
DaMPS: A Deadline-aware Multipath Packet
Scheduler for Mobile Applications

Zhuoyue Chen*, Kechao Cai*, Jinbei Zhang*, John C.S. Lui†
*School of Electronics and Communication Engineering, Sun Yat-sen University, China

†Department of Computer Science & Engineering, The Chinese University of Hong Kong, Hong Kong
chenzhy225@mail2.sysu.edu.cn, {caikch3,zhjinbei}@mail.sysu.edu.cn, cslui@cse.cuhk.edu.hk

Abstract—Many popular mobile applications, such as online
gaming and live video streaming, impose strict deadlines on pack-
ets arrivals. Modern mobile devices are equipped with both Wi-
Fi and cellular interfaces, facilitating multipath transmissions.
However, many packet schedulers overlook the deadline require-
ments associated with multipath transmissions, which is crucial
for enhancing the overall user experience of mobile applications.
In this paper, we propose a Deadline-aware Multipath Packet
Scheduler, DaMPS, designed specifically to prioritize packet
delivery before their deadlines in mobile networks. DaMPS
dynamically adjusts the sending order and path allocation for
packets while adhering to deadline requirements, thus enhancing
its performance in dynamic network environments. We imple-
ment DaMPS in MPQUIC and evaluate its effectiveness across
various network conditions using Mininet. Our extensive exper-
iment results demonstrate that DaMPS improves the deadline
adherence performance by 27%→149% with comparable high
throughput and low latency compared with other schedulers.

Index Terms—Deadline-aware, multipath, packet scheduler

I. INTRODUCTION

Many mobile applications, such as video conferencing,
online gaming, and virtual reality (VR), demand timely data
delivery, where packets arriving after the deadlines become
utterly worthless. Such deadline requirements significantly
impact the user experience. For example, a video conference
requires that the packet delay remains within 100ms to ensure
seamless host-guest interaction [1]. Similarly, maintaining
latency below 25ms is imperative to prevent user discomfort in
VR applications [2]. Meanwhile, mobile devices equipped with
both Wi-Fi and cellular interfaces can transmit packets across
multiple paths using multipath transmission protocols. These
protocols are designed to aggregate bandwidth on multiple
paths and provide reliable and low-latency data transmission.
Numerous studies have investigated these protocols across
various layers, including multi-link PPP [3] at the link layer,
MPTCP [4] at the transport layer, and MPQUIC [5] at the
application layer.

Multipath packet schedulers in the multipath transmission
protocols play a critical role as they determine the proper
path for each data packet, thereby impacting protocol per-
formance. For instance, in the widely adopted protocols,
MPTCP and MPQUIC, the default packet scheduler, known
as minRTT [6], selects the path with the minimum Round-
Trip Time (RTT) to reduce data transmission latency. Another
scheduler, ReMP [7], aims to enhance reliability by transmit-
ting redundant packets over all paths. Additionally, various

schedulers pursue diverse objectives, including achieving high
throughput [8], adapting to network fluctuations [9], [10], and
facilitating seamless handoff [11], by using deep reinforcement
learning and online learning techniques.

However, previous multipath packet schedulers neglect the
deadline requirements in mobile applications and lack con-
sideration of the heterogeneity in Wi-Fi and cellular paths
in mobile networks. This oversight can lead to performance
degradation, particularly due to the Head-of-Line (HoL) prob-
lem [12], where early-arriving packets on the Wi-Fi path are
held up because of the delayed arrival of packets with smaller
sequence numbers on the cellular path. While schedulers such
as ECF [13], BLEST [14] and ETC [15] have attempted to
mitigate the impact of HoL blocking by estimating packet
arrival times on different paths, they still fall short in ensuring
timely packet delivery before the packet deadlines. Besides,
the characteristics of paths, such as bandwidth and latency,
vary over time due to the stochastic nature of wireless net-
works. This results in varying bandwidth and RTT of Wi-
Fi and LTE paths [9], [16]. The performance of schedulers
can degrade because of this dynamic nature of paths. It is
important to note that improperly designed packet schedulers
can significantly impair transmission performance [17], [18].
Therefore, there is a critical need to design a tailored scheduler
that considers both the deadline requirements and the varying
conditions of different paths for mobile applications.

In this paper, we propose a novel deadline-aware multi-
path packet scheduler, DaMPS, to achieve high throughput
while adhering to the deadline requirements in multipath
data transmissions. DaMPS aims to make optimal scheduling
decisions to ensure the delivery of more packets before their
deadlines. To achieve this, DaMPS can drop packets unlikely
to meet their deadlines, thereby reallocating bandwidth more
efficiently to other packets. Moreover, DaMPS can strategi-
cally defer the transmission of packets with less stringent
deadlines and prioritize those with tighter deadlines to increase
the proportion of timely delivered packets. We formulate
the multipath packet scheduling problem with deadline re-
quirements as an optimization problem and introduce three
modules within DaMPS shown in Fig. 1 to efficiently tackle
this challenge. First, we incorporate a Fluctuation Monitor
module into DaMPS to adapt to network variations. Then, we
invoke a Packet Scheduling Solver module to find an optimal
packet scheduling matrix. Finally, we refine the scheduling

159

2024 IEEE 21st International Conference on Mobile Ad-Hoc and Smart Systems (MASS)

2155-6814/24/$31.00 ©2024 IEEE
DOI 10.1109/MASS62177.2024.00031

20
24

 IE
EE

 2
1s

t I
nt

er
na

tio
na

l C
on

fe
re

nc
e

on
 M

ob
ile

 A
d-

Ho
c

an
d

Sm
ar

t S
ys

te
m

s (
M

AS
S)

 |
 9

79
-8

-3
50

3-
63

99
-9

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
AS

S6
21

77
.2

02
4.

00
03

1

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2025 at 12:40:16 UTC from IEEE Xplore. Restrictions apply.

