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Abstract— The Shapley value is a cornerstone in cooperative
game theory and has been widely applied in networking, data
science, etc. The classical Shapley value assumes that each player
has an equal preference to cooperate with each other. Since the
cooperation preference is an important factor of a variety of
networking applications, we first generalize the classical Shapley
value to allow general degree of the cooperation preference.
In particular, we develop mathematical models to solicit two
types of cooperation preferences, i.e., (1) group-wise preferences
and (2) pair-wise preferences, and extend the classical Shapley
value to capture this feature. Our second contribution is tackling
the intrinsic computational challenge because even for the clas-
sical Shapley value, it is computationally expensive to evaluate.
We design computationally efficient randomized algorithms with
theoretical guarantees to fully cover the computational space of
our generalized Shapley value. We also extend our models and
algorithms to divide payoffs for multiple coalitions with dynamic
preferences. We demonstrate the versatility of our framework by
applying it to divide the revenue among ISPs in deploying new
Internet architectures, as well as to divide the reward among
workers in crowdsourcing systems.

Index Terms— Shapley value, cooperation preferences, ran-
domized algorithms, networking applications.

I. INTRODUCTION

THE Shapley value [1] is a cornerstone in cooperative
game theory, and it serves as an important tool in

networking [2], [3], [4], data science [5], [6], [7], machine
learning [8], [9], [10], etc. For example, in networking, it has
been applied to allocate resources in peer-to-peer networks [3],
divide revenues among Internet service providers (ISPs) [2],
[11], divide rewards among workers in crowdsourcing appli-
cations [12], and quantify centralities in social networks [13],
etc. In data science, it has been applied to measure the value

Manuscript received 4 August 2021; revised 23 April 2022, 29 September
2022, and 1 November 2022; accepted 15 November 2022; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor V. Subramanian. Date
of publication 19 December 2022; date of current version 19 December 2023.
The work of John C. S. Lui was supported in part by the Research Grants
Council’s (RGC’s) General Research Fund (GRF) under Grant 14200321.
(Corresponding author: Hong Xie.)

Hong Xie was with Chongqing University, Chongqing 400044, China,
and also with the Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong. He is now with the
College of Computer Science, Chongqing Institute of Green and Intelligent
Technology, Chinese Academy of Sciences, Beijing 100045, China (e-mail:
xiehong2018@foxmail.com).

John C. S. Lui is with the Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, Hong Kong (e-mail:
cslui@cse.cuhk.edu.hk).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2022.3228933, provided by the authors.

Digital Object Identifier 10.1109/TNET.2022.3228933

Fig. 1. Friendship graph among players.

of private data [7] and design fair and stable recommender
systems [5], etc. In machine learning, it has been used to
design feature selection algorithms [8], [9], design measures
to interpret model predictions [14], [15] and individual classi-
fications [10], as well as quantify the transparency of machine
learning systems [16], [17], etc.

Briefly speaking, the Shapley value is one of the solution
concepts for cooperative game [18]. It aims to “fairly” divide
the payoff among a set of players. For example, the payoff
and player can be mapped as the reward and worker respec-
tively for crowdsourcing applications. The following example
illustrates the classical Shapley value.

Example 1 (The Classical Shapley Value): Consider three
players denoted by 1, 2 and 3 and they work on a crowdsourc-
ing task. Each worker only has a subset of the skills required
by the task, so the task can only be completed if and only if
all of them cooperate. If the task is completed, a total reward
(or payoff) of 10 is generated, and zero otherwise. Thus, when
all of them cooperate, the Shapley value distributes a payoff
of 10/3 to each player (refer to Sec. II-A for derivation).

One limitation of the classical Shapley value is that each
player is assumed to have an “equal” preference to cooperate
with each other player, but this is often not true in real life [19],
[20]. Consider the following example:

Example 2 (Limitations of the Classical Shapley Value):
Suppose player 1, 2 and 3 form a line social network as
shown in Fig. 1. Each player is more willing to cooperate
with friends than non-friends, i.e., player 1 is more willing
to cooperate with 2 than 3. This cooperation preference
introduces a heterogeneity dividing the payoff among players.
The classical Shapley value fails to capture this cooperation
preference as it equally distributes the payoff to all players.
In this example, player 2 should have higher reward.

Example 2 illustrates that the classical Shapley value
does not take the cooperation preference among players into
account in the payoff division. The cooperation preference is
an important factor for a variety of applications. For example,
it can be mapped as the correlation among attributes in
networking traffic classification. The equal sharing of the
payoff in Example 1 is due to the “symmetry property” of the
classical Shapley value (please refer to Section II-A for more
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details). In particular, in Example 2, players are “symmetric”
with respect to the payoff function:

V (∅) = 0, V ({1, 2, 3}) = 10,

V ({1}) = V ({2}) = V ({3}) = 0,

V ({1, 2}) = V ({2, 3}) = V ({1, 3}) = 0,

where V (·) denotes the payoff function prescribing the payoff
for each possible coalition of players.

In the cooperative game theory literature, generalizing Shap-
ley value to capture cooperation preference can be traced back
to capture personal affinities among the players in political
games [19], [21]. In this research line, several variants of
the Shapley value were proposed to take the cooperation
preferences into the consideration in payoff division [19], [20],
[21], [22], [23] (please refer to Section VI for more details).
Most of previous works mainly focused on axiomatic char-
acterization of these variants of Shapley values. Few of them
studied the computational aspect of these variants of Shapley
values, but with simplified cooperation preference models
to enable efficient computation. In this work, we explore
better tradeoffs between the complexity or expressiveness
of the cooperation preference model and the computational
efficiency. In particular, we aim to develop highly expressive
cooperation preference models and also provide computational
efficient algorithms to calculate the generalized Shapley value.
In general, the cooperation preference is influenced by many
factors, e.g., trust, conflict of interests, competition, etc. This
paper explores such general settings and we aim to answer:
(1) How to model cooperation preferences and decouple them
from the payoff function? (2) How to incorporate them into the
classical Shapley value? (3) How to design efficient algorithms
with theoretical guarantees to evaluate these generalized
Shapley values? These questions are challenging to answer,
due to the complicate nature of players’ preferences and
the underlying computational complexity, i.e., the classical
Shapley value is already NP-hard to evaluate in general [24].
We address these challenges and our contributions are the
following:

• We develop a rating model to solicit group-wise cooper-
ation preferences, where each player specifies a cardinal
rating to represent the willingness to join a coalition
of players. We also develop a graph model to solicit
pair-wise cooperation preferences, where nodes repre-
sent players and each directed edge represents the will-
ingness of a player to cooperate with the linked one.
We generalize the classical Shapley value to capture these
preferences, leading to the cooperation preference aware
Shapley value. The exact cooperation preference aware
Shapley value is computationally expensive to evaluate.

• We design efficient randomized algorithms to fully cover
the computational space of our cooperation preference
aware Shapley value and at the same time, provide
theoretical guarantees. We first design a Monte Carlo
algorithm, which is computationally efficient in approxi-
mating the Shapley value under the group-wise coopera-
tion preference, but it is computationally expensive for the
pair-wise cooperation preference. We extend the Monte

Carlo algorithm to allow approximate samples, resulting
in the �-Oracle based algorithm. The �-Oracle based
algorithm approximates a sub-class (i.e., the preference
sensitivity parameter is small) of the Shapley value under
the pair-wise preference. Then we design an importance
sampling based algorithm to approximate another sub-
class (allow a larger preference sensitivity parameter but
with extra conditions on payoff functions) of the pair-wise
preference aware Shapley value. Finally, we design a ran-
dom walk based algorithm to approximate the remaining
sub-class of the pair-wise cooperation preference aware
Shapley value.

• We extend our framework to allow multiple coalitions,
where we capture the externalities among coalitions
(e.g., competition among coalitions). We also extend our
model to allow dynamic cooperation preferences. For
each extension, we not only extend our framework to
divide the payoff, but also extend our proposed algorithms
to compute the corresponding Shapley value.

• Finally, we demonstrate the versatility of our framework
by applying it to divide the revenue among ISPs in
deploying new Internet architectures, as well as divide
the reward among workers in crowdsourcing systems.
We provide important insights on the impact of coop-
eration preference.

This paper organizes as follows. Section II presents
cooperation preference models their associated Shapley val-
ues. Section III presents several sampling algorithms to
approximate the cooperation preference aware Shapley value.
Section IV presents two extensions of the model. Section V
presents networking applications of our work. Section VI
presents the related work. Section VII concludes.

II. THE MODEL & PROBLEM FORMULATION

We first present the classical Shapley value. We then develop
two mathematical models to capture two types of cooperation
preferences. We show that the exact cooperation preference
aware Shapley value is computationally expensive to compute.
This section focuses on that all players forms a grand coalition
and we extend it to multiple coalitions in Section IV.

A. The Classical Shapley Value

Consider a coalition game with a set of N ∈ N+ players
(or users) denoted by N � {1, . . . , N}. Denote the payoff
(or gain) function as V : 2N → R. The V (C), where C ⊆
N , describes the total gains to the set C of players under
cooperation. We set V (∅) = 0 by default. Consider all players
form a grand coalition, let φn(V ) denote the gain distributed
to player n ∈ N . A canonical form of the classical Shapley
value [1] is

φn(V ) =
∑

C⊆N\{n}

|C|!(|N |−|C|−1)!
|N |! [V (C ∪ {n})−V (C)].

