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Abstract—Many long-running network analytics applications
impose a high-throughput and high reliability requirements on
stream processing systems. However, previous stream process-
ing systems cannot sustain high-speed traffic at the core router
level. Furthermore, their fault-tolerant schemes cannot provide
strong consistency which is essential for network analytics.
In this paper, we present the design and implementation of
SAND, a fault-tolerant distributed stream processing system
for network analytics. SAND is designed to operate under
high-speed network traffic, and it uses a novel checkpointing
protocol which can perform failure recovery based on upstream
backup and checkpointing. We prove our fault-tolerant scheme
provides strong consistency even under multiple node failure.
We implement several real-world network analytics applica-
tions on SAND, evaluate their performance using network
traffic captured from commercial cellular core networks, and
demonstrate that SAND can sustain high-speed network traffic
and that our fault-tolerant scheme is efficient.
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I. INTRODUCTION

Stream processing systems are essential for real-time
network analytics applications. For instance, telecommuni-
cation companies wish to classify network traffic in real-
time so that they can perform proper resource allocation on
different applications; network administrators wish to detect
anomalies in core network traffic as soon as possible so
that these traffics can be filtered or rate limited. To enable
these real-time network analytics applications, we need a
high performance stream processing system that can sustain
high-speed network traffic.

However, designing such a system is challenging, because
network analytics applications are usually long-running tasks
and the stream processing systems must provide high avail-
ability for continuous processing. For example, the Policy
and Charging Control (PCC) system in cellular networks
can be used to manage policy rules and perform real-time
charging control [12]. For such application that involves real-
time charging, it is necessary to provide correct results after
failure recovery.

Although there are a number of stream processing systems
available [21, 3, 24, 15], they are not really designed to
support network analytics applications and cannot sustain
high-speed network traffic at the core router level. Further-
more, previous fault-tolerant approaches such as replication

and upstream backup have their limitations. In replication,
the system runs several identical copies of jobs on different
machines which demands high resource investment. In up-
stream backup, each node needs to buffer its output data for
a long time and suffers from high recovery time. Also, for
both approaches, it is difficult to guarantee the consistency
of results after failure recovery.
Contributions: In this paper, we present the design and
implementation of a stream processing system called SAND
which targets for real-time network analytics at the core
router level (Section III). We also propose and implement a
novel fault-tolerant scheme based on upstream backup and
checkpointing. Our checkpointing protocol can guarantee
global consistent checkpoints and recovery (Section IV).
Finally, we carry out extensive evaluation to show the
performance of SAND over other stream processing systems.
We experimentally evaluate the fault-tolerant scheme under
different failure patterns. We also implement several real-
world network analytics applications on SAND and eval-
uate their sustained throughput using real network traffic
collected from commercial cellular networks (Section V).

II. BACKGROUND AND LIMITATION OF PREVIOUS
SOLUTIONS

There are many network analytics which need high per-
formance, real-time, and fault-tolerant stream processing
systems. One representative network analytics application is
deep packet inspection (DPI), which can classify network
traffic packets into different application-level protocols.
Telecommunication companies are often interested in the
distribution of applications in the network traffic because ad-
ministrators can do proper resource allocation and bandwidth
management. Previously, high performance DPI systems
were implemented on the Hadoop platform [23]. Hadoop
is a batch processing system, so results from the system are
non-real-time and it suffered from high processing latency.
There is an urgent need to perform DPI on a real-time stream
processing system so network operators can perform real-
time resource management.

Many network analytics applications like DPI or network
anomaly detection have several common characteristics.
Firstly, they need to be executed at the core router level, so
the stream processing system needs to sustain and operate
at a high-throughput setting (i.e., at Gbps range). Secondly,



telecommunication administrators wish to process these ap-
plications in real-time and with low latency. This imposes
a huge computational constraint on the streaming engine.
Lastly, these applications run for a long duration, and this
imposes a high reliability and fault-tolerant requirement on
the stream processing systems. In case there is a compo-
nent failure, the stream processing system needs to recover
the component without compromising the integrity of the
processing results.

To realize a high-throughput, highly fault-tolerant stream
processing system, researchers have proposed to use the
continuous operator model (COM) [21, 3]. Under the COM
framework, streaming computation is carried by a set of
long-lived operators. Each operator processes input data
events and produces output data events that can be further
processed by the next operators.