Drop!Preserve！

Mobile Network

Latency: 70ms

Latency: 15ms

Path 1: Cellular
Network

Path 2: WLAN

ACKs

Strictness Factor

Sending Buffer

…

Packet Scheduling
Solver

Selective
Preservation

Fluctuation Monitor
Deadline5ms 100ms

Fig. 1: An overview of DaMPS.

decisions for certain packets with a Selective Preservation
module. Specifically, in the Fluctuation Monitor module, we
model the fluctuation monitoring problem on each path as a
Multi-Armed Bandit (MAB) problem, where arms represent
the parameters tuning the one-way delay estimates for each
path, and the reward function takes account of the packets
that adhere to the deadline requirements and the packets that
are decided not to transmit. To fine-tune the one-way delay
estimates for each path, we utilize the UCB algorithm [19],
facilitating parameter selection for optimal performance.

Our main contributions in this paper can be summarized as
follows:

• We propose a deadline-aware multipath packet scheduler,
DaMPS, which aims at delivering more packets before their
deadlines.

• We introduce three modules into DaMPS for finding
proper multipath packet scheduling decisions. Especially, our
MAB-based Fluctuation Monitor module can facilitate effec-
tive adaptation to network variations.

• We implement DaMPS in MPQUIC and conduct ex-
tensive experiments to evaluate its performance alongside
existing schedulers across dynamic and heterogeneous network
environments. Our experiment results show that DaMPS out-
performs existing schedulers in terms of deadline adherence
and achieves 27%→149% improvements compared with other
schedulers in different levels of network variations.

The rest of this paper is organized as follows. In Sec. II,
we present the formulation of our multipath packet scheduling
problem with deadline requirements and elaborate on the
details of DaMPS. We describe the implementation details of
DaMPS in Sec. III. In Sec. IV, we evaluate the performance
of DaMPS and other schedulers. Sec. V reviews related works
in the field. Finally, Sec. VI concludes this paper.

II. PROBLEM FORMULATION AND SCHEDULER DESIGN

In this section, we present the details of DaMPS. We
first formulate the multipath packet scheduling problem with
deadline requirements as an optimization problem. Then we
describe the three modules within DaMPS for tackling this
multipath packet scheduling problem. Finally, we detail our
novel Fluctuation Monitor module for adapting to network
variations.

A. Deadline-aware Multipath Packet Scheduling Problem
In our multipath scheduler, once the packets accumulated

in the sending buffer are packed as batches of certain size, the

scheduler can determine the paths to send these batches. We
denote the time for scheduling such a batch of packets as a
decision interval.

High throughput objective. Let M represent the batch
size and N denote the number of the available paths. At
each decision interval, the scheduler computes a scheduling
matrix for the M packets in the batch, denoted by S = [sij]
with sij ↑ {0, 1}, indicating whether packet i in the batch
is scheduled to path j (sij = 1) or not (sij = 0) for
1 ↓ i ↓ M and 1 ↓ j ↓ N . Denote di as the deadline
for packet i and ωj as the one-way delay estimate of path
j. For each batch of packets, the objective of our deadline-
aware multipath packet scheduler is to maximize the number
of packets that can be delivered timely before their deadlines,
i.e., maxS

∑M
i=1

∑N
j=1 sij · (ωj < di) as shown in (1a), where

(E) = 1 if event E holds and (E) = 0 otherwise. It means
that only the packet whose delay is within its deadline needs
to be scheduled.

Packet scheduling constraints. At each decision interval,
to avoid network congestion, the number of scheduled pack-
ets to a path should not exceed the remaining size of the
congestion window at that path. Let cj denote the remaining
size of the congestion window at path j. Thus, we have the
constraint in (1b). Moreover, the total number of scheduled
packets should not exceed the batch size M as shown in the
constraint (1c) and each packet in the batch can be scheduled
to at most one path as constrained in (1d).

In summary, our deadline-aware multipath packet schedul-
ing problem can be formulated as an optimization problem as
follows:

max
S

M∑

i=1

N∑

j=1

sij · (ωj < di) (1a)

subject to
∑M

i=1
sij ↓ cj for j = 1, . . . , N, (1b)

∑M

i=1

∑N

j=1
sij ↓ M, (1c)

∑N

j=1
sij ↓ 1 for i = 1, . . . ,M. (1d)

Note that the optimization problem in (1) is an integer pro-
gramming problem due to the integer constraint, sij ↑ {0, 1}.
By relaxing this constraint to sij ↑ [0, 1], one can reframe
the problem in (1) as a linear programming (LP) problem
and efficiently compute its optimal solution. In particular,
this optimal solution is exactly the optimal packet scheduling

160

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2025 at 12:40:16 UTC from IEEE Xplore. Restrictions apply.

matrix for the problem in (1) as it resides within the feasible
set of the problem in (1) [20]. Next, we propose three modules
within DaMPS to find proper multipath packet scheduling
decisions.

B. Modules within DaMPS
Fig. 1 shows an overview of DaMPS. Upon receiving

ACKs from the mobile client, the Fluctuation Monitor module
estimates the one-way delay of the N paths. When the packets
accumulated in the sending buffer can be packed as a batch,
the Packet Scheduling Solver module computes an optimal
packet scheduling matrix by solving a linear programming
problem relaxed from (1). Then, the Selective Preservation
module determines whether the packets with no feasible paths
should be preserved or dropped.

Algorithm 1 shows how the three modules operate together
in DaMPS at decision interval t, t ↔ 1. At decision interval t,
in Line 1, DaMPS estimates the one-way delays, ω , of all the
N paths with Fluctuation Monitor (detailed later in Sec. II-C).
In Line 2, using the delay estimates ω , the remaining sizes of
congestion windows c, and the packet deadlines d, DaMPS
invokes the Packet Scheduling Solver to compute an optimal
scheduling matrix S for the M packets in the batch across N
paths with a linear relaxation (described in Sec. II-A) from
the problem in (1).

However, the optimal packet scheduling matrix S may
render infeasible paths for certain packets. This could occur
for two reasons. First, some packets may have already passed
their deadlines regardless of the scheduled path in S, making
further transmission wasteful of bandwidth. In this case, it
is more efficient to drop these packets. Second, the current
congestion window may be insufficient to handle the packets
in the batch. In this case, these packets should be preserved in
the sending buffer until additional congestion window space
becomes available.