(1)

Consider Example 1, we have N = {1, 2, 3} and

V (C) =

{
10, if C = N ,

0, otherwise.
(2)
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Equation (1) implies φ1(V ) = φ2(V ) = φ3(V ) = 10/3. The
classical Shapley value has the following four properties.

1) Efficiency: all payoffs are distributed to players, i.e.,∑
n∈N φn(V ) = V (N ).

2) Zero player: if a player has no contribution to any
coalition, no gain will be distributed to it, i.e.,

V (C ∪ {n})− V (C) = 0, ∀C ⊆ N \ {n} ⇒ φn(V ) = 0.

3) Linearity: if we combine two coalition games with the
same set of players N and with payoff functions V and
Ṽ respectively, then the gains distributed to player n
equals to the sum of the gain distributed from V and
V ′, i.e., φn(V + V ′) = φn(V ) + φn(V ′).

4) Symmetry: if two players have equal contribution in
each coalition, they receive the same gain, i.e.,

V (C ∪ {n}) = V (C ∪ {m}), ∀C ⊆ N \ {m, n}
⇒ φn(V ) = φm(V ).

One limitation of the classical Shapley value is that it does
not capture cooperation preferences among players. In particu-
lar, the symmetry property implies that two players have equal
shares of payoff if they have the same influence on the payoff
function, no matter what their impact on the cooperation pref-
erence is. One may argue to modify the payoff function V (·)
to encode the cooperation preference. However, as shown in
Example 2, the payoff function captures the physical meaning
that each worker only has a subset of the skills required by
the task, and the task can be completed if and only if all of
them cooperate. If we modify the payoff function to encode
the cooperation preference, the payoff function may lose this
important property. Furthermore, it is more natural to decouple
cooperation preference from the payoff function V (·). Thus,
we aim to capture the cooperation preference decoupling from
the payoff function. We will retain the attractive properties
of Shapley Value, i.e., property (1), (2) and (3), but remove
the constraint on “equal preference” by the classical Shapley
value, i.e., property (4).

B. Cooperation Preference Aware Shapley Value

We present a probabilistic representation of the classical
Shapley value [1]. We develop two mathematical models to
capture two types of cooperation preferences, and generalize
the probabilistic representation to derive closed-form formula
for the payoff division under these preferences.

Probabilistic representation [1]. Shapley proposed a
bargaining model of coalition formation and showed that
the classical Shapley value is an expected outcome of this
bargaining model [1]. In the proposed bargaining model,
each ordering of players is thought of as successive arrivals
of players. Formally, denote an ordering of the players as
σ�(σ1, . . . , σN ), where σn∈N denotes the player in the n-
th order. For example, if N = {1, 2, 3}, an ordering of the
players can be σ = (2, 3, 1), i.e., player 2 is ranked first,
while player 3 is ranked second. Denote the set of players
ranked before player n in the ordering σ as

Sσ
n � {all players ranked before player n in σ}.

For example, consider an ordering σ = (2, 3, 1), then Sσ
1 =

{2, 3} and Sσ
2 = ∅. One important interpretation of Sσ

n is that
the user n and the set of users precede him form a coalition
C = Sσ

n ∪ {n} [1]. Based on this interpretation, the classical
Shapley value can be rewritten as

φn(V ) =
∑
σ∈Ω

1
N !

[V (Sσ
n ∪ {n})− V (Sσ

n )] ,

where Ω � {σ|σ is an ordering of players in N} denotes a
set of all orderings of players. Note that there are in total
|Ω| = N ! number of orderings. Hence, under the classical
Shapley value, 1/N ! can be interpreted as the probability mass
of an ordering and different orderings have equal probabilities.
This leads to a generalization of the classical Shapley value

φn(V ) =
∑
σ∈Ω

μ(σ) [V (Sσ
n ∪ {n})− V (Sσ

n )] , (3)

where μ denotes a general probability distribution over Ω,
i.e., μ(σ)≥0 and

∑
σ∈Ω μ(σ) = 1. One can easily verify the

following proposition.
Proposition 1 [1]: For any probability distribution μ over

Ω, φn(V ) expressed in Equation (3) satisfies property (1), (2)
and (3), i.e., efficiency, zero player and linearity.

Note that μ(σ) = 1/N ! corresponds to the classical Shapley
value. The uniform distribution captures a homogeneous coop-
eration preference, i.e., each player has the same preference to
cooperate with other players. We next consider non-uniform
distribution μ to capture heterogeneous cooperation prefer-
ences, i.e., a player may prefer to cooperate with some
players over others. Under non-uniform distribution μ, only the
symmetry property of the classical Shapley value is dropped,
as indicated by Proposition 1.
• Preference Model 1: group-wise cooperation prefer-

ences. The group-wise cooperation preference model gener-
alizes the bargaining model of coalition formation [1]. Essen-
tially, the bargaining model of coalition formation offers an
interpretation of how the grand coalition containing all players
is formed via successive arrival of players. The cooperation
preference is captured in the arrival order of players as we
proceed to model. Given coalition C, we use a cardinal
rating Rn(C) ∈ [1, M ] to model the preference (such as
trust, conflict of interests, etc.) of player n/∈C to join the
coalition C, where M∈N+. A larger rating Rn(C) models a
higher preference. Denote the cooperation preference profile
of player n as Rn � {Rn(C)|∀C ⊆ N \ {n}}. Consider
N = {1, 2, 3}, the preference profile of player 1 can be
R1 = {R1(∅), R1({2}), R1({3}), R1({2, 3})}. Denote the
preference profile of all players as R � {Rn|∀n ∈ N}. We
use a finite horizon discrete time t ∈ {0, 1, . . . , N} stochastic
process to capture the cooperation preference R. Let Ct denote
the coalition at time slot t. Initially, at time slot t = 0, no one
is in the coalition, i.e., C0 = ∅. In time slot t + 1, one player
in N \ Ct joins the coalition. We use the joining probability
to capture the cooperation preference. Formally, denote the
conditional probability that user n ∈ N \ Ct joins Ct as:

p(n|Ct) = P[Ct+1 = Ct ∪ {n}|Ct; R], ∀n ∈ N \ Ct,
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where
∑

n∈N\Ct
p(n|Ct) = 1. The following assumption

captures that in the coalition formation process, the player
with a higher preference rating would more likely to join the
coalition.

Assumption 1: The probability p(n|Ct) is a function of the
preference ratings Rm(Ct), ∀m ∈ N \ Ct, formally

p(n|Ct) = F (n; Rm(Ct), ∀m ∈ N \ Ct), ∀n ∈ N \ Ct, (4)

where F denotes a function with range [0, 1]. Furthermore, the
function F (n; Rm(Ct), ∀m ∈ N \ Ct) is increasing in Rn(Ct)
and pairwise-monotone

F (n; Rm(Ct), ∀m ∈ N \ Ct)≥F (n′; Rm(Ct), ∀m ∈ N \ Ct)
whenever Rn(Ct)≥Rn′(Ct), where n, n′∈N\Ct.
One possible example of the conditional probability is

p(n|Ct) =
Rn(Ct)∑

m∈N\Ct
Rm(Ct) , ∀n ∈ N \ Ct. (5)

The probability distribution μ can be derived as:

μ(σ) =
N∏

t=1

p(σt|Ct−1 = {σ1, . . . , σt−1}). (6)

For example, consider σ = (2, 3, 1), we have μ(2, 3, 1) =
p(2|∅)p(3|{2})p(1|{2, 3}). It is important to note that the clas-
sical Shapley value is a special case of this preference model
with p(n|Ct) = 1/(N − t), ∀t = 0, 1, . . . , N − 1. Plugging
Equation (6) into Equation (3) we obtain the Shapley under the
group-wise cooperation preference. Proposition 1 implies that
the Shapley value under the group-wise cooperation preference
satisfies the attractive properties (1), (2) and (3).

Note that the cooperation preference profile Rn of user
n has 2N−1 possibilities. In total, the preference profile R
contains a total of N2N−1 elements. This rises a challenge
to store the preference profile R, as well as to solicit the
preference profile, because each user may not be willing to
specify all 2N−1 preferences, especially when N is large.
We propose the following two methods to address it:

• Partial preference. Players specify preferences to a num-
ber of coalitions that are of their greatest concern, i.e.,
{Rn(C)|C ∈ Cn, where Cn ⊆ 2N\{n}}, while setting
a default preference rating for the remaining coalitions,
i.e., Rn(C) = c, ∀C ∈ 2N\{n} \ Cn, where c ∈ [1, M ].
This partial preference model is suitable for the case
that each player only differentiates a small number of
coalitions and is indifferent to the remaining coalitions.
Otherwise, this partial preference model leads to under-
fitting of cooperation preferences.

• Low rank representation. Each player is represented
by a vector xn. Let xC � {xn : n ∈ C} denote the
vector profile associated with the coalition C. Then the
preference score Rn(C) is modeled as a function of x
and xC . For example,

Rn(C) = 1 +
M − 1

1 + exp(
∑

m∈C ‖xn − xm‖) .

In this case, we only need to solicit and store x1, . . . , xN .
The vector xn represents the features of players and it

is a public information. The distance ‖xn−xm‖ reflects
the affinity between two players.

