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ABSTRACT
Within the current Internet, autonomous ISPs implement bi-
lateral agreements, with each ISP establishing agreements
that suit its own local objective to maximize its profit. Peer-
ing agreements based on local views and bilateral settle-
ments, while expedient, encourage selfish routing strategies
and discriminatory interconnections. From a more global
perspective, such settlements reduce aggregate profits, limit
the stability of routes, and discourage potentially useful peer-
ing/connectivity arrangements, thereby unnecessarily balka-
nizing the Internet. We show that if the distribution of profits
is enforced at a global level, then there exist profit-sharing
mechanisms derived from the coalition games concept of
Shapley value and its extensions that will encourage these
selfish ISPs who seek to maximize their own profits to con-
verge to a Nash equilibrium. We show that these profit shar-
ing schemes exhibit several fairness properties that support
the argument that this distribution of profits is desirable. In
addition, at the Nash equilibrium point, the routing and con-
necting/peering strategies maximize aggregate network prof-
its, encourage ISP connectivity so as to limit balkanization.

1. INTRODUCTION
The Internet is composed of thousands of connected au-

tonomous systems (ASes). Before transitioning to the private
sector, these ASes’ primary focus was to improve connectiv-
ity and network performance - who got paid was not the pri-
mary concern. However, in its current form, ISPs, each com-
posed of one or more ASes, has a primary interest to max-
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imize its own profit. Connectivity is currently implemented
via bilateral agreements that are generally either a peering
relationship where ISPs offer to carry one another’s traffic,
or customer-provider relationship where one ISP pays the
other for transit [12].

These local, bilateral agreements may look beneficial from
a local perspective, but from a more global perspective, they
are very unappealing. ISPs will often resort to selfish routing
such as using the hot-potato algorithm [21]. Furthermore,
ISPs will often refrain from connecting to another ISP when
such a connection does not increase its own profit, regardless
of the benefit that the connection might provide the global
system. This selfish behavior can lead to a balkanization of
the Internet, with the global infrastructure dismantling into
a set of networks that have varying degrees of accessibility
and reachability, limiting their usefulness [8]. This balka-
nization inhibits the Internet’s evolution toward the FCC’s
notion of a universal core connecting service [2] that can
implement the mandatory functions imposed by the FCC on
all telephony providers. To summarize, the lack of a more
global view on the design of monetary incentives for ISPs
to peer and route is limiting competition, thereby limiting
technical innovation.

In this paper, we explore how to design a profit-sharing
mechanism that would lead to a better engineered Internet.
In other words, rather than allow ISPs to set their prices and
obtain profits locally, the profit-sharing mechanism should
take the collection of revenue generated by the entire net-
work and divide this revenue “fairly” among the participat-
ing ISPs. The mechanism we implement is based on the
Shapley value [25, 20]. This mechanism is desirable from
both the global level as well as the local, ISP level. From
a global perspective, the same traffic demands can be sup-
ported while increasing the aggregate network profit, and
balkanization will reduce as this novel mechanism will pro-
vide more encouragement for connections. From the local
perspective, the Shapley value exhibits several fairness prop-
erties that formally indicate that an ISP’s profit is propor-
tional to its contribution to the value of the network. More
specifically, our contributions are the following:



• We propose (Section 2) a novel multilateral settlement
model, where customers pay for end-to-end services
and ISPs collectively share the revenue for providing
these services.

• We implement this settlement via a mechanism based
on the Shapley value, and show that the following are
achieved (Section 3):

– Efficiency: The aggregate revenue delivered to
the ISPs equals the aggregate payments accumu-
lated from the customers (i.e., all funds are ac-
counted for).

– Fairness: ISPs who make greater contributions
to the profit of the aggregate network receive a
greater share of this profit. This general statement
is specified more formally and precisely as a set of
four specific properties (symmetry, balanced con-
tribution, dummy, and strong monotonicity).

– Optimal Routing: Given any fixed interconnec-
tion topology, by allowing each ISP to select routes
that maximize its individual profit, the global rout-
ing topology converges to a Nash equilibrium where
the aggregate profit of the system is also maxi-
mized (Section 4).

– Interconnection Incentives: Each ISP’s selfish
objective will encourage it to connect to other ISPs
when such a connection increases the overall profit
of the network, evolving the network to a better-
connected, more efficient state (Section 5).

• We illustrate examples of profit distribution among ISPs
including the real AS topology of Columbia Univer-
sity. We also simulate and compare the profits un-
der hot-potato routing and the optimal routing resulted
from our new mechanism. We show that by using the
new mechanism, every ISP receives greater profit.

Our proposed mechanism is a considerable and likely con-
troversial shift from the current bilateral settlements where
an ISP’s profit are computed solely from its local interac-
tions. This all-local property gives the ISP a false sense of
independence since these profits are in fact affected by other
ISPs’ decisions throughout the network. Nonetheless, this
sense of independence and profit based on local perception is
appealing. The two principle motivations we present for our
mechanism are: (i) Our profit redistribution is not a zero sum
game, and in fact all participating players stand to gain, and,
(ii) From a social (and thus policy) perspective, our mecha-
nism encourages interconnection, thereby leading to a better
connected and more robust Internet.

We start off with preliminaries and a model description
needed for our framework in the next section.

2. COOPERATIVE FRAMEWORK

2.1 Three Layers of the Current Internet and
a Novel Two-Stage Settlement Model

We view the current Internet as three layers of bilateral in-
teractions between ISPs as illustrated in Figure 1. At the bot-
tom layer, pairs of ISPs decide whether or not connect. They
decide the venue and type of the connections. For example,
peering connections assume a symmetric traffic pattern go-
ing through the links; while customer-provider links assume
asymmetric traffic flows that the provider ISP helps for tran-
sit. At the middle layer, each ISP advertises BGP routes to
neighboring ISPs and decides how to route traffic efficiently
to reduce its own cost. For example, hot-potato routings are
often used to choose the closest egress point based on the
intra-domain cost. At the top layer, end users pay their local
ISPs for the services and customer ISPs pay their provider
ISPs by bilateral agreements. Although all layers depend
on each other, due to the limitations of bilateral interactions
and selfish decisions of the ISPs, the behavior of the network
from a global perspective can be highly inefficient and to a
large extent unregulated.

Figure 1: A view of ISP interactions of the Internet.

Unlike the existing bilateral agreements, we consider a
collection of ISPs, providing end-to-end services to all their
customers, as a whole. We propose a two-stage multilateral
financial settlement, illustrated in Figure 2, as the following.

