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Abstract
Randomwalk-based samplingmethods are gaining popularity and importance in char-
acterizing large networks. While powerful, they suffer from the slow mixing problem
when the graph is loosely connected, which results in poor estimation accuracy.
Random walk with jumps (RWwJ) can address the slow mixing problem but it is
inapplicable if the graph does not support uniform vertex sampling (UNI). In this
work, we develop methods that can efficiently sample a graph without the necessity of
UNI but still enjoy the similar benefits as RWwJ. We observe that many graphs under
study, called target graphs, do not exist in isolation. In many situations, a target graph
is related to an auxiliary graph and a bipartite graph, and they together form a better
connected two-layered network structure. This new viewpoint brings extra benefits to
graph sampling: if directly sampling a target graph is difficult, we can sample it indi-
rectly with the assistance of the other two graphs. We propose a series of new graph
sampling techniques by exploiting such a two-layered network structure to estimate
target graph characteristics. Experiments conducted on both synthetic and real-world
networks demonstrate the effectiveness and usefulness of these new techniques.

Keywords Graph sampling · Random walk ·Markov chain · Estimation theory

1 Introduction

Online social networks (OSNs) such as Facebook and Twitter have attracted much
attention in recent years because of their ever-increasing popularity and importance
in our daily lives. An OSN not only provides a platform for people to connect with
their friends, but also offers an opportunity to study various user characteristics, which
are valuable in many applications such as understanding human behaviors (Leskovec
et al. 2010; Zhang et al. 2013; Backstrom and Kleinberg 2014) and inferring user
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preferences (Han et al. 2014; Li et al. 2016). Exactly measuring user characteristics
requires the complete OSN data. For third parties who do not possess the data, they can
only rely on public APIs to crawl the OSN. However, commercial OSNs are typically
unwilling to grant third parties full permission to access the data due to user privacy
and business secrecy. They often impose barriers to limit third parties’ large-scale
crawling (Mondal et al. 2012), e.g., by limiting the API requesting rate.1 As a result,
collecting the complete data of a large-scale OSN is practically impossible.

To address this challenge, samplingmethods have been developed, i.e., a small frac-
tion ofOSNusers are sampled and used to estimate thewholeOSNuser characteristics.
In the literature, random walk based sampling methods have gained popularity (Mas-
soulié et al. 2006; Avrachenkov et al. 2010; Ribeiro and Towsley 2010; Gjoka et al.
2011b; Ribeiro et al. 2012; Lee et al. 2012; Xu et al. 2014). In a typical random walk
sampling, a walker is launched over a graph, which continuously moves from a node
to one of its neighbors selected uniformly at random, to obtain a collection of node
samples. These samples can be used to obtain unbiased estimates of nodal or topolog-
ical properties of the graph. Because a random walk only explores neighborhood of a
node during sampling, it is suitable for crawling and sampling large-scale OSNs.

1.1 Problems in randomwalk based sampling

While random walk sampling is powerful, if a graph is loosely connected, e.g., con-
sists of communities, it will suffer from slow mixing (Sinclair and Jerrum 1989), i.e.,
requires a long “burn-in” period to reach steady state, which results in the need of
a large number of samples in order to achieve desired estimation accuracy. Previous
studies have found that mixing times in many real-world networks are larger than
expected (Mohaisen et al. 2010).

To overcome the slow mixing problem, an effective approach is to incorporate
uniform node sampling (UNI) into random walk sampling, and enable the walker
to jump to other parts of the graph while walking, aka the random walk with jumps
(RWwJ; Avrachenkov et al. 2010; Ribeiro et al. 2012; Xu et al. 2014). In UNI, a node
is independently sampled uniformly at random from the graph, and in practice, if users
in an OSN have unique numerical IDs, then UNI is conducted by generating random
numbers in the ID space and including those valid IDs as UNI samples. RWwJ then
leverages UNI to perform jumps on a graph. Specifically, at each step of RWwJ, the
walker jumps with a probability determined by the node where it currently resides, to
a node sampled by UNI. By incorporating UNI into randomwalk sampling, the walker
can jump out of a community or disconnected component of a graph, and avoid being
trapped, thereby reducing the mixing time (Avrachenkov et al. 2010).

The main problem of using RWwJ to sample an OSN is that, some OSNs may not
support UNI at all because user IDs are not numerical, or UNI is resource intensive
because the valid IDs are sparsely populated in the ID space. For example, in Pinterest,2

a user’s ID is an arbitrary length string,which hencemakesUNI practically impossible.
InMySpace and Flickr, although the user IDs are numerical, the fractions of valid user

1 Twitter API rate limiting. https://dev.twitter.com/rest/public/rate-limiting.
2 http://www.pinterest.com.
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IDs are only about 10% and 1.3%, respectively (Ribeiro et al. 2012); in other words,
one has to generate about 10 (or 77) random numbers (and verify them by querying
OSN APIs) to obtain one valid user ID in MySpace (or Flickr). In some situations, the
valid ID space could become extremely sparse.

Example 1 (SamplingWeibo users in a city) Suppose we want to measure user charac-
teristics in Sina Weibo,3 which is a popular OSN in China. Rather than measuring all
the Weibo users, we are only interested in users who checked in4 venues in a specified
city. For example, users who shared check-in information at tourist spots, hotels, and
restaurants of a city could be used to evaluate the city’s internationality, economic
index, etc. Suppose the users who checked in the city account for about 0.1% of all
Weibo users. We also know that each Weibo user has a unique 10-digit numerical ID,
and the fraction of valid IDs is about 10%.5

In the above example, when conducting UNI, we expect that a randomly generated
number is a valid user ID, and the corresponding user checked in the city of interest.
This happens with probability 10−4, and as a result, we have to try 104 times on
average to obtain one valid UNI sample. Without the efficiency of conducting UNI on
a graph, we cannot perform jumps, and hence RWwJ is inapplicable. This raises the
following problem we want to solve in this work:

If we cannot perform jumps on a graph, can we conduct random walk sampling
that still has the similar benefits as RWwJ?

1.2 Overview of our approach

In thiswork,wedesign a series of graph sampling techniques that can efficiently sample
a network without the necessity of UNI, but still enjoy the similar benefits as RWwJ.
The main idea behind our method is to leverage a “two-layered network structure”
to perform “indirect jumps” on the graph under study, and indirect jumps can bring
similar benefits as the direct jumps in RWwJ.We first use Example 1 to briefly explain
what we mean by two-layered network structure, and then this discovery immediately
motivates us to design an indirect sampling method, which enables us to perform
indirect jumps on a graph.

In Example 1, directly applying UNI on the user network is inefficient because of
the sparsity of user ID space, i.e., a randomly generated number is very likely to be
an invalid user ID, or the user just lies outside of the city of interest. Since directly
sampling users by UNI is difficult, we propose to sample users in an indirect manner.
We notice that besides the user network, we are actually also provided with a space
consisting of venues on a map, as illustrated in Fig. 1a. If we can sample venues in
the city by UNI (or its variants), then we can sample users indirectly because venues

3 http://weibo.com.
4 Sina Weibo provides a check-in service (http://place.weibo.com) that allows users to share location
information with their friends, e.g., the restaurants they took lunch, the hotels they lived during travel. The
service is similar to the function in Foursquare and other location-based OSNs.
5 A Weibo user ID is in the range [1,000,000,000, 6,200,000,000], as of May 2017. About 10% of the IDs
in this range represent valid users.
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(a) (b)

(c)

Fig. 1 Examples of two-layered network structures. a User network and venues on a map, b accounts
sharing between two OSNs, c item network and tag/category network

and users are related by their check-in relationships. The check-ins tell us which user
checked in which place, and for a given venue, we can query the users who checked
in this venue, and hence easily obtain a user sample from a venue sample. Sampling
venues in an area is indeed possible by leveraging theAPIs provided bymany location-
based OSNs (LBSNs). Many LBSNs provide APIs for querying venues within an area
specified by a rectangle regionwith southwest and northeast corners latitude-longitude
coordinates given.6 This function can be used to design efficient sampling methods
for sampling venues in an area on a map (Li et al. 2012, 2014; Wang et al. 2014a).
For example, we can efficiently sample a venue in the city specified by a rectangle
region, and the probability of obtaining this venue sample is calculable. Note that a
user sample obtained from a venue sample is no longer uniformly distributed. Because
if a user checked in many venues in the city, the user is likely to be oversampled. But
such bias can be easily removed by a reweighting strategy, which we will elaborate in
Sect. 4.

An important lesson learned from solving the problem in Example 1 is that,
the two-layered network structure, consisting of the user network layer and the
venues layer, can help us to obtain samples of one layer when sampling another
layer is easy. Hence, this enables us to conduct “indirect jumps” on the user net-

6 Weibo search API. http://open.weibo.com/wiki/2/location/pois/search/by_area.
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work with the help of venue sampling. We further find that the two-layered network
structure is not unique to the problem in Example 1, but is pervasive in a wide
range of graph sampling problems, and more examples will be presented in Sect. 3.
Hence, it is necessary to develop some unified graph sampling techniques that can
leverage the two-layered network structure to address these graph sampling prob-
lems.

