
A Unified Framework to Estimate Global and Local
Graphlet Counts for Streaming Graphs

Xiaowei Chen, John C.S. Lui
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Email: {xwchen, cslui}@cse.cuhk.edu.hk

Abstract—Counting small connected subgraph patterns called
graphlets is emerging as a powerful tool for exploring topological
structure of networks and for analysis of roles of individual nodes.
Graphlets have numerous applications ranging from biology
to network science. Computing graphlet counts for “dynamic
graphs” is highly challenging due to the streaming nature of the
input, sheer size of the graphs, and superlinear time complexity
of the problem. Few practical results are known under the
massive streaming graphs setting. In this work, we propose a
“unified framework” to estimate the graphlet counts of the whole
graph as well as the graphlet counts of individual nodes under
the streaming graph setting. Our framework subsumes previous
methods and provides more flexible and accurate estimation of
the graphlet counts. We propose a general unbiased estimator
which can be applied to any k-node graphlets. Furthermore,
efficient implementation is provided for the 3, 4-node graphlets.
We perform detailed empirical study on real-world graphs, and
show that our framework produces estimation of graphlet count
for streaming graphs with 1.7 to 170.8 times smaller error
compared with other state-of-the-art methods. Our framework
also achieves high accuracy on the estimation of graphlets for
each individual node which previous works could not achieve.

I. INTRODUCTION

Graphlets are defined as connected subgraph patterns in
networks [1]. Counting graphlets is emerging as a powerful
tool for exploring the topological structure of networks and
for analysis of roles of individual nodes. Many applications
rely on couting graphlets to provide insightful characterization
of global and local structures of the networks. Applications
of graphlets in biology include protein prediction [2], cancer
gene identification [3], and network alignment [4]. In network
science, graphlets have been applied for spam detection [5],
anomaly detection [6], [7], graph classification [8], [9] and
node classification [10].

Counting graphlets includes computing the occurance of
graphlets in the whole graph, namely global graphlet counts,
and computing the number of graphlets adjacent to each
node in the graph, namely local graphlet counts. Despite
the importance of graphlets in various application domains,
exact computation of global and local graphlet counts is often
infeasible due to the massive size of the input graph and the
superlinear time complexity of the problem [9], [11]–[14].
It is natural in these cases to resort to efficient-to-compute
estimation of these quantities. Moreover, many important
networks are dynamic and node/edge additions are coming in
as a stream, e.g., adding a new user in online social networks,

paper publications in the collaboration networks, phone call
history in the communication networks, etc. Our goal is to
compute accurate estimate of global and local graphlets for
the online analysis of the input streaming graphs.

Many previous contributions focus on global and local
triangle counting in streaming graphs [6], [7], [15]–[18].
However, these methods are difficult to extend for general
graphlet counting. Also, there are only few works on esti-
mating the global graphlet counts [19]–[21] from a set of
uniformly sampled edges (which is within the stream setting
we mentioned). However, these methods are inefficient for the
real time tracking of graphlet counts. More importantly, none
of existing methods can be applied for computation of the
local graphlet counts.

Summary of contributions. In this work, we propose a
“unified framework” to estimate any k-node global and local
graphlet counts for any streaming graphs, where k � 3. Our
contributions are:
• Unified Framework. We propose a unified framework to es-

timate, at any time instant, the graphlet counts of the whole
graph (i.e., global graphlet counts) as well as the graphlet
counts of individual nodes (i.e., local graphlet counts) under
the streaming setting. Our framework subsumes previous
methods and also provides more accurate global graphlet
count estimation by choosing appropriate sampling schemes
and counting strategies. We are also the first to propose an
efficient method to compute the local graphlet counts under
the streaming setting, which is a more challenging problem
than the computation of global graphlet counts.

• Unbiased Estimator. We present a general unbiased estima-
tor whose unbiasedness is rigorously proved. The estimator
can be applied for any k-node graphlets and different
sampling schemes as well counting strategies.

• Efficient Implementation. We provide an efficient imple-
mentation for the 3, 4-node graphlet estimation. Moreover,
our implementation can be directly applied to exact counting
of global and local graphlets for the streaming graphs.

• Extensive Experiments. We conduct extensive experiments
on the real-world networks to validate the efficiency of our
framework. We explore the effects of different sampling
schemes and counting strategies. For the global graphlets,
our framework outperforms state-of-the-art methods, e.g.,
the estimation produced by methods in our framework has
1.7 to 170.8 times smaller error than prior arts, and achieves

high accuracy in estimation of local graphlet counts.
Paper organization. We introduce the problem and review

the related work in Sect. II. The unified framework is pre-
sented and analyzed in Sect. III. We demonstrate an efficient
implementation of 3, 4-node graphlet counting in Sect. IV.
Sect. V reports the results of the extensive experiments. The
conclusion is drawn in Sect. VI. Additional materials can be
found in the Appendix.

II. PRELIMINARIES

A. Notations and Definitions

The Streaming Model. Let G(t) = (V (t), E(t)) be the graph
observed up to time t. Without loss of generality, we assume
V (0) = ; and E(0) = ;. Let et be the new edge arriving from
the stream at time t. At time t+1 (t � 0), the graph G(t+1) =
(V (t+1), E(t+1)) is obtained by inserting edge et+1 = (u, v)
into the graph G(t), i.e., V (t+1) = V (t)[{u, v} and E(t+1) =
E(t) [{et+1}. We assume edges are distinct and arrive from
the stream in any arbitrary order.
Subgraphs. For a graph G = (V,E), we say Gk = (Vk, Ek) is
a subgraph of G if Vk ✓ V and Ek ✓ E, written as Gk ✓ G.
If Gk ✓ G and Gk contains all edges (u, v) 2 E where u, v 2
Vk, then Gk is an induced subgraph of G. We differentiate
between subgraphs and induced subgraphs. In general, if we
do not say “induced”, we mean the usual subgraph setting (a
subset of edges).
Isomorphic. G = (V,E) and G0 = (V 0, E0) are isomorphic,
written as G ' G0, if there exists a bijection ' : V ! V 0 with
(u, v) 2 E , ('(u),'(v)) 2 E0 for all u, v 2 V . Intuitively,
two graphs are isomorphic if they have the same appearance
when one removes all node and edge labels of them.
Graphlets. Graphlets are defined as connected subgraph pat-
terns. Fig. 1 depicts all 3 and 4-node graphlets. The set of all
k-node graphlets is denoted as Gk and we denote gki as the ith
type of k-node graphlets. The graphlet count Ck

i is defined as
the number of induced subgraphs that are isomorphic to (i.e.,
have the same appearance as) the graphlet gki in the graph.
Fig. 2 shows an example of graphlet counts C4

1 , · · · , C4
6 . The

C4
1 equals to 2, meaning that there are two induced subgraphs

isomorphic to g41 (line of length 3) in the graph G, which are
induced by nodes {1, 2, 3, 4} and {1, 5, 4, 3}.
Orbits. Nodes in the same graphlet may have different “po-
sitions”. For example, the node with label 8 in g44 (Fig. 1)
acts as a hub while the node with label 6 is a periphery
node. As one can see, they play different roles in the network.
Formally, nodes in a graphlet are partitioned into a set of
automorphism groups called orbits [22]. Two nodes in the
graphlet belong to the same orbit if they are mapped to each
other in some projection of the graphlet onto itself. Fig. 1
illustrates that nodes in the 3-node graphlets g31 , g32 and 4-node
graphlets g41 , · · · , g46 are partitioned into 3 and 11 different
orbits respectively. We denote the orbit with label j in k-node
graphlets as okj . The set of all orbits in the k-node graphlets
is defined as Ok. The orbit count Ok

j (v) is defined as the
number of induced subgraphs where the node v occupies the

position of the orbit okj . For example, as shown in Fig. 2,
O4

1(1) equals to 2 since node 1 occupies the orbit o41 in two
subgraphs induced by node sets {1, 2, 3, 4} and {1, 5, 4, 3}.

1

2
g31

3
g32

1

2
g41

3

4
g42

5

g43

7

8

6

g44
10

9

g45

11

g46

Fig. 1: 3-node and 4-node graphlets and their orbits. Nodes
with the same color belong to the same orbit within that
graphlet. E.g., the nodes in g4

4 have three different orbits:
6, 7 and 8, and are marked with different colors and labels.
Nodes with white color are symmetric and belong to the
same orbit 7. Node with gray belongs to orbit 8, while
node in black belongs to orbit 6.

