P_{in} contains entry $(w \rightarrow v, d(w,v))$, we know $w = \text{handle}(w,v)$. If we remove this entry, we cannot answer distance query about $d(w,v)$ correctly. We show this by contradiction. Suppose we are able to compute $d(w,v)$ without entry $(w \rightarrow v, d(w,v))$, there must exist a node $u \neq w$ such that $(u, d(w,u)) \in L_t^{u,v}(w) \cup \text{Pout}(w)$, $(u, d(w,u)) \in L_t^{u,v}(w) \cup \text{Pout}(w)$, and $d(w,v) = d(u,v) + d(w,u)$. Then, $(u,v) < (w,v)$ holds because $u \neq w$. This implies that node w does not have the highest rank among the set of nodes in one of the shortest paths from w to v; which contradicts with the fact that $w = \text{handle}(w,v)$. Therefore, every entry
Lemma 3. Let e_{xy} be the newly inserted edge, define $\text{Sink}^k(e_{xy}) = \text{Sink}(e_{xy}) \cup \{u|u \in N^+(v), v \in \text{Sink}(e_{xy})\}$, and $\text{Source}^e(e_{xy}) = \text{Source}(e_{xy}) \cup \{u|u \in N^-(v), v \in \text{Source}(e_{xy})\}$. The patch generation phase performs $O(|\text{Sink}^k(e_{xy})| + |\text{Source}^e(e_{xy})|)$ I/Os in the worst case. We need to perform $\text{scan}(|P|) = \Theta(|P|/B)$ extra I/Os if we write P to disk.

Algorithm 1 Patch Generation (P_{in})

\begin{itemize}
\item \textbf{Input:} G_{t-1}, L^{t-1}, r, e_{xy}
\item \textbf{Output:} P_{in} (patch entries)
\item 1. $P_{in}(u) \leftarrow \emptyset, \forall u \in V$
\item 2. run pruned BFS to generate patch entries
\item 3. while Q is not empty do
\item 4. dequeue (w, d_{xy}) from Q
\item 5. generate patch entries
\item 6. if $r(w) \geq r(handle(x,u))$ and $\text{QUERY}(L^{t-1}, w, u) > d(w, x) + d_{xy}$
\item 7. $P_{in}(u) \leftarrow P_{in}(u) \cup \{(w, d(w, x) + d_{xy})\}$
\item 8. try to prune the BFS
\item 9. if $P_{in}(u) = \emptyset$ then
\item 10. prune the BFS and continue to dequeue
\item 11. visit neighbors of u
\item 12. enqueue $(v, d_{xy} = d_{xy} + 1)$ onto Q
\end{itemize}

Analysis of Algorithm 1: We analyze the I/O cost for generating the patch. We make the following mild and realistic assumptions. First, while generating P_{in} (resp. P_{out}), we assume that $L^{t-1}(x)$ and $L^{t-1}(w), \forall w \in L^{t-1}(x)$ (resp. $L^{t-1}(y)$ and $L^{t-1}(w), \forall w \in L^{t-1}(y)$) fits into the main memory. We also assume loading $L_{in}(y)$ or $L_{out}(u)$ of a node u from disk costs $O(1)$ I/Os. These two assumptions are realistic because we have assumed that the labeling is based on a rank r so that the number of entries for every node is small. We also assume loading in-edges or out-edges of a given node costs $O(1)$ I/Os since real networks are sparse. The I/O cost of the patch generation phase is stated as follows.

Lemma 3. Let e_{xy} be the newly inserted edge, define $\text{Sink}^k(e_{xy}) = \text{Sink}(e_{xy}) \cup \{u|u \in N^+(v), v \in \text{Sink}(e_{xy})\}$, and $\text{Source}^e(e_{xy}) = \text{Source}(e_{xy}) \cup \{u|u \in N^-(v), v \in \text{Source}(e_{xy})\}$. The patch generation phase performs $O(|\text{Sink}^k(e_{xy})| + |\text{Source}^e(e_{xy})|)$ I/Os in the worst case. We need to perform $\text{scan}(|P|) = \Theta(|P|/B)$ extra I/Os if we write P to disk.