In general, there are three graphs related to the two-layered network structure:
(1) a target graph, whose characteristics are of interest to us and need to be esti-
mated, e.g., the user sub-network in Example 1; (2) an auxiliary graph, which is
easier to be sampled than the target graph, e.g., the venues can be viewed as nodes
in an auxiliary graph, and Example 1 is a special case where the auxiliary graph
has an empty edge set; and (3) a bipartite graph that connects nodes in the target
and auxiliary graphs. When directly sampling the target graph is difficult, we can
turn to sample the auxiliary graph, and the bipartite graph bridges the two sample
spaces and allows us to sample the target graph in an indirect manner. This thus
enables us to perform indirect jumps on the target graph, and allows us to develop
random walk sampling methods with indirect jumps that have the similar benefits as
RWwJ.

1.3 Our contributions

This work extends our preliminary research in Zhao et al. (2015), and mainly makes
three contributions:

– Two-layered network structure.We discover the usefulness of a “two-layered net-
work structure” that exists in many real-world applications. This structure can be
exploited to efficiently sample a graph in an indirect manner if directly sampling
the graph is difficult. We provide motivating examples to show evidence of the
applicability of our discovery.

– Random walk sampling with indirect jumps. We extend the classical RWwJ sam-
pling method that relays on UNI sampling on a graph to randomwalk with indirect
jumps methods that remove the necessity of conducting UNI on target graph. We
design three newsampling techniques by leveraging the two-layered network struc-
ture. These new techniques enable us to conduct random walk sampling that has
the similar benefits as RWwJ.

– Experiments on various networks. We conduct extensive experiments on both
synthetic and real-world networks to validate our proposed techniques. The exper-
imental results demonstrate the effectiveness of our designed sampling techniques.

1.4 Outline

The reminder of this paper will proceed as follows. In Sect. 2, we provide some prelim-
inaries about graph sampling. In Sect. 3, we formally define the two-layered network
structure alongwithmore examples. In Sect. 4, we elaborate three new samplingmeth-
ods. In Sect. 5, we conduct experiments to validate our methods. Section 6 reviews
some related literature, and Sect. 8 concludes.
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2 Preliminaries

In this section, we provide some preliminaries about the graph sampling problem,
and review a random walk based sampling method named random walk with jumps
(RWwJ).

2.1 Graph sampling

An OSN can be modeled as an undirected graph7 G = (U , E), whereU is a finite set
of nodes representing users, and E ⊆ U × U is a set of edges representing relations
among users. We assume that the graph G has no self-loops and no multiple edges
connecting two nodes. Also, the graph size |U | = n may be not known in advance.

Let f : U $→ R be any desired characteristic function that maps a node in the graph
to a real number. The goal of measuring the characteristic of graph G is to estimate

θ ! 1
n

∑

u∈U
f (u),

which is the aggregated nodal characteristic of the graph. For example, in an OSN,
we let f (u) = 1 if user u is female, and otherwise f (u) = 0, then θ represents the
fraction of female users in the OSN.

The goal of graph sampling is to design an algorithm for collecting node samples
S from graph G, constrained by a budget |S| ≤ B ( n, and for providing unbiased
estimate of θ with low statistical error.

2.2 Randomwalk with jumps

Random walk with jumps (RWwJ; Avrachenkov et al. 2010) is a popular graph sam-
plingmethod that can address the slowmixing issue of a simple randomwalk when the
graph has community structures. RWwJ generally works as follows: A walker starts
from a node in the graph, and at each step, it moves to a neighbor selected uniformly
at random, or jumps to a node uniformly sampled from the graph, and the probability
of jumping is determined by the node where the walker currently resides; this process
continues until enough samples are collected.

An easier way to think about RWwJ is that, we modify the structure of the original
graph by connecting every node in the graph to a virtual jumper node, with edgeweight
α ≥ 0; then a simple random walk on this modified graph is equivalent to RWwJ.
Figure 2 illustrates RWwJ on a loosely connected graph. Comparing the modified
graph with the original graph, we can find that the modified graph always has larger
graph conductance than the original graph, and because larger graph conductance
usually implies faster mixing of a random walk (Sinclair and Jerrum 1989), hence,

7 For Facebook, the friendship network is an undirected graph; for Twitter, because the followees and
followers of a user are known once the user is collected, hence we can build an undirected graph of the
Twitter follower network on-the-fly.
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jumper node

original graph modified graph

Fig. 2 RWwJ is viewed as a simple random walk on the modified graph

RWwJ has the advantage of faster mixing than a simple random walk on poorly
connected graphs (Avrachenkov et al. 2010).

In RWwJ, the probability transition matrix of the underlying Markov chain is given
by

PRWwJ
i j =






α/n+1
di+α , (i, j) ∈ E,

α/n
di+α , (i, j) /∈ E,

where di denotes the degree of node i in the original graph. That is, if (i, j) ∈ E ,
the walker starting from i could walk to j (in one step) through the edge (i, j) with
probability 1

di+α ; or jump to j through UNI with probability α
di+α · 1

n = α/n
di+α ; thus

the transition probability on edge (i, j) is α/n+1
di+α . If (i, j) /∈ E , the walk starting from

i can only walk to j (in one step) by jumping with probability α/n
di+α .

When RWwJ reaches the steady state, a node u ∈ U is sampled with probabil-
ity proportional to du + α. If we let S denote the samples collected by RWwJ, an
asymptotically unbiased estimator of θ is given by

θ̂RWwJ = 1
ZRWwJ

∑

s∈S

f (s)
ds + α

, (1)

where ZRWwJ ! ∑
s∈S 1/(ds + α). We can understand the unbiasedness of Estima-

tor (1) by leveraging the ratio form of the Law of Large Numbers of Markov chains
(Meyn and Tweedie 2009, pp. 427–428).

Lemma 1 (Law of large numbers) Let S be a sample path obtained by a Markov chain
defined on state space U with stationary distribution π . For any function f , g : U $→
R, and let FS( f ) ! ∑

s∈S f (s), Eπ [ f ] ! ∑
u∈U πu f (u). It holds that

lim
|S|→∞

1
|S| FS( f ) = Eπ [ f ] a.s., (2)

lim
|S|→∞

FS( f )
FS(g)

= Eπ [ f ]
Eπ [g]

a.s. (3)

Here, “a.s.” denotes “almost sure” convergence, i.e., the event of interest happens
with probability one.

123



Sampling online social networks by randomwalk… 31

Therefore, in Estimator (1), replacing f (s)/(ds + α) by f (s), and 1/(ds + α) by
g(s), we obtain that θ̂RWwJ converges to Eπ [ f ] /Eπ [g] = θ , almost surely.

Although RWwJ can address the slow mixing problem, it requires UNI to perform
jumps on a graph. If the OSN does not support UNI, or UNI is inefficient, RWwJ
becomes inapplicable. In this work, we introduce a two-layered network structure that
exists in many real-world applications, and we will show that such a structure can
be leveraged to design random walk sampling methods having the similar benefits as
RWwJ even though we cannot conduct UNI on the graph.

3 Two-layered network structure

In this section, we first formally describe the two-layered network structure we discov-
ered in Example 1. Then we provide more examples to demonstrate the pervasiveness
of such a structure.

3.1 Definition

We use three undirected graphs to describe a two-layered network structure: G(U , E),
G ′(V , E ′), and Gb(U , V , Eb), where U , V are two sets of nodes, and E ⊆ U ×
U , E ′ ⊆ V × V , Eb ⊆ U × V are three sets of edges. More specifically,

– G(U , E) is the target graph, whose characteristic θ is of interest to us and needs
to be measured. For example, the user social network in Example 1 can be treated
as the target graph.

– G ′(V , E ′) is an auxiliary graph, which can be more efficiently sampled than the
target graph. In Example 1, we can construct an auxiliary graph where the nodes
represent the venues in the city, and the edge set is left empty (i.e., E ′ = ∅).

– Gb(U , V , Eb) is a bipartite graph that connects nodes in the target and auxiliary
graphs. In Example 1, the bipartite graph is formed by users, venues and their
check-in relationships.

An example of such a two-layered network structure is illustrated in Fig. 3. The
target graph consists of two disconnected components. If we can find a well connected
auxiliary graph and a proper bipartite graph, then the two graphs bridge the two
disconnected components and thus make target graph better connected than target
graph itself. Hence, it is possible to sample the target graph efficiently with the help of
the other two graphs. With this intuition in mind, we will see in next section that we
indeed can design efficient sampling methods by leveraging this two-layered network
structure.

3.2 More examples

The two-layered network structure is not unique to Example 1, but exists in a wide
range of real-world applications. In what follows, we provide more examples.
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Fig. 3 Illustration of the two-layered network structure

Example 2 (Accounts sharing between two OSNs) Many OSNs now support using an
existingOSN’s accounts to login another OSN. For example, Facebook users can login
Pinterest using their Facebook accounts. This naturally forms a two-layered network
structure consisting of Facebook and Pinterest. Suppose we want to measure Pinterest,
then we can let target graph represent Pinterest, auxiliary graph represent Facebook,
and bipartite graph represent their account sharing relations.