To better decide to drop or preserve the packets with no
feasible paths in S, we devise the Selective Preservation
module in DaMPS as shown in Line 3-17 in Algorithm 1.
Specifically, DaMPS maintains two Boolean variables for each
packet in Line 4. If packet i can be scheduled to path j
(sij = 1), it is transmitted via path j as shown in Line 6-9.
Otherwise, packet i cannot be scheduled to path j (sij = 0)
and if its deadline is far behind path j’s one-way delay estimate
(e.g., di ↔ 3ωj), packet i is preserved in the sending buffer
and rescheduled in the next decision interval since it has high
probability of being transmitted on time in the next decision
interval as shown in Line 10-15. At last, if packet i is marked
as not transmittable (isTransmitted is false), DaMPS drops it
to avoid bandwidth wastage as demonstrated in Line 16-17.

In the next subsection, we introduce the essentials in the
Fluctuation Monitor module to facilitate DaMPS adapting to
different levels of network variations.

C. Fluctuation Monitor Module
Note that the efficacy of the Packet Scheduling Solver

relies on the accuracy of the delay estimates, ω , for the

Algorithm 1 DaMPS at decision interval t

Input: packet deadlines d = (d1, . . . , dM), remaining
congestion window sizes c = (c1, . . . , cN)
Output: packet scheduling matrix S
↭ Fluctuation Monitor: Estimate the one-way delays, ω ,
of N paths. Details are in Sec. II-C.

1: ω ↗ FluctuationMonitor()
↭ Packet Scheduling Solver: Find an optimal packet
scheduling matrix by solving an LP relaxed from the
problem in (1) with sij ↑ [0, 1] given d, c and ω .

2: S ↗ PacketSchedulingSolver(d, c, ω)
↭ Selective Preservation: Preserve or drop the packets
with no feasible paths.

3: for i = 1, . . . ,M do
4: isTransmitted ↗ false, isPreserved ↗ false
5: for j = 1, . . . , N do
6: if sij = 1 then
7: Transmit packet i via path j
8: isTransmitted ↗ true, isPreserved ↗ false
9: break

10: else if di ↔ 3ωj then
11: isPreserved ↗ true
12: end if
13: end for
14: if isPreserved then
15: Preserve packet i in the sending buffer and

reschedule it in the next decision interval
16: else if !isTransmitted then
17: Drop packet i
18: end if
19: end for

N paths. Underestimating delays may result in transmitting
packets that are unlikely to meet their deadlines. Conversely,
overestimation may lead to unnecessary discarding of packets
that could have been delivered on time.

To provide accurate delay estimates in a time-varying net-
work environment, we design the Fluctuation Monitor module.
For path j (1 ↓ j ↓ N), the module first measures path j’s
one-way delay OWDj by using an exponentially weighted
moving average (EWMA) of the delay information in the
ACKs. Let K = {ε1, . . . ,εK} denote a set of candidate
strictness factors and εk > 0 for 1 ↓ k ↓ K. Then the
module selects a strictness factor εj

k ↑ K and gives the one-
way delay estimate by scaling the measured one-way delay as
follows:

ωj = εj
k ↘OWDj . (2)

Note that the strictness factor controls the conservativeness
of the scheduling decision. A larger strictness factor (e.g.,
εj
k > 1) can enforce the Packet Scheduling Solver module

using delay estimates larger than the measured delays and
thereby ensuring stricter adherence to deadlines. Each path
can exhibit a unique degree of fluctuation, requiring a tailored
strictness factor. For a path with varying one-way delays, the

161

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2025 at 12:40:16 UTC from IEEE Xplore. Restrictions apply.

Fluctuation Monitor

Path 1
Strictness factors

ACKs

Fixed Length

……

…
…

An MAB problem
for Path 1

OWD Estimate

……

……

ACKs

…

ACKs

…

ACKs

…

ACKs

…

ACKs

…

ACKs

…

Measure
One-Way Delay ………………

………………

Path 2Path 2

………………

NPath Path NPath

Measure
One-Way Delay

Measure
One-Way Delay

1OWD

2OWD

NOWD

OWD Estimate

OWD Estimate

Fig. 2: MAB problems in the Fluctuation Monitor module.

Fluctuation Monitor module should select a larger strictness
factor to better prevent packets on the path from missing their
deadlines. On the contrary, for a path with stable delays, the
Fluctuation Monitor module should favor a smaller strictness
factor for more likely on time packet deliveries. In a word,
the Fluctuation Monitor module must dynamically assess the
stability of each path and select an appropriate strictness factor
for each path.

We cast the selection of strictness factors in the Fluctuation
Monitor module at each path as a multi-armed bandit problem,
as illustrated in Fig. 2. This results in N independent MAB
problems, one for each of the N paths. In the following, we
present the design of arms and the reward functions of the
arms for these MAB problems.

Arms: In an MAB problem, arms represent the actions that
an learning agent can take at each round. In the Fluctuation
Monitor module, the arms correspond to the strictness factors.
For each path, the module must select a strictness factor at each
decision interval from the candidate strictness factor set K.
Then it can provide a new one-way delay estimate by scaling
the actual one-way delay according to Eq. (2).

Reward function: The reward function of an arm measures
the value of the action taken by the learning agent. In the
Fluctuation Monitor module, we expect that the reward of
a chosen strictness factor can accurately characterize the
performance of the scheduler resulting from that choice.