S1 Customers make service agreements (charge and re-
quirements) at their local ISPs; however, from cus-
tomers’ view, the agreement is on the end-to-end ser-
vice rather than a connecting and forwarding service.

S2a All payments from customers are collected by a multi-
lateral profit distribution mechanism φ which decides
the proportion of revenue each ISP receives.

S2b Knowing the rule of the profit distribution mechanism,
each ISP makes local decisions on interconnection E
and route R to maximize its profit.



Figure 2: A two-stage multilateral settlement model.

In the first stage, the service negotiation at the edge of the
network avoids the complication of buying resources from
multiple ISPs along the communication paths for customers.
Our pricing model is extremely general and service agree-
ments are not restricted to service bundling, service differen-
tiation or the pricing structure of the services. For example,
services can be charged at its origin or destination. Commer-
cial content providers might be charged more than non-profit
organizations. Either usage-based pricing or flat-rate pricing
can be applied. In the second stage, the mechanism φ(E,R)
distributes revenues among ISPs for every possible intercon-
nection topology E and routing decision R. Our objective is
to design the profit distribution mechanism φ(E,R) that en-
courages selfish ISPs to interconnect extensively and route
efficiently.

2.2 Network Model
We consider a network system comprised of a set of ASes.

We denote N as the set of ASes. N = |N | denotes the
number of ASes in the network. We use AS and ISP inter-
changeably, assuming each ISP has one AS. ISPs with mul-
tiple ASes can be considered as one AS in our model.

To fairly distribute profits among ASes, we want to mea-
sure the contribution of each AS for generating those profits.
In particular, we measure the profits that can be generated by
subsets of the ASes. We call any nonempty subset S ⊆ N a
coalition of the ASes. Each coalition can be thought of as a
sub-network that might be able to provide partial services to
their customers. We denote v as the worth function, which
measures the value produced by the sub-networks formed
by all coalitions. In other words, for any coalition S, v(S)
defines the profit generated by the sub-network formed by
the set of ASes S. Through the worth function v, we can
measure the contribution of an AS to a group of ASes as the
following.

Definition 1. The marginal contribution of AS i to a coali-
tion S ⊆ N\{i} is defined as ∆i(v,S) = v(S∪{i})−v(S).
In the next section, we will describe the mechanism that uses
this worth function to distribute profits among ASes. In the
rest of this section, we develop the worth function for three

levels of views of the network model: the AS level, the router
level, and the AS peering level.
The AS level model:

We denote the AS level network system as (N , v, EN , RN ).
EN denotes the set of directed peering links between the
ASes. The graph GN = (N , EN ) defines the AS level
topology of the network. We denote GS as the subgraph
of GN induced by S, defined by GS = (S, ES), where
ES = {(i, j) ∈ E : i, j ∈ S}. GS is the AS level topol-
ogy formed by the coalition S. We say that AS i is con-
nected to AS j by GS if there is some k ≥ 1 and a se-
quence (n0, n1, . . . , nk) such that n0 = i, nk = j, and
(ni−1, ni) ∈ ES for 1 ≤ i ≤ k.

We consider that the network provides the end-to-end data
delivery services between any pair of the ASes. We denote
Λij as the required end-to-end traffic intensity from AS i to
AS j. Λij can be regarded as the volume of traffic contracted
over a certain period of time for delivery. In the current In-
ternet, the time scale for these contracts is often monthly.

We denote RN as a feasible route at the AS level that
achieves the traffic intensity {Λij : i, j ∈ N} performed by
all coalitions S ⊆ N . Each RN (S) denotes the route on the
subgraph GS when the coalition S provides the end-to-end
services. Given the required traffic intensity {Λij : i, j ∈
N}, for any coalition S ⊆ N , a feasible route RN (S) =
{rNij (S) : i, j ∈ N} defines the traffic intensity achieved
on the links of GS for every source-destination pair of ASes
i and j. We define rNij (S, (k, l)) = 0 if i and j are not
connected by the subgraph GS or link (k, l) /∈ ES . This is
because AS i is not connected to j by the coalition S or the
link (k, l) does not belong to the sub-network represented
by GS . Otherwise, a feasible route provides the end-to-end
service from AS i to AS j. We denote Xij

l as the traffic
intensity going through AS l. A feasible route has to satisfy
the following flow conservation constraints:

Xij
i = Xij

j =
∑
k∈N

rNij (S, (i, k)) =
∑
k∈N

rNij (S, (k, j)) = Λij .

Xij
l =

∑
k∈N

rNij (S, (k, l)) =
∑
k∈N

rNij (S, (l, k)) ∀l ∈ S\{i, j}.

Given a feasible route RN , we can also measure the aggre-
gate traffic intensity going through each AS l as

Xl(S, RN ) =
∑

i,j∈N
Xij

l (S, RN ). (1)

The router level model:
In this model, we assume that the network system’s router

level topology is available to all ASes . We denote the router
level network system as (N , v,M,E, R). M denote the set
of routers in the network. E denotes the set of directed links
connecting the routers. The graph G = (M,E) defines the
router level topology of the network. We denote the subset
of routers possessed by AS i as mi ⊆ M . Mathematically,
{mi : i ∈ N} defines a partition of M , i.e.

⋃N
i=1 mi =

M and mi ∩ mj = ∅ for i 6= j. At the router level, the



topology GS , formed by the coalition S, is defined by GS =
(MS , EMS ), where MS =

⋃
i∈S mi and EMS = {(i, j) ∈

E : i, j ∈ MS}.
Similar to the AS level route RN , we denote R as a fea-

sible route at the router level. Instead of having AS level
traffic intensity {Λij : i, j ∈ N}, we assume that the router-
to-router traffic intensity {λij : i, j ∈ M} is known. For any
coalition S ⊆ N , a feasible route R(S) = {rij(S) : i, j ∈
M} defines the traffic intensity achieved on the links of GS
for every source-destination pair of routers i and j. Again,
we define rij(S, (k, l)) = 0 if i and j are not connected by
the subgraph GS or link (k, l) /∈ EMS . Otherwise, a fea-
sible route has to satisfy the router level flow conservation
constraints:∑

k∈M

rij(S, (i, k)) =
∑
k∈M

rij(S, (k, j)) = λij .

∑
k∈M

rij(S, (k, l)) =
∑
k∈M

rij(S, (l, k)) ∀ l ∈ M\{i, j}.

We define R as the space of all feasible routes R.

