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Abstract
The rapid evolution of multimedia and computer vision technolo-
gies requires adaptive visual model deployment strategies to e!ec-
tively handle diverse tasks and varying environments. This work
introduces AxiomVision, a novel framework that can guarantee ac-
curacy by leveraging edge computing to dynamically select themost
e"cient visual models for video analytics under diverse scenarios.
Utilizing a tiered edge-cloud architecture, AxiomVision enables the
deployment of a broad spectrum of visual models, from lightweight
to complex DNNs, that can be tailored to speci#c scenarios while
considering camera source impacts. In addition, AxiomVision pro-
vides three core innovations: (1) a dynamic visual model selection
mechanism utilizing continual online learning, (2) an e"cient on-
line method that e"ciently takes into account the in$uence of the
camera’s perspective, and (3) a topology-driven grouping approach
that accelerates the model selection process. With rigorous the-
oretical guarantees, these advancements provide a scalable and
e!ective solution for visual tasks inherent to multimedia systems,
such as object detection, classi#cation, and counting. Empirically,
AxiomVision achieves a 25.7% improvement in accuracy.

CCS Concepts
• Information systems → Multimedia streaming; • Theory of
computation → Online learning algorithms.
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1 Introduction
Video analytics plays a pivotal role in a multitude of tasks in a
smart city, including vehicle license tracking, facial recognition,
and tra"c monitoring [25, 42]. This variety of applications high-
lights the necessity for customized visual models designed to cater
to the unique requirements of di!erent visual tasks. Yet, the ap-
plication of such models, particularly those based on deep neural
networks (DNNs), faces formidable challenges. These include the
highly diverse requirements of video analytics tasks, $uctuating en-
vironmental conditions, and the imperative for real-time operation
[7, 8]. The complexity and computational intensity of cutting-edge
visual models in multimedia systems further complicate their appli-
cation in resource-limited settings [41, 75]. Bandwidth constraints,
for example, limit the feasibility of transmitting high-resolution
video for analysis [77], highlighting a bottleneck in the practical
utility of these complex technologies.

The !rst challenge in video analytics centers on which visual
model to apply that caters to application-speci!c requirements under
a dynamic environment, especially in light of phenomena like data
drift [6, 10], where live video data’s characteristics stray from the
training dataset, as demonstrated in our Section 2. Despite a wide
range of advancements targeting various speci#c requirements, ef-
forts to modify existing models or customize visual models remain
predominantly focused on the static and single scenario. For in-
stance, works such as model pruning and compression [20, 30, 55],
while e!ective at streamlining complex models for resource-limited
environments, face signi#cant performance degradation under ad-
verse conditions like poor lighting or extreme weather [22, 31].
Given the above analysis, we advocate for the strategic combination
of existing models to navigate the complexities of real-world scenar-
ios, instead of solely relying on a singular model or the pursuit of a
one-size-!ts-all visual model for universal video analytics.

The complexity further escalates with the second challenge, as
the video analytic system transitions from single-camera sources to
multi-camera feeds. Independent decision-making for each camera
regarding model selection would cause the computational load to
increase linearly, which is unsustainable and retards the model
selection process. Strategies such as the “follow-the-leader” [28],
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Spatula’s camera correlation prioritization [27], and the CrossRoI
system’s re-identi#cation algorithm [18] o!er potential solutions
for managing multi-camera setups. Nevertheless, these o%ine, pe-
riodically preset camera groupings, which depend exclusively on
static search clustering and similar approaches, lack the essential
$exibility needed to adapt to the dynamic nature of real-world en-
vironments and the process of continual learning for improvement.

Moreover, the signi#cance of camera deployment in video analyt-
ics has been largely overlooked, with attention primarily focused
on enhancing visual models on the server side, whether in the
context of automated surveillance or user-controlled VR cameras.
Nevertheless, for specialized tasks such as the creation of holo-
graphic stereogram portraits [14, 35], it is essential to investigate
the additional e!ects arising from di!erent camera perspectives,
particularly when the perspective is altered. Additionally, due to
declining costs, the popularity of cameras with adjustable view-
points has surged (for instance, in 2020, the global market value
of pan-tilt-zoom (PTZ) cameras reached $3 billion [26, 66]). Cur-
rent methodologies, such as con#guration adjustments in infer-
ence settings [28, 73], optimizing encoding [62, 77], and #ltering
out super$uous details [12, 40], presuppose an immutable scene
captured by cameras. However, the variation of camera contents,
application-speci#c requirements, and adjustable perspective neces-
sitate moving beyond exclusively relying on pre-established o%ine
learning methods, to understand the e!ects of camera perspectives
for the accurate selection of visual models (the third challenge).

To address these challenges, this paper introduces AxiomVision,
a novel framework designed to guarantee the accuracy of video
analytics through the dynamic selection of visual models. Contrary
to systems limited to data center or cloud environments [60, 71]
that introduce issues like increased central load and the risk of
congestion [68], AxiomVision leverages edge computing [68, 76] to
decentralize processing, utilizing e"cient lightweight DNN models
which are deployed close to data sources. With its tiered edge-cloud
architecture, AxiomVision strikes a balance between leveraging
currently e!ective visual models and exploring promising, yet un-
tapped models. This is achieved by continually analyzing observa-
tion feedback that includes camera perspective e!ects, even in the
absence of prior knowledge about these perspectives. Furthermore,
recognizing the potential for correlation among camera groups,
AxiomVision incorporates a graph-based grouping method based
on the natural camera network topology. This approach enables
$exible and continual adjustment for camera groups for various
visual tasks. To conclude, the manners in which this paper tackles
the aforementioned third challenges can be summarized as follows:

C1,DynamicVisualModel Selection.Weenhance task-speci#c
visual performance by employing an “online learning strategy” to se-
lect the optimal visual model dynamically. This method is di!erent
from previous work that relies solely on a single model or focuses
on model enhancement. By incorporating continual feedback, our
strategy employs a dynamic selection mechanism to identify the
best-suited model adaptively. This mechanism is based on a tiered
edge-cloud architecture, which is designed for deploying a diverse
range of visual models, thus ensuring a wide selection availability.