• Preference Model 2: pair-wise cooperation preferences.
Another alternative is to use a weighted and directed graph
G to model pair-wise cooperation preferences between users.
Each player is represented as a node, i.e., the node set is N .
Each directed edge from player m to player n is associated
with a weight wmn ∈ [0, 1]. The weight quantifies the
preference of user m to cooperate with user n. A larger weight
models a higher preference. We set wnn = 0 by default to
capture that there is no self-loop in the graph. Denote the
pair-wise preference profile as W � [wmn|m, n ∈ N ]. The
graph G can be represented as G = (N , W ). In practice,
there are numerous ways to solicit the weight wmn. For
example, it can be directly extracted from an online social
network, where wmn = 1 indicates a friendship link and
wmn = 0 indicates no friendship links.

Given a coalition C, denote the pair-wise preference profile
restricted to C as W C � [wmn|m, n ∈ C]. We quantify the
aggregate coalition preference of coalition C as Γ(WC) ∈
R≥0, where Γ is increasing in wmn, ∀m, n ∈ C, capturing that
increasing the pair-wise preference between any two players
increases the aggregate coalition preference. One possible
example of Γ(WC) is

Γ(WC) = exp

⎛⎝ ∑
m,n∈C

wmn

⎞⎠ . (7)

The larger the aggregate coalition preference Γ(WC), the more
likely the coalition C will be formed. Note that Equation (7)
is just an illustrating example, and our proposed algorithms
are not restricted to it.

Recall from the probabilistic representation of the Shap-
ley value that the ordering σ induces the following
coalitions {σ1}, {σ1, σ2}, . . . , {σ1, . . . , σN}. Each coalition
{σ1, . . . , σn}, ∀n = 1, . . . , N , is associated with an aggregate
coalition preference Γ(W {σ1,...,σn}). Let Υ(σ) ∈ R≥0 denote
the collective cooperation preference associated with the order-
ing σ. We model Υ(σ) as a function of Γ(W {σ1,...,σn}), ∀n =
1, . . . , N . One possible example is

Υ(σ) =
N∑

n=1

Γ(W {σ1,...,σn}). (8)

An ordering σ is more likely to be formed if it has a larger
Υ(σ). Note that Equation (8) is just an illustrating example,
and our proposed algorithms are not restricted to it. Formally,
we use the probability distribution μ to quantify the impact of
cooperation preference on the likelihood of orderings as

μ(σ) =
exp(αΥ(σ))∑
�σ∈Ω exp(αΥ(σ̃))

, (9)

where α ∈ R≥0 models the sensitivity to cooperation pref-
erences. The probability distribution μ(σ) is more sensitive
to cooperation preferences when we increase the value of
α. It is also important to note that the classical Shapley
value is a special case of α = 0. Equation (9) aims to
captures that μ(σ) increases when the collective cooperation
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preference Υ(σ) specified by σ increases. Equation (9) is the
well known softmax function, which is extensively used in
many previous works to model probability distributions [25].
Our work presents a simple way to model sensitivity to
cooperation preferences and it offers flexibility to allow
Υ(σ) to take negative values. The exponential function is
not a restriction. In particular, consider the general form of
distribution μ(σ) = cf(σ), where f(σ) > 0 and c =
1/
∑

σ∈Ω f(σ) is the normalizing factor. This general form
of distribution can be rewritten into an exponential form
as μ(σ) = exp(g(σ))/

∑
�σ∈Ω exp(g(σ̃)), where g(σ) =

ln f(σ). Proposition 1 implies that the Shapley value under the
pair-wise cooperation preference satisfies attractive properties
(1), (2) and (3).

C. Problem Formulation

Note that computing the exact classical Shapley value is
NP-hard in general [24]. Computing the exact cooperation
preference aware Shapley value would be more challenging, as
the classical Shapley value is simply a special case of it when
α = 0. Henceforth, we aim to design computational efficient
algorithms to approximate the cooperation preference aware
Shapley value which have theoretical guarantees. Formally,
we consider the following problem.

Problem 1: Given the player set N , payoff function V ,
cooperation preferences R or G, conditional probability
p(n|Ct) or preference function Υ, and sensitivity parameter
α. Design algorithms which have theoretical guarantees to
compute the cooperation preference aware Shapley value.

III. SAMPLING ALGORITHMS

We first design a Monte Carlo algorithm, which is compu-
tationally efficient in approximating the Shapley value under
the group-wise preference model, but it is computationally
expensive for the pair-wise preference. We extend the Monte
Carlo algorithm to allow approximate samples, resulting in
the �-Oracle based algorithm. The �-Oracle based algo-
rithm approximates a sub-class (i.e., the preference sensitivity
parameter is small) of the Shapley value under pair-wise
preferences. Then, we design an importance sampling based
algorithm to approximate another sub-class (allow larger pref-
erence sensitivity parameter but with extra conditions on the
payoff function) of the pair-wise preference aware Shapley
value. Finally, we design a random walk based algorithm to
approximate the remaining sub-class of the pair-wise prefer-
ence aware Shapley value.

A. A Monte Carlo Algorithm

Algorithmic framework based on Monte Carlo oracle.
Note that the cooperation preference aware Shapley expressed
in Equation (3) can be rewritten as

φn(V ) = Eσ∼μ [Δ(σ, n)] , (10)

where Δ(σ, n) is defined as

Δ(σ, n) � V (Sσ
n ∪ {n})− V (Sσ

n ).

The Δ(σ, n) quantifies the marginal gain of player n join-
ing a coalition induced by the ordering σ. Equation (10)
shows that the cooperation preference aware Shapley value
is the expectation of Δ(σ, n) over the probability measure μ.
Based on Equation (10), Algorithm 1 outlines a Monte Carlo
algorithm to approximate the cooperation preference aware
Shapley value. To run algorithm 1, one needs to input an
MC-Oracle(μ) of the probability distribution μ and the sam-
ple size K . It generates K orderings from MC-Oracle(μ).
Then, we can use each ordering to obtain one sample of
the Shapley value for user n. Finally, it uses the average
of all these samples to estimate φn(V ). Note that Step 4 of
Algorithm 1 is an incremental update version of the simple
average.

Algorithm 1 An MC-Oracle Based Algorithm

Require: An MC-Oracle(μ) for generating IID samples
from the probability distribution μ, sample size K .

Ensure: φ̂n(V )
1: φ̂n(V ) ← 0;
2: for k = 1 to K do
3: Generate a ordering σ from the probability distribution

μ:

σ ← MC-Oracle(μ);

4: φ̂n(V )← (
1− 1

k

)
φ̂n(V ) + 1

kΔ(σ, n);
5: end for

To illustrate, consider the setting of Example 1. Suppose
the ordering generated in the first round, i.e., k = 1, is σ =
(1, 2, 3). It follows that Δ(σ, 1) = V ({1}) − V (∅) = 0 −
0 = 0 and correspondingly φ̂1(V ) is updated as φ̂1(V ) ←
(1− 1/1)× 0 + 1× 0 = 0. Suppose the ordering generated in
the second round, i.e., k = 2, is σ = (3, 2, 1). It follows that
Δ(σ, 1) = V ({3, 2, 1})−V ({3, 2}) = 10 and correspondingly
φ̂1(V ) is updated as φ̂1(V ) ← (1 − 1

2 ) × 0 + 1
2 × 10 = 5.

Algorithm 1 has the following property.
Theorem 1: The output φ̂n(V ) of Algorithm 1 satisfies∣∣∣φ̂n(V )− φn(V )

∣∣∣
≤ maxσ∈Ω Δ(σ, n)−minσ∈Ω Δ(σ, n)√

K

√
1
2

ln
2
δ
,

with a probability of at least 1− δ, where δ ∈ (0, 1].
Theorem 1 states an upper bound of the approximation

error of Algorithm 1. The upper bound of the approximation
error is linear in [maxσ∈Ω Δ(σ, n)−minσ∈Ω Δ(σ, n)]/

√
K.

This implies that given an estimation error, the number of
samples K needed is proportional to [maxσ∈Ω Δ(σ, n) −
minσ∈Ω Δ(σ, n)]2. In other words, the larger the gap
|maxσ∈Ω Δ(σ, n) −minσ∈Ω Δ(σ, n)| of the marginal gain,
the more samples are needed to be generated.

The computational complexity of Algorithm 1 is

O(K × complexity of generating a sample from

MC-Oracle(μ)).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 06:49:17 UTC from IEEE Xplore.  Restrictions apply. 



2444 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 6, DECEMBER 2023

We next investigate how to design a computationally efficient
MC-Oracle(μ).

Implementing the MC-Oracle(μ). Algorithm 2 imple-
ments the Monte Carlo oracle MC-Oracle(μ) for the group-
wise cooperation preference model with a computational com-
plexity of O(N). However, it is computationally expensive
to use the Monte Carlo oracle MC-Oracle(μ) for the pair-
wise cooperation preference model. The reason is that the
distribution μ (expressed in Equation (9)) under the pair-wise
preference has a partition function

∑
�σ∈Ω exp(αΥ(σ̃)), which

is computationally expensive to evaluate in general, as the
cardinality of the sample space Ω is |Ω| = N !.