Proof: We first analyze Algorithm 1 which generates P_{in}. For every node u visited in BFS, Line 2-12 load its out-edges at most once and $L^{t-1}(u)$ at most twice. In the worst case where no node is pruned by Line 7-9, the number of nodes visited by BFS is $|\text{Sink}^k(e_{xy})|$. Therefore, the worst case I/O cost is $O(|\text{Sink}^k(e_{xy})|)$. Similarly, the I/O cost for generating P_{out} is $O(|\text{Source}^e(e_{xy})|)$ in the worst case.

Note that in practice, the pruning strategy in Line 7-9 is effective and the actual performance is much better than the $O(|\text{Sink}^k(e_{xy})| + |\text{Source}^e(e_{xy})|)$ bound.

B. Patch Merge

In the patch merge phase, we first prune label entries that are no longer necessary for answering distance queries. Then, we merge labels survived from the pruning and obtain the updated label L. We use the following pruning rule: we remove an entry $(u \rightarrow v, d)$ if there exist $(u \rightarrow w, d_1)$ and $(w \rightarrow v, d_2)$ so that $d_1 > 0, d_2 > 0$ and $d_1 + d_2 \leq d$. Algorithm 2 depicts the pseudo code for the patch merge phase for in-labels. Note that P is minimal, there is no need to try to prune patch entries.

Algorithm 2 Patch Merge (L_{in})

\begin{itemize}
\item \textbf{Input:} L^{t-1} on disk, P on disk
\item \textbf{Output:} L_{in} on disk
\item 1. $L_{in}^1 = P_{in}$
\item 2. $L_{out}^1 = P_{out}$
\item 3. for each buffer block B_{in} do
\item 4. set the status of all label entries in B_{in} to unpruned
\item 5. for each buffer block B_{out} do
\item 6. set the status of all label entries in B_{out} to unpruned
\item 7. for each entry $(u \rightarrow v, d)$ in B_{in} do
\item 8. if $(u \rightarrow v, d) \in B_{in}$, $d > 0$ then
\item 9. set the status of $(u \rightarrow v, d)$ to pruned
\item 10. write all unpruned entries in B_{in} to disk
\end{itemize}

Analysis of Algorithm 2: We allocate buffer B_{in} with size $M - 2B$ and buffer B_{out} with B while pruning in-entries. The last block of memory serves as the output buffer. Then, we load out-entries into memory $O((|L^{t-1}| + |P_{out}|)/(M - 2B))$ times. We load every in-entries into memory once. The amount of data we write to disk is L_{in}^1, which is at most $|L_{in}^1| + |P_{out}|$. Therefore, the I/O cost to obtain L_{in} is $O((|L^{t-1}| + |P_{out}|)/M) \cdot \text{scan}(|L_{in}^1| + |P_{out}|)$. The analysis of the I/O cost to obtain L_{out} is similar. We summarize the total I/O cost to obtain L from P and L^{t-1} in the following lemma.

Lemma 4. The total I/O cost for the patch merge phase is $O\left(\left(|L^{t-1}| + |P|\right)/M \cdot \text{scan}(|L^{t-1}| + |P|)\right)$.

Note that our buffer allocation strategy differs from that in the pruning of the Hop-Doubling Labeling algorithm [7], which
allocates two buffers, each with size $M/2$. To obtain L_{in}, they load out-entries into memory $\lceil (2L_{in}^{-1} + |P_{in}|)/M \rceil$ times. Our method only loads out-entries into memory $\lceil (L_{in}^{-1} + |P_{in}|)/(M - 2B) \rceil$ times.

From Corollary 1, Lemma 3 and Lemma 4, we have the following theorem for the single edge update method.