C2, Camera Network Topology Utilization. Recognizing the
common practice of deploying cameras in groups, we leverage the
inherent network topology of these groups to develop a group-based

mechanism to expedite the model selection process, especially in
scenarios where there is no clear data to determine the optimal
model or the impact of perspective. We demonstrate that this ap-
proach signi#cantly alleviates the demands of continual learning,
streamlining the operation in grouped camera environments.

C3, Camera Perspective Consideration. In response to the
increasingly adjustable function of the modern camera [66] and
our observation of measurement, we develop a “perspective-aware
learning method” for cameras. This method goes beyond the conven-
tional approaches which merely focus on improving visual models,
but we uniquely account for the impact of the source-side model
selection, namely, “camera perspectives”, through online sensing
estimation during the visual model selection process.

Our code is publicly accessible at: Code Link. Additionally, this
work does not raise any ethical issues.

2 Background and Motivation
We start with a discussion on related works. Then we present our
experimental results to illustrate how visual models’ performance
varies under external environmental conditions and across di!erent
visual tasks, underscoring the necessity of dynamic adaptation.
Finally, we present the e!ects of the camera perspective.

2.1 Related Work
In video analytics, video frames are continuously streamed from
one or more cameras to servers for processing. This often involves
multiple visual models to support a multitude of video analytics
applications, particularly those based on diverse architectures and
weights of DNNs enabling them to accommodate an extensive
array of scenes and vision tasks [18, 53]. However, the growing
complexity of DNN architectures has resulted in increased pre-
diction latency, presenting a considerable challenge for resource-
limited end devices [39, 61]. To handle this, signi#cant e!orts have
been devoted to leveraging lightweight models with streamlined
architectures and fewer parameters [20, 74]. Yet, despite their e"-
ciency under speci#c conditions or in tailored environments, these
lightweight models often fall short in dynamic object distributions
or challenging environmental conditions. Furthermore, the high
costs of dynamically retraining model methods [6, 31] for speci#c
scenarios make real-time maintenance challenging under chang-
ing conditions [21]. Faced with this, our method focuses on how
to adapt to dynamic environments through the prioritization of
continuous online visual model selection, moving away from the
reliance on a few static models. More importantly, we demonstrate
the importance of “camera perspectives” on the model selection.

Regarding model selection, we implement the strategy derived
from multi-armed bandit (MAB), which performs online section of
one or more options from a set of alternatives based on feedback
from previous choices [34]. MAB has been widely applied in vari-
ous domains, including recommendation systems [11, 23], content
delivery [46, 69], and DNN design [70, 72]. Although some previous
works on clustering bandits have explored grouping human users
[17, 38, 44, 65], its application in the intricate domain of machine-
centric video analytics remains under-explored, which uniquely
focuses on maximizing inference accuracy and handling issues such
as frame drops, provided the analytics’ integrity is maintained [73].
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(a) Di!erent environmental conditions (b) Model performance with snowfall (c) Dynamic performance shifts (d) Environment and model correlation
Figure 1: Comparative analysis of visual model performance across di"erent environmental conditions.

(a) Variability in perspective (b) Varying segmentation accuracy

Figure 2: Role of camera perspective in object detection and
semantic segmentation visual tasks.

2.2 Motivation Experiments
To investigate the variability of various models across di!erent
scenarios and the impact of camera perspectives, we conduct a
thorough comparative analysis encompassing a range of models
such as the YOLOv5 series [29], RTM detection [50], SSD [43], and
Faster R-CNN [54]. In particular, object detection and semantic
segmentation are selected as the visual tasks in our experiments.

Dataset. To assess the performance of visual models under dif-
ferent environmental conditions, we compile #ve representative
video datasets, each covering a speci#c real-world scenario. These
datasets are sourced from publicly available videos on YouTube,
identi#ed by searching for speci#c keywords (e.g., “live stream
webcams”) and selecting those pertinent to tra"c conditions. To
explore the e!ects of varying camera perspectives, four videos with
distinct perspectives are selected at the same time from the above
sources [56–59]. Furthermore, the free-viewpoint videos are also
utilized for evaluating perspectives, where videos of various hu-
man movements on an indoor stage are recorded using 12 cameras
positioned at equal perspective intervals [19].

Evaluation Metrics. For object detection, performance is as-
sessed using the recall and F1 score metrics. We run the YOLOv5-x
model as the ground truth, with the detection con#dence score set
to 0.25, and the intersection over the union threshold for calculat-
ing recall set at 0.5 aligning with [15, 71]. For semantic segmen-
tation, pixel accuracy is applied as the metric, and the complex
PP-HumanSegV1-Server [47] model is run as the ground truth [48].

Performance Variability of Visual Models. Fig. 1(a) reveals
image examples across daytime, nighttime, snowy, and dusky sce-
narios. The F1 scores of YOLOv5-n demonstrate $uctuations across
these four environments. In Fig. 1(b), a 135-second video depicting
a sudden heavy snowfall is analyzed, revealing a decline in perfor-
mance across all models as the intensity of the snowfall increases.
The images on T = 20s and T = 100s show a clear di!erence before

(a) Perspective 1 (0°) (b) Perspective 2 (30°) (c) Perspective 3 (60°)
Figure 3: Semantic segmentation across diverse camera per-
spectives for the same dancer.

and after the snowfall. Figs. 1(a) and 1(b) e!ectively illustrate our
argument with extensive examples across diverse environments
and utilizing various visual models: a single universal model faces
signi!cant challenges when attempting to perform consistently in
dynamic environments. The models show performance $uctuations
of varying magnitudes depending on the environmental conditions.