Algorithm 2 MC-Oracle(μ) for Group-Wise Preference

Require: Group-wise preference profile R and function F .
Ensure: σ = (σ1, . . . , σN )
1: C0 ← ∅;
2: for t = 1 to N do
3: Evaluate p(·|Ct−1) according to Eq. (4) with F and R;
4: Generate a player from the distribution p(·|Ct−1):

σt ∼ p(·|Ct−1);

5: Add the generated player to the coalition:

Ct ← Ct−1 ∪ {σt};
6: end for

B. An �-Oracle Based Algorithm

Now, we consider the pair-wise cooperation preference in
Section II.

Algorithmic framework based on �-Oracle. In order
to precisely define an �-Oracle, we first present a metric to
quantify the distance between two probability distributions.

Definition 1: The total variation (TV) distance between two
probability measures μ and ν on (Ω, 2Ω) is defined by

‖ μ− ν ‖TV � maxA⊆Ω |μ(A) − ν(A)|.
For example, if two distributions μ and ν are identical, i.e.,

μ = ν, then the total variation distance is ‖ μ − ν ‖TV =
0. Base on definition 1, we define an �-Oracle to generate
approximate IID samples from the distribution μ.

Definition 2: An �-Oracle of the probability distribution
μ generates IID samples from a probability distribution ν
satisfying that ‖ μ− ν ‖TV≤ �, where � ∈ R≥0.

Given an �-Oracle of the probability distribution μ,
we present Algorithm 3, which outlines a framework
to approximate the Shapley value under the pair-wise
cooperation preference. To run Algorithm 3, one needs to
input an �-Oracle(μ) of the probability distribution μ and
the sample size K . Algorithm 3 first generates K orderings
from �-Oracle(μ), then uses each ordering to obtain one
sample of the Shapley value for user n. Finally, it averages
all these samples to estimate φn(V ).

To quantify the accuracy of Algorithm 3, we first decompose
the error as |φ̂n(V ) −φn(V ) | ≤ �app + �est, where �app and

Algorithm 3 An �-Oracle Based Algorithm
Require: An �-Oracle of probability distribution μ denoted by

�-Oracle(μ), sample size K .
Ensure: φ̂n(V )
1: φ̂n(V ) ← 0;
2: for k = 1 to K do
3: Generate a ordering σ from �-Oracle(μ):

σ ∼ �-Oracle (μ);

4: φ̂n(V )← (
1− 1

k

)
φ̂n(V ) + 1

kΔ(σ, n);
5: end for

�est are defined as the approximation error and estimation error
respectively:

�app �
∣∣∣∑

σ∈Ω
ν(σ)Δ(σ, n)− φn(V )

∣∣∣ ,
�est �

∣∣∣φ̂n(V )−
∑

σ∈Ω
ν(σ)Δ(σ, n)

∣∣∣ .
Theorem 2: The approximation error of Algo. 3 is bounded

by

�app ≤ 2� max
σ∈Ω
|Δ(σ, n)|,

while the estimation error of Algorithm 3 is bounded by

�est ≤ maxσ∈Ω Δ(σ, n)−minσ∈Ω Δ(σ, n)√
K

√
1
2

ln
2
δ

with a probability of at least 1− δ, where δ ∈ (0, 1].
Theorem 1: Proofs are in our supplementary file.
Theorem 2 reveals that the upper bound of the approxi-

mation error is linear in � with a rate of maxσ∈Ω |Δ(σ, n)|.
This implies that when maxσ∈Ω |Δ(σ, n)| is large, one needs
to have a more accurate oracle, i.e., with smaller �, to attain
a small approximation error. The estimation error is linear in
[maxσ∈Ω Δ(σ, n)−minσ∈Ω Δ(σ, n)]/

√
K. This implies that

given an estimation error, the number of samples needed is
proportional to [maxσ∈Ω Δ(σ, n)−minσ∈Ω Δ(σ, n)]2.

The computational complexity of Algorithm 3 is

O(K×complexity of generating a sample from �-Oracle(μ)).

We next design algorithm to implement the �-Oracle and study
its computational complexity.

Implementing the �-Oracle. Recall that the distribution
μ under the pair-wise cooperation preference is expressed
in Equation (9). We design a Markov Chain Monte Carlo
algorithm to implement the �-Oracle for μ, i.e., approximate
IID samples. The state space of the Markov Chain is Ω,
i.e., each state corresponds to one ordering σ. We need to
design state transition probabilities such that the stationary
distribution of the Markov chain is μ(σ) as stated in Equa-
tion (9). To achieve this, let us first define the neighbor of
a state σ.

Definition 3: The state σ̃ and σ are mutual neighbors if
and only if they are different on at most two coordinates.
We define a set of all neighbors of σ as

F(σ) � {σ̃|σ̃ and σ are mutual neighbors}.
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For example, σ̃ = (1, 3, 2) and σ = (1, 2, 3) are mutual
neighbors, while σ̃ = (3, 1, 2) and σ = (1, 2, 3) are not mutual
neighbors. Furthermore, the neighbor set of σ = (1, 2, 3) is
F(σ) = {(1, 2, 3), (1, 3, 2), (3, 2, 1), (2, 1, 3)}. A state σ can
only transit to one of its neighbors. The number of neighbors
for each state is |F(σ)| =

(
N
2

)
+ 1. This implies a sparse

transition matrix as the number of states is N !. A sparse
transition matrix can make the simulation of transitions of
the Markov chain computationally inexpensive. TWe apply
the glauber dynamics [26] framework to design the transition
probabilities. We outline the details in Algorithm 4 and denote
the transition probability as P . Thus, the Markov chain is
(Ω, P ).

Algorithm 4 �-Oracle for Pair-Wise Preference

Require: Pair-wise preference G, the function Υ(·), the num-
ber of rounds T and σ(0).

Ensure: σ(T )

1: for t = 0 to T − 1 do
2: Generate n uniformly at random from N , Generate m

uniformly at random from N \ {n};
3: σ̃ ← σ(t) swapping σ

(t)
m and σ

(t)
n ;

4: σ(t+1) ← σ(t) with probability

exp(αΥ(σ(t)))
exp(αΥ(σ(t))) + exp(αΥ(σ̃))

,

and σ(t+1) ← σ̃ with probability

exp(αΥ(σ̃))
exp(αΥ(σ(t))) + exp(αΥ(σ̃))

;

5: end for

To illustrate, consider the setting of Example 1. For sim-
plicity, suppose α = 0. Suppose the initialized ordering is
σ(0) = (1, 2, 3). In the first round, i.e., t = 0, suppose the
generated n and m are n = 1 and m = 2 respectively. Note
that σ

(0)
1 = 1 and σ

(0)
2 = 2. Hence, swapping σ

(0)
1 and σ

(0)
2

leads to σ̃ = (2, 1, 3). Finally, with probability 1/2 the σ(1)

is set as σ(1) ← (1, 2, 3), and with probability 1/2 the σ(1)

is set as σ(1) ← (2, 1, 3).
The computational complexity of Algorithm 4 is

O(T × complexity of simulating one transition),

where T denotes the simulation rounds. The cost of simulating
one transition has two key components: (1) drawing a uniform
sample from N or from N \ {n}; (2) drawing a sample
from a Bernoulli distribution. In other words, simulating
one transition is computationally inexpensive. The remaining
question is: how many rounds of simulation do we need? The
number of simulation rounds needed is closely related to the
local variation of μ(σ) defined as follows.

Definition 4: We define the local variation of μ(σ) as

‖μ‖LV � max
σ∈Ω

max
σ̃∈F(σ)

μ(σ)
μ(σ̃)

.

For example, consider the μ(σ) derived in Equation (9), the
local variation of μ can be derived as

‖μ‖LV = exp
[
α max

σ∈Ω
max

σ̃∈F(σ)
(Υ(σ)−Υ(σ̃))

]
.

Note that the local variation ‖μ‖LV ≥ 1, because σ ∈ F(σ)
and σ̃ = σ gives a lower bound of 1.

Theorem 3: Consider the μ(σ) derived in Equation (9).
Suppose ‖μ‖LV ≤

(
N
2

)
/(
(
N
2

)− 2), i.e., α satisfies

α ≤ ln[
(
N
2

)
/(
(
N
2

)− 2)]
maxσ∈Ω maxσ̃∈F(σ)(Υ(σ)−Υ(σ̃))

. (11)

If the number of rounds T satisfies

T ≥
(
ln

�

N

)
/ ln

((
N
2

)− 1(
N
2

) 2‖μ‖LV

‖μ‖LV + 1

)
,

Algorithm 4 implements an �-Oracle of μ.
Theorem 3 derives an upper bound on the local variation

of μ, such that Algorithm 4 can implement an �-Oracle of
μ. For each μ that satisfies the local variation upper bound,
Theorem 3 also derives the number of simulation rounds
needed to implement the �-Oracle. The local variation upper
bound is equivalent to an upper bound of the preference
sensitivity α, which implies a small α.

C. An Importance Sampling Based Algorithm

We consider the pair-wise preference, in particular, the case
that the preference parameter α does not satisfy (11).