Problem Definition. Given the graphlet size k, our goal is to
compute the following two structural metrics for the streaming
graph G(t) = (V (t), E(t)) at any discrete time t:

1) Global graphlet counts (GGC). For the graph G(t), the
global graphlet counts are defined as the set of graphlet
counts Ck

i for all the graphlets in Gk.
2) Local graphlet counts (LGC). For each node v in the

graph G(t), the local graphlet counts for node v are
defined as the set of orbit counts Ok

j (v) for all the orbits
in Ok.

Fig. 2 gives an example of global/local graphlet counts.
The GGC carries significant information about the structural
properties of the graph, e.g., GGC can be used as a structural
feature to classify large graphs [8], [23]. The LGC is a fine-
grained description of the local topological structure for every
node. It maps nodes to vectors, which can be applied for
protein function prediction in biology network [2], predicting
the economic attributes of a country in the world trade
network [24] and node classification in social networks [10].

B. Related Work

Exact Graphlet Counting for Static Graphs. Counting exact
number of graphlets has high computation cost since the
number of possible k-node graphlets grows in O(|V |k), hence,
the 3, 4, 5-node graphlet counting attracts more attention than
the general k-node graphlet counting. Shervashidze et al. [8,
Theorem 7] proved that counting GCC can be achieved in
O(|V | · �k) with k = 3, 4, 5 where � is the maximum
degree of the graph. Triangle, which is one of the 3-node
graphlets, has been extensively studied. The most efficient
algorithm is proposed by [11]. The method is based on matrix
multiplication and has time complexity O(|E|1.41). However,
it also has a high space complexity O(|V |2), which restricts
it applicability for large graphs. A more practical algorithm
“edge-iterator” proposed in [12] counts triangles with time
complexity O(|E|1.5) with a reasonable space requirement.
Ahmed et al. proposed an efficient parallel algorithm to
compute the 4-node GCC [9]. The main idea of is to count
a few graphlets for each edge in parallel and then derive
the exact counts for others in constant time by leveraging

1

2

3 4

5

G

C4
1 C4

2 C4
3 C4

4 C4
5 C4

6

2 0 1 2 0 0

Global graphlet counts

v [O4
1(v), · · · , O4

11(v)]

1 [2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0]
2 [0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0]
3 [1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0]
4 [1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0]
5 [0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0]

Local graphlet counts

Fig. 2: Example of global/local graphlet counts.

the combinatorial equations between graphlets. For 5-node
GCC, Pinar et al. proposed an efficient algorithmic framework
by cutting graphlets into smaller ones, and using counts of
smaller graphlets to obtain larger counts [14]. Methods in [9],
[14] are the state-of-the-art to compute GGC. Hočevar and
Demšar present a combinatorial method for counting LGC up
to five nodes in [13]. The method reduces the complexity by
building a system of equations that connect counts of orbits
and compute all orbit counts by enumerating a single one.
Sampling Methods. Many previous contributions focus on
triangle (g32) counting in streaming graphs. For example,
Tsourakakis et al. [15] presented a triangle estimating method
by sampling a set of edges from a graph, and it requires one
pass to the graph data and can be applied to the streaming
graph directly. Ahmed et al. [25] proposed a more general
sampling scheme “sample and hold” to estimate various graph
properties such as triangle count and clustering coefficient.
Pavan et al. [17] and Jha et al. [18] estimated the global
triangle counts by sampling a set of connected path of length
two. Recently, more efficient methods based on sampling a
set of edges are proposed in [6], [7], [16]. However, all
these works focus on triangle counting and are difficult to
be extended for GGC when k > 3.

There are also few works on the GGC when k > 3. Elenberg
et al. proposed a method to estimate the 3, 4-node GGC from
a set of independently sampled edges in [19] and [20]. Wang
et al. [21] showed how to estimate any k-node GGC from the
set of independently sampled edges. The main idea of these
methods is to construct an one-step Markov transition matrix
to model the relationship between GGC in the sampled graphs
and the original graphs. However, the results produced by these
methods are not efficient enough and they can not be applied
for LGC estimation.

III. A UNIFIED FRAMEWORK

We present a unified framework to estimate GGC and LGC
in this section. The framework is summarized in Algo. 1.
Line 4, 8, 9 in the algorithm describe the random process
to maintain the sample graph GS . The function DETERMINE-
SAMPLE decides whether to sample the incoming edge et at
time t and the function UPDATESAMPLE is the procedure to
update GS with the selected edge et. Line 5, 6, 7 describe the
counting process to maintain the unbiased estimate of graphlet
counts. The function DETERMINECOUNT describes our count-
ing strategy. It decides whether to update the graphlet counts.
The unbiased estimate of global and local graphlet counts is
updated with the sample graph GS and edge et in the function

TABLE I: Relationship between previous contributions
and our framework.

Methods Sampling
Schemes

Counting
Strategies Graphlets Global Local

DOULION [26] Uniform Dependent Triangle 3 7

MASCOT [6] Uniform Independent
q = 1

Triangle 3 3

TRIÈST [16] Reservoir Independent
q = 1

Triangle 3 3

Elenberg et al. [19] Uniform Dependent G3 3 7
Elenberg et al. [20] Uniform Dependent G4 3 7

MINFER [21] Uniform Dependent Gk 3 7

Our framework Both Both Gk 3 3

Algorithm 1 The unified framework
1: Initialization: Sample graph G

S

= (V
S

, E
S

) with V
S

=
;, E

S

= ;, graphlet size k, Ĉk 0, t 1
2: for edge e

t

in the stream S do
3: count false, sample false
4: DETERMINESAMPLE(sample, t)
5: DETERMINECOUNT(count, sample)
6: if count is true then . update counter
7: UPDATECOUNTER(Ĉk, G

S

, e
t

, t)
8: if sample is true then . update sample graph
9: UPDATESAMPLE(G

S

, e
t

)
10: t t+ 1

UPDATECOUNTER. We emphasize that our framework is very
“flexible” since one can choose among different sampling
schemes and counting strategies. The framework is unified
since it subsumes a broad range of previous methods [6], [16],
[19]–[21], [26]. Table I summarizes previous works and our
framework. It shows that these state-of-the-art methods are
simply special cases under our framework.
Notation. Let GS = (VS , ES) denote the sample graph in
Algo. 1. GS [{et} denotes the graph formed by ES [{et}.

A. Maintain Sample Graphs

In this subsection, we show two commonly used schemes
to maintain the sample graphs: (1) uniform sampling and (2)
reservoir sampling [27].
Uniform Sampling. For each edge (say et) in the stream, we
sample and include it to be part of the sample graph GS with
probability p (0 < p 1), or ignore it with probability 1� p.
Algo. 2 shows the details of this sampling scheme.
Reservoir Sampling. The standard reservoir sampling [27]
maintains the edge samples ES with a fix sized reservoir.
When edge et arrives at time t, if t is no larger than the reser-
voir size M , we insert the edge et into ES deterministically.
When t > M , we sample the edge et with probability M/t. If
the edge et is chosen, we remove an edge from ES uniformly
at random to make space for the newly selected edge et. The
detailed procedure is described in Algo. 3.