Theorem 1 (Single Edge Update). The I/O complexity for the single edge update method is

$$O\left(\text{Sink}^+(e_{xy}) + |\text{Source}^-(e_{xy})| + \frac{|L_{in}^{-1} + |P|}{M} \cdot \text{scan}\left(\lceil L_{in}^{-1} + |P| \rceil\right)\right).$$

The new labeling L is a canonical labeling based on r.

C. Refinements

Lazy Patch Merge. Note that the patch merge phase is time-consuming compared with the patch generation phase. There are two main reasons. First, even if P is almost empty and we do not prune label entries, loading L_{in}^{-1} from disk and writing L to disk require performing $O(\lceil L_{in}^{-1}/B \rceil)$ I/Os. Second, in order to prune unnecessary label entries, we need to examine every entry in L_{in}^{-1} and see whether it could be removed. The examination process has high I/O cost as one can see from Algorithm 2. For these two practical concerns, we recommend performing lazy patch merge as follows. Suppose the initial graph is $G_0 = (V_0, E_0)$ and $E_t/E_{t-1} = \{e_t\}$ for all $t \geq 1$. Given L^0 and e_1, we perform a single edge update without the merge phase and obtain a set P^1 of patch entries. We keep P^1 in memory. Given $L^0 \cup P^1$ and a new edge e_2, we generate patch entries P^2. Likewise, we generate patches for new edges one by one, until the size of all patches exceeds a pre-specified threshold. Suppose the size of patches exceeds our threshold after generating patch entries for e_t, we write $P = P^1 \cup P^2 \cup \cdots \cup P^i$ to disk. Then, we perform patch merge as described in Algorithm 2 to prune unnecessary entries and obtain L^i. Note that we also prune entries in P^i for all $i < t$, because some entries there might be unnecessary after the insertion of newer edges. After the lazy patch merge process, we proceed to process the insertion of e_{t+1}.

Label Prefetch. To reduce the number of I/Os during the patch generation phase, we allocate a small buffer to keep some “hot data” (i.e., label) in memory. Recall that to generate P when there is a new edge e_{xy}, we need to load $L_{out}^{-1}(w_1), \forall w_1 \in L_{in}^{-1}(x)$ and $L_{in}^{-1}(w_2), \forall w_2 \in L_{out}^{-1}(y)$. For a canonical labeling where nodes with top ranks tend to appear in labels of a large fraction of nodes, we know that $L_{in}^{-1}(u)$ tends to be “hot” if u has a high rank. Therefore, we load labels of nodes in decreasing order of their ranks into main memory until the buffer is full. We will show via experiments the impact of the buffer size using real data.

IV. Batch Update for Dynamic Networks

We now show how to efficiently update the degree-based canonical labeling when a set of new edges is inserted. One way is to use the single edge update method to handle the insertion of each new edge. However, the I/O cost of repeatedly applying the single edge update method grows almost linear with the number of new edges. Here, we propose the batch update method, which has smaller I/O cost compared with repeatedly applying the single edge update when the number of new edges is very large. We assume that we have a canonical labeling L_{in}^{-1} for graph G_{t-1} and L_{in}^{-1} is based on rank r.

Our goal is to generate the canonical labeling based on r for the latest graph G_t. To simplify notations, we assume $V = V_{t-1}$ and isolated nodes in V_{t-1} have the lowest ranks in r.

A. Basic Idea

The batch update method iteratively generates entries in the canonical labeling. Moreover, it utilizes entries in L_{in}^{-1} so as to avoid generating label entries from the scratch. In each iteration, we denote the set of entries generated in the current iteration as L_{can}. We treat the initialization process as the 0-th iteration. Before initialization, let $L = L_{in}^{-1}$. In the 0-th iteration, L_{can} is constructed as follows.

$$L_{can} = \{(u \rightarrow v, 1) | e_{uv} \in E \setminus E_{t-1}, r(u) > r(v)\} \cup \{(u \rightarrow v, 1) | e_{uv} \in E \setminus E_{t-1}, r(v) > r(u)\}.$$

Note that our goal is to let L be an r-based canonical labeling, which is minimal. Hence, at the end of each iteration, including the special initialization iteration, we merge L_{can} into L using the same method as the patch merge phase for the single edge update. The set L_{can} of entries can be treated as a set of patch entries for L.