Transformation via importance sampling. Recall the
pair-wise preference aware Shapley value, where the dis-
tribution μ is derived in Equation (9). One challenge is
that the denominator of Equation (9) is computationally
expensive to compute. One way to address this challenge is
via estimating the ratio φn(V )/φ1(V ), ∀n ∈ N . And then
reconstruct φn(V ), ∀n ∈ N via the efficiency property, i.e.,∑

n∈N φn(V ) = V (N ). We apply the importance sampling
framework to estimate the ratio φn(V )/φ1(V ), ∀n ∈ N . We
show the key idea in the following derivation:

φn(V )
φ1(V )

=
Eσ∼μ[Δ(σ, n)]
Eσ∼μ[Δ(σ, 1)]

=
Eσ∼Uniform(Ω)[N !μ(σ)Δ(σ, n)]
Eσ∼Uniform(Ω)[N !μ(σ)Δ(σ, 1)]

(12)

=
Eσ∼Uniform(Ω)[Xn(σ)]
Eσ∼Uniform(Ω)[X1(σ)]

, (13)

where Uniform(Ω) denotes a uniform distribution over Ω
and

Xn(σ) � exp(αΥ(σ))Δ(σ, n).

In the above derivation, (12) follows the importance sampling
framework (or change of measure), and (13) follows the linear
scaling property of expectation. Combining (13) with the
efficiency property

∑
n∈N φn(V ) = V (N ), we have

φn(V ) =
Eσ∼Uniform(Ω)[Xn(σ)]∑

m∈N Eσ∼Uniform(Ω)[Xm(σ)]
V (N ). (14)
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Now we only need to deal with a uniform distribution over Ω
and random variable Xn(σ).

Design and analysis of the importance sampling based
algorithm. Based on the above derivation, we propose a
sampling algorithm, i.e., Algorithm 5, which approximates
the Shapley value under pair-wise cooperation preference.
Algorithm 5 generates K orderings from Uniform(Ω), i.e.,
the uniform distribution over Ω. Then, it uses each generated
ordering to compute one sample of Xn(σ). The average of
these samples is used to estimate Eσ∼Uniform(Ω)[Xn(σ)].
Finally, the estimated Eσ∼Uniform(Ω)[Xn(σ)] is used to esti-
mate the Shapley value according to Equation (14).

Algorithm 5 Importance Sampling Based Algorithm

Require: Pair-wise preference G, the function Υ(·), the sam-
ple complexity K .

Ensure: φ̂n(V ), ∀n ∈ N
1: xn ← 0;
2: for k = 1 to K do
3: Generate an ordering σ ∼ Uniform(Ω);
4: xn ←

(
1− 1

k

)
xn + 1

kXn(σ), ∀n ∈ N ;
5: end for
6: φ̂n(V )← xn�

m∈N xm
V (N ), ∀n ∈ N

To illustrate, consider the setting of Example 1. For sim-
plicity, suppose K = 2 and α = 0. In the first round, i.e.,
k = 1, suppose the generated ordering is σ = (1, 2, 3).
It follows that Δ(σ, 1) = 0 and correspondingly X1(σ) =
exp(αΥ(σ))Δ(σ, 1) = 0. The weight x1 is then updated
as x1 ← (1 − 1/1) × 0 + 0 = 0. Similarly, we have
x2 ← 0 and x3 ← 10. In the second round, i.e., k = 2,
suppose the generated ordering is σ = (3, 2, 1). It follows that
Δ(σ, 1) = 10 and correspondingly the weight x1 is updated as
x1 ← (1− 1

2 )×0+ 1
2×10 = 5. Similarly, we have x2 ← 0 and

x3 ← 5. Finally, the estimated Shapley value for player 1 can
be calculated as φ̂1(V )← 10× 5/(5 + 0 + 5) = 5. Similarly,
we have φ̂2(V ) ← 0 and φ̂3(V ) ← 5.

The computational complexity of Algorithm 5 is

O(K × complexity of generating σ ∼ Uniform(Ω)).

One method of generating σ ∼ Uniform(Ω) is: generate
an index n uniformly at random from N and set σ1 = n;
generate an index m uniformly at random from N \ {n}
and set σ2 = m; repeat this process until we obtain σN .
Thus, the cost of generating σ ∼ Uniform(Ω) is small. The
remaining question is how many samples do we need (i.e.,
the sample complexity) such that Algorithm 5 produces an
accurate estimation. This sample complexity is closely related
to the global variation of μ(σ) and Δ(σ, n), which is defined
as follows.

Definition 5: We define the global variation of μ(σ) and
Δ(σ, n) as

‖μ‖GV � max
σ,σ̃∈Ω

μ(σ)
μ(σ̃)

, ‖Δ‖GV � max
n∈N

max
σ,σ̃∈Ω

Δ(σ, n)
Δ(σ̃, n)

.

For example, consider the μ(σ) derived in Equation (9), the
global variation of μ can be derived as

‖μ‖GV = exp
[
α max

σ,σ̃∈Ω
(Υ(σ)−Υ(σ̃))

]
.

Based on the notion of global variation, we next derive the
sample complexity of Algorithm 5.

Theorem 4: Suppose Δ(σ, n) satisfy Δ(σ, n) > 0, ∀σ, n.
If the number of samples K satisfies

K ≥ 1
ε2
‖μ‖2GV ‖Δ‖2GV ln

2N

δ
,

then Algorithm 5 has the following accuracy guarantee

P

[
1− ε

1 + ε
φn(V )≤φ̂n(V )≤1 + ε

1− ε
φn(V ), ∀n

]
≥1− δ.

where ε ∈ (0, 1].
Theorem 4 derives the number of samples such that Algo-

rithm 5 produces an accurate estimation. Note that it only
holds for a class of payoff functions where there is a positive
externality of increasing the coalition size. It states that the
sample complexity is quadratic in the global variation of μ
and Δ(σ, n) respectively. Namely, to make the sample size
polynomial, we need ‖Δ‖2GV ≤ poly(N) and

α ≤ lnpoly(N)
maxσ,σ̃∈Ω(Υ(σ)−Υ(σ̃))

. (15)

One can easily show

max
σ,σ̃∈Ω

(Υ(σ)−Υ(σ̃)) ≤ N max
σ∈Ω

max
σ̃∈F(σ)

(Υ(σ)−Υ(σ̃)),

and poly(N) ≥ [
(
N
2

)
/(
(
N
2

) − 2)]N . Thus, the upper bound
in (15) is larger than that in (11). This implies that Algorithm 5
can handle larger range of α than Algorithm 4. But this is
achieved when extra conditions on Δ(σ, n) hold.

D. A Random Walk Based Algorithm

We still consider the pair-wise cooperation preference, i.e.,
μ(σ) satisfies Equation (9). Here we focus on general sensi-
tivity parameter α and payoff function V , i.e., not restricted
to the conditions in Theorem 3 and 4. We design an algorithm
based on random walk to approximate the Shapley value.
In particular, the random walk is associated with a Markov
Chain in Section III-B, i.e., (Ω, P ). In other words, the walker
walks on the states in Ω and jumps to each neighbor according
to the transition probability matrix P . Recall that the Markov
chain (Ω, P ) is ergodic and has a stationary distribution μ.
We estimate the Shapley value using the samples σ generated
by the random walker. We outline the details in Algorithm 6.

To illustrate, consider the setting of Example 1. For sim-
plicity, suppose T = 2. In the first round, i.e., t = 0, suppose
the generated ordering is σ(1) = (1, 2, 3). It follows that
Δ(σ(1), 1) = 0. The estimated Shapley value of player 1 can
be updated as φ̂1(V ) ← (1 − 1/1) × 0 + Δ(σ(1), 1) = 0.
Similarly, we have φ̂2(V ) ← 0 and φ̂3(V ) ← 10. In the
second round, i.e., t = 1, suppose the generated ordering
is σ(2) = (3, 2, 1). It follows that Δ(σ(2), 1) = 10. The
estimated Shapley value of player 1 in this round can be
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Algorithm 6 Random Walk Based Algorithm

Require: Pair-wise preference G, the function Υ(·), the num-
ber of walks T and σ(0).

Ensure: φ̂n(V ), ∀n ∈ N
1: φ̂n(V ) ← 0, ∀n ∈ N
2: for t = 0 to T − 1 do
3: Step 2-4 of Algorithm 4.
4: φ̂n(V )←(1− 1

t+1 )φ̂n(V )+ 1
t+1Δ(σ(t+1), n), ∀n∈N

5: end for

updated as φ̂1(V ) ← (1 − 1
2 ) × 0 + 1

2 × 10 = 5. Similarly,
we have φ̂2(V ) ← 0 and φ̂3(V ) ← 5.

The computational complexity of Algorithm 6 is

O(T × complexity of simulating one transition),

where T denotes the simulation rounds. The complexity of
simulating one transition is the same as that of Algorithm 4.
The φ̂n(V ) converges to φn(V ) asymptotically, because the
Markov chain is ergodic. One can easily verify that the
Markov chain (Ω, P ) is reversible. This means that we can
use the spectral gap of the Markov chain (Ω, P ) to quantify
the convergence rate of Algorithm 6. This convergence rate
implies the number of walks that (i.e., sample complexity) we
need. Formally, let β denote the spectral gap of the Markov
chain (Ω, P ). Let μ(0) denote the distribution of the initial
state σ(0). We define the distance between μ(0) and μ as

D
(
μ(0), μ

)
�

√√√√∑
σ∈Ω

(
μ(0)(σ)
μ(σ)

)2

.