Figure 3: Router level model versus AS level model.

Both AS level and router level models can be used to de-
scribe the same network system. However, the router level
model assumes that we know detailed information of the net-
work. Given the router level information of a network, we
can derive the AS level model for that network. With the
router level topology (M,E), we can construct the corre-
sponding AS level topology (N , EN ) where EN is defined
by EN = {(i, j)|(k, l) ∈ E, k ∈ mi, l ∈ mj}. The traffic
intensity at the AS level is just the aggregate router level traf-
fic intensity, i.e. Λij =

∑
k∈mi,l∈mj

λkl ∀ i, j ∈ N . Figure
3 illustrates an example of a router level topology and the
corresponding AS level topology.
The AS peering level model:

In reality, router level information might not be available;
however, AS level information might be too rough to de-
scribe the network system. For example, although the traffic
patterns between ASes can often be measured and estimated
as the AS level traffic intensity {Λij}, the router level traf-
fic intensity {λij} could be difficult to obtain. Because each
AS might consist hundreds of routers and cover a large geo-
graphical area, the AS level information, on the other hand,

does not distinguish the multiple peering points between two
ASes. In the AS peering level model, each AS does not need
to reveal its internal router level topology. It only needs to re-
veal the set of edge routers (that, for instance, BGP exposes).
Presumably, all the routers of an AS are connected, there-
fore, the set of edge router forms a logical fully-connected
graph.

Figure 4: The corresponding AS peering level model.

We denote the AS peering system as (N , v,Me, Ee, Re),
where Me is the set of all edge routers of all ASes and Ee is
the set of inter-AS peering links and logical internal links for
every pair of edge routers. Figure 4 shows the correspond-
ing AS peering topology for the network system shown in
Figure 3. Re denotes the feasible routes defined on the sub-
graphs of Ge = (Me, Ee). We can define Re similarly as
the feasible route R, except each intra-AS route only takes a
logical link which directly connects the two edge routers of
the AS. The AS peering model needs less information than
the router level model, and describes different peering links
between ASes. More realistically, the edge router informa-
tion might be advertised by the ASes themselves, and the
peering link establishments and usage can be seen via BGP
routes.
The worth function v:

After introducing the AS level, the router level and the
AS peering level of the network system, we construct of the
worth function v for them. We define the worth function v
to be the profit, i.e. the revenue minus the routing cost, as

v(S) = v0(S)− vc(S), (2)

where v0 denotes the revenue and vc denotes the routing
cost. We define the revenue generated from the end-to-end
service connecting AS i to AS j by Wij . The revenue func-
tion v0 is defined as the following.

v0(S) =
∑

i,j∈S
Wij1{i is connected to j by AS level graph GS}. (3)

The revenue function depends on the topology of the net-
work. As long as the AS i is connected to AS j, the revenue
function indicates that a revenue of Wij can be obtained
from the customers for providing data delivery service at the



traffic intensity Λij . We assume that a feasible route can be
applied to achieve this service; however, the revenue does
not depend on which route is used to achieve the service. On
the other hand, the routing cost vc not only depends on the
topology of the network, but also depends on the route for
achieving end-to-end services.

We start from the router level topology, defining the rout-
ing cost on each link (i, j) ∈ E. We denote cij as the rout-
ing cost function on link (i, j), defined by cij(x) = cs

ij(x)+
cr
ij(x), where cs

ij and cr
ij denote the sending cost of router

i and the receiving cost of router j. We assume that cs
ij(x)

and cr
ij(x) are monotonically increasing with the aggregate

traffic intensity x on the link and cs
ij(0) = cr

ij(0) = 0.
We denote ck as the routing cost of an AS k, defined as
the aggregate sending and receiving costs of the links pos-
sessed by the AS. Given a route R on a router level topol-
ogy, for any coalition S, AS k’s routing cost is defined by
ck(S, R) = cs

k(S, R) + cc
k(S, R) where the sending cost

cs
k(S, R) and the receiving cost cr

k(S, R) are defined as the
following:

cs
k(S, R) =

∑
(l1,l2)∈GS ,l1∈mk

cl1l2

 ∑
i,j∈MS

rij(S, (l1, l2))

 ,

cr
k(S, R) =

∑
(l1,l2)∈GS ,l2∈mk

cl1l2

 ∑
i,j∈MS

rij(S, (l1, l2))

 .

In reality, the instantaneous traffic intensity varies and the
routing cost might depend on the congestion level. Here, we
consider the total routing cost incurred over a certain period
of time, therefore, we consider the costs as a function of the
average traffic intensity. Thus, given the router level infor-
mation R, we define the cost function vc as the following:

vc(S, R) =
∑
k∈N

ck(S, R). (4)

At the AS level topology, we consider each AS as a set
of links and the routing costs can be imposed on each AS.
Without the router level information, we assume that the cost
function ck of AS k is monotonically increasing with the
traffic intensity going Xk through it. Given an AS level route
RN , the routing cost function vc becomes:

vc(S, RN ) =
∑
k∈N

ck(Xk(S, RN )), (5)

where Xk is the traffic intensity going through AS k defined
by Equation (1).

Finally, for an AS peering topology, the cost function vc

is similar to that of the router level topology. The costs can
be defined on the set of links Ee, including peering links and
logical intra-AS links, instead of router level links E.

3. PROFIT DISTRIBUTION MECHANISM
In this section, we formally define the class of profit dis-

tribution mechanisms φ and derive a specific mechanism ϕ
based on various desirable properties. We will show that the
mechanism ϕ is also compatible to optimal routes and smart
interconnection in later sections.

Definition 2. A profit distribution mechanism is an opera-
tor φ on a network system (N , v) that assigns a profit vector
φ(N , v) = (φ1, . . . , φN ) in RN . Each φi(N , v) denotes the
assigned profit of AS i.
Remark: For the network system (N , v), we do not specify
if it is a router level or an AS level system. We suppose that
the topology and the feasible route are fixed, therefore, all
information is embedded into the worth function v defined
by Equation (2). Later, when ISPs change interconnection
and routing decisions, links E and routes R will appear as
parameters for the network system.

3.1 Desirable Properties
We design a suitable mechanism φ(N , v) that satisfies the

following desirable properties among ASes.

Property 1 (EFFICIENCY).
∑

i∈N φi(N , v) = v(N ).
The efficiency property requires that the assigned profit bal-
ances the profit received from the service. In other words,
the mechanism does not contribute or receive extra revenue.
Since v is defined as the profit (revenue minus cost), all costs
will be recovered from the revenue and the profit distribution
mechanism determines the surplus for each AS.