Furthermore, we pre-retrain the YOLOv5-s model on a snowy-
day tra"c road dataset[52] using four di!erent learning rates and
training parameters under 100 epochs. we apply these models to a
scenario where snowfall gradually begins at 30 seconds and inten-
si#es by 45 seconds. As illustrated in Fig. 1(c), models pre-trained
for snowy conditions show improved performance as the snowfall
increases. However, their performance under normal weather con-
ditions is inferior to that of the standard YOLOv5-s model, likely
due to overtraining on snowy data. In Fig. 1(d), we further pre-train
models on the COCO dataset for 100 epochs under various light-
ing conditions and evaluate them using the same YouTube dataset.
Although models speci#cally pre-trained for certain environments
show enhanced performance, performance $uctuations also exist
(the second row). Moreover, the challenge of accurately quantifying
light levels in dynamic real-world environments complicates the di-
rect matching of these conditions with an appropriate visual model.
This underscores the complexity involved in dynamically adapting
visual models to suit changing environmental conditions.

Impact of Camera Perspective. We now turn our attention
to the signi#cant e!ects of camera perspective on model selection.
Initially, we evaluate the F1 scores for object detection tasks us-
ing videos taken from di!erent perspectives at the same tra"c
intersection at the same time. Fig. 2(a) reveals that the F1 scores
signi!cantly vary with the camera’s viewpoint. For instance, a direct
frontal view achieves an F1 score of 0.85, which drops to 0.61 when
the camera is positioned laterally. Furthermore, for the semantic
segmentation task, we explore the e!ects of camera perspective
through multi-angle videos of activities such as dancing, playing
badminton, and throwing a frisbee in an indoor environment, with
a speci#c example of dancing showcased in Fig. 3. According to Fig.
2(b), a frontal capture of a dancer yields a segmentation accuracy
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Figure 4: Overview of AxiomVision framework.

of 0.81, which surprisingly increases to 0.87 from a side angle. Ad-
ditional analysis of two other movements shows similar patterns
of accuracy variation. The intrinsic relationship between perspective
and model selection lies in the fact that certain perspectives may pose
challenges for a task, e.g., distant blurred perspective in object recog-
nition, requiring the use of more sophisticated models, whereas other
perspectives can be addressed using simpler visual models (Another
example is in Appendix B). Therefore, the in$uence of perspective
on model selection is a crucial factor that must be considered.

3 Model and Problem Formulation
In this section, we present the systemmodel and the problem setting
of our proposed AxiomVision framework. Our framework focuses
on the adaptive selection of visual models under dynamic envi-
ronmental changes and speci#c task demands, which utilizes a
hierarchical architecture for camera groups, edge nodes, and cloud
resources, and a continual video analytics pipeline to enhance visual
task performance. Fig. 4 depicts our overall framework design.

3.1 System Model
Tiered Edge-Cloud Architecture. Traditional methods typi-

cally put all visual tasks, denoted as Q, to the cloud for centralized
processing, which results in higher loads and longer response times
on the cloud servers. To address these issues and also for the de-
ployment of multiple visual models, we propose a hierarchical
architecture, which consists of three levels: (a) the video server, (b)
the edge nodes, and (c) the end camera groups. AxiomVision intro-
duces a tailored combination set M𝐿 of visual model models for
each distinct visual task 𝐿 ↑ Q to better accommodate external vari-
ables such as lighting conditions and movement dynamics. Taking
the object detection task as an example, lightweight models such
as MobileNet [24] are implemented on the resource-limited edge
nodes [78], while the deployment of more sophisticated models
is designated for the cloud center. The total set of cameras in our
system is represented by N with cardinality |N |.

Online Video Analytics Pipeline. Our system is designed to
adeptly handle the non-continuous and varied visual tasks through
a sequential, discrete-time round approach. To accommodate the

varied nature and frequency of task demands, we de#ne the se-
quence of rounds for each visual task 𝐿 ↑ Q as T𝐿 . For a speci#c
visual task like facial temperature recognition, the duration be-
tween consecutive rounds may di!er due to customer $ow rates.
Similar to [68], we assume that individual tasks do not interfere
with one another, permitting each to operate in its designated round
independently. Within this, the operational cycle of the online video
analytics pipeline at each round involves the scheduling agent se-
lecting visual models, obtaining feedback on their outcomes, and
subsequently updating the evaluations for these models.

Visual Payo" Feedback. To dynamically adapt to evolving
conditions and task-speci#c demands, we propose a visual payo!
feedback mechanism, where payo" can be interpreted as the like-
lihood of meeting certain criteria, such as accuracy, recall, or F1
score. This process mainly focuses on the adjustment of perspective
weights 𝜴𝑀 for each camera 𝑀 ↑ N in response to task feedback of
the selected visual model, thus enabling the online optimization
of visual model e"cacy.1 For any given task 𝐿 ↑ Q, the expected
payo! 𝑁𝑁𝐿 ,𝑂 of the selected visual model𝑂𝑂 is expressed as:

E[𝑁𝑁𝐿 ,𝑂 |𝑂𝑂 ] = 𝑃 (𝜶↓𝑁𝐿
𝜴𝑀), (1)

where 𝑃 establishes a nonlinear connection between the payo!
𝑁𝑁𝐿 ,𝑂 and the feature vector x𝑁𝐿 of the visual model𝑂𝑂 at round
𝑄 , incorporating the in$uence of the camera perspective through
the weight vector 𝑅𝑀 [16, 32]. An example of such a link function
is a neural network, wherein a #nal layer equipped with either
a sigmoid or ReLU activation function transforms the intricate
features derived into meaningful results [33, 67].

Combinatorial Model Selection. Unlike conventional works
that may only o!er a single model choice per task, we develop a
“combinatorial model selection strategy” from a wide range of model
candidates, which increases the probability of meeting the task’s
requirements under diverse environmental conditions. Speci#cally,
a set of visual model options M𝑂 = {𝑂1, . . . ,𝑂 |K𝐿 | } ↔ M𝐿 is
presented for each task 𝐿 at every round 𝑄 . K𝑂 with the size of |K𝑂 |
represents the selected visual model index at round 𝑄 , determined
by the #rst selected model with 𝑁𝑂 = 1. Here, if the accuracy of
the selected visual model surpasses the prede#ned threshold, the
resulting payo! value 𝑁𝑂 will be assigned a value of 1. Initially, to
conserve resources and ensure rapid response, priority is given to
models deployed at the edge. If these models fall short of the task’s
required accuracy threshold, the scheduling agent will choose more
complex models in the cloud. More importantly, the selection of
visual models is continually re#ned based on payo! feedback. Thus,
at each round 𝑄 , the aggregate payo! from these combinatorial
usages of visual models M𝑂 for camera 𝑀 is calculated as:

𝑆(M𝑀,𝑂 ) = 1 ↗
|K𝐿 |∏
𝑃=1

(1 ↗ 𝑁𝑁𝑀,𝐿 ,𝑂 (𝑂𝑃,𝑂 )), where 𝑇 ↑ K𝑂 ,𝑂𝑃,𝑂 ↑ M𝑂 .