Based on these notations, we derive the sample complexity of
Algorithm 6 in the following theorem.

Theorem 5: Suppose the number of walks satisfies

T≥ 1
βε̃2

16‖Δ‖2∞b

1−1.25ε̃/(‖Δ‖∞b)
ln
[
D(μ(0), μ)

2N

δ
exp

β

5

]
. (16)

Algorithm 6 has the following accuracy guarantee

P

[∣∣∣φ̂n(V ) − φn(V )
∣∣∣ < ε̃, ∀n

]
≥ 1− δ.

where ‖Δ‖∞ � maxn∈N maxσ∈Ω |Δ(σ, n)|, b =∑
σ∈Ω

(
Δ(σ,n)−φn(V )

2‖Δ‖∞

)2

and ε̃ ≤ 0.8 b‖Δ‖∞.
Theorem 5 states that the sample complexity (or the number

of walks needed) of Algorithm 6 is roughly proportional to
1/�2, inverse of spectral gap β and ‖Δ‖2∞. Namely, it is critical
to estimation accuracy �, inverse of spectral gap β and ‖Δ‖∞.
The sample complexity is not critical to the initial distribution,
because it is proportional to the logarithmic of the distance,
i.e., ln D(μ(0), μ).

It is important to note that Algorithm 6 works on general
preference sensitivity α and payoff functions V . This is
an advantage over Algorithm 3 and Algorithm 5. However,
one shortcoming of algorithm 6 is that the spectral gap is
computational expensive to evaluate, i.e., a complexity of
higher than |Ω| = N !. This makes it challenging to determine
the sample complexity in practice. In practice, one can address

Fig. 2. Impact of number of samples on the tightness of Theorem 1 with
δ = 0.1.

this challenge by applying some convergence diagnosing meth-
ods [27]. We omit the details as it has been studied extensively
in the literature of MCMC.

E. Discussions

Tightness of bound. All the error bounds are built on
distribution-independent concentration inequalities. They are
tight in terms of the order with respect to sample size K as
indicated by the anti-concentration inequalities [28]. But the
bound is not tight with respect to the multiplying factor as
illustrated in Figure 2. Figure 2 illustrates the ground truth of
Shapley value, the upper confidence bound (UCB) and lower
confidence bound (LCB) produced by Theorem 1, and two
approximation paths produced by combining Algo. 1 and 2.
The setting of Figure 2 is the same as Figure 3, whose detail
is deferred to Section V. One can observe that the estimated
Shapley value produced by combining Algo. 1 and 2 is much
closer to the ground truth than the UCB and LCB produced
by Theorem 1. This implies that the error bound is not tight
with respect to the multiplying factor. We are also aware of
other concentration inequalities that capture more properties
of the distribution such as variance [29] and they can improve
the multiplying factor of the error bound a little bit. We do
not choose them because they also make the error bound more
complicated, making factors that affect the order of bound less
clear.

Novelty. Similar with works in the research line of studying
computational aspect of Shapley value [19], [20], [30], [31],
our work employs techniques from randomized algorithms and
concentration inequalities to design algorithms and derive error
bounds that reveal the impact of various factors such local
variation and global variation on the approximation accuracy
of cooperation preference aware Shapley value.

IV. EXTENSIONS

In this section, we present two extensions of our model:
(1) multiple coalitions; (2) dynamic cooperation preferences.
We focus on extending the cooperation preference aware
Shapley value to divide payoff, and extending the algorithmic
framework in Section III to address the computational issues
arose from these two extensions.

A. Multiple Coalitions

We first present models on the formation of multiple
coalitions. Then, we extend our cooperation preference aware
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Shapley value to divide the payoff as well as extend the
algorithms to compute the resulting Shapley value.

Multiple coalition formation. In real-world applications,
multiple coalitions usually arise, instead of just one grand
coalition as presented in Section II. Both the payoff function
and the cooperation preference may result in multiple coali-
tions.

Let us first consider the case of multiple coalitions induced
by the payoff function. To illustrate, consider the following
example of three players, i.e., N = {1, 2, 3} with a payoff
function V as follows:

V (∅) = 0,

V ({1}) = 5, V ({2}) = 5, V ({3}) = 5,

V ({1, 2}) = 100, V ({1, 3}) = 1, V ({2, 3}) = 1,

V ({1, 2, 3}) = 0.5.

Suppose that all players have equal preference to cooperate
with other players. Then, the coalitions that maximizes each
user’s payoff are {1, 2} and {3}, where both players 1 and
2 get 50 and player 3 gets 5. This implies that the final
coalition outcomes will most likely be {1, 2} and {3}. Many
previous works studied the stability of coalitions [32] or
formation of coalitions [33], [34], [35] from the perspective
of payoff functions.

Besides the above multiple coalition formation models or
methods, the cooperation preference in Section II can also be
extended to model multiple coalitions.
• Multiple coalitions via group-wise preference. Our

group-wise cooperative preference model can be extended to
model the formation of multiple coalitions by providing an
option of not joining any existing coalitions, but instead form-
ing a new singleton coalition by itself. Recall the group-wise
preference model that there is a coalition Ct at time slot t
and a player joins the coalition Ct (with probability p(n|Ct)
the joining user is n ∈ N \ Ct). Let 
t ∈ N+ denote the
number of nonempty coalitions formed up to the time slot
t. Denote these coalitions by C̃1, . . . , C̃�t , where C̃1, . . . , C̃�t

are disjoint and C̃1 ∪ . . . ∪ C̃�t = Ct. The joining user
n ∈ N \ Ct can join coalition C̃i, where i ∈ {1, . . . , 
t}
with probability p(i|C̃1, . . . , C̃�t) or forming a new singleton
coalition by itself with probability p(0|C̃1, . . . , C̃�t), where∑�t

i=0 p(i|C̃1, . . . , C̃�t) = 1. In the end, a number of 
N

coalitions will be formed, i.e., C̃1, . . . , C̃�N .
• Multiple coalitions via pair-wise preference. Our pair-

wise cooperation preference model can also be extended
to model the formation of multiple coalitions via subgraph
components. Suppose that the pair-wise preference graph G =
(N , W ) can be partitioned into 
 ∈ N+ isolated components
Ñ1, . . . , Ñ� such that there is no edge between any two
components Ñi and Ñj , and each component Ñi can not
be partitioned into smaller isolated components. Each isolated
component corresponds to one coalition. Thus, the pair-wise
cooperation preference graph with 
 isolated components
induces 
 coalitions denoted by Ñ1, . . . , Ñ�.

To summarize, the above models separately use either the
payoff function or the cooperation preference to model multi-
ple coalitions. One can also combine the payoff function and

the cooperation preference model to model multiple coalitions.
In the following, we focus on how to divide the payoff
when multiple coalitions have been formed. Without loss of
generality, we consider that 
 nonempty coalitions has been
formed denoted by

N1, . . . ,N�,

where 
 ∈ {1, . . . , N}, the coalitions N1, . . . ,N� are disjoint
and satisfy N1 ∪ . . . ∪ N� = N .

Shapley value under multiple coalitions. We consider
two extensions of the cooperation preference aware Shapley
value to divide the payoff under multiple coalitions. The first
extension considers the case that the payoff among different
coalitions are independent. The second extension considers the
case that the payoff among different coalitions mutually influ-
ence each other, capturing externalities such as competition
among coalitions. Let N−i denote a set of all the coalitions
except the coalition Ni, i.e.,

N−i � {N1, . . . ,Ni−1,Ni+1, . . . ,N�} .

• Independent payoff across coalitions. The payoff across
different coalitions are independent, i.e., for any C ⊆ Ni,
the payoff for C is uniquely determined by C itself and it
is not influenced by the other coalitions N−i. Without loss of
generality, denote the payoff function associated with coalition
Ni as Vi. Thus, the payoff for C ⊆ Ni is Vi(C). Let φi,n(Vi)
denote the payoff share or Shapley value of user n ∈ Ni.
Then, φi,n(Vi) can be expressed as

φi,n(Vi) =
∑

σi∈Ωi

μi(σi) [Vi(Sσi
n ∪ {n})− Vi(Sσi

n )] ,

where Ωi denotes a set of all of the orderings
of the players in coalition Ni, i.e., Ωi �
{σ|σ is an ordering of players in Ni}, and μi denotes a
probability distribution over Ωi. Applying the cooperation
preference model in Section II, we can obtain closed form
expressions for the distribution μi under the group-wise
preference or pair-wise preference. One can apply the
algorithms in Section III to compute the Shapley value
φi,n(Vi) for each coalition Ni.
• Coalition externalities aware payoff. The payoff of a

coalition Ni is influenced by other coalitions N−i. Formally,
let Ṽi(·;N−i) denote the payoff function associated with
the coalition Ni. Namely, the payoff for the set of players
C ∈ Ni is Ṽi(C;N−i). The parameter N−i in the payoff
function Ṽi(C;N−i) can be used to capture externalities among
coalitions such as competition or complementarity among
coalitions. Let φi,n(Ṽi) denote the payoff share or Shapley
value of user n ∈ Ni. Then, φi,n(Ṽi) can be expressed as

φi,n

(
Ṽi

)
=
∑

σi∈Ωi

μi(σi)
[
Ṽi(Sσi

n ∪{n};N−i)−Ṽi(Sσi
n ;N−i)

]
.

