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ABSTRACT
Repackaged malware and phishing malware consist 86% [35]
of all Android malware, and they significantly a↵ect the An-
droid ecosystem. Previous work use disassembled Dalvik
bytecode and hashing approaches to detect repackaged mal-
ware, but these approaches are vulnerable to obfuscation
attacks and they demand large computational resources on
mobile devices. In this work, we propose a novel methodol-
ogy which uses the layout resources within an app to detect
apps which are “visually similar”, a common characteristic
in repackaged apps and phishing malware. To detect vi-
sually similar apps, we design and implement DroidEagle

which consists of two sub-systems: RepoEagle and HostEa-

gle. RepoEagle is to perform large scale detection on apps
repositories (e.g., apps markets), and HostEagle is a light-
weight mobile app which can help users to quickly detect vi-
sually similar Android app upon download. We demonstrate
the high accuracy and e�ciency of DroidEagle: Within 3
hours RepoEagle can detect 1298 visually similar apps from
99 626 apps in a repository. In less than one second, HostEa-
gle can help an Android user to determine whether a down-
loaded mobile app is a repackaged apps or a phishing mal-
ware. This is the first work which provides both speed and
scalability in discovering repackaged apps and phishing mal-
ware in Android system.

1. INTRODUCTION
Smartphones and tablets have become indispensable devices
in our daily life. Due to their a↵ordable prices and variety
of models from di↵erent manufacturers, the market share
of Android-based devices reached 78.4% in 2013 [14]. Mo-
bile applications (app for short) play a significant role in the
Android ecosystem. Currently, there are around one million
apps [9] in the Google o�cial market (i.e., Google Play).
However, unlike the Apple’s iPhone/iPad system wherein
developers can only distribute their apps on the App Store,
Android system allows developers to distribute their apps
in many third-party markets (e.g., websites, forums, or ven-
dors’ apps markets). Many of these third-party markets do
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not have a comprehensive apps review, and they are not as
prudent as the Google Play in publishing or screening mo-
bile apps. Hence, these third-party markets provide perfect
breeding ground for cracked and malicious apps, such as
phishing malware or trojans. According to a recent mobile
threat report [18], Android accounted for 98% of all mobile
threats, and 99.9% [12] came from many third-party mar-
kets. If left unaddressed, this chaotic Android ecosystem
will harm both users and app developers.

Android malware contains trojan, backdoor, adware, fake
apps, etc. According to a recent study [35], 86% of these
malware are using the repackaging technique, which is to dis-
assemble a legitimate app (using some well-known tools [1,
3, 6]), and hackers can then add or modify logics of the
original app, and then assemble it back and distribute the
modified app in third-party markets. Using the repackaging
technique, hackers can perform various malicious functions,
e.g., they can crack paid apps to bypass payment function
or they can replace developers’ advertisement IDs. More-
over, malware writers can insert malicious logics into pop-
ular apps to deceive users and distribute malware widely.
Besides repackaged malware, phishing malware attempts to
acquire sensitive information (e.g., account password and
credit card number) by masquerading as trustworthy bank
apps, online shopping apps, or payment apps, etc. In sum-
mary, to secure the Android ecosystem, repackaged malware
is the first form of Android malware that security researchers
need to address.

To protect installation and update of apps, Android oper-
ating system provides a signing mechanism [2]. Developers
should sign apps with certificates using their private keys
before publishing their apps. However, many of these cer-
tificates are not issued by a certificate authority. This means
that anyone can issue a certificate using his or her private
key to publish an app. Hence, a signed certificate cannot ab-
solutely ensure the authenticity of an app, and one cannot
distinguish between fake app and real app by simply check-
ing the existence of certificates. Therefore, this mechanism
cannot e↵ectively ensure the authenticity of an app.

Because repackaged apps consist 86% of all Android mal-
ware [35], researchers have proposed two di↵erent approaches
to detect repackage apps. Since a repackaged app is built
from an original app with only minor modifications, so the
majority of the app’s functionalities and corresponding in-
structions are the same as the original one. Hence, one de-



tection approach is based on the “instruction sequences” of
disassembled codes. Systems fall into this category include
DroidMOSS [34] and DroidAnalytics [30], which use fuzzy
hashing technique for similarity comparison so as to find
repackaged apps. However, because this approach is sensi-
tive to the instruction sequences of disassembled codes, it
cannot defend against code obfuscation. For example, if
hackers generate repackaged apps by adding some useless
codes into the original app, the hash value of this modi-
fied app will be totally di↵erent from the original app. The
second approach is based on the “semantic information” of
disassembled code. Systems fall into this category include
DNADroid [10], in which the system generates semantic pro-
gram graphs (e.g., call reference graph) based on disassem-
bled code, and the system uses subgraph isomorphism al-
gorithms to determine similar graphs as that of the original
app. Note that subgraph isomorphism algorithm is not scal-
able when one needs to deal with millions of apps. Because
both approaches need to disassemble apps before analysis,
this process takes a long time so they are not suitable for
large volume apps analysis. Finally, hackers can use pro-
gramming tricks [23] to easily bypass existing disassembling
tools. In summary, existing approaches focus on the dis-
assembled source code, it is not scalable and can be easily
bypassed by code obfuscation.