Property 2 (SYMMETRY). If v(S ∪ {i}) = v(S ∪ {j})
for all S ∈ N\{i, j}, then φi(N , v) = φj(N , v).
The symmetry property requires that if two ASes contribute
the same to every subset of other ASes, they should receive
the same amount of profit.

Property 3 (BALANCED CONTRIBUTION). For any i, j ∈
N , j’s contribution to i equals i’s contribution to j, i.e.
φi(N , v)− φi(N\{j}, v) = φj(N , v)− φj(N\{i}, v) .
Here, (S, v) for some S ⊂ N defines the distributed profit
for a sub-system of (N , v), where all ASes N\S are re-
moved from the system and v(·) is restricted to the subsets of
S. The balanced contribution property addresses the fairness
between any pair of ASes. If we start with a two-AS system
(N , v) = ({1, 2}, v), the gain (or loss) from cooperation is
v(N )− v({1})− v({2}). Thus, the egalitarian solution is

φi(N , v) = v({i})+
1
2
[v(N )−v({1})−v({2})], i = 1, 2.

The balanced contribution property preserves and general-
izes the egalitarian property in the sense that by reducing
ASes recursively, the family of {φi(S, v)}S⊂N ,i∈S consti-
tutes the egalitarian solutions [16].

Property 4 (DUMMY). If i is a dummy AS, i.e. ∆i(v,S) =
0 for every S ⊆ N\{i}, then φi(N , v) = 0.



The dummy property requires that ASes that have no marginal
contribution to any set of other ASes should receive zero
profit. Because these ASes cannot improve the cooperation
for making any potential profit, it’s harmless to remove them
from the system.

Property 5 (STRONG MONOTONICITY). If (N , v) and
(N , w) are two systems such that for some i ∈ N , ∆i(v,S)
≥ ∆i(w,S) for all S ⊆ N\{i}, then φi(N , v) ≥ φi(N , w).

Property 6 (ADDITIVITY). Given any two systems (N , v)
and (N , w), if (N , v + w) is the system where the worth
function is defined by (v + w)(S) = v(S) + w(S), then
φi(N , v + w) = φi(N , v) + φi(N , w) for all i ∈ N .
Both strong monotonicity and additivity properties connect
the distributed profits of two systems that only differ in the
worth functions. Suppose v and w represent two differ-
ent types of services provided by the same group of ASes.
Comparing the contribution across two different services,
the strong monotonicity property requires that the more an
AS contributes to a service, the more profit it receives. The
additivity property requires the profit distribution mechanism
to be an additive operator on the space of the worth func-
tion. Additivity property guarantees that if the service worth
is additive, then the distributed profit is the sum of the prof-
its generated by serving each individual service. In other
words, profit distribution for service v will not be affected
by the service w. In practice, we can consider a subset of
ASes of the whole Internet which provides certain QoS ser-
vice by devoting separate bandwidth provisions. The profit
assigned for this QoS service only depends on the profit of
the QoS service itself.

3.2 The Shapley Value Mechanism
Proposed by Lloyd Shapley [25, 20], the Shapley value

is known to be the unique value satisfying all six properties
above.

Definition 3. The Shapley value ϕ is defined by

ϕi(N , v) =
1

N !

∑
π∈Π

∆i(v, S(π, i)) ∀ i ∈ N , (6)

where Π is the set of all N ! orderings of N and S(π, i) is
the set of players preceding i in the ordering π.
Remark: The Shapley value of an AS can be interpreted as
the expected marginal contribution ∆i(v,S) where S is the
set of ASes preceding i in a uniformly distributed random
ordering. The Shapley value depends only on the values
{v(S) : S ⊆ N}.

In particular, if the routing costs are negligible compared
with the revenue generated from the services, we can re-
gard the revenue function v0 as the worth function. In that
case, the router level system (N , v,M,E, R), the AS level
system (N , v, EN , RN ) and the AS peering level system
(N , v, Ee, Re) can be reduced into the system (N , v0, EN ),
which only depends on the structure of the AS level graph

(N , EN ). The Shapley values of the system (N , v0, EN )
can be calculated by substituting v with v0 in Equation (6).
The value ϕi(N , v0, EN ) is referred to as the Myerson value
[17] in the literature.

4. INCENTIVE FOR OPTIMAL ROUTING
Given a fixed topology and a feasible route, the Shapley

value ϕ(N , v) achieves various desirable properties as men-
tioned in last section. In this section, we still assume that
the ASes form a fixed topology; however, each AS i might
want to use a specific feasible route that maximizes its profit
ϕi(N , v). In particular, we focus on a router level system
(N , v,M,E, R). We drop the fixed parameters M and E,
denoting the system as (N , v, R). The problem becomes
that each AS i might choose a route Ri that maximizes its
profit ϕi(N , v, Ri) under the Shapley value mechanism. We
analyze the routes that the Shapley value mechanism induces
ASes to use. Although these analysis are performed on a
router level system, the results are applicable to AS level
and AS peering level systems as well.

4.1 Optimal Routes and Equilibrium
From a system perspective, we wish that ASes would choose

the route that maximizes the aggregate profit of the network.
We define the set of all optimal routes R∗ as the following.

R∗ = {R|R ∈ R, v(S, R) = sup
R′

v(S, R′)∀S ⊆ N}. (7)

Notice that the optimal routing strategy might not be unique.
We refer to R∗ as any optimal route in R∗.

Since the worth function v = v0 − vc, where v0 does not
depend on the route R, any optimal route R∗ ∈ R∗ also
minimizes the aggregate routing cost vc(S) for any coalition
S. However, selfish ASes might want to minimize their own
costs instead of the aggregate routing cost. Consequently,
they might not follow the optimal route. We define a routing
strategy Ri, a possible route chosen by AS i, as the follow-
ing.

Definition 4. A routing strategy Ri = {rjk : j, k ∈ M} of
AS i is a set of feasible routes where each rjk is defined on
the domain {S : i ∈ S ⊆ N} × E.
Notice that a routing strategy has the same definition as a
feasible route R defined in Section 2.2 except it is defined
on a sub-domain. Ri only contains the routes when AS i is
part of the coalition S. We interpret Ri as a routing strategy
of AS i because it gives AS i all the possibility to change the
routes when i is participating the cooperation. In reality, AS
i might not be able to control all the routes for any coalition
S 3 i; however, we define a larger space of routing strategies
that AS i can possibly implement.