Note that we provide a combination of visual models based on the
tiered architecture to ensure accuracy. Moreover, we also strive to
ensure that the initially chosen visual model meets the requirements
as much as possible (see Section 4 for details).
1For notation clarity, we initially focus on the impact characteristics related to model
selection from a singular camera perspective. Nonetheless, our forthcoming strategy
for evaluating and categorizing perspective impacts is readily scalable to accommodate
the diverse impact characteristics of changeable camera perspectives (see Section 5).
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Perspective-Based Grouping. For visual tasks that necessitate
inputs from multiple cameras, such as person tracking, the pro-
cess entails more than just evaluating how camera perspectives
in$uence the choice of visual models. It also presents a potential
opportunity to group cameras based on their overlapping perspec-
tive weights, where the increasing deployment of camera network
topologies inherently leads to a common occurrence of overlapping
perspectives [9]. Recognizing this, we propose to group cameras
with similar in$uence of perspective 𝜴𝑀 to adopt a similar visual
model selection. To distinguish cameras that cannot be grouped
together, we evaluate the dissimilarity between cameras using the
distance between the feature vectors representing camera perspec-
tive e!ects. This evaluation involves establishing a “dispersion”
criterion: cameras 𝑈,𝑇 are considered for separate groups if:

↘𝜴 𝑄 ↗ 𝜴𝑃 ↘2 ≃ 𝑉𝐿,⇐𝑈,𝑇 ↑ N , (2)

where 𝑉𝐿 signi#es a predetermined positive dispersion constant
speci#c to task 𝐿. Based on the above criterion, the collective set of
camerasN can be divisible into smaller subsets, and we label them
as 𝑊1,𝑊2, . . . ,𝑊𝑅 , wherein cameras within the same subset adhere
to a uni#ed visual model selection strategy. Note that neither which
camera belongs to which group, nor the precise number of grouped
cameras 𝑋 can be not known beforehand in our model.

3.2 Problem Formulation
The selection of an optimal visual model is in$uenced by the diverse
visual tasks, external environment, and internal deployment factors,
namely camera perspectives. As a result, the scheduling agent must
continually adapt the choice of visual model 𝑂𝑂 ↑ M for each
processed camera 𝑀𝑂 ↑ N at the round 𝑄 ↑ T𝐿 for visual task
𝐿, in alignment with the video analytics payo!. In this work, we
propose to dynamically adapt visual models in an online manner to
maximize the overall payo! across all rounds for any given visual
task 𝐿 ↑ Q. This objective is mathematically expressed as:

maxE

[∑
𝑂 ↑T

∑
𝑀↑N

1{𝑀𝑂 = 𝑀}𝑆(M𝑀𝐿 ,𝑂 )
]
, (3)

where 1{·} denotes the indicator function. Given the limited band-
width and computing resources, it is not possible to select the most
resource-intensive visual model option [28]. Furthermore, with the
growing deployment of extensive camera networks by various enti-
ties, an exploration into the impact of perspective similarity among
cameras is needed. By analyzing these perspective weight similari-
ties, we aim to identify and group cameras with similar perspective
in$uences, thereby reducing the number of subgroups needed for
visual model sharing. Nevertheless, this endeavor introduces sev-
eral challenges, including complex search spaces, varying e!ects of
camera perspectives, zero prior knowledge of optimal visual mod-
els, and the strategic deployment of camera groups. Addressing
these issues requires an adaptive algorithm capable of learning and
adjusting visual models online for diverse visual tasks, transcending
the limitations of static, o%ine model selection strategies.

4 Continual Learning of AxiomVision
In this section, we #rst present the algorithm design of AxiomVi-
sion, followed by a performance analysis. Speci#cally, a $exible

graph-based structure is utilized to mirror the natural undirected
connectivity found in camera cluster networks.2

4.1 Algorithm Design

Algorithm 1 Continual Online Learning of AxiomVision

Require: Set of cameras N ; Parameter 𝑌 , 𝑍 ; Random 𝑎0 ↑ (0, 1).
Ensure: Visual model selection for all visual tasks.
1: Initialization: A complete graph 𝑏0= (N , 𝑐0); 𝑋1 = 1; 𝑑𝑀,0 =

0,⇐𝑀 ↑ N .
2: for each 𝐿 ↑ Q, 𝑄 ↑ T𝐿 , independently do
3: Receive processed camera index 𝑀𝑂 ;
4: Identify group 𝑊𝑆𝐿 that contains 𝑀𝑂 ;
5: Estimate perspective weight �̂� 𝑆𝐿 ,𝑂↗1 based on Eq. (4);
6: Select the combinotorial model set M𝑂 ↑ M𝐿 according

to Eq. (5) until the predetermined threshold is satis#ed;
7: Record payo! 𝑁𝑁𝑀 ,𝑂 of the selected visual model𝑂𝑃 ,𝑇 ↑ K𝑂 ;
8: Increment count of processed camera 𝑀𝑂 :𝑑𝑀𝐿 ,𝑂+1 = 𝑑𝑀𝐿 ,𝑂 + 1;
9: Delete from 𝑐𝑂 all (𝑀𝑂 , 𝑒) if Eq. (6) holds and get the resulting

graph𝑏𝑂+1 = (N , 𝑐𝑂+1);
10: Update graph parameter: 𝑎𝑂 = 𝑎0/𝑄2;
11: Reconnect all edges in 𝑐𝑂+1 with probability 𝑎𝑂 ;
12: end for