One potential reward metric is the instantaneous deadline
meeting ratio, which is defined as the proportion of pack-
ets successfully delivered before their deadlines to the total
packets acknowledged between two consecutive ACKs. The
rationale is that: by selecting a good strictness factor, the
scaled delay estimates can be accurate and the instantaneous
deadline meeting ratio can reach 100%, which means all pack-
ets sent from the server adhere to their deadlines; conversely, if
the chosen strictness factor is bad, the instantaneous deadline
meeting ratio can drop below 100% and there must be deadline
misses. Thus, the instantaneous deadline meeting ratio can
effectively characterize the relation between the goodness of
a strictness factor and DaMPS’s performance. To avoid the
noises in the instantaneous deadline meeting ratio, we calculate
the deadline meeting ratio over a fixed length of ACKs, rather
than relying on the instantaneous ones. Specifically, we define
the deadline meeting ratio for the strictness factor εj

k on path

j as:

rDM
j (t) =

∑A(ωj
k)

a=t→L+1 nPktsDM a

∑A(ωj
k)

a=t→L+1 nPktsa

, (3)

where A(εj
k) is the number of ACKs corresponding to the

strictness factor εj
k via the reward interaction mechanism (See

details in Sec. III) and L is the fixed length. Additionally,
nPktsDM a and nPktsa represent the number of packets that
adhere to their deadlines and the total packets received in the
a-th ACK, respectively.

While a large strictness factor may secure a higher deadline
adherence, it could cause DaMPS prematurely dropping or
preserving packets that can meet their deadlines. To address
this issue, we introduce the unsent packet ratio measuring the
proportion of unsent (dropped or preserved) packets in the
batch at each decision interval. In particular, the unsent packet
ratio for path j at decision interval t is defined as:

rUP
j (t) =

M ≃
∑M

i=1

∑N
j=1 sij

M
, (4)

where M is batch size and sij is the scheduling decision for
packet i on path j.

Finally, we can define the reward function of a strictness
factor εj

k on path j at decision interval t as:

fωj
k
(t) = max{rDM

j (t)≃ rUP
j (t), 0}. (5)

The reward function in Eq. (5) can characterize the effective-
ness of a strictness factor in impacting the overall performance
of DaMPS. A large reward indicates that the Fluctuation
Monitor module with the selected strictness factor can give
accurate delay estimates and help DaMPS strike a balance
between a high deadline meeting ratio and a low unsent packet
ratio.

Furthermore, in a dynamic network environment, the recent
rewards should carry greater weight compared to the past
rewards. This adjustment ensures that the scheduling decisions
accurately reflect the current network conditions in a timely
manner. Therefore, we introduce a discount factor ϑ ↑ (0, 1]
and define the cumulative discounted reward of strictness
factor εj

k on path j at the decision interval t as:

Fωj
k
(t) =

∑t

t→=1
ϑt→t→fωj

k
(t↑) = ϑFωj

k
(t≃ 1) + fωj

k
(t), (6)

and Fωj
k
(0) = 0 for εj

k ↑ K.
A bandit algorithm for the Fluctuation Monitor module on

path j: Given the arms and the reward function we described
above, the MAB problem for the Fluctuation Monitor module
on path j is to select the proper strictness factors and maximize
the cumulative discounted reward over T decision intervals.
To achieve this goal, we adopt the UCB (Upper Confidence
Bound) [19] algorithm to select strictness factors. At each
decision interval t, the UCB algorithm selects action εj

k(t)
to maximize the sum of two terms as follows,

εj
k(t) = argmax

ωj
k↓K

Fωj
k
(t≃ 1)

nωj
k
(t≃ 1)

+

√√√√2 ln
∑K

k=1 nωj
k
(t)

nωj
k
(t)

, (7)

162

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2025 at 12:40:16 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Fluctuation Monitor on path j at t

Input: strictness factors K = {ε1, . . . ,εK}, discount
factor ϑ ↑ (0, 1]
Output: one-way delay estimate ωj of path j

1: Get the one-way delay measurement OWDj of path j
2: Initialize: nωj

k
(0) = 0 and Fωj

k
(0) = 0 for εj

k ↑ K
3: if t ↓ K then
4: εj

k(t) = εk /* Explore each strictness factor */
5: else
6: Select the strictness factor εj

k(t) as per Eq. (7)
7: end if
8: Update the delay estimate ωj as per Eq. (2) with εj

k(t)
9: Obtain the feedback: deadline meeting ratio rDM

j (t) as
per Eq. (3) and unsent packet ratio rUP

j (t) as per Eq. (4),
and calculate the reward fωj

k
(t) as per Eq. (5)

10: Update the discounted cumulative reward Fωj
k
(t) as per

Eq. (6)
11: nωj

k(t)
(t) = nωj

k(t)
(t≃ 1) + 1

where nωj
k
(t) stands for the number of times the strictness

factor εj
k has been selected up to the decision interval t. The

first term in Eq. (7) accounts for the average discounted reward
of the strictness factor εj

k. The second term in Eq. (7) involves
a confidence interval according to Chernoff-Hoeffding bounds,
aiding the exploration of strictness factors.

Finally, we describe how the Fluctuation Monitor module
estimates the one-way delay by selecting the strictness factor
for each path. Algorithm 2 shows the detail of the Fluctuation
Monitor on path j at decision interval t. In Line 3-4, the
module selects each strictness factor once to explore the
impact of the different strictness factor on the reward of path
j. After the exploration, in Line 5-7, the module selects the
strictness factor εj

k(t) with the highest UCB index according
to Eq. (7). Then it updates the delay estimate ωj according to
Eq. (2) with εj

k(t) in Line 8. Upon receiving the feedback,
namely, the deadline meeting ratio rDM

j (t) and the unsent
packet ratio rUP

j (t) from path j, it calculates the reward fωj
k
(t)

from path j according to Eq. (5) as shown in Line 9. Finally,
the Fluctuation Monitor updates the cumulative discounted
reward Fωj

k
(t) and the number of times the strictness factor

εj
k(t) has been selected in Line 10-11. With the Fluctuation

Monitor deployed on all the paths, DaMPS can dynamically
optimize packet scheduling decisions and quickly adapt to
dynamic network environment.