Figure 1b illustrates Example 2. Note that Pinterest does not support UNI, hence
RWwJ is inapplicable. Instead, using the techniques developed in this work, we will
be able to leverage Facebook to sample Pinterest.

Example 3 (Amazon item network and categories) Items in Amazon are related with
each other to form an item network. Each item also belongs to one or more cate-
gories. Meanwhile, Amazon provides a complete category list to facilitate customers
to quickly navigate to the items they are looking for. This forms a two-layered network
structure consisting of items and categories. Suppose we want to measure the item net-
work, thenwe can let target graph represent the itemnetwork, auxiliary graph represent
the category list, and bipartite graph represent the affiliation relations between items
and categories.

Figure 1c illustrates Example 3. Note that categories could also be tags and they
may also form a tag network. Items are very likely to form clusters, and hence easily
trap a random walker. If we can leverage the category information, and help a random
walker to jump out of clusters, we can sample the item network in a more efficient
way.

4 Sampling design

In this section, we leverage the two-layered network structure and design three new
sampling techniques to sample and characterize the target graph.
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Fig. 4 Illustration of VSA. Edges in G and G′ are omitted

4.1 Indirectly sampling target graph by vertex sampling on auxiliary graph (VSA)

The first method assumes that vertex sampling is easier to conduct on the auxiliary
graph than on the target graph, as is the case in Example 1, and each node in the target
graph is connected to at least one node in the auxiliary graph. We present a sampling
method VSA (and its two implementations VSA-I and VSA-II) to indirectly sample
the target graph under this setting. The basic idea of VSA is illustrated in Fig. 4.

VSA-I. Assume that a node v ∈ V is sampled with probability pv ∝ av > 0 in
auxiliary graph G ′. Here we do not need to know the exact value of pv , and knowing
pv is proportional to some value av is enough to design the sampling. For example,
if auxiliary graph G ′ supports UNI, then pv = 1/n; however, graph size n is usually
unknown, and we will see that knowing pv ∝ av ≡ 1,∀v ∈ V is enough for the
sampling design. The simplest way to implement VSA is as follows: We first sample
a node v ∈ V in G ′, and then sample a neighbor of v in Gb uniformly at random,
denoted by u. Obviously, u ∈ U , and we collect u as a sample. We refer to this simple
sampling method as VSA-I, and will show that samples collected by VSA-I can indeed
yield unbiased estimate of θ . The detailed design of VSA-I is described as follows.

Sampling design. VSA-I repeats the following two steps until sample collection S
reaches budget B.

– Sample a node v from auxiliary graph G ′;
– If v has neighbors in bipartite graphGb, sample a neighbor u uniformly at random,
and put u into samples S.

Estimator. In VSA-I, we can see that a node u ∈ U is sampled with probability

pu ∝ bu !
∑

v∈Vu

av

d(b)v

, (4)

where Vu ⊆ V is the set of neighbors of u in Gb, and d(b)v is the degree of v in Gb.
Because we have assumed that each node in the target graph is connected to at least
one node in the auxiliary graph, so Vu 0= ∅ and bu > 0. Then, we propose to use the
following estimator to estimate θ :
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θ̂VS
A-I = 1

ZVSA-I

∑

u∈S

f (u)
bu

, (5)

where ZVSA-I ! ∑
u∈S 1/bu . The following theorem guarantees its unbiasedness.

Theorem 1 Assume each node in G is connected to at least one node in G′. Then
using the sampling design of VSA-I, Estimator (5) provides an asymptotically unbiased
estimate of θ .

Proof VSA-I can be viewed as samplingU with replacement according to distribution
{pu}u∈U . This can be further viewed as generating samples according to a Markov
chain which has a probability transition matrix with all rows the same vector [pu]u∈U ,
and πu = pu,∀u ∈ U . This allows us to leverage Lemma 1, and obtain that

lim
B→∞

θ̂VS
A-I = E [ f (u)/bu]

E [1/bu]
=

∑
u∈U pu f (u)/bu∑

u∈U pu/bu

= 1
n

∑

u∈U
f (u) = θ a.s.

This thus completes the proof. 12
VSA-I has one drawback. To correct the bias of each sample u ∈ S, we require

bu , which further requires av for each neighbor of u in Gb by Eq. (4). This is not an
issue if we are conducting UNI on the auxiliary graph, as we have known av,∀v ∈ V
before conducting UNI (i.e., av = 1,∀v ∈ V ). But in some applications where more
complex vertex sampling methods are applied on auxiliary graph, av is not known in a
prior—we know av only if v is sampled, otherwise av is not known in advance. This is
actually the case we met in Example 1: we know the probability of obtaining a venue
sample only if the venue is sampled.8 To address this problem, we propose another
sampling method VSA-II.

VSA-II. When a node v ∈ V is sampled in auxiliary graph, we collect all of its
neighbors in the bipartite graph as samples;we repeat this process until enough samples
are collected. We use these samples to estimate θ . The detailed design of VSA-II is
described as follows.

Sampling design.VSA-II repeats the following steps to obtain two sample collections
S and S′ from G and G ′ respectively. Samples in S are used to estimate θ .
– Sample a node v from auxiliary graph G ′;
– If v has neighbors in bipartite graph Gb, put v into samples S′, and put all the
neighbors of v in Gb into samples S.

Estimator design forVSA-II.Wepropose to estimate θ using the following estimator:

θ̂VS
A-II = 1

ZVSA-II

∑

v∈S′

1
av

∑

u∈Uv

f (u)

d(b)u
, (6)

8 This should become clear when we use the random region zoom-in (RRZI; Wang et al. 2014a) method
to conduct venue sampling in Sect. 5.
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where Uv ⊆ U is the set of neighbors of v in Gb, d
(b)
u is the degree of node u in Gb,

and ZVSA-II ! ∑
v∈S′ 1/av

∑
u∈Uv

1/d(b)u . Because we have assumed that each node

in the target graph is connected to at least one node in the auxiliary graph, so d(b)u > 0.
The following theorem guarantees its unbiasedness.

Theorem 2 Assume each node in G is connected to at least one node in G′. Then using
the sampling design of VSA-II, Estimator (6) provides an asymptotically unbiased
estimate of θ .

Proof Using the similar idea as we proved Theorem 1, we have

E



 1
av

∑

u∈Uv

f (u)

d(b)u



 =
∑

v∈V

pv
av

∑

u∈Uv

f (u)

d(b)u
= c

∑

v∈V

∑

u∈Uv

f (u)

d(b)u

= c
∑

u∈U
d(b)u

f (u)

d(b)u
= c

∑

u∈U
f (u) = cnθ

where c ! pv/av is a constant. The third equation holds because each inside item is
added exactly d(b)u times before we merge the two sums into one sum. Similarly,

E



 1
av

∑

u∈Uv

1

d(b)u



 =
∑

v∈V

pv
av

∑

u∈Uv

1

d(b)u
= c

∑

v∈V

∑

u∈Uv

1

d(b)u
= cn.

By Lemma (1), we thus obtain

lim
B→∞

θ̂VS
A-II =

E
[
1/av

∑
u∈Uv

f (u)/d(b)u

]

E
[
1/av

∑
u∈Uv

1/d(b)u

] = θ a.s. 12

Remarks

• Apply condition It is important to know that VSA (either VSA-I or VSA-II) can
provide an unbiased estimate of target graph characteristic under the condition
that every node in the target graph is connected to nodes in the auxiliary graph.
If a node u is not connected to any node in G ′, u cannot be indirectly sampled
by VSA. This will result in biased estimates, and it is difficult to correct the bias.
In Example 1, since we are only interested in users who share their check-ins in
Weibo, therefore Example 1 satisfies this condition.

• Sampling cost The main advantage of VSA is that it leverages auxiliary graph to
sample target graph efficiently when directly sampling target graph is inefficient.
We give an example oftenmet by statisticians to help readers understand the reason
intuitively. Suppose we want to collect patient samples about some rare disease in
a population. One straightforward method is that we conduct surveys and collect
samples on the street, i.e., we randomly pick a person on the street, and askwhether
the person is a patient of the disease; if yes, we obtain a sample. Since it is a rare
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Fig. 5 Illustration of RWT V SA and indirect jump. Each node u in G is virtually connected to a jumper
node j with weight wu . An indirect jump is performed by: (i) randomly sampling a node v in G′, and
(ii) randomly choosing a neighbor of v in Gb as the target node to jump to

disease, we will fail to collect a sample very frequently. A more efficient method
is that we first randomly pick a hospital, and then collect patient samples recorded
by that hospital. Let the target graph represent the population, and auxiliary graph
represent hospitals, then VSA actually uses the idea of the second better approach
in essence, and thus significantly reduces sampling cost.

4.2 Randomwalk on target graph incorporating with vertex sampling on
auxiliary graph (RWTVSA)

In some situations, d(b)u = 0 for some u ∈ U , such as the case in Example 2, where
some Pinterest users may not have Facebook accounts at all, and these users cannot be
sampled by VSA (and as a result, VSA cannot provide unbiased estimates of Pinterest
user characteristics). To address this issue, we propose a second sampling method
RWTVSA, which combines random walk sampling on the target graph with vertex
sampling on the auxiliary graph.