Similarly, we denote the space of all routing strategies of
AS i as Ri. The set of optimal routing strategies of AS i is
defined by

R∗
i = {Ri|Ri ∈ Ri, v(S, R) = sup

R′
v(S, R′)∀ i ∈ S ⊆ N}.

(8)



We also refer to R∗
i as any optimal routing strategy in R∗

i .
Given a route R and a routing strategy Ri, we define an up-
dated route R⊕Ri as the following.

R⊕Ri(S) =
{

Ri(S) if i ∈ S
R(S) if i /∈ S.

R⊕Ri can be interpreted as the new route after AS i applies
the strategy Ri to the old route R. If Ri ∈ R∗

i , the R ⊕ Ri

becomes closer to an optimal route. If each AS i applied an
optimal routing strategy R∗

i sequentially on any route R, the
resulting route becomes an optimal route.

The following theorem shows that under the Shapley value
mechanism, each AS i can apply an optimal routing strategy
R∗

i on any existing route R to maximize its own profit at
ϕi(N , v, R⊕R∗

i ). Due to the space limitation, the proofs of
theorems and corollaries are omitted but are available in the
technical report [15].

Theorem 1 (OPTIMAL ROUTING). Given any feasible
route R ∈ R, by applying an optimal routing strategy R∗

i ,
AS i maximizes its profit under the Shapley value mechanism,
i.e. ϕi(N , v, R ⊕R∗

i ) ≥ ϕi(N , v, R ⊕Ri) for all Ri ∈ Ri

and i ∈ N .
Theorem 1 states that every AS can maximize its own profit
by adopting an optimal routing strategy. Moreover, not only
does any optimal route R∗ maximizes the aggregate profit
v(N , R∗), it is also a Nash equilibrium routing strategy for
all ASes.

Corollary 1. Under the Shapley value mechanism, every
optimal routing strategy R∗ ∈ R∗ is a Nash equilibrium.
Corollary 1 states that when an optimal route is being used, it
is compatible to all ASes’ optimal routing strategies and no
AS has an incentive to deviate from it. Notice that although
the optimal routing strategy might not be unique, the Shapley
value solution (the profit for each AS) is unique.

Theorem 2 (AS PROFIT DECOMPOSITION). For each AS,
the Shapley value profit can be decomposed into a Myerson
value on the AS level topology and a Shapley value on the
routing costs:

ϕi(N , v, R) = ϕi(N , v0, EN )− ϕi(N , vc, R) ∀i ∈ N ,

where ϕi(N , vc, R) is the Shapley value of AS i in the system
(N , vc,M,E, R) that has the worth function vc.
Theorem 2 gives a convenient way to calculate the profit for
each AS by separating the AS value into an AS level Myer-
son value and a Shapley value restricted to the costs. More
importantly, it also explains why sometimes peering links
can be used to improve the aggregate profit of the system.
We illustrate some examples of the AS value solutions in the
next subsection.

4.2 Examples and Simulation
Figure 5(a) illustrates the first example with two coast-

to-coast backbone ISPs. Customers of router 1 at the west

(a) two ASes with link costs (b) ϕ1 = ϕ2 = 1/8

(c) ϕ1 = ϕ2 = 31/128 (d) ϕ1 = ϕ2 = 1/4

Figure 5: An example of two peering ISPs.

coast need to communicate with customers of router 4 at the
east coast. We normalize the revenue and required traffic
intensity to be 1. Router 1 peers with router 3 at the west
coast and router 2 peers with router 4 at the east coast. We
assume that all the receiving costs are zero, and the cost on
a link is the same as the sending cost. The costs on intra-AS
paths and inter-AS paths are c12(x) = c34(x) = x/4 (where
x is the traffic carried on the link) and c13(x) = c24(x) =
x2/2. By Theorem 2, each AS obtains the same profit:

ϕi(N , v, R) = ϕi(N , v0, R)− ϕi(N , vc, R)

=
1
2
− 1

2
vc(N , R)

=
1
2
− 1

2
[c1(N , R) + c2(N , R)].

We compare the profit distributions for different routing
strategies by AS 1. In Figure 5(b), AS 1 uses the hot-potato
routing strategy, which routes all traffic through router 3.
The routing costs of the two ASes are c1 = 1

2 and c2 = 1
4 .

Although AS 1 avoids using its internal link (1, 2), it does
not optimize its own cost. Each AS obtains ϕk = 1

8 . In Fig-
ure 5(c), AS 1 chooses the route that minimizes its own rout-
ing cost c1. Both ASes improve their profit to be ϕk = 31

128 .
In Figure 5(d), AS 1 uses an optimal route which minimizes
aggregate routing costs for both ASes. As a result, this op-
timal route achieves the maximum profit ϕk = 1

4 for both
ASes, which is twice as much as the profit from hot-potato
routing. Notice that no matter how much real cost an AS
may carry, it will be recovered from the revenue v0(N ). The
Shapley value mechanism determines the profit of each AS
from the total profit v(N ).

Figure 6 illustrates the second example where a source AS
1 wants to communicate with AS 4. Again, we normalize the
revenue and required traffic intensity to be 1. Traffic must go
through a core AS 3; however, AS 2 is a local peer with AS 1



Figure 6: An example of using peering link.

which can also carry traffic. We assume the sending costs on
link (3, 3a) and (2, 3a) to be x/2 and x2 respectively. We
assume all other costs are negligible. The right sub-figure
shows the profit distribution and the optimal routing strat-
egy. Each AS obtains an equal profit of 9

64 . One way to
understand this even-share solution is that any of the ASes
is indispensable. For example, without AS 2, the total rout-
ing cost is 1; therefore the profit becomes zero. Theorem 2
also gives an explanation. From the AS level topology, AS
2 is a dummy AS. The Myerson values are ϕ2(v0) = 0 and
ϕ1(v0) = ϕ3(v0) = ϕ4(v0) = 1

3 . However, from the cost
compensation, AS 2 obtains ϕ2(vc) = − 9

64 . In this sense,
we know that AS 2’s profit comes from its contribution of
reducing the routing cost for the end-to-end service. In gen-
eral, this explains why sometimes in reality, peering links or
even provider-to-customer links can also be reasonably used
to provide efficiency.

Figure 7: Hot-potato routing Vs. optimal routing.