III. IMPLEMENTATION

We incorporate DaMPS into MPQUIC [5], leveraging the
quic-go framework.1 Note that the path manager in MPQUIC
can track the path information, including the congestion
window (CWND) and RTT. The variations of CWND are

1Our implementation of DaMPS is open-source and available at https://
github.com/MLCL-SYSU/Deadline-Packet-Scheduler.

related to the integrated congestion control algorithm (CCA)
in MPQUIC. In our implementation, we adopt the OLIA [21]
CCA and we retrieve the CWND of each path through the
pth.sentPacketHandler.GetCongestionWindow()

function. To get the number of bytes in flight, we utilize the
pth.sentPacketHandler.GetBytesInFlight()

function for calculating the remaining CWND of each
path, which is equal to the CWND minus the bytes in
flight. Similarly, we obtain the RTT of each path using
the pth.rttStats.SmoothedRTT() function, which
employs an exponentially weighted moving average (EWMA)
filter for RTT measurement. We approximate the one-way
delay measurement by halving the RTT value.

Reward interaction mechanism. In the Fluctuation Mon-
itor module of DaMPS, network variations are evaluated by
the server using the feedback from the client. Thus, the client
is required to monitor the number of packets adhering to the
deadline and include the deadline metadata in the ACKs trans-
mitted to the server. To achieve this, we implement a reward
interaction mechanism. To accurately determine the reward
associated with each strictness factor on any given path, we
associate the packet number with the packet’s corresponding
strictness factor. Upon receiving an ACK, we match the ACK
with the relevant strictness factor based on ACK’s packet
number, and use the deadline information within the ACK
to compute the reward. These adjustments are relatively minor
and non-intrusive, with no adverse effects on data transmission
in MPQUIC.

Cold-start mechanism. In addition, to get the critical path
information in the beginning of the multipath packet trans-
mission, such as CWND and RTT of newly added paths, we
implement a cold-start mechanism. This mechanism involves
sending redundant packets across both the newly established
path and the existing paths. It can effectively mitigate the
impact of initial uncertainty in the path information.

Fail-safe mechanism. In networks with extreme conditions,
characterized by rapid and substantial bandwidth fluctuations,
measuring delay and bandwidth accurately is challenging.
Such bandwidth variations can misguide DaMPS into making
impractical decisions, potentially leading to a data trans-
mission blockage by selecting no path for all packets. To
address this issue, we implement a fail-safe mechanism, where
DaMPS can fall back to the Earliest Deadline First (EDF)
scheduler temporarily if it makes impractical decisions for
five consecutive decision intervals to prevent data transmission
blockages.

IV. EVALUATION

In this section, we evaluate the performance of DaMPS
and other schedulers in an emulated environment. The testbed
setup is presented in Section IV-A. The deadline adherence
performance of DaMPS is evaluated in Section IV-B. We
further examine the performance of the Fluctuation Monitor
module in Section IV-C and the impact of schedulers on
throughput and RTT in Section IV-D. Finally, we explore the

163

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2025 at 12:40:16 UTC from IEEE Xplore. Restrictions apply.

MPQUIC
Client

MPQUIC
Server

Router

Path 1

Path 2

Fig. 3: Multi-path network topology setup.

DaMPS under the abruptly changing network conditions in
Section IV-E.

A. Testbed Setup
Our testbed is based on Mininet 2.2.2 [22], which is

installed and configured on Ubuntu 18.04. Our emulation
setup adopts a typical network topology [5], [9], as illustrated
in Fig. 3, where the router is equipped with two network
interfaces connecting to the server and one to the client. To
simulate different network conditions, we use the Linux Traffic
Control (tc [23]) tool together with NetEM [24]. These tools
allow us to configure bandwidth, one-way delay, RTT variation
rate, and random loss rate of each path.

In our experiments, we set the batch size as M = 6, which
indicates that the batch scheduler makes decisions for six
packets at each decision interval. We use a synthetic trace
as follows: the deadline of packets are set as the sum of
packed time and t rand, where packed time denotes the
time when data is packed into packets, and t rand is a random
delay uniformly sampled from [20, 50]ms.

We compare the performance of DaMPS against other
schedulers, including RR, minRTT [6], ECF [13], BLEST [14],
Peekaboo2 [9] and EDF. Specifically, RR sends packets in a
round-robin manner across all available paths. MinRTT [6]
prioritizes paths with the minimun RTT for packet transmis-
sion. ECF [13] focuses on minimizing the completion time
of each packet. BLEST [14] attempts to avoid blocking by
reducing the usage of slow paths. Peekaboo [9] leverages
LinUCB [25] to make decisions based on network feedback,
determining whether to wait for a better path or to transmit
packets immediately. EDF prioritizes the packet with the
tightest deadline and schedules it to the path with the smallest
RTT. We do not include DAMS [26] in our comparison as it is
designed for scheduling stream blocks rather than individual
packets.

B. Deadline Adherence Performance

Table I: Parameters of Path 1 and Path 2

Parameter Path 1 Path 2

Bandwidth (Mbps) 2 5
One-way Delay (ms) 30 10
RTT Variation (%) 0, 5, or 10 0, 10, 20, 30, or 40
Random Loss Rate (%) 1 1.5

We first study the deadline adherence performance
of DaMPS without the Fluctuation Monitor module in

2We evaluate Peekaboo using its open-source codebase available at [9].

bandwidth-limited scenarios, where the network resources are
inadequate to deliver all packets before their deadlines. We
configure the parameters for Path 1 and Path 2 as detailed in
Table I, where the RTT variation is adjustable to characterize
different levels of network dynamics. Note that only packets
arriving before their deadlines are considered valid. Therefore,
we use the overall deadline meeting ratio as the performance
metric, calculated by dividing the number of packets received
by the client before their deadlines by the total number of
packets that have been received.

To illustrate DaMPS’s performance under different levels of
network dynamics, we compare the overall deadline meeting
ratio of various schedulers under different RTT variation rates
combinations, as shown in Fig. 4. The Y-axis is the overall
deadline meeting ratio and the X-axis is the combination pairs
of RTT variation rates on two paths: (0%, 0%), (5%, 10%),
(5%, 20%), (10%, 30%), (10%, 40%), which respectively de-
note the RTT variation rates for Path 1 and Path 2. Fig. 4 shows
that DaMPS improves the overall deadline meeting ratio by
27%→149% compared with other schedulers, which benefits
from its deadline-aware scheduling decisions. In contrast, other
schedulers such as RR, minRTT, ECF, BLEST and Peekaboo
all have poor deadline adherence performance, because they all
lack deadline awareness and send packets in a First-In-First-
Out (FIFO) manner. Notably, Peekaboo, an online learning-
based packet scheduler, exhibits the worst deadline adherence
performance, potentially due to its excessive adoption of wait
actions, which in turn leads to a substantial number of packets
exceeding their deadlines. EDF achieves a slightly worse
performance than DaMPS since it is unable to drop packets
that are unlikely to meet their deadlines.