The basic idea of RWTVSA is that, we launch a random walk on the target graph,
and at each step allow the walker to jump with a probability dependent on the node
where the walker currently resides. This is similar to RWwJ on the target graph G,
but with the major difference that in RWTVSA the walker jumps to a node in G by
jumping first to a node in G ′, and then randomly selecting one of its neighbors in
Gb (similar to VSA-I). We refer to this as an indirect jump, and show in experiments
that indirect jumps in RWTVSA bring similar benefits as the direct jumps in RWwJ.
An additional advantage of using random walk on the target graph is that it better
characterizes highly connected nodes than uniform node sampling as random walks
are biased towards high degree nodes in G. We depict RWTVSA in Fig. 5, where each
node in G is virtually connected to a virtual jumper node to conduct indirect jumps,
through doing vertex sampling over auxiliary graph G ′.

Similar to VSA, we assume that a node v in G ′ can be sampled with probability
pv ∝ av > 0. Similar to the discussion of RWwJ in Sect. 2, in RWTVSA, we virtually
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connect each node u ∈ U to a jumper node j with edge (u, j), and assign a weight
wu for edge (u, j). The main challenge in designing RWTVSA is to determine the
edge weights {wu}u∈U . With proper edge weights assignment, we can guarantee the
time reversibility9 of random walks, which can facilitate us to determine the station-
ary probability of a random walk visiting a node on target graph, and also simplify
the estimator design. The following theorem states our main result on edge weights
assignment.

Theorem 3 If we assign the edge weights {wu}u∈U by

wu = α
∑

v∈Vu

av

d(b)v

, u ∈ U (7)

for any constant α ≥ 0, then the random walk in RWTVSA is time reversible, and the
stationary probability of the random walk visiting node u ∈ U satisfies πu ∝ du+wu,
where du is the degree of u in target graph G.

Proof If the random walk is time reversible, the stationary probabilities of visiting u
and j are

πu = du + wu

2|E | + 2
∑

u wu
and π j =

∑
u wu

2|E | + 2
∑

u wu
.

Because for any wu ≥ 0, it always holds that

πu puu′ = πu′ pu′u = 1
2|E | + 2

∑
u wu

, ∀
(
u, u′) ∈ E .

That is, the random walk is always time reversible along the transitions in E . We only
need to prove that with the wu given by Theorem 3, the random walk is also time
reversible along the transitions (u, j) and ( j, u), i.e., πu pu j = π j p ju .

The walker residing at node u moves to j to perform an indirect jump with proba-
bility pu j = wu/(du +wu). Because an indirect jump is performed by first sampling
a node v in G ′, and then choosing a neighbor u of v uniformly at random. Thus, the
walker jumps from j to u with probability

p ju = c
∑

v∈Vu

av

d(b)v

! cbu (8)

where c is a constant. When wu = αbu , so
∑

u wu = α/c, it indeed holds that

πu pu j = π j p ju = wu

2|E | + 2α/c
, ∀u ∈ U .

9 AMarkov chain is said to be time reversiblewith respect to stationary distributionπ if it satisfies condition
πi pi j = π j p ji ,∀i, j .
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This demonstrates that when wu = αbu , the random walk is time reversible, and the
stationary probability of visiting u satisfies πu ∝ du + wu . 12

Note that if d(b)u = 0, then pu j = p ju = 0, i.e., the walker does not jump from/to
u; the worker just moves from/to u to/from a neighbor of u. Hence, u can still be
sampled by the random walk. α controls the probability of conducting a jump on a
node. If α = 0, RWTVSA does not perform jumps, and it actually becomes a simple
random walk on the target graph; if α → ∞, RWTVSA is equivalent to VSA-I. Thus,
RWTVSA behaves similarly as RWwJ.

Sampling design. Suppose the random walk starts at node x1 ∈ U , and at step i the
random walk is at node xi . At step i , we calculate the probability of jumping wxi by
Eq. (7), then the walker jumps with probabilitywxi /(dxi +wxi ); otherwise, the walker
moves to a neighbor u of xi chosen uniformly at random and xi+1 = u. An indirect
jump is performed as follows:

– repeatedly sample a node v in auxiliary graph until v has neighbors in Gb;
– sample a neighbor u of v in Gb uniformly at random, and xi+1 = u.

Estimator. Using the collected samples, denoted by S = (xi , . . . , xB), we propose to
estimate θ by

θ̂RW
TVSA = 1

ZRWTVSA

∑

u∈S

f (u)
du + wu

, (9)

where ZRWTVSA ! ∑
u∈S 1/(du + wu).

Theorem 4 If the target graph is connected, or could become connected by adding
nodes in auxiliary graph and edges in bipartite graph, then using samples collected
by RWTVSA, Estimator (9) provides an asymptotically unbiased estimate of θ .

Proof Since πu ∝ du + wu , then

Eπ

[
f (u)

du + wu

]
=

∑

u∈U
πu

f (u)
du + wu

= cnθ .

Similarly,

Eπ

[
1

du + wu

]
=

∑

u∈U
πu

1
du + wu

= cn.

By Lemma (1), we obtain

lim
B→∞

θ̂RW
TVSA = Eπ [ f (u)/(du + wu)]

Eπ [1/(du + wu)]
= θ a.s.

This completes the proof. 12
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Fig. 6 Illustration of RWTRWA and indirect jumps

Remark Note that RWTVSA requires vertex sampling (e.g., UNI) on the auxiliary
graph G ′. If vertex sampling is also not allowed on G ′, RWTVSA is inapplicable.
However, one can replace the vertex sampling on G ′ by a random walk on G ′. Unfor-
tunately, this naive approach can perform very poorly when the auxiliary graph G ′ is
not well connected, because a poorly connected graph can easily trap a simple ran-
dom walk in a community. In what follows, we design a third method to address this
challenge.

4.3 Randomwalk on target graph incorporating with randomwalk on auxiliary
graph (RWTRWA)

When both the target and auxiliary graphs do not support vertex sampling, neither VSA

norRWTVSA is applicable. Therefore, we design theRWTRWAmethod to address this
challenge. RWTRWA consists of two parallel randomwalks on G and G ′ respectively.
The two random walks cooperate with each other, and can be viewed as two RWwJs,
as illustrated in Fig. 6. Unlike RWTVSA where only nodes inG are virtually connected
to a jumper node, in RWTRWA, nodes in both G and G ′ are virtually connected to two
jumper nodes j and j ′ with weights {wu}u∈U and {wv}v∈V to perform indirect jumps
on G and G ′ respectively.

The basic idea behind RWTRWA is as follows. Suppose the two random walks
are RW on G and RW ′ on G ′, and at step i , they reside at xi ∈ U and yi ∈ V ,
respectively. If one random walk needs to jump at step i , say RW on G, then it
jumps to a uniformly at random chosen neighbor of yi in the bipartite graph, which is
assigned to xi+1. Similar jumping procedure also applies to RW ′ on G ′. Hence, they
are analogous to two RWwJs, and both can avoid being trapped on G and G ′.

Similar to RWTVSA, the main challenge in designing RWTRWA is to determine
edge weights {wu}u∈U and {wv}v∈V , which control the probability of jumping of the
two random walks. Obviously, the stationary distributions {πu}u∈U and {πv}v∈V of
the two randomwalks are also related to these weights. Here we leverage our previous
analysis ofRWTVSA, andderive that,whenparameterswu andwv satisfy the following
conditions
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wu = α
∑

v∈Vu

πv

d(b)v

, u ∈ U , wv = β
∑

u∈Uv

πu

d(b)u
, v ∈ V , (10)

for any α,β > 0, the stationary distributions of the two random walks on G and G ′

(discarding states j and j ′) are

πu = du + wu

2|E | + α
, u ∈ U , πv = dv + wv

2|E ′| + β
, v ∈ V . (11)

The matrix forms of Eqs. (10) and (11) yield

wU = αAD−1
V πV , wV = βAT D−1

U πU , (12)

πU = dU + wU

2|E | + α
, πV = dV + wV

2|E ′| + β
, (13)

where An×n′ is the adjacency matrix of Gb, wU = [wu]Tu∈U , wV = [wv]Tv∈V , πU =
[πu]Tu∈U , πV = [πv]Tv∈V , dU = [du]Tu∈U and dV = [dv]Tv∈V are vectors, DU =
diag(d(b)u1 , . . . , d

(b)
un ) and DV = diag(d(b)v1 , . . . , d(b)vn′ ) are diagonal matrices.

Equations (12) and (13) uniquely determine wU and wV , i.e.,

w∗
U = c

(
I − cc′AD−1

V AT D−1
U

)−1
AD−1

V

(
dV + c′AT D−1

U dU
)

w∗
V = c′

(
I − cc′AT D−1

U AD−1
V

)−1
AT D−1

U

(
dU + cAD−1

V dV
)

where c = α/
(
2|E ′| + β

)
and c′ = β/(2|E | + α) are constants.