In the third example, we consider the topology in Figure 3
with six ASes. We assume each end-to-end service generates
a revenue of 10, and has the required traffic intensity λij = 1
for all pair of router i and j that do not belong to the same
AS. We compare the profit distribution of the ASes under
the Shapley mechanism when ASes use hot-potato routing
and optimal route in Figure 7. The result confirms that the
optimal routing induces more profit for all ASes than any

other non-optimal route.

4.3 Optimal Routing in Practice
The model (N , v,M,E, R) assumes that we know the

router level topology (M,E) and the corresponding traffic
intensity {λij : i, j ∈ M}. In reality, each AS might not
want to reveal its internal structure and the router-to-router
traffic intensity measurement might not be feasible. How-
ever, we can still apply the optimal routing results on the
corresponding AS level system (N , v, EN , RN ). The AS
level topology (N , EN ) can be derived from ISP intercon-
nection links and BGP routes.

Suppose each ISP i collects a total revenue of Wi from all
its customers. By measuring all the traffic intensity {Λij :
j ∈ N\{i}} from AS i to any other AS j, we can estimate
the revenues Wij to be WiΛij/

∑
k∈N Λik, assuming that

the revenue is proportional to the traffic intensity directed to
a destination AS j. In service contracts, the future month’s
required traffic intensity can predicted and adjusted based on
the historical traffic patterns between ISPs.

The optimal routing results of Theorem 1 and Corollary 1
are applicable on the AS level system (N , v, EN , RN ). In
the following example, we explore Columbia University’s
autonomous system (AS 14) as a source ISP.

Figure 8: A snapshot of BGP routes for Columbia Uni-
versity on May 15, 2007.

Figure 9: Routes from Columbia to Global Crossing dur-
ing May 2007.

Figure 8 shows a snapshot of the BGP routes generated by
BGPlay [1]. From time to time, the BGP paths change. We



choose the destination ISP to be the Global Crossing (AS
3549). We trace the BGP routes changes during May 2007.
Figure 9 shows the active routes and the corresponding ISPs
connecting Columbia University with Global Crossing. The
Shapley value profits of each ISP are shown in Figure 10,
assuming all ISPs have same cost functions.

Figure 10: Revenue distribution for the ISPs.

With zero costs, each ISP obtains a Myerson value. When
ci(x) = 0.1x, the cost is linearly proportional to the carrying
traffic and the optimal route is to use AS path 1 → 2 → 9.
Due to the routing cost, the sum of all profits v(N ) be-
comes 0.7 and most ISPs’ profits decrease. However, ISP
2(Qwest)’s profit increases from 0.072 to 0.079. This is
because ISP 2 provides the optimal routing path and has a
strong impact on achieving the maximum aggregate profit
0.7. When ci(x) = 0.1x2, the optimal route uses AS path
1 → 2 → 9 for half of the total traffic and the three remain-
ing AS paths for 1

6 of the total traffic. The aggregate profit
is improved to be v(N ) = 0.75. Since ISP 2 has a weaker
impact on this solution, its profit decreases.

Because AS level topology totally ignores the internal topol-
ogy of each AS, consequently, the AS level network model
does not distinguish the following routing costs.

• Internal routing costs from different entering routers to
different egress routers.

• Inter-AS routing costs of using parallel inter-AS links.

For example, in the topology in Figure 5, the AS level model
cannot distinguish the internal costs of going through router
1 and path 1 → 2, as well as the two AS peering paths
1 → 3 and 2 → 4. Therefore, the AS level information is
not enough to avoid selfish internal routing (e.g. hot-potato
routing) for ASes.

In practice, although ASes do not reveal their internal topol-
ogy very often, they export their edge routers in BGP routes.
Thus, we can regard each AS i as a set of fully connected
edge routers me

i ⊂ mi. Only with the more delicate infor-
mation of the traffic intensity of the edge routers {λij : i, j ∈

Me} can we apply the AS peering level model (N , v,Me, Ee, Re).
In this model, we need each AS to report the true internal
routing costs for each pair of its edge routers. In order to
make the ASes telling the true internal routing costs, we
might need some verification process when we recover each
AS’s real internal routing costs. With the above conditions,
each AS can decide the proportion of traffic going through
each inter-AS link, and tries to optimize its internal routing
costs without reveal its internal topology. Notice that, if the
Shapley value mechanism can be applied at this level, it will
reshape the BGP inter-domain routing protocol for the ASes
to cooperatively achieve an optimal route; however, keep the
current intra-domain protocols compatible.

In general, the optimal routing incentive induced by the
Shapley value can be shown at different levels of a network
system. The more information the real network system can
obtain, the more delicate level of optimal routes the ASes
will be encouraged to use. Finally, we conjecture that the
optimal routing practice will encourage shorter BGP paths
in terms of routing costs, and diversify the usage of multiple
parallel paths in routing.

5. INCENTIVE FOR INTERCONNECTING
In previous sections, we assumed that whenever a source-

destination pair is connected by the graph GS , a feasible
route is performed by the coalition S to achieve the end-
to-end service. However, selfish ASes, whose objectives are
to maximize profits, might not be willing to provide the ser-
vice. For example, two ASes can provide a transit service
by interconnecting with each other and obtain a revenue of
w. However, it incurs a routing cost c that is larger than w.
The Shapley value for each AS becomes (w − c)/2 < 0. It
demonstrates how both ASes share the loss instead of profit.
In reality, both ASes might not want to be interconnected
and provide this service.

In this section, we assume that ASes are free to decide
whether or not to provide an end-to-end service, as well as
whether or not to interconnect with other ASes. We explore
the change in the profit distribution when ASes vary the in-
terconnection topology. We show that under the Shapley
value mechanism, ASes have incentives to be well-connected
so as to maximize their own profits. Like the presentation in
Section 4.1, we focus on the router level network model;
however, the results are general enough to be applied to both
AS level and AS peering level network models.

To model the willingness of routing, we extend the do-
main of routes that can be used by ASes. We define an
extended route R̃ = {r̃ij}, where each r̃ij(S) is either a
feasible route performed by the coalition S defined in Sec-
tion 2.2 or a zero vector which implies that the route is not
performed. We denote R̃ as the space of all extended routes,
which also includes all the feasible routes, i.e. R ⊆ R̃. With
the definition of an extended route, any coalition can choose
to serve certain end-to-end services and set a zero vector for
other services that it does not want to provide routes.