Denote the set of entries in an r-based canonical labeling with distance d by C_d, where $d \geq 0$. Let D_G be the diameter of graph G, it is easy to see $C_d = \emptyset, \forall d > D_G$. From Eq. (1), we have the following lemma about the initialization.

Lemma 5. After the initialization, we have $C_0 \cup C_1 \subseteq L$.

The high level idea of the batch update methods is that we expand L by inserting entries in $C_2, C_3, \ldots, C_{D_G}$ into L iteratively. Also, to keep L minimal, we prune entries that are no longer necessary for distance queries.

In the i-th iteration ($i \geq 1$), denote the set of entries generated and survived from the pruning in the $(i-1)$-th iteration by L_{prev}. Label L contains entries generated and survived from the pruning in all previous iterations. We rewrite the generation rules [7] in the following compact form. In the i-th iteration, we generate entries in L_{can} as follows.

1) Suppose $(u \rightarrow v, d_1) \in L$ and $(u \rightarrow w, d_2) \in L_{prev}$, we insert $(u \rightarrow w, d_1 + d_2)$ into L_{can} if $r(w) > r(u)$ and there does not exist $(y \rightarrow w, d) \in L$ such that $d \leq d_1 + d_2$.

2) Suppose $(u \rightarrow v, d_1) \in L$ and $(w \rightarrow v, d_2) \in L_{prev}$, we insert $(w \rightarrow y, d_1 + d_2)$ into L_{can} if $r(v) > r(w)$ and there does not exist $(w \rightarrow y, d) \in L$ such that $d \leq d_1 + d_2$.

Note that the existence of entry $(u \rightarrow v, d)$ implies that there is a path from u to v with distance d. The intuition behind generation rules is that we try to concatenate two paths into a longer one. When we finish generating L_{can}, we merge it into L using the same method as the patch merge phase for the single edge update method. To be specific, we prune every entry in L_{can} and L, and merge entries survived from the pruning into the new L.

The batch update method terminates naturally when $L_{can} = \emptyset$ after the pruning. Note that if $E_{t-1} = \emptyset$, the batch update method degenerates into the Hop-doubling labeling algorithm. The following lemma for the Hop-doubling labeling algorithm also holds for the batch update method.

Lemma 6. After the 2i-th iteration ($0 \leq i \leq \lceil \log(D_G) \rceil$), we have $C_d \subseteq L$ for all $d \leq 2^i$.
For the proof of Lemma 6, we refer interested readers to the proof by Jiang et al. [7]. From Lemma 6, we have the following theorem about the batch update method.

Theorem 2. The batch update method returns a canonical labeling L based on rank r.

Proof: From Lemma 6, we know L is a superset of an r-based canonical labeling. Moreover, L is minimal because every entry survives from the pruning. Thus, we can conclude that L is an r-based canonical labeling.

I/O efficient candidate generation. We describe our method to generate entries in L_{cand}. In each iteration, we allocate buffer Buf_{all} with size \(M - 2B \) to load entries in L and we allocate buffer Buf_{prev} with size B to load entries in L_{prev}. We adopt a similar nested loop join strategy as the patch merge algorithm. We generate out-entries in L_{cand} as follows. We first sort entries \((u \rightarrow v, d)\) in L_{in} by u. In the outer loop, we load entries \((u_1 \rightarrow v, d), (u_1 \rightarrow v', d), \ldots, (u_2 \rightarrow v, d)\) in L_{out} (sorted by \(u_1 \)) and entries \((u_1 \rightarrow v, d), (u_2 \rightarrow v', d), \ldots, (u_2 \rightarrow v, d)\) in L_{in} (sorted by \(u_2 \)) into Buf_{all}. In the inner loop, we load entries L_{prev} (sorted by u) into Buf_{prev} in batch. For entries in Buf_{all} and Buf_{prev}, we try to apply the first generation rule to generate candidate out-entries. For generating in-entries in L_{cand}, the algorithm is similar. We summarize the I/O cost for each iteration, including the candidate generation process and the pruning process.