The above results illustrate that, when α and β are given, wU and wV are uniquely
determined. However, one needs complete knowledge of G, G ′ and Gb to determine
their values. In graph sampling, we are interested in methods without having to know
the complete graph structure in advance. In what follows, we design RWTRWA in a
way that only makes use of local knowledge of these graphs.

In general, if wU 0= w∗
U (or wV 0= w∗

V ), the random walks on the two modified
graphs are no longer timer reversible, and Eqs. (12) and (13) do not hold. There is
anotherway to understandwhy they do not hold, and this understanding couldmotivate
us to propose a solution. Variables in Eqs. (12) and (13) form dependent relations, as
illustrated in Fig. 7. GivenwU , we can obtain πU [from the first Eq. of (13)], and then
obtain wV [from the second Eq. of (12)], and finally obtain w′

U [from the first Eq.
of (12)]. If wU = w∗

U , then w′
U = w∗

U ; otherwise, w
′
U 0= wU 0= w∗

U , and this forms
a contradiction.

We find that this contradiction has a physical meaning, and it is fixable. The nor-
malized weights wU can be viewed as a distribution that describes the probability
a walker jumping to a node in G. When we specify some particular weights wU , it
means that we expect the walker to jump to a node in G following a distribution spec-
ified by wU . If wU 0= w∗

U , we will derive a different w
′
U using Eqs. (12) and (13). It

means that the walker actually jumps to a node in G following a different distribution
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(a) (b)

Fig. 7 Dependent relations among variables. The variable at the head of an arrow depends on the variable
at the tail of the arrow. a Perfect weights, b imperfect weights

Fig. 8 Three parallel Markov chains in RWTRWA

specified by w′
U . This is the reason why the random walk is not time reversible. For-

tunately, with this understanding, the contradiction becomes fixable by applying the
famous Metropolis–Hastings (MH) sampler (Robert and Casella 2004). We can treat
(normalized) wU as the desired distribution, and (normalized) w′

U as the proposal
distribution, and we use a MH sampler to build a Markov chain (referred as the MH
chain) that generates samples with the desired distribution. Each time when the walker
requires jumping, it jumps to a node generated by the MH chain. This guarantees that
the walker jumps to nodes in G following the desired distribution, and ensures that
πU and πV are still the stationary distributions of the random walks.

Sampling design.The complete design of RWTRWA comprises three parallelMarkov
chains as illustrated in Fig. 8, and we need to specify desired weights wU in advance,
e.g., from a uniform distribution.
• Random walk on auxiliary graph G ′: Suppose the random walk resides at node
yi ∈ V at step i . Then we can calculate wyi according to Eq. (10). At step i + 1, the
random walk executes one of the following two steps.

Jump: With probability wyi /(dyi + wyi ), the walker jumps to a random neighbor
v ∈ V of node xi in Gb, and yi+1 = v;

Walk: Otherwise, the walker moves to a random neighbor v ∈ V of yi in G ′, and
yi+1 = v.

• MH chain: Suppose the MH chain resides at node x ′
i at step i . At step i + 1, we

randomly choose a neighbor u ∈ U of yi in Gb. This is equivalent to sample a node
u ∈ U with probability proportional to w′

u .
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Acceptance: With probability ri , we accept u and x ′
i+1 = u, where ri =

min
{
1,

(
wuw

′
x ′
i

)
/
(
wx ′

i
w′
u

)}
;

Rejection: Otherwise, we reject u and x ′
i+1 = x ′

i .
• Random walk on target graph G: Suppose the random walk resides at node xi ∈ U
at step i . At step i + 1, the walker executes one of the following two steps.
Jump: With probabilitywxi /(dxi +wxi ), the walker jumps to x ′

i+1, and xi+1 = x ′
i+1;

Walk: Otherwise, the walker moves to a random neighbor u ∈ U of xi in G, and
xi+1 = u.

This sampling design ensures that we use only local knowledge of the three graphs
to obtain a sample path S = (x1, . . . , xB), which can yield unbiased estimate of θ .

Estimator. Given the sample path S = (x1, . . . , xB), we propose to use the following
estimator to estimate θ .

θ̂RW
TRWA = 1

ZRWTRWA

∑

u∈S

f (u)
du + wu

, (14)

where ZRWTRWA ! ∑
u∈S 1/(du + wu).

Theorem 5 If the target graph is connected, or could become connected by adding
nodes in auxiliary graph and edges in bipartite graph, then using samples collected
by RWTRWA, Estimator (14) provides an asymptotically unbiased estimate of θ .

Proof Since we have constructed the Markov chain on G with stationary distribution
πu ∝ du + wu , the proof is exactly the same as Theorem 4. 12

5 Experiments

In this section, we conduct experiments on both synthetic and real datasets to validate
our sampling designs. Our goal is to demonstrate the unbiasedness of proposed esti-
mators [(5), (6), (9), (14)] and study their estimation errors with respect to different
factors such as sampling budget B and parameter settings α and β.

We consider to estimate the PDF and CCDF of degree distribution of a graph.
For PDF, the characteristic function is defined as fd(u) ! 1 (du = d), where 1 (·) is
the indicator function, and the graph characteristic is the distribution {θd}d≥0 where
θd = ∑

u fd(u)/n is the fraction of nodes with degree d in graph G. For CCDF, the
characteristic function is defined as fd(u) ! 1 (du > d), and the graph characteristic
is the distribution {θd}d≥0 where θd = ∑

u fd(u)/n is the fraction of nodes with
degree larger than d in graph G. In some experiments, we will only show the results
of estimating CCDF due to space limitation.

5.1 Experiments on synthetic data

In the first experiment, we validate the sampling methods using synthetic data. The
purpose is to show how significant advantage can be achieved using our methods
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than those methods not leveraging the auxiliary graph and bipartite graph. We will
mainly consider the simple randomwalk (RW) andMetropolis–Hastings randomwalk
(MHRW) as two baselines.

Synthetic data. We generate a two-layered network structure by connecting three
Barabási-Albert (BA) graphs (Barabási and Albert 1999) G1,G2 and G3. Each BA
graph contains 100,000 nodes, and the three BA graphs have average degree 4, 10 and
20, respectively. G1 and G3 are connected by one edge to form the target graph G,
which thus has a barbell structure.G2 is the auxiliary graphG ′, and the bipartite graph
Gb is formed by connecting nodes in G and G ′ according to the following two steps:
– connect every node in G to a randomly selected node in G ′;
– randomly connect 200,000 pairs of nodes, and each pair has one node in G and
the other node in G ′.
The first step ensures that every node in U satisfies d(b)u > 0 so that we can apply

VSA on this dataset.

Results and analysis. First we demonstrate that the proposed estimators θ̂VS
A-I

d ,

θ̂VS
A-II

d , θ̂RW
TVSA

d , and θ̂RW
TRWA

d are asymptotically unbiased. To show this, we apply
these sampling methods to estimate the fraction of nodes with degree 2 and 12 in the
target graph, denoted by θ2 and θ12. We compare their estimates to the ground truth for
different sampling budgets B. We also show the estimates using RW10 and MHRW11

on the target graph. Because the target graph has a barbell structure, both RW and
MHRW are easily to be trapped into one component and fail to explore the other com-
ponent. We expect to see that the RW estimator and MHRW estimator do not perform
well. The results are depicted in Figs. 9 and 10. Indeed, the two baseline random walk
methods incur large biases, and cannot converge to ground truth within B = 0.01n
steps. In comparison, our proposed estimators can obtain more accurate estimates, and
it is clear to see that when sampling budget B increases, all our proposed estimators
can converge to the ground truth. Hence, these results demonstrate that our proposed
estimators are asymptotically unbiased and converge faster than baseline methods.

Next, we study the estimation error of each estimator for estimating the PDF and
CCDF of degree distribution. We choose the normalized rooted mean squared error
(NRMSE) as a metric to evaluate the estimation error of an estimator, which is defined
as follows

NRMSE
(
θ̂
)
=

√

E
[(

θ̂ − θ
)2]

θ
.

NRMSE measures the relative difference between an estimated value θ̂ and a real
value θ . The smaller the NRMSE, the more accurate the estimator θ̂ is. To compare

10 Let θ̂RW denote the RW estimate. Then θ̂RW = 1/ZRW ∑
u∈S f (u)/du where samples in multiset S

are collected using a simple RW in G, and ZRW = ∑
u∈S 1/du .

11 Let θ̂MHRW denote the MHRW estimate. Because MHRW obtains samples uniformly at random, thus
the estimator is simply θ̂MHRW = 1/|S|∑u∈S f (u) where samples in multiset S are collected using a
MHRW in G.
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(a) (b)

(c) (d)

Fig. 9 Asymptotic unbiasedness of estimators (comparing with RW). a θ̂VS
A-I

d , b θ̂VS
A-II

d , c θ̂RW
TVSA

d

(α = 10), d θ̂RW
TRWA

d (α = β = 10)

the NRMSE of different estimators, we fix the sampling budget B to be 1% of the
target graph size, and calculate the averaged empirical NRMSE over 1000 runs. The
results are depicted in Figs. 11 and 12.