Because when the end-to-end service is not provided, the
ASes do not receive the amount of revenue from that service.
We need to extend the revenue function v0 as the following.

v0(S, R̃) =
∑

i,j∈S
Wij1{i is connected to j by GS and R̃∈R}. (9)

The worth function v defined on the extended routes be-
comes

v(S, R̃) = v0(S, R̃)− vc(S, R̃), (10)

where vc is the same cost function defined in Equation (4).
Similar to Equation (7) and (8), we define the set of optimal
extended routes R̃∗ and optimal extended routing strategies
R̃∗

i for AS i as the following.

R̃∗ = {R̃|R̃ ∈ R̃, v(S, R̃) = sup
R̃′

v(S, R̃′) ∀ S ⊆ N}.

R̃∗
i = {R̃i|R̃i ∈ R̃i, v(S, R̃) = sup

R̃′
v(S, R̃′) ∀ i ∈ S ⊆ N}.

We refer to R̃∗ as any optimal extended route in R̃∗ and
R̃∗

i as any optimal extended routing strategy for AS i in R̃∗
i .

Notice that the extended optimal route might choose not to
route for certain end-to-end services in order to maximize
the worth function v.

Parallel to the optimal routing results in Section 4.1, we
have the following results for extended routes R̃.

Theorem 3 (EXTENDED OPTIMAL ROUTING). Given any
extended route R̃ ∈ R̃, by applying an optimal routing strat-
egy R̃∗

i , AS i maximizes its profit under the Shapley value
mechanism, i.e. ϕi(N , v, R̃ ⊕ R̃∗

i ) ≥ ϕi(N , v, R̃ ⊕ R̃i) for
all R̃i ∈ R̃i and i ∈ N .

Corollary 2. Under the Shapley value mechanism, every
optimal extended routing strategy R̃∗ ∈ R̃∗ is a Nash equi-
librium.
In addition, by allowing the ASes to choose whether or not to
provide an end-to-end service, we guarantee that the profits
of the ASes are non-negative under any route R̃∗ ∈ R̃∗.

Theorem 4 (NONNEGATIVITY). ϕi(N , v, R̃∗) ≥ 0 for
any AS i ∈ N and any optimal extended route R̃∗.
Theorem 4 guarantees that each AS can at least recover its
cost by joining the cooperation and routing traffic optimally.
Notice that this result might not hold when the route is not
optimal. Clearly, when an AS receives a positive profit, it has
an incentive to be connected and provide the service. How-
ever, the only possible discouragement is a zero profit. The
next theorem characterizes the ASes that gain zero profit.

Theorem 5. Any AS i that has profit ϕi(N , v, R̃∗) = 0 is a
dummy AS, and there exists an optimal extended route R̃′∗ ∈
R̃∗ which does not route through AS i for all S ⊆ N .
Theorem 5 states that if any AS receives zero profit under the
Shapley value mechanism, it is a dummy AS and there is al-
ways an optimal extended route without using this AS. Con-
sequently, although ASes that receive zero profit do not have

incentive to remain interconnected, their disconnections do
not hurt the cooperation for providing services.

Interestingly, on the other hand, if an AS i does not carry
any traffic in an optimal extended route with coalition N ,
i.e. Xi(N , R̃∗) = 0, it does not necessarily imply that AS
i’s profit is zero. Because Xi(S, R̃∗) might be positive for
some S ⊂ N , which means AS i provides some backup
usage in case ASes N\S leave. In this case, AS i has an
incentive to be interconnected and receives positive profit,
although it might not actually carrying any traffic in the opti-
mal route. The example shown in Figure 9 with cost function
ci(x) = 0.1x for all ASes exhibits this situation. Although
the optimal route only uses path 1 → 2 → 9, AS 3 to 9 also
receive positive profits.

It might be puzzling that an AS may obtain a positive
profit in a system without actually carrying any traffic. How-
ever, these ASes are not dummy. They provide robustness of
the network in case some of the relay ASes fail. Moreover,
although these ASes share part of the total profit, they still
benefit the veto ASes that are essential for the end-to-end ser-
vices.

Definition 5. An AS i is called a veto AS, if v(S) > 0 for
all S in {S : i ∈ S ⊆ N}.
Every veto AS is essential to the end-to-end services. In
other words, if any veto AS leaves the system, the service
cannot be provided. In particular, for single source-destination
flows, the source and destination are by nature veto ASes.

We next provide three theorems that prove the Intercon-
nection Incentives of our mechanism.

Theorem 6 (MONOTONICITY – ADDING ASES). For any
veto AS i of the system (N , v, R̃∗), we have ϕi(N , v, R̃∗) ≥
ϕi(S, v, R̃∗) for any S ⊆ N .
Theorem 6 tells that the full cooperation maximizes veto
Ases’ profits. Although some non-veto AS might not carry
traffic and still obtain a positive profit, its existence still helps
the cooperation and increases veto ASes’ profits. Actually,
a stronger statement, ϕi(S, v, R̃∗) ≥ ϕi(T , v, R̃∗) for any
T ⊆ S ⊆ N , can be made and the proof is similar. The-
orem 6 focuses on the coalition that participates in the co-
operation. The following theorems assume that the set of
participating ASes is fixed. However, we explore the profits
of the ASes when they decide whether or not to interconnect
with neighboring ASes.

Theorem 7 (INCENTIVE FOR INTERCONNECTION). In
the system (N , v, E, R̃∗), suppose l1 ∈ mi and l2 ∈ mj

are two routers belong to ASes i and j. If l1 and l2 are
not directly connected (e.g. (l1, l2) /∈ E), then adding the
interconnection between l1 and l2 achieves no less profits
for both AS i and j. Mathematically, we have ϕk(N , v, E ∪
{(l1, l2)}, R̃∗) ≥ ϕk(N , v, E, R̃∗) for k = i, j and any l1 ∈
mi, l2 ∈ mj .
Theorem 7 addresses that by interconnecting with other ASes,
one AS might be able to increase its profit. Because when an



AS connects to more ASes, it provides better robustness and
connectivity for the end-to-end service. However, this might
reduce other ASes’ profits. The following theorem charac-
terize the ASes whose profits are only possibly increased
when more and more ASes start to interconnect.