Lemma 1 (Inclusion probability). Let ⇠m,t denote the prob-
ability that an arbitrary subgraph B ✓ G(t) with m edges is

Algorithm 2 Uniform sampling of stream edges
1: Parameters: sampling probability p
2: function DETERMINESAMPLE(sample, t)
3: if Bernoulli(p) == 1 then
4: sampe true
5: function UPDATESAMPLE(G

S

, e
t

= (u, v))
6: V

S

 V
S

[{u, v}
7: E

S

 E
S

[{e
t

}

Algorithm 3 Reservoir sampling of stream edges
1: Parameters: reservoir size M
2: function DETERMINESAMPLE(sample, t)
3: if t M or (t > M and Bernoulli(M

t

) == 1) then
4: sample true
5: function UPDATESAMPLE(G

S

, e
t

= (u, v))
6: if |E

S

| == M then
7: remove a random edge from E

S

8: remove nodes with zero degree from V
S

9: V
S

 V
S

[{u, v}
10: E

S

 E
S

[{e
t

}

included in GS at the end of time t. If GS is maintained by
uniform sampling with sampling probability p, we have

⇠m,t , Pr(B ✓ GS) = pm (1)

and if GS is updated by reservoir sampling with reservoir size
M , we have

⇠m,t , Pr(B ✓ GS) =

8
><

>:

0 if m > M

1 if m M , and t M�
t�m
M�m

�
/
�

t
M

�
if m M , and t > M

(2)

In practice, the reservoir size M satisfies M � m. Hence
⇠m,t > 0 in general. Eq. (1) in Lemma 1 can be proved
directly by the fact that each edge on the stream is selected
with probability p independently. Eq. (2) is a trivial extension
of the property that any subset A of size M in E(t) satisfies
Pr(A = ES) = 1/

�
t
M

�
at time t if t > M [27]. Note that

uniform sampling only inserts edges into GS while reservoir
sampling removes an existing edge to make space for the
newly sampled edge if the reservoir is already full. Conse-
quently, reservoir sampling makes a constant consumption of
the memory regardless of the length of the stream.

B. Counting Strategies

We propose the following two counting strategies for our
framework. One counting strategy is to update the graphlet
counts upon the edge et is being sampled (Line 1-2 in Algo. 4).
The second counting strategy is to decouple the events of
sampling and counting, i.e., we update the graphlet counts
with a probability qt (0 < qt 1), which is independent from
whether the edge et is sampled or not (Line 3-6 in Algo. 4).
These two strategies are referred to as the “dependent counting
strategy” and “independent counting strategy” respectively.

The advantage of the dependent counting strategy is that
it makes 50% less calls to the random number generator
Bernoulli. The advantage of the independent counting strat-
egy is that the counting probability qt is a tunable parameter.

Algorithm 4 Counting Strategies
.The dependent counting strategy

1: function DETERMINECOUNT(count, sample)
2: count sample

.The independent counting strategy
3: Parameters: graphlet count updating probability q

t

4: function DETERMINECOUNT(count, sample)
5: if Bernoulli(q

t

) == 1 then
6: count true

Algorithm 5 Update Global/Local Graphlet Counts

1: function UPDATECOUNTER(Ĉk, G
S

, e
t

, t)
2: if count global graphlets then
3: d0(e

t

) COUNTGLOBALSUBGRAPH(G
S

, e
t

)

4: if count local graphlets then
5: d0(e

t

) COUNTLOCALSUBGRAPH(G
S

, e
t

)

6: Ĉk Ĉk +A�1P
t

�1d0(e
t

) . update counter

For example, if GS keeps a large fraction of edges and the
edges arrive at a fast speed, one can decrease qt to speed up
the updating of graphlet counts. If we have limited memory
to keep GS , we can increase qt to improve the accuracy of
the estimation. In the extreme case where qt = 1, we call
the function UPDATECOUNTER deterministically to update
graphlet counts whenever edge et arrives from the stream.
Counting probability Let pt be the probability that we update
the graphlet counts at time t (t > 0). pt equals to

pt =

8
><

>:

p dependent counting (uniform sampling)
min{1, M

t } dependent counting (reservoir sampling)
qt independent counting

(3)

C. Update Graphlet Counts

Let Ck denote the exact GGC/LGC matrix. For GGC, Ck

is defined as a |Gk|⇥ 1 matrix, i.e., Ck , [Ck
1 , · · · , Ck

|Gk|]
T .

For LGC, Ck is defined as a |Ok| ⇥ |V (t)| matrix, i.e.,
Ck , [Ok(v1), · · · ,Ok(v|V (t)|)], vi 2 V (t), here Ok(vi) ,
[Ok

1 (vi), · · · , Ok
|Ok|(vi)]

T . Our goal is to provide an unbiased
estimate of Ck for G(t) at any time instant. Algo. 5 shows
the details of the function UPDATECOUNTER, which outputs
an unbiased estimation of Ck at time t. The function first
computes the number of subgraphs containing edge et in
GS [{et} (Line 2-5) and then update the graphlet counts
with equation in Line 6. The detailed implementation of
COUNTGLOBALSUBGRAPH and COUNTLOCALSUBGRAPH
in Algo. 5 will be illustrated in the next section. The unbiased
estimator in Line 6 is derived based on the following key
observation which relates the subgraphs in G(t) and sample
graph GS .
Observation 1. Let B be a subgraph in G(t) formed by
m edges {et1 , · · · , etm�1 , et}, i.e., et is the edge in B that
appears last on the stream. Let �B be a random variable that
takes value 1 if subgraph B is counted at the end of time t,
and 0 otherwise. Then we have Pr(�B = 1) = pt⇠m�1,t�1.

The above observation can be proved by the fact that �B =
1 if and only if {et1 , · · · , etm�1} is already in ES at time

TABLE II: The probability matrix Pt for the 3-node
graphlets.

Global Graphlet Counts Local Graphlet Counts

2

4

g

3
1 g

3
2

g

3
1 p

t

⇠1,t�1 0

g

3
2 0 p

t

⇠2,t�1

3

5

2

4

o

3
1 o

3
2 o

3
3

o

3
1 p

t

⇠1,t�1 0 0
o

3
2 0 p

t

⇠1,t�1 0
o

3
3 0 0 p

t

⇠2,t�1

3

5

t � 1 and we choose to update the graphlet counts at time t.
It indicates a simple linear equation between the number of
subgraphs in G(t) and GS at time t = T , which is

TX

t=1

d(et) = E
"

TX

t=1

Pt
�1
d0(et)

#
(4)

The proof of Eq. (4) is in the appendix. Intuitively, Eq. (4)
is an extension of E[�B] = Pr(�B = 1) = pt⇠m�1,t�1. The
notations Pt,d(et),d0(et) are explained as follows.
• Probability matrix Pt. It is a diagonal matrix. We assume
the subgraph B in Obs. 1 is isomorphic to graphlet gki and
a node v in B occupies the orbit okj . When estimating GGC
(resp. LGC), the i-th (resp. j-th) diagonal entry Pt(i, i) (resp.
Pt(j, j)) equals to Pr(�B = 1) = pt⇠m�1,t�1. Table II shows
an example of the probability matrix for the 3-node graphlets.
Note that Pt is invertible since Pt(i, i) = pt⇠m�1,t�1 > 0.
• Global (or local) subgraph count matrix d(et). For the
GGC, the i-th entry of the |Gk| ⇥ 1 matrix d(et) denotes
the number of subgraphs in G(t) that contain edge et and
are isomorphic to graphlet gki . Let dv(et) denote the local
subgraph count vector of v in G(t). The i-th entry of dv(et)
is the number of subgraphs containing edge et in G(t) where
node v occupies the orbit oki . For the LGC, d(et) is defined
as the local subgraph count matrix, which is written as
[· · · ,dvi(et), · · ·], (vi 2 V (t)). d0(et) is the corresponding
global (or local) subgraph count matrix in GS [{et}.

To derive the unbiased estimator, we still need to construct
the relationship between Ck and

PT
t=1 d(et). We introduce a

projection matrix A for this purpose.
• Projection matrix A. With a slight abuse of notations,
we define A(gki , g

k
j) as the number of distinct copies of the

graphlet gki in the graphlet gkj . Assume node v occupies the
orbit okj in the k-node graph B. Then A(oki , o

k
j) is defined

as the number of subgraphs of B where node v occupies
orbit oki . When estimating GGC (resp. LGC), we let A(i, j) ,
A(gki , g

k
j) (resp. A(i, j) , A(oki , o

k
j)). Fig. 3 gives an example

of computing A. Table III shows the projection matrix for 3, 4-
node GGC/LGC. Computing A is not a big concern since A
is independent of the input graphs and can be computed in
advance. Let mk

i be the number of edges in gki . W.l.o.g, we
let mk

i � mk
j when i > j. Then A(i, j) = 0 when i > j, and

A(i, i) = 1. Hence, A is upper triangular. Lemma 2 shows
how matrix A connects Ck and

PT
t=1 d(et). The proof of

Lemma 2 is in the appendix.