Assigning Inferred Groups for Processed Cameras. Initially,
we employ some common clustering methods, e.g., 𝑓-means, to
group cameras with similar perspective impact weights. Within
each cluster, a fully connected graph is #rst established, re$ecting
camera connectivity symmetry and dynamic adaptability for net-
work topology, facilitating continual online updates. In the absence
of initial perspective impact weight information, the entire camera
cluster can be initialized as an undirected fully connected graph
𝑏0 = (N , 𝑐0), maintained for visual task 𝐿 ↑ Q, where each camera
𝑂 ↑ N represents a node in the graph. Cameras sharing similar
learned perspective impact weights are interconnected via edges
in 𝑐0. At each round 𝑄 , the connected components within graph
𝑏𝑂 signify the inferred groups 𝑊1,𝑊2, . . . ,𝑊𝑅𝐿 with 𝑋𝑂 denoting the
the number of camera groups at 𝑄 . Initially, graph 𝑏1 is a complete
graph, with 𝑋1 = 1. For the processed camera 𝑀𝑂 , AxiomVision de-
termines camera 𝑀𝑂 ’s group index 𝑔𝑂 by identifying𝑏𝑂 = (N , 𝑐𝑂 ) to
#nd the group that camera 𝑀𝑂 belongs to, i.e., 𝑀𝑂 ↑ 𝑊𝑆𝐿 .

Perspective-aware Weight Estimation. To maximize the pay-
o! as de#ned in Eq. (1), we propose to use the maximum likelihood
estimator �̂� 𝑆𝐿 ,𝑂 to test whether cameras belonging to group 𝑔𝑂 . This
estimator is designed to yield a unique solution, expressed as:

𝑂↗1∑
𝑄=1

1{𝑀 𝑄 ↑ 𝑊𝑆𝐿 }
|K𝑁 |∑
𝑃=1

(
𝑁𝑁𝑀 , 𝑄 ↗ 𝑃 (𝜶↓𝑁𝑀 , 𝑄

�̂� 𝑆𝐿 ,𝑂 )
)
𝜶𝑁𝑀 , 𝑄 = 0. (4)

Eq. (4) represents the condition for optimality, where the cumula-
tive discrepancy between the predicted payo! and actual payo!
sums to zero, as estimated by the membership indicator of cameras
within the same group 𝑔𝑂 . We use Newton’s method which allows
for e"cient computation of the solution [16, 38]. The historical
2For brevity, we focus on the algorithmic procedures for a singular visual task 𝐿 ↑ 𝑇 ,
noting that the procedures can be executed in parallel for multiple visual tasks𝑇 .
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feedback data from all cameras in the same group, not just camera
𝑀𝑂 , are used to update the estimation, emphasizing the value of
grouping for process acceleration. For the cases where the exact
value of 𝑃 is unknown, the process can be reduced to an estimation
process using 𝜶↓𝑁𝑀 , 𝑄

�̂� 𝑆𝐿 ,𝑂 (The subsequent visual model selection
component following the same method).

Selecting Visual Model with Optimistic Approach. Follow-
ing group assigning and estimation, the currently processed camera
undergoes optimization and reward feedback observations on the
selected visual model. Note that the greedy visual model selec-
tion strategy, i.e., argmax𝑁↑M𝑂

𝑃 (𝜶↓𝑁𝜴𝑀𝐿 ), might result in insu"-
cient exploration of undiscovered visual models, thereby failing to
ensure optimal model selection. We propose to address this chal-
lenge by adopting an “optimistic approach to encourage exploration”
among di!erent visual models [34, 63]. Speci#cally, for any pro-
cessed camera 𝑀 ↑ N , we de#ne the Gramian matrix as 𝜷𝑀,𝑂 =∑

𝑄⇒𝑂
𝑀 𝑁=𝑀

∑ |K𝑁 |
𝑃=1 𝜶𝑁𝑀 , 𝑄𝜶

↓
𝑁𝑀 , 𝑄

, and for the belonging group index 𝑔 of

camera 𝑀, denote 𝜷𝑆,𝑂 =  𝑖𝑈 + ∑
𝑀↑𝑉𝑃

𝜷𝑀,𝑂 , where  𝑖𝑈 is a regu-
larization term added to improve stability. Based on the estimated
�̂� 𝑆𝐿 ,𝐿↗1 for group𝑊𝑆𝐿 , the visual model for round 𝑄 is selected via the
upper con#dence bound strategy:

𝑂𝑂 = argmax
𝑁↑M𝑂

(
𝑃 (𝜶↓𝑁�̂� 𝑆𝐿 ,𝑂↗1) + 𝑌 ↘𝜶𝑁 ↘𝜴↗1

𝑃𝐿 ,𝐿↗1

)
, (5)

where ↘𝜶 ↘𝜴 !
⇑
𝜶↓𝜷𝜶 and 𝑌 is a positive parameter. Note that

Eq. (5) incorporates both empirical payo! exploitation from the #rst
term, as well as exploration of di!erent visual models through the
upper con#dence bound. The observed payo! 𝑁𝑁𝐿 ,𝑂 is then recorded
so to update the evaluated performance of visual model𝑂𝑂 .

Optimizing Selection for Adaptive Accuracy. Subsequently,
the agent selects a set of visual models M𝑂 = (𝑂1, . . . ,𝑂 |K𝐿 | ) for
the processed cameras using the above optimistic selection strategy.
It initially prioritizes visual models based on Eq. (5), by consider-
ation of their deployment on edge nodes and in the cloud. If the
accuracy does not meet the predetermined threshold, the process
continues with the next model, until a stopping criterion is met.
This strategy enables us to prioritize potentially high-performing
and lightweight models while ensuring accuracy even under unfore-
seen circumstances, such as sudden snowy weather. Additionally,
the scheduling agent updates its estimation of visual models based
on the received payo! feedback of each selected visual model, to
ensure that subsequent selections meet the accuracy requirements
on the #rst attempt as much as possible. Through this approach,
our proposed method can achieve rapid visual model adaptation
while ensuring adaptive accuracy across di!erent conditions.