The core idea of our repackage malware detection is as fol-
lows. We observe that many of these repackaged apps aim to
modify logics of original apps. But to avoid being detected
by users, repackaged apps need to have “similar appearance”
as original apps. Furthermore, phishing malware relies on
similar appearances as banks or shopping apps to deceive
users. Therefore, all these repackaged malware need to have
similar visual characteristics as the original apps. So by
comparing their “visual similarity”, one can quickly deter-
mine potential repackaged malware or phishing malware.

In this work, we propose DroidEagle and the system is
based on visual characteristics to detect similar Android
apps. DroidEagle has two sub-systems. One sub-system
is for large scale apps repository analysis, while the other
sub-system is for host-based detection. As we will demon-
strate, these two sub-systems can accurately detect repack-
aged apps and phishing malware. Another major advantage
as compared to some existing code-based malware detection
systems is that DroidEagle is immune to code obfuscation
and also e�cient in large scale detections. We make the
following contributions:

• We propose two methodologies to find visually simi-
lar apps in app repository and Android device respec-
tively. Because both methodologies are based on vi-
sual characteristics instead of programming semantics,
they are fast and accurate in detecting visually similar
apps including repackaged apps and phishing malware.
To the best of our knowledge, we are the first to use
visual resources in Android systems to detect repack-
aged malware and phishing apps, and the methodolo-
gies provide scalability, speed and accuracy.

• We implement RepoEagle for Android apps repository
analysis. RepoEagle can detect visually similar apps in
a large scale app database. In particular, we were able

to find 1298 visual similar apps from 99 626 apps from
di↵erent third-party markets. The pre-processing time
of RepoEagle is two times faster than previous code-
based detection methods.

• We implement HostEagle to detect visually similar
apps on Android devices. The detection time is around
one second for each app, and it does not demand much
computational resource, which makes it ideal to deploy
on mobile devices.

The rest of the paper is organized as follows: In Section 3,
we propose our detection methodologies and present our sys-
tem implementation. Experimental results are presented in
Section 4. In Section 5, we present the related work. Con-
clusion is given in Section 6.

2. BACKGROUND
In this section, we introduce some essential background about
the Android app markets, Android app package file struc-
ture and user interface of Android apps.

2.1 Android App Markets
Android app market is an Internet site for developers to
distribute their apps. Developers publish their apps on the
market, and users can purchase apps of their liking. There
are also free apps available. For this type of apps, devel-
opers usually gain profit by advertisement display or in-
app purchases. Google Play [17] is the o�cial app mar-
ket for Android. However, there are many manufacturers
who produce Android devices. In order to provide more fea-
tures on their devices, these manufacturers provide vendor-
customized firmwares (based on Android) and pre-install
their own app markets. For instance, one can find app mar-
kets like Samsung Apps, HTC Hub or appXtra from Sony.
These o�cial markets will review any submitted apps, and
scan these apps with their own proprietary detection sys-
tems before publishing to prevent malicious apps leakage.
For instance, Google Play uses Bouncer [5] to scan newly
submitted apps. Besides these o�cial markets, there are
many other third-party markets and forums (e.g., SlideMe,
hiapk and AppChina) which provide Android apps down-
load. According to the recent report [25], a large number of
Android devices do not have the Google o�cial market app.
Furthermore, Google services are either blocked or have poor
download performance in some countries. So users have to
resort to third-party markets or forums for apps download.
Moreover, some third-party markets intentionally publish
cracked paid apps, no-ads apps and modified apps to attract
users. Due to the variety of apps in third-party markets,
it was reported that 72.6% of apps are downloaded from
these third-party markets [24]. It is also worth mentioning
that these third-party markets have much less restrictions on
publishing and provide no apps review. Hence, these mar-
kets become the perfect breeding ground for a large number
of repackaged apps and phishing malware.