TABLE III: Projection matrix A for 3, 4-node subgraphs.

k = 3, Global k = 3, Local k = 4, Global

A =

g

3
1 g

3
2

g

3
1 1 3

g

3
2 0 1

�
A =

2

4

o

3
1 o

3
2 o

3
3

o

3
1 1 0 2

o

3
2 0 1 1

o

3
3 0 0 1

3

5 A =

2

666664

g

4
1 g

4
2 g

4
3 g

4
4 g

4
5 g

4
6

g

4
1 1 0 4 2 6 12

g

4
2 0 1 0 1 2 4

g

4
3 0 0 1 0 1 3

g

4
4 0 0 0 1 4 12

g

4
5 0 0 0 0 1 6

g

4
6 0 0 0 0 0 1

3

777775

k = 4, Local Graphlet Counts

A =

2

666666666666664

o

4
1 o

4
2 o

4
3 o

4
4 o

4
5 o

4
6 o

4
7 o

4
8 o

4
9 o

4
10 o

4
11

o

4
1 1 0 0 0 2 2 1 0 4 2 6

o

4
2 0 1 0 0 2 0 1 2 2 4 6

o

4
3 0 0 1 0 0 1 1 0 2 1 3

o

4
4 0 0 0 1 0 0 0 1 0 1 1

o

4
5 0 0 0 0 1 0 0 0 1 1 3

o

4
6 0 0 0 0 0 1 0 0 2 0 3

o

4
7 0 0 0 0 0 0 1 0 2 2 6

o

4
8 0 0 0 0 0 0 0 1 0 2 3

o

4
9 0 0 0 0 0 0 0 0 1 0 3

o

4
10 0 0 0 0 0 0 0 0 0 1 3

o

4
11 0 0 0 0 0 0 0 0 0 0 1

3

777777777777775

v

o

4
11

v

o

4
9

v

o

4
9

v

o

4
9

v

o

4
10

v

o

4
10

v

o

4
10

Fig. 3: Example of projection matrix A. The clique (g4
6)

contains 6 distinct chordal cycles (g4
5), hence A(g4

5, g
4
6) =

6. Node v occupies the orbit o4
11 in the clique. For all

the distinct chordal cycles in the clique, node v occupies
orbit o4

9 and o4
10 in three of them respectively. Hence,

A(o4
9, o

4
11) = A(o4

10, o
4
11) = 3.

Lemma 2. Let Ck be the exact graphlet counts in G(T). We
have

ACk =
TX

t=1

d(et) (5)

Based on Eq. (4) and (5), we can easily derive the unbiased
estimator for Ck in streaming graph G(t) at t = T , which is

Ĉk ,
TX

t=1

A
�1
Pt

�1
d0(et). (6)

Note that A is invertible since it is upper triangular. Thm. 1
proves the unbiasedness of Eq. (6).
Theorem 1. The result produced by Algo. 5 is an unbiased
estimate of the graphlet counts, i.e., Ck = E[Ĉk].

Proof. Since ACk =
PT

t=1 d(et) and
PT

t=1 d(et) =

E
hPT

t=1 Pt
�1
d0(et)

i
, we have

Ck = E
"

TX

t=1

A
�1
Pt

�1
d0(et)

#

One the other hand, Ĉk =
PT

t=1 A
�1
Pt

�1
d0(et). Hence we

have E[Ĉk] = Ck. ⌅
Discussion. Our framework can provide both global and local
graphlet counts for general Gk, for k � 3. Moreover, our

framework subsumes several state-of-the-art methods. Note
that when we use the uniform sampling scheme and dependent
counting strategy, the probability matrix Pt does not depend
on the time t and can be written as Pt = P where P (i, i) =
pt⇠m�1,t�1 = pm. Besides, the i-th entry of

PT
t=1 d

0(et)
equals to the number of subgraphs in GS that are isomorphic
to gki . Here GS is the sample graph of G(T). Let Ck

S denote
the GGC of GS . We have

Ĉk = A
�1
P

�1
ACk

S .

The main idea of [19]–[21] is to compute the Ck
S and then

correct the bias error using E[A�1
P

�1
ACk

S] = Ck. The
matrix A

�1
P

�1
A is the so called “one step Markov transition

matrix” in [19]–[21].

IV. COUNTING 3, 4-NODE GRAPHLETS

In this section, we explain the implementation of functions
COUNTGLOBALSUBGRAPH and COUNTLOCALSUBGRAPH
in Algo. 5. To compute the number of general k-node sub-
graphs containing et = (u, v) in GS [{et}, one can apply the
subgraph enumeration algorithm in [28] to the graph induced
by u, v as well as nodes within distance no more than k � 2
from u or v. Since 3, 4-node graphlets have many imporant
applications [5], [9], [24], we propose a more computation-
ally efficient global and local subgraph counting method for
k = 3, 4. Note that our proposed counting algorithms can also
be applied directly to the incremental dynamic graphs (i.e.,
adding new nodes/edges to graphs). In the following, NS(u)
denotes the set of neighbors of node u in GS .

A. 3-node Graphlets

Algorithm for 3-node subgraph counting in presented in
the Algo. 6. To count the global/local 3-node subgraphs
containing edge et = (u, v), function COUNTGLOBALSUB-
GRAPH/COUNTLOCALSUBGRAPH iterates through nodes in
NS(u) and NS(v). Hence the time cost on counting subgraphs
containing edge et = (u, v) is O(|NS(u)| + |NS(v)|). Note
that only the estimations of local graphlet counts for nodes in
NS(u) [NS(v) are update when edge et arrives at time t.

Algorithm 6 Counting Global/Local 3-node Subgraphs
1: function COUNTGLOBALSUBGRAPH(G

S

, e
t

= (u, v))
2: d31 |N

S

(u)|+ |N
S

(v)|
3: d32 |N

S

(u) \N
S

(v)|
4: return d0 = [d31, d

3
2]

T

5: function COUNTLOCALSUBGRAPH(G
S

, e
t

= (u, v))
6: X 0,matrix d0 0

7: for each w 2 N
S

(u) do
8: d0(1, w) += 1, d0(2, u) += 1, d0(1, v) += 1
9: X(w) = 1 .mark node w

10: for each w 2 NS(v) do
11: d0(1, w) += 1, d0(1, u) += 1, d0(2, v) += 1
12: if X(w) == 1 then
13: d0(3, w) += 1, d0(3, u) += 1, d0(3, v) += 1

14: return d0

B. 4-node Global Subgraph Counting
Algo. 7 shows the 4-node global subgraph counting method.

The 4-node local subgraph counting is presented in the Ap-
pendix B. The key of Algo. 7 is the equations in Line 17-22.
Let us explain how to get these equations.

Let S(et) denote the set of subgraphs in GS[{et} that con-
tain edge et. For the subgraphs in S(et) that are isomorphic to
the same graphlet, edge et may occupy different positions. For
example, as shown in Fig. 4, edge et can occupies two different
positions, i.e., the center position () and the periphery posi-
tion (), in the subgraphs isomorphic to g41 . Fig. 4 illustrates
how to represent the counts of induced subgraphs that contain
edge et with the variables T ,Su,Sv, NT,T , NS,S , NS,T , N4

2 .
Since computing the induced subgraph counts is more intuitive
than computing subgraph counts, we present the Lemma 3
which builds a relationship between the counts of induced
subgraphs and normal subgraphs that containing edge et.
Lemma 3. Let B be a subgraph formed by edges
{et1 , · · · , etm�1 , et}, B0 be a subgraph formed by edges
{et1 , · · · , etm�1}. Assume B is isomorphic to graphlet gkj . Let
dki (B) denote the number of subgraphs in B that contain edge
et and are isomorphic to graphlet gki . We have

dki (B) =

(
A(i, j)�A(i, j0) if B0 ' gkj0 ,

A(i, j) if B0 is disconnected.