Lemma 7. In each iteration, let L be the set of entries generated and survived from pruning from all previous iterations. Let L_{prev} be the set of entries generated and survived from pruning from the previous iteration. Let L_{cand} be the set of entries generated in the current iteration. The total I/O cost for candidate generation and pruning is

\[
O\left(\left|L\right| + \left|L_{cand}\right|/M \cdot \text{scan}(\left|L\right| + \left|L_{cand}\right|)\right).
\]

Proof: We first consider the I/O cost for generating out-entries in L_{cand}. Before loading entries into memory, we sort in-entries in L, which needs sort(\(|L| \)) I/Os. In the nested loop, all entries in L_{prev} are loaded into buffer \(|L|/(M - 2B)\) times, and all entries in L_{in} are loaded into buffer once. The time for loading entries is thus \(O\left(\left|L\right|/M \cdot \text{scan}(\left|L_{prev}\right| + \text{scan}(\left|L\right|))\right)\). We then consider the cost for merging and pruning out-entries, the I/O cost is \(O\left(\left|\left|L\right| + \left|L_{cand}\right|\right|/M \cdot \text{scan}(\left|\left|L\right| + \left|L_{cand}\right|\right|)\right)\) from Lemma 4. Note that because \(\log_{M/|B|}|L|/|B| \leq |L|/|B|\) when \(|L|\) is sufficiently large, we have sort(\(|L| \)) = \(O\left(|L|/B \cdot |L|/M\right)\). Thus, the total I/O cost for generating, pruning and merging out-entries is \(O\left(\left|\left|L\right| + \left|L_{cand}\right|\right|/M \cdot \text{scan}(\left|\left|L\right| + \left|L_{cand}\right|\right|)\right)\). The analysis for generating, pruning and merging in-entries is similar. In conclusion, the total I/O cost in one iteration is \(O\left(\left|\left|L\right| + \left|L_{cand}\right|\right|/M \cdot \text{scan}(\left|\left|L\right| + \left|L_{cand}\right|\right|)\right)\).

B. Discussion

Practical issues: To avoid generating too many candidate entries in one iteration, Jiang et al. [7] suggest using entries in L with distance equals to 1 to construct candidate entries. We adopt their suggestion. In the first ten iterations of the batch update method, while applying generation rules, we ignore entries in L with distance larger than 1.

Utilizing \(L^{t-1}\). By inserting entries in \(L^{t-1}\) into L in the initialization process, the batch update method may generate entries with distance greater than \(2^{t}\) in the \(t\)-th iteration, which is impossible in the Hop-Doubling Labeling algorithm. However, utilizing \(L^{t-1}\) also introduces some extra cost. In every iteration, the size of L in the batch update method is no smaller than that in the Hop-Doubling Labeling algorithm.

V. Distance Queries on the Most Update Network

Here, we show how to answer distance queries toward the most updated graph \(G^{t}\) for graph \(G_{t-1}\). This is useful when we are running the batch update method, or when we decide not to update labels stored on disk.

Let \(E_{new} = E_{1}\backslash E_{t-1}\) be the set of new edges. Let \(V_{new} = \{u \mid \exists u,v \in E_{new}, \text{or} \exists v,u \in E_{new}\}\) be the set of endpoints of new edges. To answer the query about \(d(s,t)\), we construct a weighted query graph \(G_{Q} = (V_{Q}, E_{Q})\) such that \(d_{G_{Q}}(s,t) = d(s,t)\). The query graph contains two types of edges.