Moreover, we evaluate the deadline adherence performance
of DaMPS under different RTT combinations. Specifically, we
keep Path 1’s RTT fixed at 20ms and vary Path 2’s RTT from
20ms to 80ms with a step size 20ms. The bandwidth and ran-
dom loss rate configurations remain the same as those specified
in Table I, and RTT variation rates of both Path 1 and Path 2
are set at (0%, 0%). As shown in Fig. 5, DaMPS consistently
outperforms other schedulers in different scenarios. For paths
with the same RTT, all schedulers demonstrate a relatively
good performance, as any path can ensure timely delivery
for most packets. DaMPS and EDF outperform others in this
case due to their ability to adjust the sending order for packet
transmission. However, as the degree of path heterogeneity
increases, DaMPS’s overall deadline meeting ratio slightly
declines (but is still higher than other schedulers). This is
because fewer packets on Path 2 meet their deadlines, while
most can only be delivered on time via Path 1. With more
packets being transmitted on Path 1, an increased congestion
can cause more packets to miss their deadlines, resulting in a
decreased overall deadline meeting ratio.

In summary, as the path heterogeneity or the variations
of both paths increase, the performance of DaMPS tends to
degrade. Therefore, we incorporate the Fluctuation Monitor
module into DaMPS to better adapt to network fluctuations
and examine its impact in the following subsection.

164

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2025 at 12:40:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Deadline adherence performance under different RTT
variation rate combinations.

Fig. 5: Deadline adherence performance under different RTT
combinations.

(a) Deadline adherence performance (b) Packet delivery ratio

Fig. 6: Performance of DaMPS with and without (w/o) the Fluctuation Monitor (FM) module under different RTT variation
rate combinations.

C. Impact of Fluctuation Monitor Module in DaMPS

In the Fluctuation Monitor module, we use four strictness
factors, denoted as A = {0.9, 1.0, 1.1, 1.2}. For the discount
reward function, we set the discount factor as ϑ = 0.8, and
the fixed length of ACKs as L = 5. To demonstrate the
effectiveness of the Fluctuation Monitor module, we evaluate
the deadline adherence performance of DaMPS both with
and without the Fluctuation Monitor module under various
combinations of RTT variations rates. The path parameters and
the RTT variations rates are consistent with those described in
Section IV-B.

Fig. 6(a) illustrates that the incorporation of the Fluctuation
Monitor module significantly improves the performance of
DaMPS. With the Fluctuation Monitor (FM) module enabled,
DaMPS achieves a higher percentage of packets being deliv-
ered on time. It indicates that the Fluctuation Monitor module
effectively detects the network dynamics and gives accurate
delay estimates for each path to adapt to network variations.
Consequently, DaMPS can employ more aggressive policies
in stable network conditions and adopt more conservative
strategies when the network dynamics become more volatile.

To further investigate the impact of the Fluctuation Monitor
module on packet delivery, we evaluate another deadline
adherence performance metric, the packet delivery ratio, which
can be calculated as nPktsMD

TotalPkts , where nPktsMD is the number
of packets delivered before their deadlines, and TotalPkts

represents the sum of the received and dropped packets.

Fig. 6(b) shows that, regardless of the RTT variation rate
combination, the packet delivery ratio with the Fluctuation
Monitor module is higher that without the module. This
indicates that the Fluctuation Monitor module facilitates the
timely delivery of more packets, and has a negligible impact
on the packets that can be delivered before their deadlines.
On the contrary, it drops packets that are almost impossible
to meet their deadlines, reallocating bandwidth to more viable
packets.

In summary, the integration of the Fluctuation Monitor
module enables DaMPS to effectively detect the network dy-
namics and generate appropriate policies, leading to improved
deadline adherence performance in dynamic environments.

D. Impact of Packet Schedulers on Throughput and RTT

We study the impact of different packet schedulers on the
throughput and RTT of the network connection between the
server and the client. The setup for Path 1 and Path 2 is
detailed in Table I, with RTT variations set at 5% and 10%
respectively. We run the experiments 30 times and calculate
the average throughput and RTT. In particular, only the packets
that can meet their deadlines are counted in calculating the
throughput. The results are shown in Fig. 7. In Fig. 7(a),
DaMPS outperforms other existing schedulers by achieving the
highest throughput (6.14Mbps) with deadline requirements.
This is largely attributed to DaMPS’s deadline-aware design,
which ensures that the most of packets adheres to their

165

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2025 at 12:40:16 UTC from IEEE Xplore. Restrictions apply.

(a) Average throughput (b) Average RTT

Fig. 7: Average of throughput and RTT of different schedulers.

(a) Under changing bandwidth (b) Under changing RTT

Fig. 8: Deadline adherence performance under abrupt changing
network conditions.

deadlines. Besides, EDF also achieves a higher bandwidth
compared to other schedulers that lack deadline awareness.
However, Peekaboo achieves the worst performance, which
might because it selects too many wait actions.

Fig. 7(b) shows that the average RTT of all schedulers is
comparable, which indicates that DaMPS improves deadline
adherence performance without increasing network conges-
tion. Notably, Peekaboo achieves the RTT exceeding 80ms,
which is higher than the RTT of the individual paths, indicating
potential congestion caused by Peekaboo.