The proof of Lemma 3 is in Appendix A. Based on
Lemma 3, equations in Line 17-22 can be computed systemat-
ically as shown in Eq. (7). Here C(B) denotes the number of
induced subgraphs that include et in the same position as B.
The value C(B) is presented in the right-hand side of Fig. 4.
2

6666664

N4
1

N4
2

N4
3

N4
4

N4
5

N4
6

3

7777775
= A⇥

0

BBBBBB@

2

6666664

0
0
0
0

�C()
C()

3

7777775
+

2

6666664

0
0
0

�C()
C()
0

3

7777775
+

2

6666664

0
0

�C()
0

C()
0

3

7777775
+

2

6666664

�C()
0

C()
0
0
0

3

7777775
+

2

6666664

�C()
0
0

C()
0
0

3

7777775

+

2

6666664

0
0
0

C()
0
0

3

7777775
+

2

6666664

0
�C()

0
C()
0
0

3

7777775
+

2

6666664

0
C()
0
0
0
0

3

7777775
+

2

6666664

C()
0
0
0
0
0

3

7777775
+

2

6666664

C()
0
0
0
0
0

3

7777775

1

CCCCCCA

=

2

6666664

1 0 4 2 6 12
0 1 0 1 2 4
0 0 1 0 1 3
0 0 0 1 4 12
0 0 0 0 1 6
0 0 0 0 0 1

3

7777775

2

6666664

�C()� C() + C() + C()
�C() + C()
�C() + C()

�C() + C() + C() + C()
�C() + C() + C()

C()

3

7777775

(7)
Example. According to Eq. (7), N4

5 in Algo. 7 (i.e., the count
of subgraphs in S(et) that are isomorphic to g45), equals to
5C()+C()+C(), where C(), C(), and C() denote
the number of induced subgraphs that include et in the same
positions as , , and respectively. More specifically,

N4
5 = (A(5, 6)�A(5, 5))⇥ C() + C() + C()

= 5⇥ (T [2]) + (T [1] + T [3]) + (NT,T � T [2])

= T [1] + 4T [2] + T [3] +NT,T .

Time Complexity. Let �l(u, v) represent the set of vertices in
the graph GS [{et} with distance no more than l from node

Algorithm 7 Counting Global 4-node Subgraphs
1: function COUNTGLOBALSUBGRAPH(G

S

, e
t

= (u, v))
2: X 0, Star

u

= ;, Star
v

= ;,Tri
e

= ;
3: for each w 2 N

S

(u) do
4: Add w to Star

u

and set X(w) = 1

5: for each w 2 N
S

(v) do
6: if X(w) = 1 then
7: Add w to Tri

e

and set X(w) = 2
8: Remove w from Star

u

9: else
10: Add w to Star

v

and set X(w) = 3

11: T = TRICOUNT(X,Tri
e

)
12: S

u

= STARCOUNT(X, Star
u

)
13: S

v

= STARCOUNT(X, Star
v

)
14: T [2] = T [2]

2 , S
u

[1] = Su[1]
2 , S

v

[3] = Sv [3]
2

15: N
T,T

= |Tri
e

|(|Tri
e

|� 1)/2, N
S,S

= |Star
u

||Star
v

|
16: N

S,T

= (|Star
u

|+ |Star
v

|)|Tri
e

|
. Get counts of 4-node subgraphs containing edge e

t

17: N4
6 = T [2]

18: N4
5 = T [1] + 4T [2] + T [3] +N

T,T

19: N4
4 = T [0] + 2T [1] + 4T [2] + 2T [3] + S

u

[1] + S
v

[3] +
4N

T,T

+N
S,T

20: N4
3 = T [1] + 2T [2] + T [3] + S

u

[3]
21: N4

2 =
�|NS(u)|

2

�
+

�|NS(v)|
2

�

22: N4
1 = 2T [0] + 3T [1] + 3T [3] + 4T [2] + S

u

[0] + S
v

[0] +
2S

u

[1] + 2S
v

[3] + 2S
u

[3] + 2N
T,T

+N
S,S

+N
S,T

23: return d0 = [N4
1 , · · · , N4

6]
T

24: function TRICOUNT(X,Tri
e

)
25: T = [0, 0, 0, 0]T

26: for each w 2 Tri
e

do
27: for each r 2 N

S

(w)\{u, v} do
28: T [X(r)] += 1

29: return T
30: function STARCOUNT(X, Star)
31: S = [0, 0, 0, 0]T

32: for each w 2 Star do
33: for each r 2 N

S

(w)\{u, v} do
34: S[X(r)] += 1

35: return S

TABLE IV: Datasets used in experiments.

Graph Nodes Edges Description

Facebook [29] 63731 817035 A small subset of the total Facebook
friendship graph

Epinion [30] 75879 405740 Who-trusts-whom network of
Epinions.com

Slashdot [30] 77360 469180 The technology-related news website
Slashdot from Nov. 2008

Gowalla [30] 196591 950327 A social network where users share
the locations by checking-in

Wikitalk [30] 2394385 4659565 The network contains all the users
and discussion from the inception of
Wikipedia till Jan. 2008

u or v. To compute d0(et) where et = (u, v), Algo. 7 iterates
through all nodes in �2(u, v). The time cost on computing
d0(et) is O(|�2(u, v)|).
Remarks. If we keep all the edges from the stream, our
algorithms can be applied to compute the “exact” global/local
graphlet counts of the streaming graph directly.

u v

rw
T [0]

u v

rw
T [1]

u v

rw
T [2]

u v

rw
T [3]

u v

rw
Su[0]

u v

rw
Su[1]

u v

rw
Su[2]

u v

rw
Su[3]

u v

wr
Sv [0]

u v

wr
Sv [1]

u v

wr
Sv [2]

u v

wr
Sv [3]

NT,T NS,S NS,T N4
2

T [2]

T [1] + T [3]

NT,T � T [2]

Su[3] = Sv[1]

NS,T � T [1]� T [3]

Su[1] + Sv[3]

T [0]

NS,S � Su[3]

Su[0] + Sv[0]

Explanation on variables Induced subgraph counts

Fig. 4: Illustration of Algo. 7. The red dotted line repre-
sents the edge et = (u, v) which arrives from the stream
at time t. The green dashed lines represent edges that
may exists. The left-hand side of the figure illustrates the
meaning of variables T ,Su,Sv, NT,T , NS,S , NS,T , N4

2 . The
first three rows demonstrate the computation process of
TRICOUNT and STARCOUNT. The variables above the
small figures denote the number of induced subgraphs
in the sampled graph which include edge et in the same
positions as the small figures. The right-hand side of
the figure shows the count of induced subgraphs which
include edge et in the specific positions. E.g., the number
of induced subgraphs that include et as is Su[0]+Sv[0].

V. EXPERIMENTS

A. Experimental Setup

We evaluate our framework on several real-world networks.
For all graphs under study, we remove the directions, self-
loops and duplicate edges. The streams are generated by per-
muting the edges in a random order. Table IV summarizes our
datasets. We obtain the exact 3, 4-node GGC with the parallel
algorithm in [9]. The exact 3, 4-node LGC are computed with
the method in [13]. All the algorithms are implemented in C++
and ran on high performance computing servers equipped with
1.9GHz Intel Xeon CPUs.
Error Metrics. We use the following two metrics to measure
the performance of our framework.
• Relative Error (RE): This measures how close the estimation

of the GGC is to the ground truth. For the graphlet count
Ck

i , the RE of the estimation Ĉk
i is defined as |Ĉk

i �Ck
i |

Ck
i +1

.
Here we add one to both Ck

i and Ĉk
i in case of Ck

i = 0.
• Mean of Relative Error (MRE): This measures how accurate

is the estimation of LCC. For the orbit oki , the MRE is
defined as 1

|V |
P

v2V
|Ôk

i (v)�Ok
i (v)|

Ok
i (v)+1

, where Ôk
i (v) is the

unbiased estimation of Ok
i (v). Similar to RE, we add one

to both Ôk
i (v) and Ok

i (v) in case of Ok
i (v) = 0.

We report the average RE and MRE by running 100 inde-
pendent simulations since our algorithm is randomized. In

http://konect.uni-koblenz.de/networks/facebook-wosn-links
http://snap.stanford.edu/data/soc-Epinions1.html
http://snap.stanford.edu/data/soc-Slashdot0811.html
http://snap.stanford.edu/data/loc-gowalla.html
http://snap.stanford.edu/data/wiki-Talk.html

the following, US and RS are short notations for uniform
sampling and reservoir sampling respectively. IC and DC refer
to independent counting and dependent counting respectively.