Figure 1: AppTracker: a DPI software using the COM.
To illustrate the concept of COM, let us consider

AppTracker, a DPI software that we develop on the
top of our stream processing system. Figure 1 depicts a
software abstraction of AppTracker. It is composed of
four different types of continuous operators: (1) Spout, (2)
GPRS-Decoder, (3) DPI-Engine, and (4) Tracker. The Spout
reads raw GPRS network traffic packets from an external
source and assigns the traffic to different GPRS-Decoders.
The GPRS-Decoder decodes GPRS packets, extracts the IP
packets and forwards to the DPI-Engine. The DPI-Engine
performs application classification on the input data. The
Tracker summarizes the distribution of different applications
in the network traffic.

Under the COM framework, an operator can be stateful
or stateless. A stateful operator has mutable state that may
be changed when it receives an input event, while its output
streams depend on the internal state and input streams. For
a stateless operator, the output streams do not depend on
the internal state. In AppTracker, the Spout and GPRS-
Decoders are stateless operators, while the DPI-Engines
and Tracker are stateful operators. For each input network
packet, the GPRS-Decoder decodes the GPRS headers and
extracts the IP packets. Computation is done on a per packet
basis so one does not need to use “state” to keep track of the
computation. On the other hand, DPI needs to be carried out
on a flow-level basis, so the DPI-Engine needs to aggregate
IP packets into flows, then perform DPI operation on each
flow. Hence the DPI-Engine is a stateful operator and its
internal state includes a flow table that stores active flows.

Fault-tolerance in stream processing systems is an impor-
tant technical challenge that needs to be addressed. In the

course of stream processing, it is possible that one or more
of these continuous operators may fail. If it is a stateful
operator, then when this operator recovers, it is important
to restore the internal state and continue with the streaming
computation. However, the internal state of each operator
potentially depends on the history of the input traffic or
states of previous operators, so these internal states cannot
be easily recreated by re-processing a small portion of the
input stream.

Let us review several fault-tolerant schemes used by
existing stream processing systems. The first approach is
via replication (or active standby) [17]. Under this scheme,
the stream processing systems use redundancy for execution.
For each operator, it has a primary operator and one or more
backup operators (or replica). Input data streams are sent
to all operators. Consider AppTracker in Figure 1, we
have primary operators (on the top) and the replica operators
(at the bottom). Replication is an expensive fault-tolerant
scheme since it at least doubles the resource requirement.
Moreover, the replication scheme requires a costly synchro-
nization [22, 5]. As shown in Figure 1, DPI-Engine must
synchronize with its replica to ensure that they see input
events in the same order (we will elaborate why the order
of events is important).

Another approach to providing fault-tolerance is via up-
stream backup [17]. Under this scheme, each operator retains
a copy of the data events it sent to a downstream operator.
The data will only be purged when an acknowledgement is
received from the downstream operator indicating that the
data events have been processed. For some operators whose
internal states only depend on a subset of input streams, we
can recover their states by replaying the upstream operators’
recent output data events. However, this is not applicable to
stateful operators. For example, for the DPI-Engine operator,
most input data events affect the operator’s internal state.
Therefore, upstream backup requires large buffer resources
and the recovery delay can be significant under a high input
traffic rate setting.

To improve the performance of upstream backup, check-
pointing technique was introduced [11, 13]. Under this
scheme, each operator periodically checkpoints its internal
state. During recovery, the failed operator resumes from the
most recent checkpoint, and only needs to re-process the
data events after the last checkpoint. The advantage of this
scheme is in reducing the recovery delay. However, the order
of data events from different input streams is nondetermin-
istic (because of the interleaving of data events within the
network). Also, the inter-arrival times of data events are
nondeterministic because of processing delays. For operators
whose computations depend on the order and inter-arrival
times of input, this nondeterminism makes it challenging to
provide strong consistency [17] after recovery.