To clearly see the performance difference, we also show the NRMSE of estimators
based on RW andMHRW as baselines. Because RW andMHRW can hardly converge
over a barbell graph within B = 0.01n steps, we observe that NRMSEs of RW and
MHRW are almost the largest among all estimators for low degrees. Comparing VSA-
I and VSA-II with RW and MHRW, we find that the two VSA estimators provide
smaller PDF/CCDF NRMSE for low degree nodes than RW and MHRW. However,
VSA estimators produce larger NRMSE for high degree nodes than RW and MHRW.
Therefore, VSA can better estimate low degree nodes than high degree nodes in a
graph.

The weakness of VSA can be overcome by RWTVSA and RWTRWA. From Fig. 12,
it is clearer to see that when indirect jumps are incorporated into random walks in
RWTVSA and RWTRWA, NRMSE for high degree nodes decreases, and NRMSE for
low degree nodes remains smaller than RW andMHRW. If we increase the probability
of jumping at each step of random walk by increasing α and β, we observe that
NRMSE for low degree nodes decreases, but NRMSE for high degree nodes increases.
This behavior is similar to RWwJ (Avrachenkov et al. 2010; Ribeiro et al. 2012)
and demonstrates that the indirect jumps in RWTVSA and RWTRWA indeed behave
similarly as the direct jumps in RWwJs.
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(a) (b)

(c) (d)

Fig. 10 Asymptotic unbiasedness of estimators (comparingwithMHRW). a θ̂VS
A-I

d ,b θ̂VS
A-II

d , c θ̂RW
TVSA

d

(α = 10), d θ̂RW
TRWA

d (α = β = 10)

(a) (b)

(c) (d)

Fig. 11 PDF NRMSE of different estimators. a VSA-I, b VSA-II, c RWTVSA, d RWTRWA
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(a) (b)

(c) (d)

Fig. 12 CCDF NRMSE of different estimators. a VSA-I, b VSA-II, c RWTVSA, d RWTRWA

Last, we empirically study the sampling cost of our proposed methods. The cost
is mainly caused by conducting indirect jumps in our methods. However, strictly
quantifying the cost of an indirect jump is nontrivial because many factors are related
to cost, e.g., the sparsity of ID space in the graph, what information can be leveraged
for sampling from a node, etc. To simplify our analysis, we consider a simple cost
model inspired by Avrachenkov et al. (2010). Assume each indirect jump incurs c ≥ 1
penalty from the budget, and a regular walk step incurs one penalty from the budget.
(In other words, a jump step costs c units in the budget and a walk step costs just one
unit.) Thus, a jump step is c times more expensive than a walk step. Then, we can
compare the estimation error of our methods with RW (orMHRW) under different c’s,
and know how sampling cost is related to estimation performance. Using RWTVSA

as an example, we fix α = 1, budget B = 0.01n, and set c = 1, 10, 100 and 1000
respectively. We show the NRMSE of our methods and RW in Fig. 13. We observe
that, when c increases, the estimation accuracy indeed decreases. From the CCDF
NRMSE plots, it is clearer to see that when c increases from 1 to 100, RWTVSA is still
better than RW. When c = 1000, RWTVSA becomes worse than RW. Therefore, we
conclude that, even when the cost of an indirect jump step is 100 times more expensive
than a walk step, our method still improves estimation

5.2 Experiments on LBSN datasets

In the second experiment, we apply the VSA-II method on two real-world LBSN
datasets to solve the problem in Example 1, i.e., measure user characteristics in an
area of interest on the map.
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Fig. 13 Sampling cost of RWTVSA (α = 1, B = 0.01n). a PDF, b CCDF

Table 1 Summary of two LBSN datasets

Dataset Brightkite Gowalla

G Network type Undirected Undirected

Users 58,228 196,591

Friendship edges 214,078 950,327

Users in LCC1 56,739 196,591

Edges in LCC 212,945 950,327

G′ and Gb Venues 772,966 1,280,969

Users having check-ins 51,406 107,092

Check-ins 4,491,143 6,442,890

G′ and Gb for NYC Venues in NYC2 23,484 26,448

Users checking in NYC 4,257 7,399

Check-ins in NYC 33,656 113,423

1The largest connected component
2The New York City (Fig. 14)

LBSN datasets.We use two public LBSN datasets from Brightkite and Gowalla (Cho
et al. 2011). Brightkite and Gowalla are two popular LBSNs where users shared their
locations by checking-in. Users in the two LBSNs are also connected by undirected
friendship relations, which form two user social networks. The statistics of these two
datasets are summarized in Table 1.

Because we are only interested in users that have check-ins, i.e., each node in the
target graph connects to at least one node in the auxiliary graph, VSA is applicable on
these two datasets. Suppose that we want to measure characteristics of users located
around New York City (NYC), which is specified by a rectangle region on a map:
latitude range 40.4◦ to 41.4◦, longitude range − 74.3◦ to − 73.3◦ (see Fig. 14). The
goal is to estimate degree distribution of the users who checked in this region. As we
explained in introduction, directly sampling users is inefficient. Here, we apply the
VSA-II along with a venue sampling method—random region zoom-in (RRZI; Wang
et al. 2014a) to illustrate how to sample users in NYC more efficiently.
Venue sampling. RRZI utilizes a venue query API provided by LBSNs to sample
venues on a map. The API requires a user to specify a rectangle region by providing
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Fig. 14 Venue distribution in New York City and illustration of accessible subregions used by RRZI. Each
subregion contains less than K venues
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Fig. 15 Performance of RRZI-VSA on Brightkite. a Estimates (Brightkite), b PDF NRMSE (Brightkite),
c CCDF NRMSE (Brightkite)

the south-west and north-east corners latitude-longitude coordinates, and then the API
returns a set of venues in this region. Usually, the API only returns at most K venues
in a queried region. RRZI regularly zooms in the region until the subregion is fully
accessible, i.e., the API returns strictly less than K venues in the subregion. The
zooming-in process is equivalent to dividing the region into many non-overlapping
accessible subregions, as illustrated in Fig. 14, and each subregion is associated with
a fixed probability related to the zooming-in strategy. When the final query subregion
becomes accessible, we random pick a venue v uniformly at random from the returned
venues, and its sampling probability pv can be calculated in RRZI.

Results. Combining VSA-II with RRZI, denoted by RRZI-VSA, we conduct experi-
ments on Brightkite andGowalla to indirectly sample users in NYC.We totally sample
5%of venues inNYCand calculate the degree distribution of users inNYC.The results
are depicted in Figs. 15 and 16.

Figures 15a and 16a depict the estimates of CCDF with different query capacity K .
We observe that our RRZI-VSA method can provide good estimates of user charac-
teristics in NYC on both datasets. Specifically, the estimates for low degree users are
better than high degree users, and this is clear to see from the PDF/CCDF NRMSE
plots. This feature coincides with our previous analysis using synthetic data. From the
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Fig. 16 Performance of RRZI-VSA on Gowalla. a Estimates, b PDF NRMSE, c CCDF NRMSE

Table 2 Amazon product co-purchasing network statistics

G Product co-purchasing network Undirected

# of products 4,015,942

# of co-purchases 78,792,050

G′ # of categories 10,164

Gb # of product-category associations 15,829,046

Avg. # of categories a product belongs to 4

Avg. # of products in a category 1557

NRMSE plots, we can also find an approximate law that a larger query capacity K ,
i.e., the maximum number of venues the API can return, reduces the estimation error
of RRZI-VSA. However, it is not true for estimating high degree users on Gowalla in
Fig. 16c. In fact, a better way to reduce estimation error is to combine VSA-II with
other better venue sampling methods discussed in Li et al. (2012, 2014) and Wang
et al. (2014a).

5.3 Experiments on amazon product co-purchasing network

In the third experiment,we compare the performance ofVSA-I andRWTVSA sampling
methods on the Amazon product co-purchasing network.

Amazon product co-purchasing network. We build an Amazon product co-
purchasing network from the Amazon dataset provided by McAuley et al. (2015).
The network is created based on “customers who bought this item also bought” fea-
ture of the Amazon website. That is, if a product i is co-purchased with product j ,
the network contains an undirected edge between i and j . In addition, each product
belongs to at least one category onAmazon, andAmazon provides a complete category
list on its homepage to facilitate customers to conveniently browse the products. Thus,
we can leverage this category list to perform indirect sampling of the co-purchasing
network. The detailed statistics of the Amazon dataset are provided in Table 2.

This dataset is suitable for us to study the performance of VSA-I and RWTVSA,
where the availability of the complete category list allows us to conduct uniform vertex
sampling on the auxiliary graph. Here we sample 1% of the nodes from target graph,
and compare the accuracy of estimating PDF/CCDFdegree distribution using different
methods. The results are averaged over 1000 runs and are depicted in Fig. 17.
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Fig. 17 Amazon product co-purchasing network characterizing. aUnbiasedness of CCDF estimates, b PDF
NRMSE, c CCDF NRMSE

Results. From Fig. 17a, we observe that the two methods can indeed provide unbiased
estimates of the CCDF. From Fig. 17b, c, we also observe that different methods have
different estimation accuracy. In general, VSA-I has relatively large estimation error,
then comes the random walk estimator, and RWTVSA has the lowest estimation error
among these three estimators. RWTVSA leverages the category list to perform indirect
jumps on the target graph, and this approach can significantly improve the estimation
accuracy. If we slightly increase α to increase the jumping probability, we observe
that the estimation error further decreases.