B. Estimation of Global Graphlet Counts

1) Effect of Sampling Schemes and Counting Strategies:
In the following, we present how the sampling schemes and
counting strategies may affect the performance of our frame-
work with the 4-node graphlets. Due to the space limitation,
in Fig. 5 and 6, we only report the accuracy of the estimation
of C4

2 and C4
6 for graph Facebook. We choose C4

2 and C4
6

since (g42) and (g46) usually appears the most and the least
frequently among all 4-node graphlets in the graphs.
Sampling Schemes. From Fig. 5 and 7, we observe that RS
is more accurate than US with the same memory usage and
counting strategies (or counting probability qt). However, RS
has longer processing time for each edge.
Counting Strategies. Compared with the dependent counting
strategy, the independent counting strategy is more flexible.
In Fig. 6, we compare different counting strategies with the
same sampling scheme US. For a fair comparison, we set
the counting probability of the IC strategy as qt = p for
each simulation. By observing Fig. 6, we conclude that the
IC strategy, which decouples the counting and edge sampling,
improves the accuracy of US. Besides, the IC strategy has the
same time cost as the DC strategy.
Counting Probability qt. Fig. 7 illustrates the effect of qt
of the IC strategy. One can see that the counting probability
qt is a tunable parameter to control the trade-off between
accuracy and update time. For the case where we want to
keep a large fraction of edges, we can decrease qt so to speed
up the processing time for each edge.

2) Accuracy of the Framework: Based on above discussion,
we know that when given the memory usage, RS with IC
strategy (qt = 1) has the highest accuracy in estimating GGC.
Fig. 8 presents the relative error for all the datasets and all 3,
4-node graphlets, with a reservoir of size 0.1|E| and counting
probability 1.0. The errors are below 8% in all instances. We
conclude that our framework is capable of producing accurate
estimation of GGC with a small amount of sampled edges.

3) Comparison with Previous Works: Fig. 9 shows the
comparison results for all graphs in the datasets. For simplicity,
we compare our framework with the previous methods [20],
[21] (i.e., US scheme with DC strategy) by giving the same
memory usage. We choose the method which can achieve the
highest accuracy in our framework, i.e., RS and IC strategy
(qt = 1). We focus on 4-node graphlets since our framework
subsumes and has the same performance as previous methods
in estimating 3-node graphlet triangle. Fig. 9 shows that the
method RS-1.0 has a much smaller error, i.e., 1.7⇥⇠ 170.8⇥
smaller relative error. In conclusion, our framework not only
subsumes previous methods, but also outperforms these state-
of-the-art methods with appropriate sampling schemes and
counting strategies. More specifically, we propose a new state-
of-the-art algorithm to compute the general k-node GGC.

C. Estimation of Local Graphlet Counts

In the following, we evaluate the performance of our frame-
work in estimating the LGC. Due to space limitation, we only
choose the uniform sampling. Reservoir sampling has similar
performance. Also, we let the counting probability qt = 1.0.
In Fig. 11 and 12, we only choose orbits o32, o

3
3, o

4
10, o

4
11 in

graph Facebook for demonstration.
Convergence. Fig. 10 shows the MRE vs the sampling prob-
ability p in graph Facebook and Epinion. As we increase p,
the MRE of all orbit counts decreases quickly, which means
our proposed estimator converges to the actual LGC as the
sampling probability (i.e., memory usage) increases.
Unbiasedness. We plot the scatter plot of the orbit counts
vs degrees in Fig. 11. The figure shows that different orbits
have different relations with the degrees, which can be further
applied for anomaly detection [6], [7]. The average of the
simulation results overlaps heavily with the ground truth value,
which shows the unbiasedness of our proposed estimator.
Accuracy. Fig. 12 shows the scatter plot between the true
LGC and its estimations for all nodes in Facebook in one
simulation. Our algorithm is especially accurate for nodes with
higher degrees. For these high degree nodes, the points are
nearly along the line y = x. For low degree nodes, our points
are balanced over y = x.

VI. CONCLUSION

We present a unified framework to estimate the local and
global graphlet counts of the streaming graphs at any time
instant. Our unified framework subsumes previous methods
and provides more accurate estimation of global graphlet
counts. It is also the first framework to provide an efficient
estimation of the local graphlet counts. Both theoretical anal-
ysis and experimental evaluation validate the unbiasedness and
efficiency of our proposed estimator. We show the superb
performance of our framework in estimating 3, 4-node local
and global graphlets with extensive experiments on real-world
graphs. For future work, we aim to develop and investigate
other sampling schemes and counting strategies.

REFERENCES

[1] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and
U. Alon, “Network motifs: Simple building blocks of complex net-
works,” Science, 2002.

[2] T. Milenkoviæ and N. Pržulj, “Uncovering biological network function
via graphlet degree signatures,” Cancer Informatics, 2008.

[3] T. Milenković, V. Memišević, A. K. Ganesan, and N. Pržulj, “Systems-
level cancer gene identification from protein interaction network topol-
ogy applied to melanogenesis-related functional genomics data,” J. R.
Soc., 2010.

[4] F. E. Faisal, H. Zhao, and T. Milenković, “Global network alignment in
the context of aging,” TCBB, 2015.

[5] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient semi-
streaming algorithms for local triangle counting in massive graphs,” in
KDD’08.

[6] Y. Lim and U. Kang, “MASCOT: Memory-efficient and accurate sam-
pling for counting local triangles in graph streams,” in KDD’15.

[7] M. Jung, S. Lee, Y. Lim, and U. Kang, “FURL: Fixed-memory and
uncertainty reducing local triangle counting for graph streams,” to
appear in WWW’17.

US-D US-0.4 US-1.0 RS-D RS-0.4 RS-1.0

0.2 0.4 0.6
0.0

1.0

2.0

·10�2

Memory Usage

R
E

Facebook

(a) RE of Ĉ4
2

0.2 0.4 0.6
0.0

0.1

0.2

Memory Usage

R
E

Facebook

(b) RE of Ĉ4
6

0.2 0.4 0.6
0.0

0.5

1.0

Memory Usage

T
im

e/
E
d
g
es

(m
s) Facebook

(c) Micros per Edge

0.2 0.4 0.6
0.0

2.0

4.0

·10�2

Memory Usage

R
E

Epinion

(d) RE of Ĉ4
2

0.2 0.4 0.6
0.0

0.1

0.2

0.3

Memory Usage

R
E

Epinion

(e) RE of Ĉ4
6

0.2 0.4 0.6
0.0

1.0

2.0

Memory Usage

T
im

e/
E
d
g
es

(m
s) Epinion

(f) Micros per Edge

Fig. 5: Trade-off between the memory usage vs the accuracy and running time. The ticks on the x-axis denote the
ratio of sampled edges kept in the memory. The character “D”/number appended after the sampling schemes RS and
US refers to the dependent counting scheme or parameter qt of the independent counting.

[8] N. Shervashidze, S. V. N. Vishwanathan, T. Petri, K. Mehlhorn, and
K. M. Borgwardt, “Efficient graphlet kernels for large graph compari-
son,” in AISTATS, 2009.

[9] N. K. Ahmed, J. Neville, R. Rossi, N. G. Duffield, and T. L. Willke,
“Fast parallel graphlet counting for large networks,” in ICDM’15.

[10] M. Fang, J. Yin, X. Zhu, and C. Zhang, “Trgraph: Cross-network transfer
learning via common signature subgraphs,” TKDE, 2015.

[11] N. Alon, R. Yuster, and U. Zwick, “Finding and counting given length
cycles,” Algorithmica, 1997.

[12] T. Schank and D. Wagner, “Finding, counting and listing all triangles
in large graphs, an experimental study,” in WEA, 2005.

[13] T. Hočevar and J. Demšar, “A combinatorial approach to graphlet
counting,” Bioinformatics, 2014.

[14] A. Pinar, C. Seshadhri, and V. Vishal, “ESCAPE: Efficiently counting
all 5-vertex subgraphs,” to appear in WWW’17.

[15] C. E. Tsourakakis, M. N. Kolountzakis, and G. L. Miller, “Triangle
sparsifiers,” JGAA, 2011.

[16] L. De Stefani, A. Epasto, M. Riondato, and E. Upfal, “TRIÈST:
Counting local and global triangles in fully-dynamic streams with fixed
memory size,” in KDD’16.

[17] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Counting and
sampling triangles from a graph stream,” PVLDB’13.