Let us illustrate why the above nondeterminism makes
fault-tolerance difficult. Consider a streaming application as
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Figure 2: For operator f , output events depend on the order
of input events.

shown in Figure 2. Suppose the internal state of operator f
is the sum of input data events. When operator f receives
an input data event, it updates the sum. If the sum is larger
than 10, it emits an output data event with the current sum
to the next operator d. Suppose, at checkpoint c, operator f
checkpoints its internal state sc = 5 (which means the sum
is 5). After checkpoint c, operator f receives data events
α1 = 2, β1 = 1, α2 = 6, β2 = 2 in order from operator a and
b. These data events trigger two output events from operator
f : γ1 = 14, γ2 = 16. Then operator f fails. To recover
operator f , we roll it back to state sc and let operator a and b
to replay data events α1, α2, β1, and β2. Because of the non-
deterministic nature of stream processing, the arrival order of
replayed data events may be different from the order before
failure. Suppose the replayed data events from operator a
and b arrive at the operator f in the order of α1, β1, β2, α2.
Then operator f emits a new output event γ′1 = 16 to
operator d. We can see that the output of operator f depends
on the arrival order of input events. Note that γ1, γ2 and γ′1
are duplicate events triggered by the same input streams in
different orders. The order and the number of such duplicate
events are nondeterministic in stream processing systems.
These duplicate events can cause inconsistency on the state
of operator d after recovery, and cannot be handled by
simply adding sequence numbers. So, for those applications
that require strong consistency, previous systems [11, 13]
cannot handle such duplicate events during recovery. For the
similar reason, the replication scheme needs synchronization
protocols to synchronize the order of input between the
primary operators and the replicas, otherwise the primary
operators and the replicas may produce different results.

The above discussion indicates that previous stream pro-
cessing systems are not appropriate for high-speed network
analytics. Firstly, network analytics applications require the
stream processing system be sustainable at a high traffic
rate. Secondly, the semantics of network analytics requires
us to have strong consistency. To sustain high-throughput
stream processing and provide strong consistency, we design
a stream processing system called SAND. Let us now discuss
SAND’s architecture and fault-tolerant scheme.

III. SYSTEM DESIGN OF SAND

In designing SAND, we set two design goals. First, it has
to sustain high input traffic rates (i.e., at Gbps range). Our
major target applications are network analytics (e.g., DPI and
traffic anomaly detection) within the core networks. Note
that most open source stream processing systems, S4 [21]
and Storm [3], are implemented on Java Virtual Machine

(JVM), so it is inefficient to develop and execute non-
JVM operators on these two systems. Furthermore, S4 and
Storm have heavy processing overheads and they cannot
sustain high-speed network traffic (see Section V). SAND is
optimized for high-throughput processing. It is implemented
in C++ so it can use existing high performance libraries
for network analytics. Our second design goal is to be
fault-tolerant. We use upstream backup and checkpointing
techniques, and complement these techniques with a novel
checkpointing coordination protocol to provide strong con-
sistency.

Figure 3 depicts the architecture of SAND. SAND uses
the continuous operator model. A SAND cluster uses the
single-master distributed system design and it has two types
of nodes: a coordinator node and multiple worker nodes.
Each worker can be viewed as a continuous operator de-
scribed in Section II. The input to a worker is an input
stream, which represents either a sequence of events of
data source (e.g., network traffic), or a sequence of events
generated by other workers. We name a worker that receives
an input stream from an external source as a source worker.
Otherwise, they are called the internal workers.

Figure 3: SAND Architecture.
The coordinator is responsible for managing workers and

detecting worker failures. It relays control messages like
starting a checkpoint and acknowledgement of a checkpoint
among workers. All communication between the coordinator
and the workers is done through a Zookeeper [16] cluster,
which provides reliable distributed coordination service.
Additionally, the coordinator is stateless; all states are kept
in Zookeeper. So if the coordinator fails, no workers will be
affected. Coordinator simply restarts and reconnects to the
Zookeeper, which is a replicated service based on a quorum
algorithm, so we do not need to consider its failure handling.

Each worker module is responsible for processing a
portion of streams. It contains three types of processes: (a)
dispatcher, (b) analyzer, and (c) collector. The dispatcher
receives incoming streams, which can be originated from a
data source (e.g., network traffic) or from other workers.
The dispatcher decodes the streams and distributes them
to one or multiple analyzers. Users have the flexibility to
decide how to distribute the streams, i.e., they can use built-
in load-balancing algorithms (e.g. stateless hashing or join
the shortest queue) in SAND, or they can extend the load-
balancing library. To utilize the multi-core architecture of
modern machines, we can run multiple analyzer processes in
parallel. Each analyzer is an application dependent analysis



process which works on its assigned streams and produces
intermediate results. The collector aggregates intermediate
results from all analyzers to produce the final results, and
forwards the results to the next-hop workers for further
processing. If a worker has next-hop workers, the collector
records the output data events in its output buffer of each
next-hop worker. This allows the worker to replay its output
data events in case there is a failure recovery. In SAND,
whenever next-hop workers have performed a checkpointing
operation, the system will purge some of the data from
its output buffer. We will describe the output data purging
operation in the next section.