- **Update-related:** Edges in \(E_{new}\) are in \(G_{Q}\). Moreover, for every entry in \(L_{out}^{t-1}(v)\) and \(L_{in}^{t-1}(v)\) corresponds to an edge in \(G_{Q}\). For example, if entry \((u, d) \in L_{out}^{t-1}(v)\), there is an edge from \(u\) to \(v\) with distance \(d\) in \(G_{Q}\).
- **Query-related:** For node \(v \in V_{new}\), there is an edge from \(s\) to \(v\) with distance \(\text{query}(L^{t-1}, s, v)\) and an edge from \(v\) to \(t\) with distance \(\text{query}(L^{t-1}, v, t)\). Moreover, \(G_{Q}\) contains an edge from \(s\) to \(t\) with distance \(\text{query}(L^{t-1}, s, t)\).

Using the fact that \(L^{t-1}\) is a 2-hop labeling of \(G_{t-1}\), it is easy to verify that, with all update-related edges, we have \(d_{G_{Q}}(u, v) \geq d(u, v)\) for all \(u, v \in V_{new}\). Query-related edges are “shortcuts” from \(s\) to every node in \(V_{new}\), “shortcuts” from every node in \(V_{new}\) to \(t\), and the “shortcut” from \(s\) to \(t\). Distances of these “shortcuts” are distances in \(G_{t-1}\). The existence of query-related edges further ensure that \(d_{G_{Q}}(s,t) = d_{G}(s,t)\). Formally, we have the following theorem claiming the correctness of the query graph.

Theorem 3. The distance from \(s\) to \(t\) in \(G_{Q}\) is \(d(s,t)\).

Algorithm. When there is a new query about \(d(s,t)\), the construction of \(G_{Q}\) could be fast. Note that the update-related edges are not related to any particular query. Thus, we could assume that we have loaded all update-related edges into memory beforehand. When there is a new query, we load \(L_{out}^{t-1}(s)\) and \(L_{in}^{t-1}(t)\) from disk. With \(L_{out}^{t-1}(s)\), \(L_{in}^{t-1}(t)\), and \(L_{out}^{t-1}(v)\) for all \(v \in V_{new}\), we could construct query-related edges in memory. Finally, we run the bidirectional Dijkstra algorithm on the query graph to get \(d(s,t)\).

Theorem 4. The I/O cost for answering the above distance query is \(O(1)\). Let \(b\) be the average size of label (in and out-label) for a node in \(L^{t-1}\), the CPU cost for answering a query is \(O(|V_{new}| \log |V_{new}| + |V_{new}| |h + |E_{new}|)\).

Proof: To answer the query about \(d(s,t)\), only loading \(L_{out}^{t-1}(s)\) and \(L_{in}^{t-1}(t)\) from the disk perform I/Os. Therefore, the I/O cost is \(O(1)\). To construct the query graph, we need to answer \(2|V_{new}|\) distance queries and the CPU complexity is \(O(|V_{new}| b)\). In the query graph, the number of update-related edges is \(O(|V_{new}| b + |E_{new}|)\) and the number of query-related edge is \(O(|V_{new}| b)\). Thus, we have \(|V_{Q}| = O(|V_{new}|)\) and \(|E_{Q}| = O(|V_{new}| b + |E_{new}|)\). The total CPU complexity for answering a query is \(O(|V_{new}| b + |V_{Q}| \log |V_{Q}| + |E_{Q}|) = O(|V_{new}| \log |V_{new}| + |V_{new}| b + |E_{new}|)\).

445
V. Experimental Results

We perform experiments on real-world networks. First, we show the efficiency of the single edge update method and the batch update method. In particular, we show the importance of refinements for our single edge update method. Second, we show the I/O efficiency of our query algorithm, which runs based on the outdated labeling and a set of new edges. We implement our proposed algorithms and the Hop-Doubling Labeling algorithm in C++. Experiments are conducted using 4GB memory (so to create I/O activities) on a Linux machine with Intel 3.20GHz CPU and 7200 RPM SATA hard disk.