[18] M. Jha, C. Seshadhri, and A. Pinar, “A space efficient streaming
algorithm for triangle counting using the birthday paradox,” in KDD’13.

[19] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and A. G. Dimakis,
“Beyond triangles: A distributed framework for estimating 3-profiles of
large graphs,” in KDD’15.

[20] ——, “Distributed estimation of graph 4-profiles,” in WWW’16.
[21] P. Wang, J. Lui, and D. Towsley, “Minfer: Inferring motif statistics from

sampled edges,” in ICDE’16.
[22] N. Pržulj, “Biological network comparison using graphlet degree distri-

bution,” Bioinformatics, 2007.
[23] N. K. Ahmed, J. Neville, R. A. Rossi, N. G. Duffield, and T. L. Willke,

“Graphlet decomposition: Framework, algorithms, and applications,”
Knowledge and Information Systems, 2016.

[24] A. Sarajlić, N. Malod-Dognin, Ö. N. Yaveroğlu, and N. Pržulj,
“Graphlet-based characterization of directed networks,” Scientific re-
ports, vol. 6, 2016.

[25] N. K. Ahmed, N. Duffield, J. Neville, and R. Kompella, “Graph sample
and hold: A framework for big-graph analytics,” in KDD’14.

[26] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos, “DOULION:
Counting triangles in massive graphs with a coin,” in KDD’09.

[27] J. S. Vitter, “Random sampling with a reservoir,” ACM Transactions on
Mathematical Software (TOMS), 1985.

[28] S. Wernicke, “Efficient detection of network motifs,” TCBB, 2006.
[29] “KONECT Datasets: The koblenz network collection,” http://konect.

uni-koblenz.de, 2015.
[30] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network

dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

APPENDIX

A. Supplementary Proofs

Proof of Eq. (4).

Proof. W.l.o.g., we discuss the global graphlet counts. Let B
be a subgraph formed by edges {et1 , · · · , etm�1 , et}. Assume
B is isomorphic to gki . Let �B be a random variable that takes
value 1 if B is counted at the end of time t and 0 otherwise.
The expected value of �B is E[�B] = Pt(i, i). Let S(et) denote
the set of subgraphs whose last edge on the stream is et. We
have

E[{d0(et)}i] = E

2

6664
X

B2S(et)
B'gk

i

�B

3

7775
= Pt(i, i){d(et)}i,

http://konect.uni-koblenz.de
http://konect.uni-koblenz.de
http://snap.stanford.edu/data

US-D US-p

0.2 0.4 0.6
0.5

1.0

1.5

·10�2

p

R
E

Facebook

(a) RE of Ĉ4
2

0.2 0.4 0.6
1.0

2.0

3.0

4.0

5.0
·10�2

p

R
E

Facebook

(b) RE of Ĉ4
6

0.2 0.4 0.6

1.0

2.0

·10�2

p

T
i
m

e
/
E
d
g
e
s

(
m

s
)

Facebook

(c) Micros per Edge

0.2 0.4 0.6

1.0

2.0

3.0
·10�2

p

R
E

Epinion

(d) RE of Ĉ4
2

0.2 0.4 0.6
2.0

4.0

6.0

8.0
·10�2

p

R
E

Epinion

(e) RE of Ĉ4
6

0.2 0.4 0.6
0.0

2.0

4.0

6.0
·10�2

p

T
i
m

e
/
E
d
g
e
s

(
m

s
)

Epinion

(f) Micros per Edge

Fig. 6: Comparison between different counting strategies. The legend “US-D” refers to as the uniform sampling with
dependent counting strategy, while “US-p” refers to as the uniform sampling with the independent counting strategy
and qt = p.

US (RE) RS (RE) US (Time) RS (Time)

0.2 0.6 1.0

0.5

1.0

1.5
·10�2

qt

R
E

Facebook

0.0

0.2

0.4

T
im

e/
E
d
g
es

(m
s)

(a) Clique

0.2 0.6 1.0

1.0

2.0

·10�2

qt

R
E

Epinion

0.0

0.5

1.0

1.5

T
im

e/
E
d
g
es

(m
s)

(b) Clique

0.2 0.6 1.0
0.0

2.0

4.0

6.0
·10�2

qt

R
E

Slashdot

0.0

0.5

1.0

T
im

e/
E
d
g
es

(m
s)

(c) Clique

Fig. 7: Effect of the counting probability qt when we choose the IC strategy. For the US, we set p = 0.6. For the RS,
we set the reservoir size M = 0.6|E|.

i.e., E[d0(et)] = Ptd(et). Here {d(et)}i is the i-th entry of
d(et). Since Pt is a diagonal matrix and all the diagonal
entries are positive, P must be invertible. Hence, we have

TX

t=1

d(et) = E
"

TX

t=1

Pt
�1
d0(et)

#

⌅
Lemma 2. Let Ck be the exact graphlet counts in G(T). We
have

ACk =
TX

t=1

d(et) (5)

Proof. We prove the lemma by discussing the following two
cases.
1) Global graphlet counts. Let Nk

i denote the number of
(normal) subgraphs in the graph G(T) that are isomorphic
to graphlet gki . Recall that A(i, j) is the number of distinct
copies of the graphlet gki in the graphlet gkj . The relation-
ship between Ck

i and Nk
i is as follows.

Nk
i =

|Gk|X

j=1

A(i, j)Ck
j .

0

2

4

·10�2

Facebook

R
E

0

2

4

·10�2

Epinion

0

2

4

6

8
·10�2

Slashdot

0

2

4

·10�2

Gowalla

0

0.5

1

1.5

2
·10�2

Wikitalk

Fig. 8: The relative error of our framework when we choose RS and IC strategy. The reservoir size is 0.1|E| and the
counting probability qt = 1.

US-D ([20], [21]) RS-1.0 (proposed)

0.0

0.1

0.2

0.3

R
E

4
.4

⇥
5
.4

⇥
6
.2

⇥
6
.0

⇥
6
.8

⇥
6
.6

⇥

(a) Facebook

0.0

0.2

0.4

R
E

4
.6

⇥
5
.3

⇥
7
.3

⇥
3
.7

⇥ 9
.3

⇥
8
.3

⇥

(b) Epinion

0.0
0.2
0.4
0.6
0.8
1.0

R
E

3
.0

⇥
5
.5

⇥
8
.2

⇥
4
.3

⇥
1
2
.7

⇥ 8
.1

⇥

(c) Slashdot

0.0

0.2

0.4

R
E

4
.2

⇥
1
7
0
.8

⇥
6
.8

⇥
3
.9

⇥
6
.8

⇥
6
.7

⇥

(d) Gowalla

0.0

0.1

0.2

R
E

1
.7

⇥
3
.0

⇥
3
.8

⇥
2
.3

⇥
4
.4

⇥
7
.9

⇥

(e) Wikitalk

Fig. 9: Comparison between the method in our framework and the state-of-the-art methods [20], [21], which are also
subsumed in our framework. For US, we set the edge sampling probability p = 0.1. For RS, we let the reservoir size
M = 0.1|E|.

Notice that the sum
PT

t=1 d(et) ensures each subgraph
B with m edges {et1 , · · · , etm} is counted exactly once
at time tm. Hence, the i-th entry of

PT
t=1 d(et) is the

number of subgraphs that are isomorphic to gki , i.e.,
{PT

t=1 d(et)}i = Nk
i =

P|Gk|
j=1 A(i, j)Ck

j . Therefore,
Eq. (5) is indeed the global graphlet counts.

2) Local graphlet counts. Let Nk
i (v) denote the number of

normal subgraphs in G(T) where node v occupies the orbit
oki . Recall that A(i, j) denotes the number of ways to
subtract a subgraph where node v occupies orbit oi from
another graph where node v occupies orbit oj . Hence,

Nk
i (v) =

|Ok|X

j=1

A(i, j)Ok
j (v).