Usually, the analyzer runs CPU-intensive tasks, and has
the most computational load compared to that of the dis-
patcher or the collector. In SAND, each worker node runs
exactly one dispatcher and one collector, but it can poten-
tially run multiple analyzers processes. In case the input
stream is of high traffic rate (such as in the core router traffic
with Gbps rate), the worker can instantiate more analyzer
processes to sustain the high processing requirement.

To manage the processing power of a worker, each worker
runs a container daemon that spawns or stops the dispatcher,
analyzer, and collector processes in the worker. The con-
tainer also serves as a communication interface between
the worker and the coordinator. Thus, the coordinator can
manage the resources of each worker through the worker’s
container. For instance, the coordinator can inform a con-
tainer to create more analyzers to increase the processing
power.

To provide high-speed communications between the dis-
patcher and each analyzer, and those between each analyzer
and the collector, SAND uses lock-free ring buffers [18]
to avoid lock contention which may degrade system per-
formance. Workers communicate via ZeroMQ [2], which is
a messaging library optimized for high-throughput commu-
nication. We use ZeroMQ sockets instead of TCP sockets
because (1) it provides reliable connection; (2) it batches
small messages into a single unit to avoid expensive system
calls; (3) it queues messages in a separate I/O thread, so
sending and receiving operations are asynchronous.

It is important for us to emphasize that we only define the
components of a worker as an abstraction. Developers can
easily extend the detailed functionalities of the dispatcher,
analyzer, and collector processes, as well as define the
formats of the streams being processed and the messages
exchanged among the workers and the coordinator.

To illustrate the mapping, consider AppTracker in
Figure 1. Each operator can be directly mapped to a worker
in a SAND cluster. Since GPRS decoding is a CPU-intensive
task, GPRS-Decoder can have multiple analyzers which
means it can use multiple cores in a single machine. If de-
coding demands more CPU resources, we can start multiple
GPRS-Decoders in multiple machines. Workers which are
not CPU intensive (e.g. Spout and Tracker) can be placed

on the same machine.

IV. FAULT-TOLERANCE & CHECKPOINT COORDINATION

SAND adopts a combination of upstream backup and
checkpointing to achieve a balance between run-time over-
head and recovery delay. Furthermore, we have designed
and implemented a novel checkpointing protocol to pro-
vide strong consistency (Section IV-A) and failure recovery
(Section IV-B), and finally, we prove its correctness (Sec-
tion IV-C).

For ease of presentation, we assume that the dispatcher
and collector in each worker are stateless, and we only need
to checkpoint the state of analyzers. SAND does not need a
priori knowledge of the internal state of an analyzer. Instead,
it uses the two user-defined functions export and import
in analyzers to complete a strong consistent checkpointing.
All checkpoint data are written to HDFS [23], which per-
forms replication for data reliability. The implementation of
checkpointing uses the copy-on-write semantics of the fork
system call. In fork, it creates a new process by duplicating
the calling process. When a worker starts a checkpoint, each
analyzer process calls fork, and creates one child process
which is an exact copy of parent. The parent analyzer then
resumes with the normal processing. The child analyzer
writes the internal state using the export function to
HDFS, then sends an acknowledgement to the coordinator,
and finally exits. Note that the parent process does not have
to wait for checkpointing to complete. During recovery,
analyzer processes call the import function to fetch the
checkpointed data from HDFS. In what follows, we formally
describe the checkpointing protocol.

A. Checkpointing Protocol

To perform the real-time streaming computation, we as-
sume that all workers in a SAND cluster can be mapped to a
directed acyclic graph. Let W be the set of all workers. For
each worker w in W , we define Uw as the set of upstream
workers of w, and each workers in Uw generates data events
as direct input to w. We define Dw as a set of downstream
workers of w, and the input of workers in Dw is derived
from w. Note that Dw includes the next-hop workers of w,
as their next-hop workers, and so on. Let V be a set of
workers. We define UV = ∪w∈V Uw and DV = ∪w∈VDw.
To illustrate the notation, consider an example in Figure 4,
for the worker e, we have Ue = {c} and De = {g, h}. If
V = {c, e}, then UV = {a, c} and DV = {e, f, g, h}.