E. Impact of Abrupt Changing Network Conditions
In this subsection, we evaluate the performance of different

schedulers under abrupt changing network conditions, a sce-
nario commonly encountered in mobile networks. First, we
introduce abrupt variations in the bandwidth of two paths as
follows: Path 1 experiences a drop to 0.5Mbps, followed by
a restoration to 2Mbps, whereas Path 2 encounters a decrease
to 1Mbps before returning to 5Mbps. These changes occur
in a two-second cycle, with each state lasting one second.
Second, to examine the impact of abrupt changes of RTTs
on the schedulers, we conduct additional experiments with
varying RTT settings: Path 1’s RTT fluctuates between 100ms
and 60ms over a two-second cycle, with each state maintained
for one second, while Path 2’s RTT is fixed at 20ms.

Fig. 8 shows the deadline adherence performance of the
schedulers across various dynamic network environments,
including both abruptly changing bandwidth and abruptly
changing RTT scenarios. As shown in Fig. 8(a), despite that
periodic network changes introduce inaccuracies in bandwidth
and one-way delay measurements, DaMPS outperforms other
schedulers due to the effective cooperation among its three
modules, enabling resilience to changing network conditions.
Fig. 8(b) demonstrates that even in networks with abruptly

changing RTT, DaMPS still demonstrates superior perfor-
mance compared to other schedulers.

V. RELATED WORK

In recent years, many multipath transmission schemes have
been developed, spanning multiple layers of network ar-
chitecture, such as link, network, transport, application and
cross layers [27]. To enhance the performance of multipath
transmission, various packet schedulers have been proposed.
For example, ECF [13] focuses on estimating packet arrival
times to improve the utilization of the fastest path. BLEST [14]
estimates the receiver buffer blocking and skips the slower
path to prevent buffer blocking. ETC [15] allocates different
data partitions across multiple paths to minimize the maximum
completion time.

However, these schedulers do not account for the deadline
requirements of packets, which significantly impact the user’s
experience. Therefore, there are several attempts to design
deadline-aware schedulers. EDF [28] prioritizes tasks with
the tightest deadlines. D3T [29] employs a deadline-aware
scheduler alongside an adaptive DRL-based agent for FEC
redundancy ratio and congestion control. DAMS [26] utilizes
a variation of EDF for determining the sending order and
detecting deadline satisfaction, effectively reducing bandwidth
wastage. Although DAMS shares relevance with our DaMPS,
the two schedulers are quite different and not directly compa-
rable. Specifically, DAMS focus on managing stream blocks
with hard-wired heuristic schemes, while DaMPS is designed
for packet-level granularity, adapting various network condi-
tions through optimization-based strategies.

Instead of designing a deadline-aware scheduler for mul-
tipath transmission, Cui et al. [30], [31] propose a single-
path protocol, DTP, that supports block-based data delivery
with deadlines and priorities. Moreover, they adopt the ADS
scheduler and an adaptive redundancy mechanism in the
DTP to provide better deliver-before-deadline service [32]. In
addition, Liu et al. [33] formulate the task scheduling problem
with deadline and throughput constraints as a constrained
online learning problem. Beyond single-path protocol designs,
John et al. [34] design the protocol, DMTP, for real-time ap-
plications with strict deadline requirements on the SCION [35]
internet architecture. Tsanikidis et al. [36] introduce a novel
framework for online scheduling and routing of deadline-
constraint packets in wireless multi-hop networks.

Recently, many machine learning-powered packet scheduler
have been proposed. In contrast to the hard-wired schedulers,
learning-based schedulers exhibit adaptability and consistently
perform well in various network scenarios. ReLes [8] utilizes
asynchronous deep reinforcement learning techniques to derive
packet scheduling policies. Peekaboo [9] and OLAPS [10] are
both online learning-based schedulers. Peekaboo employs the
LinUCB [25] algorithm to determine whether to transmit over
an available path or wait a more advantageous one, while
OLAPS uses the UCB [19] algorithm to decide whether to
redundantly send packets.

166

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2025 at 12:40:16 UTC from IEEE Xplore. Restrictions apply.

Our DaMPS scheduler is different from previous studies
as it delivers packets before their deadlines with optimized
scheduling decisions and incorporates a specially designed
bandit algorithm to adjust delay estimates for adapting to
network variations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose DaMPS, a novel deadline-aware
multipath packet scheduler aiming to deliver packets before
their deadlines. DaMPS includes three main modules: the
Packet Scheduling Solver module, the Selective Preservation
module, and the Fluctuation Monitor module. The three
modules operate together to provide proper packet scheduling
decisions and adapt to different levels of network dynamics,
achieving robust deadline adherence performance. Through
extensive Mininet experiments, we show that DaMPS out-
performs existing schedulers. For future work, we should
consider the theoretical guarantees for our bandit algorithm
and the heterogeneous monetary cost of multiple paths in
mobile networks using real-world trace. Another interesting
direction for future work is to reformulate the multipath packet
scheduling problem as a constrained combinatorial multi-
armed bandit problem.

ACKNOWLEDGEMENTS

This work was supported in part by National Key R&D
Program of China under Grant 2022YFB2902700, NSF
China (Grant No. 62202508, 62071501), and Shenzhen Sci-
ence and Technology Program (Grant 20220817094427001,
JCYJ20220818102011023, ZDSYS20210623091807023).

REFERENCES

[1] M. Baldi and Y. Ofek, “End-to-end delay analysis of videoconferencing
over packet-switched networks,” IEEE/ACM Transactions On Network-
ing, vol. 8, no. 4, pp. 479–492, 2000.

[2] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai, “Furion: Engineering high-
quality immersive virtual reality on today’s mobile devices,” in Proc. of
MobiCom 2017, 2017, pp. 409–421.

[3] K. Sklower, B. Lloyd, G. McGregor, D. Carr, and T. Coradetti, “The
ppp multilink protocol (mp),” Tech. Rep., 1996.

[4] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “Tcp extensions
for multipath operation with multiple addresses,” Tech. Rep., 2013.

[5] Q. De Coninck and O. Bonaventure, “Multipath quic: Design and
evaluation,” in Proc. of CoNEXT 2017, 2017, pp. 160–166.

[6] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene,
O. Bonaventure, and M. Handley, “How hard can it be? designing and
implementing a deployable multipath {TCP},” in Proc. of NSDI 2012,
2012, pp. 399–412.