Updating Dynamic Graph for Grouping. For any processed
camera 𝑀 ↑ N , we de#ne 𝑑𝑀,𝑂 =

∑
𝑄⇒𝑂
𝑀 𝑁=𝑀

|K𝑄 | as the number of

e!ective feedbacks up to round 𝑄 . The dynamic graph structure is
then updated to re$ect changes in camera grouping, particularly
adjusting based on the current inferred similarity in perspective
weights. An edge (𝑀𝑂 , 𝑒) is removed if:((𝜴𝑀𝐿 ,𝑂↗1 ↗ 𝜴 𝑊,𝑂↗1

((
2 > 𝑍

(
𝑗 (𝑑𝑀𝐿 ,𝑂↗1) + 𝑗 (𝑑𝑊,𝑂↗1)

)
, (6)

with 𝑗 (𝑘) =
√

1+log(1+𝑋 )
1+𝑋 , 𝑘 ≃ 0. This deleting function stems

from a theoretical optimal graph structure threshold, modi#ed here

for computational feasibility while still maintaining theoretical
validity [17]. Further comparisons will be illustrated in Section 5.
The updated graph 𝑏𝑂 is utilized in the subsequent round.

Adaptive Graph Reconstruction Strategy. To avoid mistak-
enly removing edges that might be correct, the scheduling agent
reinstates the undirected complete graph at a certain probability.
As more payo! feedback is gathered, the accuracy of the estimated
groupings improves the perspective in$uence on visual models.
Consequently, there is a diminished need for frequent graph re-
constructions, and this motivates us to have a design where the
probability 𝑎𝑂 decreases over time. Initially, 𝑎0, set within the range
(0,1), is determined randomly (Line 10-11).

Note that our continual online design complements, rather than
competes with traditional o%ine methods. For example, if prior
knowledge exists about the e!ects of camera perspectives or the
choice of models via the o%ine methods, it can be easily assimilated
into our strategy and progressively re#ned based on AxiomVision.

4.2 Performance Analysis
For the ease of presenting our theoretical analysis, let ↘𝜶𝑁𝐿 ↘2 ⇒ 1
and ↘𝜴𝑀𝐿 ↘2 ⇒ 1,𝑂𝑂 ↑ M𝐿 for all rounds. At each round 𝑄 , a camera
is randomly processed fromN with uniform probability for fairness,
independently of selections in previous rounds. For every visual
task 𝐿 ↑ Q, we evaluate our algorithms by measuring the greatest
di!erence in payo! between the theoretically ideal visual model
(not known beforehand) and the visual model actually chosen. This
di!erence is de#ned as “regret” [5, 34, 45], expressed as:

𝑆𝑙𝑋(𝑑𝐿) = E[
∑
𝑂 ↑T𝑂

∑
𝑀↑N,𝑀𝐿=𝑀

𝑆(M⇓
𝑀𝐿 ) ↗ 𝑆(M𝑀𝐿 ,𝑂 )], (7)

where 𝑑𝐿 denotes the cardinality of T𝐿 and M⇓
𝑀𝐿 denotes the "un-

known" optimal combinatorial set of visual models for task 𝐿.
In line with [17, 38, 44], we posit that E

[
𝜶𝑁𝐿 𝜶

↓
𝑁𝐿

]
is full rank,

with a minimum eigenvalue 𝑚 > 0, and that 𝑘↓𝑁𝐿
𝜴𝑀𝐿 exhibits a

sub-Gaussian tail with a variance not exceeding 𝑛2. Furthermore,
following [16, 38], we consider 𝑃 to be a strictly increasing, contin-
uously di!erentiable link function that is Lipschitz continuous with
constant 𝑜. We denote𝑂𝑌 = inf𝑍↑ [↗2,2] 𝑃⇔ (𝑝) and assume𝑂𝑌 > 0.

De#ning �̃� as the integral
∫ 𝑎
0 (1 ↗ 𝑙↗

(𝑄↗𝑅 )2
2𝑆2 )𝑏𝑞𝑘 with 𝑓 indicat-

ing the maximum number of selected combinatorial visual models
across all rounds [64], we set the tuning parameters 𝑌 and 𝑍 as

follows: 𝑌 = 1
𝑁𝑇

√
8
�̃�
+ 𝑞 ln(𝑑 /𝑞) + 2 ln(4𝑋𝑑 ) and 𝑍 =

√
32𝑞/(�̃�𝑂2

𝑌 ),
where 𝑞 and 𝑋 represent the dimension of the vector and the maxi-
mum number of camera groups under all adjustable perspectives,
respectively. Then, we give the following performance guarantee.

T!"#$"% 1 (R!"#!$ U%%!# B&’()). The regret of AxiomVision
throughout T𝐿 is bounded by 𝑆𝑙𝑋(𝑑𝐿) ⇒ 𝑟

(
𝑐𝑈
𝑁𝑇

√
𝑋𝑓𝑑𝐿 ln(𝑑𝐿)

)
.

Remark: Theorem 1 suggests that the payo! from video analyt-
ics can approach near-optimal performance asymptotically over
rounds, signifying that lim𝑑𝑂→↖

𝑒𝑓𝑅 (𝑑𝑂 )
𝑑𝑂

= 0. The expected regret
of video analytics payo!, de#ned in Eq. (7), arises from two pri-
mary factors for a given visual task 𝐿: the rounds needed to gather
su"cient information for accurate camera attribute estimation and
grouping, and the practice of sharing the visual model within the
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Figure 5: Comparison when
perspective is not considered.

Figure 6: Di"erent deleting
function 𝑗 (𝑘) on regret.

same group instead of making independent selections. Compared
to the ideal scenario where camera grouping is known and cameras
have equal adjustable perspectives, the theoretical convergence
of AxiomVision is nearly optimal. This scenario is analogous to
managing 𝑋 independent groups, each undergoing 𝑑𝐿/𝑋 learning
rounds, resulting in a regret lower bound of ω( 𝑐

𝑁𝑇

√
𝑞𝑋𝑑𝐿) [13].