We propose a protocol to coordinate checkpointing op-
eration on each worker in SAND. Note that the check-
pointing protocol is similar to the Chandy-Lamport snapshot
algorithm [7]. The main difference is that we apply it on
stream processing systems and prove that it provides strong
consistency under the COM framework. We allow workers
to perform checkpoint at different time but the system
can create a global consistent checkpoint from all workers’



checkpoints. We assign a sequence number to each global
checkpoint. The coordinator starts the new global checkpoint
with a sequence number c by emitting special “checkpointing
messages” to all source workers. When a source worker
receives the checkpointing message, it emits special events
called “anchor events” to all its next-hop workers. An anchor
event indicates that the internal state depending on input
events which arrived before this anchor event should be
checkpointed. So when a worker receives the anchor events
from all of its upstream workers, it checkpoints its internal
state and emits anchor events to its next-hop workers. The
checkpointing protocol is stated as follows:

1) Suppose the checkpointing interval is T seconds which
can be set by the user. Every T seconds, the coor-
dinator increments the sequence number and sends
checkpointing messages to all source workers to start
a new global checkpoint with sequence number c.

2) When a source worker receives the checkpointing
message from the coordinator, it emits anchor events
to all of its next-hop workers. The checkpointing
messages and anchor events contain c to indicate that
they are initiated by checkpoint sequence number c.

3) Each worker w uses a boolean array flag to track
upstream workers from which anchor events have not
arrived. For each upstream worker u ∈ Uw, flag[u]
is initialized to false which means w has not received
the anchor event from u. When worker w receives an
event E from an upstream worker u, it checks:

a) if flag[u] is false and E is a data event,
worker w processes the data event E normally;

b) if flag[u] is false and E is an anchor event,
w sets flag[u] to true. If for each v ∈ Uw,
flag[v] is true, w emits anchor events to all
of its next-hop workers, resets every element of
flag to false, and finally starts the checkpoint
procedure by forking analyzer processes:
• The children analyzers checkpoint the internal

state of w, which we denote as swc , to HDFS.
Then the children processes send an acknowl-
edgement to the coordinator via the container.

• Concurrently, the parent analyzers can process
input events normally.

c) if flag[u] is true, w buffers E and postpones
the processing of E until w starts checkpoint c.
If E is an anchor event, it must be initiated by
some checkpoint d where d > c. Since it will be
buffered, it will not affect checkpoint c.

4) When the coordinator receives acknowledgements of
checkpoint c from all workers, it means the global
checkpoint c completes.

To illustrate the protocol, let us consider the example in
Figure 2 again. In this case, the two source workers are a and
b. Suppose after the coordinator starts the global checkpoint

c, worker a emits an anchor event µa before α1 and worker
b emits anchor event µb before β1. Suppose the arrival
order of input events to worker f is µa, α1, µb, β1, α2, β2.
According to our protocol, when worker f receives α1, it
will buffer α1 and postpone the processing of α1 until it
receives µb. When µb arrives, f emits an anchor event to
worker d. This implies that worker d receives this anchor
event and checkpoints its internal state before γ1 arrives.
Now if worker f fails, we can rollback worker f and d
to checkpoint c, and then replay α1, α2, β1, and β2. Note
that the state of worker d at checkpoint c does not depend
on data events from worker f after checkpoint c. Unlike
the previous fault-tolerant schemes described in Section II,
when worker d processes duplicate events like γ′1, it will
not cause inconsistent state. Our checkpointing algorithm
possesses the following property.
Property IV.1. For each worker w, the internal state swc
only depends on the data events from all upstream workers
of w before checkpoint c.
Proof: For each checkpoint c and each worker w, before
worker w checkpoints the state swc , suppose worker w
receives a data event E which was produced by an upstream
worker u after checkpoint c. Our protocol ensures that
worker w has already received the anchor event from u and
flag[u] was set to true. So data event E will be buffered
and will not affect the state swc .