2.2 Android App Package File
Android app package file (i.e., APK file) is a single installa-
tion zip file for an Android app. It contains classes.dex,
AndroidManifest.xml files and lib, res, META-INF direc-
tories. classes.dex is a Dalvik executable file (i.e., DEX



file) compiled from Java source code. This DEX file provides
bytecodes for running on the Dalvik virtual machine. Sev-
eral tools [6, 3, 1] can disassemble DEX bytecode to human-
readable source code, so it is easy to reverse engineer an An-
droid app. AndroidManifest.xml describes the name, ver-
sion, permission usage and related app information. lib di-
rectory contains the native code for di↵erent platforms, res
directory contains app resources such as layout structures
(in /res/layout directory) and images (in /res/drawable

directory). These files are in binary XML format and there
are tools [3, 1, 4] which can translate these binary XML for-
mat to plain text XML format (again, making reverse engi-
neering easy). The META-INF directory contains certificate
of an app and signatures of each file in the APK file.

2.3 Android App User Interface
The basic elements of user interface in an Android app are
View and ViewGroup. A View is an object on the screen
which can interact with users and display objects. Android
SDK provides several View objects such as Button, Edit-
Text, ImageView, etc. For example ImageView can load a
image from an app’s package. ViewGroup is an object con-
tainer which holds other View or ViewGroup. ViewGroup

(e.g., ScrollView, RelativeView, and LinerLayout in An-
droid SDK) can define the layout arrangement of its ele-
ments. For example, LinearLayout is a ViewGroup speci-
fying all the elements inside should either be horizontally
or vertically displayed in a single direction. A layout struc-
ture is a hierarchy of View and ViewGroup which defines
the visual user interface on the screen. An app can initi-
ate interface objects in runtime. Alternatively, developers
can also define a layout structure of the user interface in an
XML file under the /res/layout directory so as to separate
presentation and function logics.

Figure 1 illustrates a user interface and the corresponding
layout file. There are two kinds of elements in the layout
files. One is empty-element. This kind of element cannot in-
clude other elements. For example, “<CheckBox .../>” tag
is an empty element. The other kind of element is start-end
element which can include other elements. The start-end
element contains a pair of tags, e.g., the LinearLayout ele-
ment begins with the “<LinearLayout orientation= ...>”
tag and ends with the “</LinearLayout>” tag. This start-
end element is the parent element of any included elements,
which are represented as child elements. The name of an
element is the first word in the tag (e.g., “LinearLayout” in
<LinearLayout ...> tag) and the following key/value pairs
(e.g., orientation="vertical") are attributes of the ele-
ment.

To illustrate, consider the layout file in Figure 1. The empty
element corresponds to the View object (those under blue
color), and the start-end element corresponds to the View-

Group object (those under gray color). Note that devel-
opers can put layout files in other directories to support
multiple screen types. The naming scheme of the directory
will determine the screen type (e.g., size, density and ori-
entation). For example, /res/layout-large directory con-
tains layout files for large screen (i.e., screen size is at least
470dp⇥320dp). Layout XML file defines layout structure and
element attributes including positions, width, height, etc.
Because there may be multiple screens for an app, layout

Figure 1: The “Sign in” user interface of Twitter
and corresponding layout file (login.xml).

directory may contain more than one layout XML file.

3. DETECTION METHODOLOGIES
In this section, we present our methodologies of how to de-
tect visually similar apps, and how these methodologies can
be e↵ective to detect repackaged apps. We also present our
system implementation and illustrate it via two usage sce-
narios: app repository analysis and host-based detection.

3.1 Overview
Our goal is to determine visually similar apps so as to detect
repackaged apps and phishing malware. For our detection
system, we set the following design goals:

• Accuracy. Accuracy is a basic requirement for a de-
tection system. Our methodology should accurately
determine visually similar apps so as to detect repack-
aged apps and phishing malware. Furthermore, code
obfuscations should not a↵ect our detection capability.
Moreover, our methodology should be robust against
modifications of app user interface.

• E�ciency and Scalability. The number of apps in
third-party markets is over one million and is growing
rapidly. Therefore, our methodology needs to be scal-
able to handle a large number of apps for repository
analysis.

• Flexibility. The methodology will be used to ana-
lyze apps in third-party markets to determine visually
similar apps. Furthermore, because users can down-
load and install apps from third-party markets or some
web/blog sites, our methodology should be able to per-
form real-time detection on an Android device for the
app download so as to defend against malicious and
repackaged apps’ installation. Note that mobile de-
vices are limited in storage and computation resources,
therefore, our methodology needs to be flexible for
both large scale analysis and real-time detection on
resource constrained devices.

To addresses these challenges, we propose two methodolo-
gies: repository analysis and host-based detection. We im-
plement two systems based on the methodologies for these



Figure 2: Layout tree of the layout file in Fig. 1

two usage scenarios. The methodologies are based on visual
resources in an Android app. Visual resources are layout
files and drawable images in an app package file. Layout
files define user interfaces of an app, while drawable images
will be used as a supplementary detection. Because visually
similar apps have similar user interfaces, we can use this
characteristic feature to detect repackaged apps. Layout file
contains a hierarchy of View and ViewGroup objects. We
formally represent a layout file as a data structure which we
call layout tree. Let us first formally define the concept of a
layout tree which we use in our methodologies.