Proof Sketch: For any camera 𝑀 with group index 𝑔 , denote the fre-
quency associated with group𝑊𝑆 up to round 𝑄 as𝑑𝑆,𝑂 =

∑
𝑀↑𝑉𝑃

𝑑𝑀,𝑂 ,

and 𝑋𝑆𝐿 ,𝑂 (𝜴 ) =
∑𝑂↗1

𝑄=1 1{𝑀 𝑄 ↑ 𝑊𝑆𝐿 }
∑ |K𝑁 |
𝑃=1 𝑃 (𝜶↓𝑁𝑀 , 𝑄

𝜴 )𝜶𝑁𝑀 , 𝑄 . With Eq.

(4), then 𝑋𝑆𝐿 ,𝑂 (�̂� 𝑆𝐿 ,𝑂↗1) =
∑𝑂
𝑔=1 1{𝑔𝑔 ↑ 𝑖 }∑ |K𝑁 |

𝑃=1 𝑁𝑁𝑀 , 𝑄𝜶𝑁𝑀 , 𝑄 . With
probability at least 1 ↗ 𝑠 , for some 𝑈 ⇒ 𝑄 with 𝜷𝑆𝐿 , 𝑄 invertible:(((𝑋𝑆𝐿 ,𝑂 (�̂� 𝑆𝐿 ,𝑂 ) ↗ 𝑋𝑆𝐿 ,𝑂 (𝜴 𝑆𝐿 )

(((2
𝜴↗1

𝑃𝐿 ,𝐿

⇒ 𝑑𝑆𝐿 , 𝑄𝑚min (𝜷𝑆𝐿 ,𝑂 )↗1+𝑞 ln
𝑑𝑆𝐿 ,𝑂
𝑞

+2 ln 1
𝑠

Here, 𝑚min (𝑡) denotes the minimum eigenvalue of matrix𝑡 . Then,
𝜸 (𝑄, 𝑠) = 1

𝑁𝑇

√
8
�̃�
+ 𝑞 ln 𝑂

𝑈 + 2 ln 1
 , by the property of Lipschitz, we

can assert that the currently estimated group index 𝑔𝑂 for camera 𝑀𝑂
is correct. Consequently, the correct grouping can be formed based
on the deleting rule of Eq. (6). Consider the instantaneous regret
𝑆𝑙𝑋𝑂 at round 𝑄 for the selected visual model𝑂𝑂 under task 𝐿. Given
the correct grouping, we obtain: 𝑆𝑙𝑋𝑂 =𝑃 (𝑘↓𝑁𝐿𝜴𝑀𝐿 ) ↗ 𝑃 (𝜶↓𝑁𝐿

𝜴𝑀𝐿 )⇒
2𝑌𝑜

((𝜶𝑁𝐿

((
𝜴↗1

𝑃𝐿 ,𝐿↗1
. Finally, we derive:𝑆𝑙𝑋(𝑑𝐿) = E

∑𝑑𝑂,0
𝑂=1 E𝑂 (𝑆𝑙𝑋𝑂 )


+

E
∑𝑑𝑂

𝑂=𝑑𝑂,0+1 E𝑂 (𝑆𝑙𝑋𝑂 )

⇒ 𝑟

(
𝑐𝑈
𝑁𝑇

√
𝑋𝑓𝑑𝐿 ln(𝑑𝐿)

)
.

5 Performance Evaluation
5.1 Implementation and Setup

Testbed. Leveraging public 360°VR camera feeds from [1–4], our
setup involves NVIDIA Jetson TX2, Nano, and TX2 NX end devices
handling |N | = 308 video segments from di!erent perspectives,
with ENs powered by NVIDIA GeForce RTX 4060 and HPC Dell
PowerEdge R930 servers as the cloud center. Rectilinear images
are extracted from panorama to function as adjustable perspectives
[36]. Beyond the DNN model used in Section 2, we employ the
lightweight YOLOv5-s, trained on the COCO dataset under diverse
lighting, #nally containing a total of 17 optional visual models.
Visual tasks, in line with [40, 66], include Classi!cation, Counting,
Detection, and Aggregation. Utilizing approaches from [37, 44, 67],
we construct and decompose a performance payo!matrix for these
tasks across all video segments, extracting feature vectors for visual
model index representation. Camera bandwidth varies between 1
and 2 Mb/s, with EN to server uplink around 10 Mb/s [25, 41].

Metrics. We evaluate the following performance metrics: (a)
Accuracy: Assessed for the four visual tasks outlined in [40, 66]. (b)

Figure 7: In#uence of group-
ing cameras on acceleration.

Figure 8: The bene!t of in-
creased camera count.

Round: As described in Section 3. (c) Regret: Detailed in Eq. (7). (d)
Time: Encompasses the algorithm’s execution time, visual model
inference time (e.g., YOLOv5-s), and initial transmission time.
Notably, transmission and analysis are not sequential; initial data
upload incurs a startup latency, followed by continuous and parallel
transmission and analysis. (e) Bandwidth: Normalized bandwidth
usage for transmitting encoded video segments. Through both
theoretical and empirical analysis, AxiomVision parameters are set
to (𝑌, 𝑍) = (0.25, 0.1). Note that we periodically run YOLOV5-x
to acquire true bounding boxes for accuracy assessment (included
in the total consumption measurements), and additional extended
experiments can be found in Appendix B.

5.2 In-depth Analysis of Exploring Results
In pursuit of evaluating the e!ectiveness and rationale of certain
components within our AxiomVision design, we conduct a compre-
hensive series of experiments under the object detection task.

Perspective E"ects. To underscore the importance of camera
perspective alongside server-side models, we design an AxiomVi-
sion variant without perspective consideration, w/o Perspective, and
compared it with a version integrating camera perspective, w/ Per-
spective, plus a greedy method providing #xed-perspective optimal
model across all feeds. As depicted in Fig. 5, results show w/ Perspec-
tive improvesmean accuracy by 2.7% overw/o Perspective. Moreover,
both w/o Perspective and w/ Perspective by facilitating online model
selection, surpass the greedy strategy by 2.3% and 5.6% in accuracy.