One important technical note is that at each checkpoint,
a worker needs to buffer some input events until anchor
events from all upstream workers arrive. The arrival times
of anchor events are decided by the processing delays of
upstream workers, or the workloads of upstream workers.
As long as the workloads at workers are balanced, then the
system does not need to buffer too many input events. We
will present our evaluation on the runtime overhead caused
by buffering in Section V.

Note that each worker records its output data events
locally in an output buffer. This allows a worker to replay
its output events when any of its next-hop workers fails. We
cannot store these events to HDFS because of the latency
incurs in HDFS. When the coordinator detects that global
checkpoint c is finished, it informs every worker to delete
output events before checkpoint c in its output buffer and
delete all data associated with checkpoint c − 1 on HDFS.
The output buffers need to store all data events between
two consecutive checkpoints. So the checkpointing interval
cannot be too long, otherwise the output buffers may con-
sume too much memory. We will present out performance
evaluation results on the impact of checkpointing interval in
Section V.

B. Failure Recovery

Next we introduce how to recover from failures. First
of all, the container of each worker maintains heartbeats
with the Zookeeper cluster by creating an ephemeral node



on Zookeeper. When a worker fails unexpectedly, the
Zookeeper will notify the coordinator. When the coordinator
detects worker failures, suppose c is the largest sequence
number of available global checkpoints on HDFS. It means
that for each worker w, state swc is available on HDFS. Let
F be the set of failed internal workers and each worker
in F has at least one upstream worker. When a worker w
fails, we need to recover its internal state by resuming it to
the latest checkpoint. However, as described in Section II,
the failure of worker w will also affect the order of input
events of Dw. If it is not handled correctly, workers in Dw

will generate inconsistent state. This implies we must also
rollback the workers in Dw. Define the rollback set of F as
RF = F ∪DF , and the replay set of F is PF = URF

−RF .
During failure recovery, for each worker w in RF , the
coordinator restarts worker w and rolls it back to state swc .
Then the workers in PF replay the data events in their output
buffers. As an example shown in Figure 4, suppose the failed
workers are F = {d, e}. The downstream workers of failed
workers are DF = {g, h}. During recovery, we rollback
workers in RF = F ∪ DF = {d, e, g, h}, and replay data
events in the output buffers of PF = {b, c, f}. We do not
consider the failure of a source worker (like a in Figure 4),
because the external data source cannot replay lost data
events. Thus when a fails, data losses may happen.

F

a

b

c

d

e

f

g

h

DF

PF

Figure 4: An example of our failure recovery process.

C. Proof of Consistency

As described in Section II, because of the unpredicted
interleaving of input data events, running the same worker
for multiple times cannot produce a unique output result
even given the same input streams. Nevertheless, we only
need to ensure that the output of a recovered worker is one of
the possible results without failures. We define consistency
as following.
Definition IV.2. A worker is consistent after recovery if
and only if the output data events and internal state of the
worker are one of the possible results when running the
worker without failures.

Next, we prove that all workers are consistent after failure
recovery in a SAND cluster. Let W denote the set of all
workers in a cluster and assume W is a directed acyclic
graph (DAG). Let GF be W−RF , which is a set of workers
which do not need to be rolled back. In other words, we
partition W into two disjoint sets GF and RF . For example,
in Figure 4, we have F = {d, e}, GF = {a, b, c, f}, and

RF = {d, e, g, h}. Now we prove workers in the two sets
are consistent after recovery.
Theorem IV.3. Workers in GF are consistent after recovery.
Proof: Since the workers in GF do not fail and they do not
need to roll back during recovery, hence they are not affected
during the recovery process, and they are consistent after the
completion of the recovery.

Theorem IV.4. Workers inRF are consistent after recovery.
Proof: Suppose the checkpoint c is the latest available global
consistent checkpoint. For each worker w in RF , worker w
is rolled back to swc during recovery. By Theorem IV.3, we
only need to prove the following claim: for V ⊂ RF , if
workers in W − V are consistent, workers in V are also
consistent after recovery.

Supposing |V | = n, we shall prove the above claim
using induction on n. When n = 1, let V = {w}. The
upstream workers of w must belong to W−V . Since workers
in W − V are consistent, they either replay or reproduce
all input events of worker w after the checkpoint c and
before failure. So worker w can re-process input data events
after checkpoint c. By Property IV.1, swc only depends on
the input events before the checkpoint c. So the replayed
or reproduced data events do not compromise the state of
worker w during recovery. Hence worker w is consistent
after recovery.