5.4 Experiments onMTime dataset

In the fourth experiment, we apply RWTVSA and RWTRWA on MTime to measure
the MTime user characteristics.
MTime dataset. MTime12 is a popular online movie database in China, which com-
prises two types of accounts: MTime users and movie actors. MTime users can follow
each other to form a social network, and movie actors can form connections with each
other if they cooperated in the same movies. AMTime user can follow movie actors if
she is a fan of the actor. Suppose we want to measure MTime user characteristics, then
the relations between MTime users and movie actors naturally form a two-layered
network structure, where

– the target graph consists of MTime users and their following relations;
– the auxiliary graph consists of movie actors and their cooperation relations;
– and the bipartite graph consists of MTime users, movie actors and the fan relations
between them.

To build a groundtruth dataset, we have collected the complete MTime network by
traversing MTime user and movie actor ID spaces.13 For each MTime user, we collect
the set of users she follows and users who follow her. This builds up a directed follower
network among MTime users. Each MTime user maintains a list including a subset of
movie actors she is interested in. This information is used to build up the fan-relations
between MTime users and movie actors. For each movie actor, we collect the movies
she participated in, and if two actors participated in a same movie, we connect them.

12 http://www.mtime.com.
13 The user ID space ranges from 100,000 to 10,000,000, and actor ID space ranges from 892,000 to
2,100,000.
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Table 3 Summary of the MTime dataset

G User follower network type Directed

Total users (isolated and non-isolated) 1,878,127

Non-isolated users in follower network 1,035,164

Following relations 14,861,383

Users in LCC 987,055

Following relations in LCC 14,791,482

G′ Actor cooperative network type undirected

Total actors (isolated and non-isolated) 1,123,340

Non-isolated actors in cooperative network 1,122,166

Cooperative relations 10,344,364

Actors in LCC 1,114,065

Cooperative relations in LCC 10,328,904

Gb Fan relations 225,558,343

Users following actors 1,419,339

Isolated users following actors 842,963

Actors having fans 441,413

Isolated actors having fans 1174

Isolated actors having only isolated fans 225

Isolated users following only isolated actors 393

This builds up a cooperative network among actors. The complete MTime dataset is
summarized in Table 3.

Analysis of the dataset. First we provide some analysis about the MTime dataset. In
Table 3, comparing the first block with second block, which are related to target graph
G and auxiliary graphG ′ respectively, we find that about 19% of the user IDs and 93%
of the actor IDs are valid. This indicates that conducting UNI on the auxiliary graph
is more efficient than conducting UNI on the target graph. Moreover, we find that
more than 47% of the MTime users are not in LCC, but the number for actors is less
than 0.1%. This indicates that the auxiliary graph is better connected than the target
graph. Although a large fraction of users are isolated nodes in the target graph, from
the last block, we find that almost all the isolated users are connected to non-isolated
actors (except a few hundreds of them). So the majority of isolated users are indirectly
connected to other users through actors. This is illustrated in Fig. 18. The advantage
of introducing the two-layered network structure is now clear for MTime dataset, i.e.,
we can study a larger user space than simply the LCC of target graph.

Results. Using the MTime dataset as a testbed, we demonstrate that RWTVSA and
RWTRWA methods can provide good estimates of user characteristics. Although the
user follower network is directed, we can build an undirected version of the target
graph on-the-fly while sampling because a user’s in-coming and out-going neighbors
are known once the user is queried (Ribeiro and Towsley 2010; Ribeiro et al. 2012).
Slightly different from previous experiments, here we will estimate both the in- and
out-degree distributions.
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Fig. 18 The MTime network components. Dashed red lines denote fan relations between actors and users
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Fig. 19 RWTVSA degree distribution estimation and NRMSE analysis. a In-degree estimates (α = 1), b
CCDFNRMSE (α = 1), cCCDFNRMSE (B = 0.01n), d too frequent jumping (B = 0.01n), e out-degree
estimates (α = 1), f CCDF NRMSE (α = 1), g CCDF NRMSE (B = 0.01n), h too frequent jumping
(B = 0.01n)

Figure 19 depicts the results of RWTVSA. In Fig. 19a, e, we show the in-degree
and out-degree CCDF estimates. We can see that RWTVSA can provide unbiased
estimates. From Fig. 19b, f, we observe that when sampling budget increases, the
NRMSE decreases for both in-degree and out-degree estimations. From Fig. 19c, g
weobserve thatwhenmore jumps are allowedby increasingα from1 to 100, estimation
accuracy also increases.

Figure 20 depicts the results of RWTRWA, and they are similar to the results of
RWTVSA. First, fromFig. 20a, e, we observe that RWTRWA can also provide unbiased
estimates of the in- and out-degree distributions. Second, from Fig. 20b, f, we can find
that as sampling budget increases, the estimation error decreases accordingly for both
in- and out-degree estimations. Last, from Fig. 20c, g, we find that when jumping
probability increases (by increasing α and β), the NRMSE also decreases.
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Fig. 20 RWTRWA degree distribution estimation and NRMSE analysis, a in-degree est. (α = β = 0.1),
b CCDF NRMSE (α = β = 0.1), c CCDF NRMSE (B = 0.01n), d too frequent jumping (B = 0.01n),
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However, it is worth noting that α and β should not be too large for both RWTVSA

and RWTRWA. Because we know that when α → ∞, RWTVSA becomes VSA, which
is biased on the MTime dataset, and hence causes large NRMSE. Similar behavior
happens to RWTRWA.

6 Related work

Graph sampling methods, especially random walk based graph sampling meth-
ods, have been widely used to characterize large-scale complex networks. These
applications include, but are not limited to, estimatingpeer statistics in peer-to-peer net-
works (Gkantsidis et al. 2006; Massoulié et al. 2006), uniformly sampling users from
OSNs (Gjoka et al. 2010, 2011b; Lee et al. 2012; Xu et al. 2014), characterizing struc-
ture properties of large-scale networks (Katzir et al. 2011; Hardiman and Katzir 2013;
Seshadhri et al. 2013;Wang et al. 2014b), andmeasuring statistics of point-of-interests
on maps (Wang et al. 2014a). The above literature is mostly concerned with sampling
methods that seek to directly sample nodes (or samples) in target graphs (or some sam-
ple spaces). However, direct sampling is not always efficient as we argued in this work.

When the target graph (or sample space) cannot be directly sampled or direct sam-
pling is inefficient, several methods based on graph manipulation have been proposed
to improve sampling efficiency. For example, Gjoka et al. (2011a) study an approach
to improve sampling efficiency through building amultigraph using different kinds of
relations (i.e., different types of edges) that exist on an OSN. A multigraph is better
connected than any individual graph formed by only one kind of relations. Therefore,
the random walk can converge fast on this multigraph. Zhou et al. (2013) exploit
several criteria to rewire the target graph on-the-fly to increase the graph conduc-
tance (Sinclair and Jerrum 1989) and reduce mixing time of a random walk. Our
method differs from theirs in that we do not manipulate target graph structure. We
study a new approach that utilizes a widely existed two-layered network structure to
assist sampling on target graph indirectly. In parallel to our methods by leveraging
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two-layered network structures, there have been recent progresses on speeding up ran-
dom walk on graphs by leveraging historical sampling information (Zhou et al. 2015)
and Rao–Blackwellization property of Monte Carlo methods (Lee et al. 2017).

Birnbaum and Sirken (1965) designed a survey method for estimating the num-
ber of diagnosed cases of a rare disease in a population. Directly sampling patients
of a rare disease from the huge human population is obviously inefficient, so they
studied how to sample hospitals so as to sample patients indirectly. Their method
motivates us to design the VSA method. However, as we pointed out, VSA method
cannot sample nodes that are not connected to auxiliary graph, and we overcome this
problem by designing RWTVSA and RWTRWA methods. Our work also complements
existing sampling methods related to random walk with jumps (Avrachenkov et al.
2010; Ribeiro et al. 2012; Xu et al. 2014) by removing the necessity of uniform node
sampling on target graphs.

7 Limitions and future work

This paper developed several new sampling methods for measuring network nodal
characteristics using random walk with indirect jumps by leveraging the two-layered
network structure. There are several limitions/weaknesses that we did not study or not
discussed in detail, and hence they offer opportunities for future work.
– Sampling cost analysis is shallow. We only qualitatively discussed the sampling
cost of our methods, and empirically studied a very simple cost model. Hence, a
more comprehensive sampling cost analysis is required for better understanding
the performance and use conditions of proposed methods. Sampling cost analysis
can also help us to choose the optimal parameters in the proposed methods.

– Extension to the MHRW framework.Our methods are based on the simple random
walk framework, and frequently use the re-weighting strategy to remove estimation
bias. In the literature, MHRW is also a popular randomwalk sampling method that
has the ability of collecting uniform samples from a network, and hence it has no
necessity for re-weighting. Thus, there is an opportunity to extend our framework
to the MHRW case.