Deleting Function Evaluation. Based on [49, 51], we assess

various deleting functions: 𝑗1 (𝑘) =
√

1+ln(1+𝑋 )
1+𝑋 (ours), 𝑗2 (𝑘) =

1
(1+𝑋 )2 , 𝑗3 (𝑘) = 1⇑

1+𝑋 , 𝑗4 (𝑘) = 1
4⇑1+𝑋 , 𝑗5 (𝑘) = 1 + ln(1 + 𝑘), and

𝑗6 (𝑘) =
√
1 + ln(1 + 𝑘). We evaluate the regret incurred by di!erent

functions at 15, 50, 200, and 850 rounds for each camera, with the
optimal strategy determined through the YOLOv5-x model. Fig. 6

shows that the function
√

1+log(1+𝑋 )
1+𝑋 consistently delivers optimal

performance across various rounds with minimal regret.
Grouping Impact on Acceleration. Exploring the e!ect of

camera grouping on acceleration within the AxiomVision frame-
work, we compare performances between ungrouped (w/o Group-
ing) and grouped (w/ Grouping) setups, as illustrated in Fig. 7. By
setting accuracy thresholds from 0.8 to 0.87, w/ Grouping signi#-
cantly reduces the total number of rounds across all cameras by
at least 1.27↙, achieving an average acceleration of 3.23↙ and a
median of 2.18↙. Additionally, we observe that increasing the num-
ber of cameras leads to a reduction in the required rounds while
achieving a similar level of accuracy, as shown in Fig. 8.
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Figure 9: Evaluating usage of
combinatorial set of models.

Figure 10: Set-based vs. graph-
based on executing time.

Figure 11: Accuracy on !xed and adjustable perspectives.

Combinatorial Set Bene!ts. Referring to Section 3, we ad-
dress dynamic accuracy needs by assembling a combinatorial set
of visual models for selection, as illustrated in Fig. 9. Highlighting
this design’s bene#ts, we compare it with a non-combinatorial sys-
tem (w/o Combing), which, after applying w/ Combing, would run
subsequent high-load models at equal probability. The cumulative
distribution function (CDF) for accuracy of object detection in Fig.
9 shows that using the combinatorial set (w/ Combing) achieves a
median precision improvement over the non-combinatorial method
(w/o Combing) by 2.3%, with an average increase of 2.6%.

Graph Grouping E$ciency. In Algorithm 1, we implement a
graph-based camera grouping strategy, and a set-basedAxiomVision
algorithm is designed here. Through testing execution time across
various accuracy thresholds of 308 camera feeds, as depicted in
Fig. 10, the graph-based approach signi#cantly reduces execution
time by factors of 1.13↙, 3.62↙, 9.82↙, and 10.50↙. Particularly in
high-round scenarios, this graph-based grouping method notably
surpasses the set-based grouping in time e"ciency.

5.3 Benchmarking against State-of-the-Art
Benchmarks. Our comparison includes the following schemes.

(1) Chameleon, capable of dynamically selecting the visual model
based on temporal and spatial correlations [28]. (2) Dual-MS, in-
spired by [15], categorizes visual models into two layers: a simpler
model and a more complex model, for e!ective model selection. (3)
EAMU, standing for edge-assisted on model update in adverse envi-
ronments [31]. (4) Greedy, which, during the initial short segment
of analysis for all video sources o%ine, runs all models to identify
the one o!ering the highest average accuracy.

Figure 12: Decomposition of
total time overhead.

Figure 13: Accuracy with
varying bandwidth.

Accuracy on Fixed & Adjustable Perspectives. The average
accuracy of 2000 rounds is illustrated in Fig. 11. Across di!erent
visual tasks for #xed perspectives, AxiomVision, which employs a
continuous online model selection, consistently outperforms EAMU,
Chameleon, Dual-MS and Greedy. Furthermore, under adjustable
perspectives, EAMU and Chameleon experience a deterioration in
accuracy due to their lack of consideration about the impact of
source-side camera perspectives.

Decomposition of Total Time. We compare our approach
under 𝑑𝐿 = 2000,⇐𝐿 ↑ Q with Chameleon (setting its parameter in-
terval = 5 and top-𝑇 = 5 for re-pro#ling video pipelines, referred to
as execution time), and EAMU (calculating its average training cost
for retraining, also denoted as execution time). Fig. 12 indicate that
although our method leads to an increase in inference time due to
the adoption of a combinatorial design, it e"ciently reduces execu-
tion time by eliminating the need for the re-pro#ling in Chameleon
and the retraining process in EAMU. In comparison, Chameleon
allocates nearly identical time for spatial-temporal pro#ling; EAMU
incurs a signi#cant additional time cost due to its retraining pro-
cess. Moreover, the initiation time for transmission is markedly the
smallest in scale under 200 kbps bandwidth constraint.

Impact of Bandwidth Condition. In Fig. 13, we benchmark
our methodology against Chameleon across the above tasks (abbre-
viated as 𝐿1,𝐿2,𝐿3,𝐿4). EAMU is omitted owing to its retraining
architecture, which diverges from the context of bandwidth. The
outcomes demonstrate that the strategic approach of AxiomVision,
which involves selectively deploying complex models for tasks
where accuracy is compromised, signi#cantly boosts performance
across all visual tasks. This advantage becomes particularly promi-
nent in scenarios of limited bandwidth, underscoring our method’s
e"ciency in bandwidth-restricted video analytics.

6 Conclusion
We propose AxiomVision, an innovative framework guaranteeing
performance for a wide range of environments and visual tasks.
AxiomVision leverages dynamic model selection and a tiered edge-
cloud architecture. With experiments based on extensive real-world
camera videos,AxiomVision introduces a novel approach to consider
camera perspective and unveils a group-based acceleration strategy
that capitalizes on camera cluster topology. Furthermore, AxiomVi-
sion is designed with a theoretical performance guarantee even
under the worst-case scenarios, that is, AxiomVision can asymptoti-
cally converge to the optimal model section policy. Tested on a built
platform, AxiomVision demonstrates superior performance over
existing works, and greatly improves adaptability and e"ciency
across various video analytics applications.
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