Suppose the statement hold for n = k. Consider the case
n = k + 1. Since W is a DAG, the subgraph V is also a
DAG. So we can find a worker w ∈ V with no incoming
edges, which means all upstream workers of w are in W−V .
Hence worker w is consistent after recovery. By inductive
hypothesis, workers in V −{w} are consistent after recovery.
So workers in V are also consistent after recovery and the
result follows by induction.

By Theorem IV.3 and Theorem IV.4, all workers in the
SAND cluster are consistent after recovery.

V. EVALUATION AND APPLICATIONS

In this section, we present the performance evaluation
of SAND. In particular, we show its sustainability under
high input traffic, its scalability and fault-tolerant capability.
We also implement and compare four different heavy hitter
detection algorithms to show the extensibility of SAND.
Experiment 1 (Sustainability under High Input Traffic):
First, we compare SAND with two open source stream
processing systems, Storm [3] and Blockmon [15], and see
how these stream processing systems stack up when they
are subjected under high traffic rate. We implement an
application called packet counter and install it on Storm,
Blockmon and SAND. The packet counter application reads
network packets, decodes the TCP/IP header of each packet
and counts total number and size of packets. We use this
packet counter application to demonstrate the overheads of
different stream processing systems. In SAND, we use two



workers to implement the packet decoder: one source worker
for reading network packets and one worker for counting
packets. We implement similar functionality in Storm (using
one spout and one bolt) and Blockmon (using two blocks).

We install SAND, Storm and Blockmon in our testbed.
Our testbed is a quad-core 3.10 GHz machine with 4GB
RAM. We collect a packet header trace from CAIDA [4].
The trace lasts for 21 minutes in the PCAP format, and
contains 331 million packets accounting for a total of 143GB
of traffic. To analyze the performance of the systems at the
peak traffic rate, we load the trace file into memory, and have
the systems process the packet headers as fast as possible.
Since the memory is limited, we only load the first 2GB of
the trace file lasting for 90 seconds. Loading the trace file
into memory enables us to eliminate the overhead due to
disk read, and hence the performance bottleneck should lie
within the stream processing systems. The measurement is
repeated for 10 times and we average the results.

The throughput results of three systems are presented in
Table I. SAND achieves the highest throughput of 31Gb/s,
which shows that it can process packets at the core routers
level. Furthermore, the achieved throughput of SAND is
3.7 times and 37.4 times as compared to Blockmon and
Storm respectively. The main reason why Storm has poor
performance is because it was implemented in Java, and
it is mainly used to perform analytics for higher layer
applications (e.g., web analytics) but not for network traffic.
Blockmon is implemented in C++, but we noticed that its
implementation of internal communication channels is not
efficient which causes the performance degradation.

Table I: Performance of Storm, Blockmon and SAND.

Streaming System Packets/s Payload Rate Header Rate

Storm 260K 840Mb/s 81.15Mb/s
Blockmon 2.7M 8.4Gb/s 844.9Mb/s

SAND 9.6M 31.4Gb/s 3031.7Mb/s

Experiment 2 (Scalability): We use AppTracker de-
scribed in Section II to demonstrate the scalability of SAND.
Our testbed is a cluster of three Linux 3.2 servers: S1, S2
and S3. The three servers are connected by 1Gbps LAN.
Each server has 16 physical 2.10 GHz CPU cores and 94GB
RAM. We run our evaluation on a 2-hour network trace
(32GB), which is collected from a commercial GPRS core
network in China in 2013. The raw IP packets with full
payload are captured (without sampling) from the GPRS
core network and stored in the PCAP format. We also deploy
the Zookeeper and HDFS service on the three servers. As
an example, in Table II, we show the top 5 applications in
our trace obtained from the output of AppTracker.

We then evaluate the throughput of the overall system.
First, we run four workers on a single server. In our imple-
mentation, the overall performance is bounded by GPRS-
Decoder, so we vary the number of analyzers of GPRS-
Decoder. As shown in Figure 5a, the throughput scales up

Table II: Result of AppTracker.