Theorem 8 (MONOTONICITY – ADDING LINKS). For
any veto ASes i of the system (N , v, E, R̃∗), we have
ϕi(N , v, E, R̃∗) ≥ ϕi(N , v, E

′
, R̃∗) for any E

′ ⊆ E.
Theorem 8 states the interconnection effect to the veto ASes.
When more intra-AS or inter-AS links are available for an
end-to-end service, veto ASes’ profit will be increased. ASes
are encouraged to be interconnected by receiving a positive
profit and veto ASes obtain more net revenue when the co-
operation strength increases.
Remark: Theorems 7 and 8 assume that it is free to estab-
lish new links. In reality, setting up an interconnection link
might induce cost to ASes. Therefore, if the extra aggre-
gate profit (the save in the routing costs) obtained from the
interconnection exceeds the cost of building the link, ASes
have incentive to interconnect. This is because the costs of
building the new link will be recovered from the Shapley
value mechanism, and the connecting ASes would obtain
more profits. Notice that, although the profits of connect-
ing ASes and veto ASes will be increased, the total revenue
paid by end users remain unchanged. Under the Shapley
value mechanism, ASes have incentives to interconnect so
as to reduce routing costs and maximize their own profits.

(a) original topology (b) add link 1 → 3

(c) add link 2 → 5 (d) add link 1 → 4

Figure 11: Monotonicity of veto ASes when adding links.

Figure 11 illustrates the changes in profit distribution when
ASes start to interconnect with neighboring ASes. We ig-
nore the routing costs and focus on an AS level topology. In
Figure 11(a), AS 1, 2 and 5 are veto ASes. In Figure 11(b),
link 1 → 3 is added. AS 2 is no longer a veto AS and its
value decreases; however, AS 1 and 5’s value increase. AS
3’s value also increases since its direct connection with the
source provides robustness. In Figure 11(c), link 2 → 5 is
further added. As a result, AS 4 becomes a dummy AS, and

again the veto AS 1 and 5’s values are increased. Similarly,
AS 2’s value increases as its direct connection with the des-
tination provides robustness. In Figure 11(d), link 1 → 4
is added. After directly connecting to the source AS, AS 4
becomes a parallel AS to 2 and 3 and is no longer dummy.
Notice that after this topology is created, links 2 → 3 and
2 → 4 become dummy and might not be used.

6. RELATED WORK
The study of Internet interconnection started a decade ago.

Srinagesh [23] studied the cost structures of various ISPs
and their consequences in interconnection agreements. Both
Bailey [3] and Huston [12] surveyed the existing intercon-
nection settlements. Huston [12] and Frieden [8, 9] also
compared the existing Internet settlement models with that
of the telecommunication industry’s. Bailey concluded that
bilateral agreements might be suitable for large ISPs while
cooperative agreements might work for small ones. Huston
concluded that the zero-dollar peering and the customer/provider
relationships were the only stable models for the Internet
at the time. Gao [11] proposed a relationship-based model
for ISPs and categorized the interconnection relationship by
provider-to-customer, peer-to-peer and sibling-to-sibling links.
Instead of modeling bilateral relationships of ISPs, our work
models the cooperations among multiple ISPs as a whole and
designs a multilateral settlement for all ISPs to share profits.

Roughgarden et al. [21] analyzed the performance degen-
eration caused by selfish routing in terms of latency. Teix-
eira et al. [24] conducted experiments and found that hot-
potato routing causes longer delays and slow convergence
for BGP routes. Johari et al. [14] showed that hot-potato
routing could be three times more expensive than optimal
routing. Feigenbaum et al. [7] used mechanism design [18]
approaches to encourage ASes to use minimum cost routes.
This approach operates in the way that the source and the
destination ASes want to optimize a ”supply chain” for rout-
ing. Our approach, however, treats each AS equally and di-
vides the total profit fairly among a team of collaborators.

Frieden [8, 9] discussed the consequence of Internet Balka-
nization: Interconnection has begun to shift from a widespread,
voluntary and non-discriminatory model to a hierarchical
and discriminatory model; and ISPs currently avoid the bur-
dens of common carriage. Network neutrality [5, 26, 10]
proponents criticized the discriminatory behavior by ISPs,
believing that it harms the productivity, innovation and end-
to-end connectivity of the Internet. However, most of the
network neutrality debate has been focused on the poten-
tial regulatory enforcements, by which telephony companies
have been regulated. Wu [26] surveyed the discriminatory
practices of broadband provider and cable operators, and
proposed solutions of bandwidth management and policing
for ISPs to avoid broadband discrimination. Nonetheless,
few work has been done on network neutrality on peering
agreement. Crowcroft [5] reviewed technical aspects of net-
work neutrality and concluded that we should not engineer



for network neutrality. Like Wu’s proposal for broadband
providers, our work proposes a profit distribution mecha-
nism for ISPs. Without re-engineering for the network neu-
trality, this approach encourages ISPs to interconnect and
alleviates the discriminatory interconnection problem.

Game theory [19, 16] has been applied to different net-
work areas. Mostly, non-cooperative games [22, 4] have
been used to model the selfish behaviors of network enti-
ties. Our work incorporates the Shapley value solution from
coalition games [19, 6, 13] to model the cooperative nature
of the ISPs. Different from non-cooperative games, coalition
game does not specify the minute description of individual
players, e.g. the strategies, order of move and correspond-
ing payoff consequences. Instead, coalition game reduces
all information into the possible profits generated by each
coalition. As mentioned by Eyal Winter in [25], the ma-
jor advantage of this approach is its practical usefulness in a
multi-player environment, which provides a more tractable
structure than non-cooperative games.

7. CONCLUSION
In this paper, we propose a novel multilateral settlement

for ISPs. Under this multilateral settlement, customers pay
for the end-to-end services provided by a set of ISPs, and
ISPs collectively share the revenue generated from these cus-
tomers based on a profit distribution mechanism. We de-
sign a profit distribution mechanism that can be applied for
network systems with different levels of information: AS
level, AS peering level and router level systems. The profit
distribution mechanism implements the Shapley value so-
lution, which satisfies efficiency and various fairness prop-
erties. More importantly, we show that under the Shap-
ley value mechanism, selfish ISPs have incentives to adopt
global optimal routing strategies instead of local greedy ones,
as well as to interconnect with neighboring ISPs so as to
maximize their own profits. In particular, we prove that not
only do the global optimal routes maximize the aggregate
profit of the network system, they are also Nash equilibrium
solutions for all ISPs to follow. In addition, locally connect-
ing to more neighboring ISPs will increase an ISP’s profit.
As a result, veto ISPs’ profits will be monotonically increas-
ing under the Shapley value mechanism when interconnec-
tions become more prevalent. Finally, in order to enforce
the proposed profit distribution mechanism, future directions
of this work should include the consideration of timescale,
granularity, and trust issues of the network protocol which
implements this mechanism.
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