Applying the cooperation preference model in Section II, we
can obtain closed form expressions for the distribution μi

under the group-wise preference or pair-wise preference. Then
one can apply algorithms in Section III to compute the Shapley
value φi,n(Ṽi) for each coalition Ni.
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B. Dynamic Cooperation Preferences

We extend our model to capture dynamic cooperation
preferences evolving over time. This paper only focuses on
dividing the payoff under the evolving dynamics of coop-
eration preferences. For the analysis, control, etc., of the
dynamic cooperation preferences, they are interesting research
directions for future research.

Dynamic cooperation preferences. We use a discrete time
system indexed by τ ∈ N+ to model the dynamic cooperation
preference. With a little abuse of notations, let 
τ ∈ N+ denote
the number of nonempty coalitions in time slot τ . Denote these

τ ∈ N+ nonempty coalitions as N (τ)

1 , . . . ,N (τ)
�τ

, where the

coalitions N (τ)
1 , . . . ,N (τ)

�τ
are disjoint and satisfy

N (τ)
1 ∪ . . . ∪N (τ)

�τ
= N .

Let N (τ)
−i denote a set of all the coalitions except N (τ)

i , i.e.,

N (τ)
−i �

{
N (τ)

1 , . . . ,N (τ)
i−1,N (τ)

i+1, . . . ,N (τ)
�τ

}
.

Let Ω(τ)
i denote a set of all orderings of players in the coalition

N (τ)
i , i.e.,

Ω(τ)
i �

{
σ

∣∣∣∣σ is an ordering of players in N (τ)
i

}
.

For brevity, we only consider the case that the payoff function
across different coalitions mutually influence each other. Let
Ṽ

(τ)
i (·;N (τ)

−i ) denote the payoff function associated with the

coalition N (τ)
i in time slot τ . Namely, in time slot τ , the

payoff for the set of players C ∈ N (τ)
i is Ṽ

(τ)
i (C;N (τ)

−i ). Let

φ
(τ)
i,n (Ṽ (τ)

i ) denote the payoff share or Shapley value of player

n ∈ N (τ)
i in time slot τ . In general, the cooperation preference

across different time slots are mutually dependent. We do
not model such dependence, because it does not affect the
application of our algorithms to divide the payoff in different
time slots.

Shapley value under dynamic cooperation preferences.
Consider the group-wise preference. Denote the group-wise
cooperation preference profile for all players in time slot τ ∈
N+ as

R(τ) �
{
R(τ)

n

∣∣∣∀n ∈ N} .

Let μ
(τ)
i (·|R(τ)) denote the probability distribution over

Ω(τ)
i under the cooperation preference profile R(τ). Then,

φ
(τ)
i,n (Ṽ (τ)

i ) can be expressed as

φ
(τ)
i,n

(
Ṽ

(τ)
i

)
=

∑
σi∈Ω

(τ)
i

μ
(τ)
i

(
σi

∣∣∣R(τ)
)[

Ṽ
(τ)
i

(
Sσi

n ∪ {n};N (τ)
−i

)
−Ṽ

(τ)
i

(
Sσi

n ;N (τ)
−i

) ]
.

Now, one can apply the algorithms in Section III to compute
the Shapley value φ

(τ)
i,n

(
Ṽ

(τ)
i

)
for each coalition N (τ)

i .

Denote W (τ) � [w(τ)
mn|m, n ∈ N ] as the pair-wise coop-

eration preference profile in time slot τ . Let μ
(τ)
i (·|W (τ))

denote the probability distribution over Ω(τ)
i associated with

the pari-wise cooperation preference profile W (τ). Then,
φ

(τ)
i,n (Ṽ (τ)

i ) can be expressed as

φ
(τ)
i,n

(
Ṽ

(τ)
i

)
=
∑

σi∈Ω
(τ)
i

μ
(τ)
i

(
σi

∣∣∣W (τ)
)[

Ṽ
(τ)
i

(
Sσi

n ∪ {n};N (τ)
−i

)
−Ṽ

(τ)
i

(
Sσi

n ;N (τ)
−i

) ]
.

Again, one can apply the algorithms in Section III to compute
the Shapley value φ

(τ)
i,n

(
Ṽ

(τ)
i

)
for each coalition N (τ)

i .

V. APPLICATIONS

To show the versatility of our models and algorithms, we
apply them to: (1) divide the revenue among ISPs in deploying
new Internet architectures and, (2) divide the reward among
workers in crowdsourcing applications.

A. ISP Settlement

Problem description. Revenue devision is critical for
the deployability of new Internet architectures [11]. Consider
dividing the revenue gain of deploying a new Internet archi-
tecture, e.g., IPv6, named data networking (NDN), differential
service (DiffServ), etc., among a set N of ISPs. We consider
a class of new architectures that require full participation of
all ISPs. Such architectures include named data networking
(NDN) and differential service (DiffServ). Namely, the func-
tionality of the architecture on the routing path (composed of
ISPsN ) can be enabled if and only if all ISPs inN participate.
Formally, we use the following payoff function to capture this
full participation property:

V (C) =

{
1, if C = N ,

0, otherwise,

where we normalize the revenue gain to be 1. The competition
or complementarity among ISPs’ businesses influence ISPs’
cooperation preferences. Namely, two ISPs are more (or less)
willing to cooperate if their businesses are mutually comple-
ment (or compete). How to divide the revenue gain taking this
preference into account?

Apply our group-wise preference model. For simplicity,
we consider two business types denoted by {−1, 1}. Let
bn ∈ {−1, 1} denote the business type of ISP n ∈ N .
Two ISPs m, n ∈ N are mutually competitive if and only if
they operate the same type of business, bm = bn, otherwise,
they are mutually complement, i.e, bm �= bn. We use our
group-wise preference model to capture the competition or
complementarity among the ISPs N . We use the following
rating model to capture that an ISP is more preferable to join
a coalition whose businesses are complement to hers

Rn(C) = 1 +
M − 1

1 + exp(−θ
∑

m∈C |bn − bm|) ,

where θ models the sensitivity to the business type. A larger θ
models that the cooperation preference is more sensitive to the
business type. Then, we apply the stochastic process developed
in Section II-B and consider the conditional joining probability
derived in Equation (5).
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Fig. 3. Impact of number of samples on the accuracy of Algo. 1 and 2.

Numerical studies and implications: We combine Algo-
rithm 1 and 2 to compute the Shapley value (i.e., revenue
share) for each ISP, setting K = 109. Due to symmetry, each
ISP of the same type has the same revenue share or Shapley
value. Thus, we denote the revenue share for a type 1 and −1
ISP as φ1(V ) and φ−1(V ) respectively.

To evaluate the performance of our proposed algorithms,
we first consider a small coalition formed by N = 5 ISPs,
where the exact Shapley value can be calculated via exhaustive
search. Figure 3 shows the impact of number of samples on
the accuracy of the estimation produced by combining Algo. 1
and 2. The horizontal axis show the number of samples K
and the vertical axis shows the estimated Shapley value φ1(V )
produced by combining Algo. 1 and 2. The red curve and blue
curve correspond to two approximation paths. From Figure 3,
one can observe that the estimated φ1(V ) converges to the
ground truth. When the number of samples is more than 2000,
the estimated φ1(V ) is very close to the ground truth. This
shows that the combination of Algo. 1 and 2 has superior
empirical performance.

We consider a larger coalition of N = 20 ISPs for
illustration purpose. There can be many ISPs and they can
form many coalitions, where our method can be applied to
handle each coalition individually. Note that 20! ≈ 2 × 1018,
implying a high computational complexity for computing the
exact Shapley value. Note that under the classical Shapley
value, each ISP equally shares the revenue, i.e., each one gets
φ1(V ) = φ−1(V ) = 1/20 = 0.05. Figure 6(a) shows the
revenue share of a type 1 ISP φ1(V ), where the fraction of
type 1 ISP varies from 10% to 100%. Figure 6(c) shows
the revenue ratio, i.e., the revenue share of a type 1 ISP
divided by that of a type −1 ISP φ1(V )/φ−1(V ), where the
fraction of type 1 ISPs varies from 50% to 90%. One can
observe that when the fraction of type 1 ISP is less than 50%,
φ1(V ) is smaller than φ−1(V ), otherwise φ1(V ) is larger of
equal to φ−1(V ). This implies that each minority ISP (i.e.,
fraction of type 1 ISPs is less than 50%) shares less revenue
than each majority ISP (i.e., fraction of type 1 ISPs is more
than 50%). The reason is that for the majority ISPs, they are
mutually competitive to each other, and thus more revenue
share is needed to be distributed to them. As the fraction of
type 1 ISP increases from 50% to 100%, the revenue share
for each type 1 ISP φ1(V ) first increases and then drops to
0.05 (when all ISPs are of type 1, they equally share the
revenue gain 1/20 = 0.05). As the fraction of type 1 ISP
increases from 50% to 90%, the revenue ratio φ1(V )/φ−1(V )

Fig. 4. Revenue share and revenue share ratio of deploying a new Internet
architecture.

increases from 1 to as high as 2.5. Thus, when there is a
small fraction, e.g., 10%, of type −1 ISPs, the revenue share
for a type −1 ISP (i.e., minority ISP) is significantly smaller
than that of a type 1 ISP (i.e., majority ISP). The insight
is that when the minority player can obtain such a small
revenue share as compare to the majority player, the minority
player will be less willing to participate, and this makes the
deployment of the new protocol (requiring full participation of
all ISPs) extraordinarily difficult. When half of the ISPs are
types 1 and the other half are type −1, each ISP equally share
the revenue, making it less difficult for all the ISPs to deploy
the new architecture. Note that these observations complement
the results of [11] on the deployability of new architectures,
which does not consider cooperation preferences among ISPs.