Application Distribution

HTTP 15.60%
Sina Weibo 4.13%

QQ 2.56%
DNS 2.34%

HTTP in QQ 2.17%

linearly as we add analyzers. Second, we run AppTracker
on three servers. We run Spout, DPI-Engine and Tracker on
S1, and two GPRS-Decoders on S2 and S3. Again, we vary
the number of analyzers of GPRS-Decoders. As shown in
Figure 5a, the throughput also scales up linearly as we add
analyzers. The result shows that (1) SAND can scale up by
parallelizing the computation of a worker on multiple CPU
cores in a single server; (2) it can also scale out by running
parallel workers on multiple servers.
Experiment 3 (Fault-Tolerance): In this experiment, we
deploy AppTracker on three servers as in Experiment 2.
We evaluate the throughput of SAND using different check-
pointing intervals. As shown in Figure 5b, the overheads of
our checkpointing protocol is negligible.

Next, we evaluate the recovery time of SAND after dif-
ferent failure scenarios. We also set the number of analyzers
in each of the two GPRS-Decoders as nine. The result
is presented in Figure 6. First, we set the checkpointing
interval as T = 5 seconds. Then we terminate both the
GPRS-Decoder and DPI-Engine processes at time t2, t3
and t5 respectively. In this scenario, SAND can recover
from failures in about few seconds. Secondly, we set the
checkpointing interval as T = 10 seconds. We terminate
the Tracker at t1. In this scenario, SAND can recover in
3 seconds. However, when we kill the GPRS-Decoder at t4,
it takes around 11 seconds to recover. The recovery time is
composed of three parts (1) the time for the coordinator
to detect failures; (2) the time to restart and roll back
failed workers; (3) the time for those workers to process
replayed data events. Usually, a larger checkpointing interval
increases the time to process replayed events in upstream
workers’ output buffer, so we can see in Figure 6 that the
recovery time at t4 is longer than t2, t3 and t5.
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Figure 6: Recovery Time.
Experiment 4 (Real-Time Heavy Hitter Detection): Real-
time characterization of traffic anomalies, e.g., heavy hitters
and heavy changers [10], is critical for network operations.
Characterizing traffic anomalies in real-time is challenging.
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Figure 5: Experimental Results for 2, 3 and 4.

A scalable anomaly detection algorithm needs to be per-
formed on parallel streaming systems. Previous techniques
are mainly studied and evaluated in a single-processor set-
ting. We implement four state-of-the-art heavy hitter and
heavy changer detection algorithms on the top of SAND:
Combinational Group Testing(CGT) [9], SeqHash [6], Fast
Sketch [19], and LD-Sketch [14]. For each algorithm in a
single worker, the dispatcher reads raw packets and forwards
them to selected analyzers. The analyzer updates its inter-
nal data structure (sketch) when it receives a packet. The
collector summarizes and outputs anomalies.

Our testbed is a multi-core server with 12 physical
2.93GHz CPU cores and 50GB RAM. We run our evaluation
on real IP packet header traces which we collected on
December 2010 from a commercial 3G UMTS network in
mainland China. The traces contain 1.1 billion packets that
account for a total of around 600GB of traffic. Figure 5c
shows the throughput of the four heavy hitter detection algo-
rithms using multiple analyzers. We see that the throughput
increases almost linearly as the number of analyzers grows.
This shows we can scale up the throughput of different traffic
anomaly detection algorithms in SAND via parallelization.

VI. RELATED WORK AND CONCLUSION

There have been extensive studies on distributed streaming
architectures for real-time processing, and we highlight some
examples here. MapReduce Online [8] supports continuous
processing within and across different MapReduce jobs.
S4 [21], Storm [3], and Flume [1] are based on the COM
framework. They treat streams as a sequence of events
and they are handled by different processing elements.
These systems ensure reliable message delivery but they
cannot provide strong consistency after recovery. Block-
mon [15] schedules CPUs and communication channels to
achieve high-performance message passing. D-Stream [24]
and Strom Trident [20] provide reliable fault tolerance by
decomposing computing jobs in small timescales. However,
since they do not use the COM framework, they are not
extensible as our system and suffer from higher latency.

We present SAND, a new system for distributed stream
processing for network analytics. SAND can sustain high-
speed network traffic and provides reliable fault tolerance
and to ensure strong consistency of processing results. We
demonstrated that SAND can operate at core routers level
and can recover from failure in order of seconds.
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