[7] A. Frommgen, T. Erbshäußer, A. Buchmann, T. Zimmermann, and
K. Wehrle, “Remp tcp: Low latency multipath tcp,” in Proc. of IEEE
ICC 2016. IEEE, 2016, pp. 1–7.

[8] H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “Reles: A neural adaptive
multipath scheduler based on deep reinforcement learning,” in Proc. of
IEEE INFOCOM 2019. IEEE, 2019, pp. 1648–1656.

[9] H. Wu, Ö. Alay, A. Brunstrom, S. Ferlin, and G. Caso, “Peekaboo:
Learning-based multipath scheduling for dynamic heterogeneous envi-
ronments,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 10, pp. 2295–2310, 2020.

[10] Y. Xing, K. Xue, Y. Zhang, J. Han, J. Li, and D. S. Wei, “An online
learning assisted packet scheduler for mptcp in mobile networks,”
IEEE/ACM Transactions on Networking, 2023.

[11] J. Han, K. Xue, J. Li, R. Zhuang, R. Li, R. Yu, G. Xue, and Q. Sun,
“Edar: An experience-driven multipath scheduler for seamless handoff
in mobile networks,” IEEE Transactions on Wireless Communications,
2023.

[12] K. Yedugundla, S. Ferlin, T. Dreibholz, Ö. Alay, N. Kuhn, P. Hurtig,
and A. Brunstrom, “Is multi-path transport suitable for latency sensitive
traffic?” Computer Networks, vol. 105, pp. 1–21, 2016.

[13] Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “Ecf: An mptcp
path scheduler to manage heterogeneous paths,” in Proc. of CoNEXT
2017, 2017, pp. 147–159.

[14] P. Hurtig, K.-J. Grinnemo, A. Brunstrom, S. Ferlin, Ö. Alay, and
N. Kuhn, “Low-latency scheduling in mptcp,” IEEE/ACM Transactions
on Networking, vol. 27, no. 1, pp. 302–315, 2018.

[15] H. Zeng, L. Cui, F. P. Tso, and Z. Zhang, “Optimizing multipath quic
transmission over heterogeneous paths,” Computer Networks, vol. 215,
p. 109198, 2022.

[16] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan, “Wifi, lte, or
both? measuring multi-homed wireless internet performance,” in Proc.
of IEEE INFOCOM 2014, 2014, pp. 181–194.

[17] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath tcp schedulers,” in Proceedings of the 2014 ACM
SIGCOMM workshop on Capacity sharing workshop, 2014, pp. 27–32.

[18] P. B. Diakhate, T.-T. Chu, M. A. Labiod, B. Augustin, H.-A. Tran, and
A. Mellouk, “Experimental evaluation of multiple multipath schedulers
over various urban mobile environments,” in Proceedings of the 11th In-
ternational Symposium on Information and Communication Technology,
2022, pp. 201–207.

[19] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, pp. 235–256,
2002.

[20] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[21] R. Khalili, N. Gast, M. Popovic, and J.-Y. Le Boudec, “Opportunistic
linked-increases congestion control algorithm for mptcp,” draft-khalili-
mptcp-congestioncontrol-02, 2014.

[22] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proc. of CoNEXT 2012, 2012, pp. 253–264.

[23] B. Hubert et al., “Linux advanced routing & traffic control howto,”
Netherlabs BV, vol. 1, pp. 99–107, 2002.

[24] S. Hemminger et al., “Network emulation with netem,” in Linux conf
au, vol. 5, 2005, p. 2005.

[25] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in Proc. of
WWW 2010, 2010, pp. 661–670.

[26] X. Zuo, Y. Cui, X. Wang, and J. Yang, “Deadline-aware multipath
transmission for streaming blocks,” in Proc. of IEEE INFOCOM 2022.
IEEE, 2022, pp. 2178–2187.

[27] M. Li, A. Lukyanenko, Z. Ou, A. Ylä-Jääski, S. Tarkoma, M. Coudron,
and S. Secci, “Multipath transmission for the internet: A survey,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 4, pp. 2887–2925,
2016.

[28] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
vol. 20, no. 1, pp. 46–61, 1973.

[29] L. Zhang, Y. Cui, J. Pan, and Y. Jiang, “Deadline-aware transmission
control for real-time video streaming,” in Proc. of IEEE ICNP 2021.
IEEE, 2021, pp. 1–6.

[30] H. Shi, Y. Cui, F. Qian, and Y. Hu, “Dtp: Deadline-aware transport
protocol,” in Proc. of APNet 2019, 2019, pp. 1–7.

[31] Y. Cui, C. Ma, H. Shi, K. Zheng, and W. Wang, “Deadline-aware
Transport Protocol,” Internet Engineering Task Force, Internet-Draft
draft-shi-quic-dtp-08, 2023, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/draft-shi-quic-dtp/08/

[32] J. Zhang, H. Shi, Y. Cui, F. Qian, W. Wang, K. Zheng, and J. Wu,
“To punctuality and beyond: Meeting application deadlines with dtp,”
in Proc. of IEEE ICNP 2022. IEEE, 2022, pp. 1–11.

[33] Q. Liu and Z. Fang, “Learning to schedule tasks with deadline and
throughput constraints,” in Proc. of IEEE INFOCOM 2023. IEEE,
2023, pp. 1–10.

[34] T. John, A. Perrig, and D. Hausheer, “Dmtp: Deadline-aware multipath
transport protocol,” in 2023 IFIP Networking Conference. IEEE, 2023,
pp. 1–9.

[35] L. Chuat, M. Legner, D. Basin, D. Hausheer, S. Hitz, P. Müller, and
A. Perrig, The Complete Guide to SCION. Springer, 2022.

[36] C. Tsanikidis and J. Ghaderi, “Online scheduling and routing with end-
to-end deadline constraints in multihop wireless networks,” in Proc. of
MobiHoc 2022, 2022, pp. 11–20.

167

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 10,2025 at 12:40:16 UTC from IEEE Xplore. Restrictions apply.