Datasets. Table I summarizes our datasets. We treat each dataset as a directed graph and we remove duplicated edges. Dataset Enron-email and Youtube have timestamp on edges indicating their arrival time. For these two datasets, we sort edges in the ascending order of their arrival time. For duplicated edges, we keep the one with the smallest timestamp. Then we let \(G_{t-1} \) contains the first half of the sorted edges and let other edges be new edges. For datasets without timestamp on edges, we treat the complete dataset as \(G_{t-1} \) and we obtain \(G_t \) by randomly inserting 100,000 edges not in \(E_{t-1} \).

Table I. Real Scale-free Datasets

| Dataset | | \(|V| \) | \(|E_{t-1}| \) | timestamp | directed or not |
|---------------|------------|----------|----------------|------------|-----------------|
| Epinion | 70K | 500K | no | directed |
| Slashdot | 57K | 900K | no | directed |
| Enron-email | 87K | 100K | yes | directed |
| Gowalla | 1797K | 197M | no | undirected |
| Wiki-Talk | 2.3M | 3.4M | yes | undirected |
| Youtube | 3.2M | 9.4M | yes | undirected |

A. Comparison among update methods.

Disk-based update methods. We test the efficiency of our two update methods. For each dataset, we first construct the canonical labeling \(L^{t-1} \) using the Hop-Doubling Labeling algorithm and we record the rank \(r \) for later use. Then, we run the single edge update algorithm and the batch update algorithm. For the single edge update method, we adopt our lazy patch merge strategy and allocate 1\% (≈ 40MB) of the main memory as the “prefetch buffer”. We also run the Hop-Doubling Labeling algorithm to reconstruct a canonical labeling with re-computed ranks and let it be the benchmark.

Figure 3 shows the results on datasets with timestamps. Our experiments suggest that, if the number of new edges is no greater than 100,000, the batch update method is preferred over the reconstruction method because of the smaller label maintenance time. Moreover, when the number of new edges is relatively small, the single edge update method outperforms the other two methods. The cumulative patch generation time (i.e., single edge update (wo merge)) grows almost linear with the number of new edges, which is consistent with our analysis of the patch generation phase. Moreover, the gaps between the single edge update time with and without the merge phase show that the lazy patch merge refinements significantly reduce the amortized patch merge cost over new edges.

Memory-based update methods. We compare the single edge update method with the update method (Dynamic PLL) of the Pruned-Landmarking Labeling (PLL) [6]. Since both the PLL construction algorithm and Dynamic PLL are memory-based, we directly change our single edge update algorithm to a memory-based one for comparison. We did not use datasets Wiki-Talk and Youtube because they are too large for memory-based algorithms. For each dataset, we treat it as an undirected graph, and prepare 2-hop labeling of \(G_{t-1} \) for Dynamic PLL (resp. single edge update method) using the PLL algorithm (resp. Hop-Doubling algorithm). Then, we insert 100,000 new edges in sequence using single edge update method and Dynamic PLL. Table II summarizes our experimental results. For four datasets tested, the update time of our single edge update method is comparable with that of Dynamic PLL. Suppose the 2-hop labeling before and after update is \(L_1 \) and \(L_2 \), the “label increase” is defined as \(|L_2 - L_1|/|L_1| \). Table II shows that the average “label increase” of the single edge update algorithm is two to three orders of magnitude smaller than that for Dynamic PLL. This is mainly because if there is an outdated entry whose distance needs to be decreased, Dynamic PLL inserts a new entry instead of update the distance. Therefore, our experiments suggest that, to maintain a small label size, we should update outdated entries instead of insert new entries. The small “label increase” for the single edge update method also implies that we could keep label patches in memory for many edge insertions before we perform the lazy patch merge.