B. Crowdsourcing

Problem description. Dividing reward is a crucial problem
in crowdsourcing applications [12], [36]. Consider dividing the
reward among a set N of workers, who work on a crowdsourc-
ing task. We use an unweighted undirected graph to represent
the social relationships among workers. In particular, workers
are more willing to cooperate with friends. The cooperation
of more workers lead to higher quality solutions, resulting
in larger reward. We use the following reward functions to
capture this positive externality:

V (C) = (|C|/|N |)1−η
, ∀C ⊆ N ,

where η ∈ [0, 1] captures the diminishing return effect.
A larger η models a larger strength of diminishing return
effect. The question is: How to divide the reward taking the
social network into account?

Apply our pair-wise preference model. We apply our
pair-wise preference model developed in Section II-B to
incorporate the social network. In our pair-wise preference
model, we set wmn = 0 if there is no link between m and
n in the social network and wmn = wnm = 1 if there is a
link. We also use Equation (7) and (8) to incorporate the social
network into the Shapley value.

Numerical studies and implications. To illustrate the
impact of the social network on reward division, we consider
a “star network”. In particular, we consider N workers and
the worker N lies in the center, i.e., wNm = wmN = 1, ∀m ∈
{1, . . . , N − 1} and all other weights are 0. The worker N is
also known as the social hub. Choosing a star network allow
readers to verify the result and to better deliver the connection
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Fig. 5. Impact of number of samples on the accuracy of Algorithm 6.

between network structure (or cooperation preference) and
payoff share. Our algorithms can definitely be applied to
general and arbitrary network topologies. By symmetry, all
other N − 1 workers have the same Shapley value. We thus
focus on the Shapley value of φN (V ) and φ1(V ). We apply
Algorithm 6 to compute the Shapley value by setting T = 109.

To evaluate the performance of Algorithm 6, we first con-
sider a small coalition formed by N = 5 workers, where the
exact Shapley value can be calculated via exhaustive search.
Figure 5 shows the impact of number of samples on the
accuracy of Algorithm 6, where the horizontal axis shows the
number of samples T and the vertical axis shows the estimated
Shapley value φN (V ) by Algorithm 6. The red curve and blue
curve correspond to two approximation paths. From Figure 5,
one can observe that the estimated φN (V ) converges to the
ground truth. When the number of samples is more than 3000,
the estimated φN (V ) is very close to the ground truth. This
shows that Algorithm 6 has superior empirical performance.

We consider a larger coalition formed by N = 20 workers
in a crowdsourcing system. Note that we do not assume a
crowdsourcing system with only N = 20 workers. There
can be many workers and they can form many coalitions,
where our method can be applied to handle each coalition
individually. Figure 6(a) shows that φN (V ) increases in the
preference sensitivity parameter α. This implies that the
social hub N shares more reward when workers’ cooperation
preferences become more sensitive to the social relationship.
Figure 6(c) shows that φN (V ) increases in η. This implies
that the social hub N receives more reward when the strength
of diminishing return effect η increases. Figure 6(b) and 6(d)
show that the reward share ratio, i.e., φN (V )/φ1(V ) increases
in both the preference sensitivity parameter α and strength
of diminishing return effect η. Furthermore, the reward ratio
φN (V )/φ1(V ) is larger than 1. This implies that the social hub
receives more reward than each of the other 19 workers and
each of the other 19 workers receives less and less reward
as α or η increases. This also demonstrates the important
role of worker N , who is a “hub” in the preference graph.
Note that the reward share for a worker needs to exceed the
cost of this worker in solving the task, so that this worker
has incentive to participate in the crowdsourcing task. Thus,
when the preference sensitivity parameter α or the strength of
diminishing return effect η increases, it would be more difficult
for all workers to cooperate. Note that these observations
complement the results of [12], which does not consider
cooperation preferences in reward division.

Fig. 6. Reward division in crowdsourcing systems.

VI. RELATED WORK

There are several solution concepts for cooperative
game [18], for example, Shapley value [1], Banzhaf index [37],
etc. The Shapley value has been studied extensively and our
work is closely related to two lines of them: (1) cooperation
preference modeling; (2) sampling algorithms design for com-
puting Shapley value.

Cooperation preference modeling. A variety of works
proposed restricted cooperation models to quantify coopera-
tion preferences [38], [39], [40]. This line of works used a
graph among players to filter out some permutations of players
(i.e., restrict the coalition to the remaining permutations), and
each one of the remaining permutations happens with equal
probability. However, for our model, we do not filter out
any permutation, and we use a preference graph to adjust
the probability mass over each permutation. Stern et al. [41]
proposed a hypercube graph to capture the cooperation pref-
erence. In their hypercube graph, each node corresponds
to a subset of players (i.e., representing a coalition) and
each directed link represents a user joining a coalition. The
weights of a link can be interpreted as the willingness to
join a coalition. The key difference to our work is that in
our model, each node corresponds to a player and we use
a directed link to capture the willingness of a player to
cooperate with the other one. Also our graph is not constrained
to be a hypercube. Few works modeled the cooperation
preference from a probabilistic perspective, i.e., generalizing
the distribution μ over orderings Ω. Von Hohenbalken and
Levesque [19] used a simplicial distribution to generate a
non-uniform distribution μ over orderings Ω, i.e., mapping
each sample of the simplicial distribution to an ordering of
players. Kalai and Samet [20] proposed to use the weights of
players to generate a non-uniform distribution μ over orderings
Ω. Their models associate each player with a weight and the
ordering is biased toward the weight. Balkanski et al. [30]
and Feldotto et al. [31] considered the data dependent Shapley
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value. They considered non-uniform distribution μ over order-
ings Ω and assumed that IID samples from μ are available.
We formulate a group-wise model and a pair-wise model
to solicit cooperation preferences and develop mathematical
models to characterize how they influence the formation of
coalition. Furthermore, we address a number of challenges,
i.e., how to store these resource demanding preferences, and
obtain computationally expensive IID samples from μ. Lastly,
our model is more flexible and extends to multiple coalitions
and dynamic cooperation preferences.

Sampling algorithms design for Shapley value. A number
of works used the Monte Carlo sampling to estimate the Shap-
ley value. Mann and Shapley [42] were the first to apply the
Monte Carlo sampling to estimate the classical Shapley values,
but without any theoretical guarantees. Bachrach et al. [43]
derived the upper and lower bound on the sample com-
plexity of estimating the classical Shapley value via simple
Monte Carlo sampling. Liben et al. [44], Aziz et al. [45] and
Balkanski et al. [30] refined the sample complexity analysis
via restricting the classical Shapley value for supermodular
coalition games, submodular games with bounded curvature
and matching games respectively. To improve the simple
Monte Carlo sampling method in estimating the classical
Shapley value, Castro et al. [46] proposed an algorithm based
on the generalization of order importance sampling, and
O’Brien et al. [47], [48] proposed a stratified sampling algo-
rithm. A number of works [19], [20], [30], and [31] also
studied Monte Carlo sampling for generalized Shapley value,
where μ is a non-uniform distribution over Ω. Their works
were built on the assumption that IID samples from μ are
inexpensive to obtain. Different from these works, we focus
on modeling the cooperation preferences and incorporating
them into the Shapley value. Under our preference model, IID
samples from μ can be computationally expensive to obtain,
which are inexpensive for the classical Shapley value and the
previous generalized Shapley value models. More importantly,
we also design efficient algorithms with theoretical grantees
to compute its values. Lastly, our algorithms are more flexible
and extends to multiple coalitions and dynamic cooperation
preferences.

VII. CONCLUSION

This paper generalizes the classical Shapley value to capture
cooperation preferences. We develop mathematical models to
represent two types of cooperation preferences, i.e., group-
wise preferences and pair-wise preferences. We generalize
the classical Shapley value to incorporate theses preferences.
We also show that it is computationally expensive to evaluate
the cooperation preference aware Shapley value. We design
efficient randomized algorithms (with theoretical guarantees)
to compute the cooperation preference aware Shapley value.
We also extend our models and algorithms to divide payoff
for multiple coalitions with dynamic preferences. Finally,
we demonstrate the applications of our framework by applying
it to divide the revenue among ISPs in deploying new Internet
architectures, as well as divide the reward among workers in
a crowdsourcing system. We also provide important insights
on how cooperation preferences influence the reward division.

One limitation of our work is that the sample complexity
of some algorithms are computationally expensive to evaluate,
making it difficult to determine the sample size in advance.
Another limitation is that it is difficult to apply or extend our
model to other concepts in coalitional games, such as cores
and voting theory. The reason is that cooperation preferences
are captured in the likelihood of ordering of the Shapley value
and these concepts do not have such probabilistic aspect.
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