– From two-layered network structure to multi-layered network structure. It is also
possible to consider more-than-two layered network structure, and such multi-
layered network structures do exist in reality. However, sampling cost needs to be
carefully considered and justified, and we leave this interesting extension to future
work.

8 Conclusion

When graphs become large in scale, sampling methods become necessary tools in
the study of characterizing their properties. Among these sampling methods, random
walk-based crawling methods are effective and are gaining popularity. However, if the
graph under study is not well connected, random walk-based graph sampling methods
suffer from the slow mixing problem. In this work, we observe that a graph usually
does not exist in isolation. In many applications, the target graph is accompanied with
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an auxiliary graph and a bipartite graph, and they together form a better connected
two-layered network structure. This new viewpoint brings extra benefits to the graph
sampling framework. We design three sampling methods to measure the target graph
from this new viewpoint, and these methods are demonstrated to be effective on both
synthetic and real datasets. Therefore, our method complements existing methods in
the literature of graph sampling.
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Appendix

See Table 4.

Table 4 Notations

UNI Uniform vertex sampling

RW Random walk

MHRW Metropolis–Hastings random walk

RWwJ Random walk with jumps

PDF Probability distribution function

CCDF Complementary cumulative distribution function

NRMSE Normalized rooted mean squared error

LCC Largest connected component

G = (U , E) Target graph with node set U and edge set E

G′ =
(
V , E ′) Auxiliary graph with node set V and edge set E ′

Gb = (U , V , Eb) Bipartite graph with node sets U , V and edge set Eb
Uv ⊆ U , Vu ⊆ V Subsets of nodes in G or G′

n, n′ n = |U | and n′ = |V |
θ, θ̂ Target graph characteristic ground truth/estimate

f : U $→ R Characteristic function

u ∈ U , v ∈ V Nodes in target/auxiliary graph

d·, d(b)· Degree of a node in G,G′ or Gb

α,β Parameters controlling jumping probability

pv ∝ av Probability of sampling node v

pu j Markov chain transition probability from node u to node j

wu ,ωv Edge weights

π· Stationary probability of a Markov chain

B Sampling budget

123



56 J. Zhao et al.

References

Avrachenkov K, Ribeiro B, Towsley D (2010) Improving random walk estimation accuracy with uniform
restarts. In: Proceedings of the 7th workshop on algorithms and models for the web graph

Backstrom L, Kleinberg J (2014) Romantic partnerships and the dispersion of social ties: a network analysis
of relationship status onFacebook. In: Proceedings of the 17thACMconference on computer supported
cooperative work and social computing

Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512
Birnbaum ZW, Sirken MG (1965) Design of sample surveys to estimate the prevalence of rare diseases:

three unbiased estimates. Vital Health Stat 2(11):1–8
Cho E, Myers SA, Leskovec J (2011) Friendship and mobility: user movement in location-based social

networks. In: Proceedings of the 17thACMSIGKDD international conference on knowledge discovery
and data mining

Gjoka M, Kurant M, Butts CT, Markopoulou A (2010) Walking in Facebook: a case study of unbiased
sampling of OSNs. In: Proceedings of the 29th annual IEEE international conference on computer
communications

Gjoka M, Butts CT, Kurant M, Markopoulou A (2011a) Multigraph sampling of online social networks.
IEEE J Sel Areas Commun 29(9):1893–1905

Gjoka M, Kurant M, Butts CT, Markopoulou A (2011b) Practical recommendations on crawling online
social networks. IEEE J Sel Areas Commun 29(9):1872–1892

GkantsidisC,MihailM,SaberiA (2006)Randomwalks in peer-to-peer networks: algorithms and evaluation.
Perform Eval 63(3):241–263

Han J, Choi D, Chun BG, Kwon TT, Chul Kim H, Choi Y (2014) Collecting, organizing, and sharing pins
in Pinterest: interest-driven or social-driven? In: Proceedings of the ACM special interest group (SIG)
for the computer systems performance evaluation community

Hardiman SJ, Katzir L (2013) Estimating clustering coefficients and size of social networks via random
walk. In: Proceeding of the 22nd international world wide web conference

Katzir L, Liberty E, Somekh O (2011) Estimating sizes of social networks via biased sampling. In: Pro-
ceedings of the 19th international world wide web conference

Lee CH, Xu X, Eun DY (2012) Beyond random walk and Metropolis–Hastings samplers: why you should
not backtrack for unbiased graph sampling. In: Proceedings of the ACM special interest group (SIG)
for the computer systems performance evaluation community

Lee CH, Xu X, Eun DY (2017) On the Rao–Blackwellization and its application for graph sampling
via neighborhood exploration. In: Proceedings of the 36th annual IEEE international conference on
computer communications

Leskovec J, Huttenlocher D, Kleinberg J (2010) Signed networks in social media. In: Proceedings of the
SIGCHI conference on human factors in computing systems

Li Y, SteinerM,Wang L, Zhang ZL, Bao J (2012) Dissecting foursquare venue popularity via random region
sampling. In: Proceedings of the 8th international conference on emerging networking experiments
and technologies

LiY,WangL,SteinerM,Bao J,ZhuT (2014)Region sampling and estimationof geosocial datawith dynamic
range calibration. In: Proceedings of the 30th IEEE international conference on data engineering

Li H, AiW, Liu X, Tang J, Huang G, Feng F, Mei Q (2016) Voting with their feet: inferring user preferences
from app management activities. In: Proceedings of the 25th international world wide web conference

Massoulié L,Merrer EL, KermarrecAM,GaneshA (2006) Peer counting and sampling in overlay networks:
random walk methods. In: Proceedings of ACM symposium on principles of distributed computing

McAuley J, Pandey R, Leskovec J (2015) Inferring networks of substitutable and complementary products.
In: Proceedings of the 21st ACM SIGKDD international conference on knowledge discovery and data
mining

Meyn S, Tweedie RL (2009) Markov Chains and statistic stability, 2nd edn. Cambridge University Press,
Cambridge

Mohaisen A, Yun A, Kim Y (2010) Measuring the mixing time of social graphs. In: Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement conference

MondalM,ViswanathB,Druschel P,GummadiKP,ClementA,MisloveA, PostA (2012)Defending against
large-scale crawls in online social networks. In: Proceedings of the 8th international conference on
emerging networking experiments and technologies

123



Sampling online social networks by randomwalk… 57

Ribeiro B, Towsley D (2010) Estimating and sampling graphs with multidimensional random walks. In:
Proceedings of the 10th ACM SIGCOMM conference on Internet measurement conference

RibeiroB,WangP,Murai F, TowsleyD (2012) Sampling directed graphswith randomwalks. In: Proceedings
of the 31st annual IEEE international conference on computer communications

Robert CP, Casella G (2004) Monte Carlo statistic methods, 2nd edn. Springer, Berlin
Seshadhri C, Pinar A, Kolda TG (2013) Triadic measures on graphs: the power of wedge sampling. In:

Proceedings of the 13th SIAM international conference on data mining
Sinclair A, JerrumM (1989) Approximate counting, uniform generation and rapidly mixingMarkov chains.

Inf Comput 82(1):93–133
Wang P, He W, Liu X (2014a) An efficient sampling method for characterizing points of interests on maps.

In: Proceedings of the 30th IEEE international conference on data engineering
Wang P, Lui JC, Ribeiro B, Towsley D, Zhao J, Guan X (2014b) Efficiently estimating motif statistics of

large networks. ACM Trans Knowl Discov Data 9(2):1–27
XuX,LeeCH,EunDY (2014)Ageneral framework of hybrid graph sampling for complex network analysis.

In: Proceedings of the 33rd annual IEEE international conference on computer communications
Zhang B, Kreitz G, Isaksson M, Ubillos J, Urdaneta G, Pouwelse JA, Epema D (2013) Understanding user

behavior in Spotify. In: Proceedings of the 32nd annual IEEE international conference on computer
communications

Zhao J, Lui JC, Towsley D,Wang P, GuanX (2015) A tale of three graphs: sampling design on hybrid social-
affiliation networks. In: Proceedings of the 31st IEEE international conference on data engineering

Zhou Z, ZhangN, Gong Z, Das G (2013) Faster randomwalks by rewiring online social networks on-the-fly.
In: Proceedings of the 29th IEEE international conference on data engineering

Zhou Z, Zhang N, Das G (2015) Leveraging history for faster sampling of online social networks. In:
Proceedings of the VLDB endowment

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Junzhou Zhao1 · Pinghui Wang2 · John C. S. Lui1 · Don Towsley3 ·
Xiaohong Guan2

B Pinghui Wang
phwang@mail.xjtu.edu.cn

Junzhou Zhao
junzhouzhao@gmail.com

John C. S. Lui
cslui@cse.cuhk.edu.hk

Don Towsley
towsley@cs.umass.edu

Xiaohong Guan
xhguan@mail.xjtu.edu.cn

1 The Chinese University of Hong Kong, Hong Kong, China
2 Xi’an Jiaotong University, Xi’an, China
3 University of Massachusetts at Amherst, Amherst, USA

123