Table II. Comparison between Memory-based update methods

| Dataset | \(|V| \) | \(|E_{t-1}| \) | Time (us) | Label Increase (10^-6) | Time (us) | Label Increase (10^-6) |
|-------------|----------|----------------|-----------|------------------------|-----------|------------------------|
| Epinion | 76K | 509K | 134 | 4.5 | 122 | 32017 |
| Slashdot | 75K | 509K | 215 | 3.0 | 261 | 20744 |
| Enron-email | 87K | 160K | 135 | 13.0 | 197 | 5846.7 |
| Gowalla | 197K | 905K | 290 | 5.0 | 201 | 3880.7 |

Refinements of single edge update. We show the performance gain of allocating a small buffer to prefetch labels of nodes with top ranks. Table III shows the speedup of the patch generation phase by using only 1% of memory as buffer. Note
that in the extreme case where the buffer is large enough to load all entries, the disk-based label update algorithm essentially becomes memory-based. Therefore, the larger the buffer is, the higher speedup can be achieved. For a fixed buffer size, Table III shows that the patch generation phase tends to achieve higher speedup for smaller networks, which is consistent with our analysis. Moreover, even for the two largest datasets where the size of outdated labeling is larger than 1GB, applying the label prefetch refinements could still speedup the patch generation. In conclusion, we suggest adopting the label prefetch refinements in general. As to how to select the buffer size, it may depend on other factors such as whether there are other jobs sharing resources of the machine. If possible, one may allocate a buffer as large as possible so that the single edge update method achieves the highest speedup.

| Dataset | $|E_{\text{out}}| - |E_{\text{in}}|$ | Speedup verses number of new edges |
|---------------|----------------|-----------------------------|
| Enron | 86MB | 22.85 |
| Slashdot | 133MB | 37.34 |
| Ecoren-email | 60MB | 4.65 |
| Gowalla | 190MB | 8.00 |
| Wiki-Talk | 1.4GB | 1.39 |
| Youtub | 3.9GB | 3.54 |

B. Distance Query on the most update network

For each dataset, we constructed the canonical labeling for graph G_{t-1} using the Hop-Doubling Labeling algorithm. Then, we test our query algorithm by measuring the average query time when there is different number of new edges. For each experiment, we answer 5,000 randomly generated distance queries and show the average query time. In our experiments, we clear the filesystem memory cache before answering each query. By doing so, we are actually measuring the worst case query time because every I/O request results in a physical I/O.

Figure 4 shows the performance of our query algorithm. When the number of new edges is small, say below 1% of the previous number of edges, the number of new edges has a negligible impact on the query time. The reason is that the CPU time is small as compared with the I/O cost for loading labels for two nodes. Note that for all disk-based 2-hop labeling, answering query about $d(u, v)$ requires loading $L_{\text{out}}(u)$ and $L_{\text{in}}(v)$ from disk. Therefore, our query performance is comparable with the query performance where the 2-hop labeling is up-to-date. For the four smaller datasets, when the number edges exceeds 10^4, the query time increases with the number of new edges because the CPU cost starts to factor in. But the overall query time is still acceptable. In general, our experimental results demonstrate that our proposed query algorithm is a good approach to handle distance query while the system is also processing the label update algorithms.

VI. Conclusion

In this paper, we address the problem of efficiently answering exact distance queries on disk-resident scale-free “dynamic” graphs. The query processing is based on the canonical labeling, which is a special case of the 2-hop labeling. To answer exact distance queries efficiently on dynamic graphs, we present two methods to “incrementally update” the general canonical labeling. The two update methods, namely the single edge update method and the batch update method, have significantly different designs and each has its own merits. For the scenario where one has decided not to update the disk-based labeling, we propose a query algorithm that returns shortest distance toward the latest network based on out-dated labeling and a set of new edges, which is also a good approach to handle distance queries while the system is updating the labeling. We conduct extensive experiments on real scale-free networks to test our proposed methods. Experimental results demonstrate that it is possible to update disk-based canonical labeling efficiently and incrementally, instead of reconstructing the labeling from the scratch. Moreover, we show via experiments that one could efficiently answer distance queries even with out-dated disk-based canonical labeling, given that the number of new edges is not too large. Considering that many large-scale networks cannot fit into memory of a typical PC, we believe that studying how to incrementally maintain 2-hop labeling using external memory algorithms or distributed algorithms is a challenging yet promising future direction.

Acknowledgment: This work is supported in part by the RGC Grant 415013.

REFERENCES