Using the fact that
PT

t=1 dv(et) ensures each subgraph
where node v occupies orbit oki is counted exactly once, we
have {PT

t=1 dv(et)}i = Nk
i (v) =

P|Ok|
j=1 A(i, j)Ok

j (v),
i.e.,

PT
t=1 dv(et) = AOk(v). According to the definition

of Ck and d(et), we have ACk =
PT

t=1 d(et).
⌅

Lemma 3. Let B be a subgraph formed by edges
{et1 , · · · , etm�1 , et}, B0 be a subgraph formed by edges
{et1 , · · · , etm�1}. Assume B is isomorphic to graphlet gkj . Let

dki (B) denote the number of subgraphs in B that contain edge
et and are isomorphic to graphlet gki . We have

dki (B) =

(
A(i, j)�A(i, j0) if B0 ' gkj0 ,

A(i, j) if B0 is disconnected.

Proof. For a subgraph H of B, assume H does not contain
edge et. Then H is also a subgraph of B0. On the other hand,
if H contains edge et, H must not be a subgraph of B0. Recall
that A(i, j) is defined as the number of distinct copies of gki
in gkj . Hence we have A(i, j) = dki (B) +A(i, j0) if B0 ' gkj0
and A(i, j) = dki (B) if B0 is disconnected. ⌅
B. Pseudo Code of 4-node Local Subgraph Counting

Algorithm 8 computes the 4-node local subgraph counts.
The ei in the pseudo code is defined as a vector whose only
non-zero entry is the i-th entry with value 1. The matrix A
is defined as the projection matrix for 4-node local graphlet
counts in Table III. The equations in the pseudo code are
derived based the following lemma.
Lemma 4. Let B be a subgraph formed by edges
{et1 , · · · , etm�1 , et}, B0 be a subgraph formed by edges
{et1 , · · · , etm�1}. Assume node v occupies orbit okj in B. Let
dki (B) denote the number of subgraphs of B that contain edge
et and node v occupies orbit oki in them. We have

dki (B) =

(
A(i, j)�A(i, j0) if v occupies okj0 in B0

A(i, j) if B0 is disconnected

0.2 0.4 0.6

0.2
0.4
0.6
0.8
1.0

p

M
R

E

O3
1

O3
2

O3
3

0.2 0.4 0.6
0.0

5.0

10.0

p
M

R
E

O4
1

O4
2

O4
3

O4
4

0.2 0.4 0.6
0.0

5.0

10.0

p

M
R

E

O4
5

O4
6

O4
7

0.2 0.4 0.6

1.0

2.0

3.0

p

M
R

E

O4
8

O4
9

O4
10

O4
11

(a) Facebook

0.2 0.4 0.6

0.2

0.4

0.6

p

M
R

E

O3
1

O3
2

O3
3

0.2 0.4 0.6
0.0

20.0

40.0

p

M
R

E

O4
1

O4
2

O4
3

O4
4

0.2 0.4 0.6
0.0

2.0

4.0

6.0

p

M
R

E

O4
5

O4
6

O4
7

0.2 0.4 0.6
0.0

0.5

1.0

1.5

2.0

p

M
R

E

O4
8

O4
9

O4
10

O4
11

(b) Epinion

Fig. 10: Mean of relative error vs the sampling probability p of the uniform sampling. We let the counting probability
qt = 1.0.

Ground-truth Average of estimated orbit counts

0 500 1,000
0.0

2.0

4.0

·105

Degree

O
rb

it
co

u
nt

s

(a) o32

0 500 1,000
0.0

1.0

2.0
·104

Degree

O
rb

it
co

u
nt

s

(b) o33

0 500 1,000
0.0
0.2
0.4
0.6
0.8
1.0

·106

Degree

O
rb

it
co

u
nt

s

(c) o410

0 500 1,000
0.0

0.5

1.0

1.5
·105

Degree

O
rb

it
co

u
nt

s

(d) o411
Fig. 11: Scatter plot of the orbit counts vs degrees for all nodes in Facebook. The blue dots represent the ground
truth. The crosses represent the average of estimated orbit counts from 100 simulations. We use the US scheme and
IC strategy. The sampling probability p = 0.5 and the counting probability qt = 1.0.

We omit the proof for Lemma 4 since it has similar proof to Lemma 3.

100 102 104 106
100

102

104

106

Exact orbit counts

E
s
t
i
m

a
t
e
d

v
a
l
u
e

(a) o32

101 103 105

101

103

105

Exact orbit counts

E
s
t
i
m

a
t
e
d

v
a
l
u
e

(b) o33

101 104 107

101

104

107

Exact orbit counts

E
s
t
i
m

a
t
e
d

v
a
l
u
e

(c) o410

100 102 104 106
100

102

104

106

Exact orbit counts

E
s
t
i
m

a
t
e
d

v
a
l
u
e

(d) o411
Fig. 12: Scatter plot between the true LGC and its estimation in Facebook in one simulation. We use the US scheme
and IC strategy. The sampling probability p = 0.5 and the counting probability qt = 1.0.

Algorithm 8 Counting 4-node local subgraph counts

1: function COUNTLOCALSUBGRAPH(G
S

, e)
2: X 0, Star

u

= ;, Star
v

= ;,Tri
e

= ;,N = 0

3: for each w 2 N
S

(u) do
4: Add w to Star

u

and set X(w) = 1

5: for each w 2 N
S

(v) do
6: if X(w) = 1 then
7: Add w to Tri

e

and set X(w) = 2
8: Remove w from Star

u

9: else
10: Add w to Star

v

and set X(w) = 3

11: TRIORBIT(G
S

,Tri
e

,N , u, v)
12: STARORBIT(G

S

, Star
u

,N , u, v, 0)
13: STARORBIT(G

S

, Star
v

,N , v, u, 4)
14: NBRNBRORBIT(G

S

,N , u, v)
15: NBRORBIT(G

S

,N , Star
u

, u, v)
16: NBRORBIT(G

S

,N , Star
v

, v, u)
17: return d0 = AN
18: function TRIORBIT(G

s

,Tri
e

,N , u, v)
19: for each w 2 Tri

e

do
20: for each r 2 N

S

(w)\{u, v} do
21: if X[r] == 0 then
22: N(u) += e7 � e3, N(v) += e7 � e3

23: N(w) += e8 � e4, N(r) += e6 � e3

24: if X[r] == 2 and w < r then
25: N(u) += (e11 � e9 � e10 + e5)
26: N(v) += (e11 � e9 � e10 + e5)
27: N(w) += (e11 � e10 � e9 + e5)
28: N(r) += (e11 � e10 � e9 + e5)

29: function STARORBIT(G
S

, Star,N , u, v, s)
30: for w 2 Star do
31: for r 2 N

S

(w)\{u, v} do
32: if X[r] == 0 then
33: N(u) += e2,N(v) += e1

34: N(w) += e2,N(r) += e1

35: if |X[r]� s| == 1 and w < r then
36: N(u) += e8 � e4,N(v) += e6 � e3

37: N(w) += e7 � e3,N(r) += e7 � e3

38: if |X[r]� s| == 2 then
39: N(u) += e10 � e7 � e8 + e2

40: N(v) += e9 � e6 � e7 + e1

41: N(w) += e9 � e6 � e7 + e1

42: N(r) += e10 � e7 � e8 + e2

43: if |X[r]� s| == 3 and w < r then
44: N(u) += e5 � e1 � e2

45: N(v) += e5 � e1 � e2

46: N(w) += e5 � e2 � e1

47: N(r) += e5 � e2 � e1

48: function NBRNBRORBIT(G
s

,Tri,N , u, v)
49: for w 2 N

S

(u) do
50: for r 2 N

S

(v)\{w} do
51: if X[w] == 2 and X[r] == 2 and w < r then
52: N(u) += e10 � e5,N(v) += e10 � e5

53: N(w) += e9 � e5,N(r) += e9 � e5

54: if X[w] == 1 and X[r] == 3 then
55: N(u) += e2,N(v) += e2

56: N(w) += e1,N(r) += e1

57: if X[w] == 1 and X[r] == 2 then
58: N(u) += e8 � e2,N(v) += e7 � e1

59: N(w) += e6 � e1,N(r) += e7 � e2

60: if X[w] == 2 and X[r] == 3 then
61: N(u) += e7 � e1,N(v) += e8 � e2

62: N(w) += e7 � e2,N(r) += e6 � e1

63: function NBRORBIT(G
S

,N , Star, u, v)
64: N4(u) +=

�|Star|
2

�
, N3(v) +=

�|Star|
2

�

65: for w 2 N
s

(u) do
66: N3(w) += |Star|� 1