Definition 1. A layout tree is a tree data structure over a
layout file where:

• A node in the layout tree represents an element in the
layout file. The node name is the corresponding ele-
ment name and the node values contain attributes of
the corresponding element.

• The parent/child relationship of nodes in a layout tree
is the same as that in the layout file. For example, if
a ViewGroup object contains other objects like View or
ViewGroup, then the ViewGroup is the parent node of
these View or ViewGroup objects.

Let us take the layout file in Figure 1 as an example. We
can represent this layout file as a layout tree and it is il-
lustrated in Figure 2. In this layout tree, each node has
node values and it corresponds to an element with a el-
ement name and attributes in the layout file. For exam-
ple, the node “ScrollView” in the layout tree corresponds
to the“ScrollView”start-end element in the layout file. The
“CheckBox” node corresponds to the “CheckBox” empty ele-
ment in the layout file with layout_marginBottom="2.0dip"

attribute as the node value.

We can use this layout tree to detect visually similar apps.
Firstly, the structure of a layout tree defines the visual struc-
ture of an app’s user interface. Secondly, repackaged apps
and phishing malware have similar layout trees because they
need to rely on the appearance of the original app, in par-
ticular, same user interface, so as to deceive users. Thirdly,
nodes in a layout tree with detailed attributes (e.g., posi-
tions, width and height) accurately represent visual appear-
ances for each element in the screen. Fourth, we can obtain
layout files from an app easily by extracting from them from
the unzipped package file. This is much easier than previ-
ous proposals which need to go through the disassembling

process of an entire app, therefore, our methodology requires
much less computational resource as compared to previously
proposed methods of using disassembled code. Finally, slight
modifications of a layout structure can easily mess up the
user interface, so hackers cannot easily obfuscate layout files.
In the following sections, we present the layout-tree-based
detection methodology, as well as our system implementa-
tions for detecting visually similar apps both in a repository
and in Android smartphones.

3.2 RepoEagle: Repository Analysis
Repository analysis is to analyze all apps in an app reposi-
tory (say, on some third-party markets) so as to discover all
visually similar apps. We propose a methodology to calcu-
late layout similarity for detection. Based on this method-
ology, we design a system, RepoEagle, which can accurately
determine the visual similarity of two apps, thereby further
detecting repackaged apps and phishing malware.

3.2.1 Layout Edit Distance
We define layout edit distance (LED for short) as a metric to
measure the similarity between two layout trees. Given two
apps, we first represent their layout files as two layout trees,
and the LED is the minimum number of operations required
to transform from one layout tree to another tree. The oper-
ations in layout tree transformation are node deletion, node
insertion and node substitution. Figure 3 illustrates these
three transformation operations. For example, a deletion
operation is issued to delete the node “CheckBox” from lay-
out A and it results in layout B. From the screenshots,
the check box is deleted from the user interface. A node
insertion operation of the “TextView” node is performed on
layout A which results in layout C (which is highlighted in
red in the figure). Finally, a node substitution operation of
the node “LinearLayout” is performed on layout A which
results in layout D. This substitution operation causes the
nodes to have a messy display.

When the LED between two layout trees is equal to n, it
means that there are at least n operations performed to
a layout tree so as to transform it to another layout tree.
Therefore, LED describes the dissimilarity of two layout
trees, and a small LED value implies that the two layout
trees are very similar. In Figure 3, the LED values between
layout tree A and B (or C or D) is equal to 1.

3.2.2 Repository Analysis System
Based on the LEDmetric, we implement RepoEagle, a repos-
itory analysis system to detect visually similar apps in apps
repository. Figure 4 illustrates the design of RepoEagle.
There are two inputs to our system. The first input is a
set of apps which are from an app repository (these apps
are retrieved by our crawler from an o�cial market or third-
party markets). The second input is an o�cial app from a
trusted authority (e.g., Google Play). RepoEagle will deter-
mine apps within the repository which are visually similar
to the o�cial and trusted app.

RepoEagle consists of four main components: (1) layout tree
extractor, (2) certificate extractor, (3) similarity comparator
and (4) certificate verifier. Layout tree extractor extracts
layout files from an apk file and translate the binary XML



Figure 3: Three operations of layout tree transformation on the “Sign in” user interace of Twitter

Figure 4: Architecture of RepoEagle.

files to plain text. Certificate extractor extracts certificate in
the APK file. Layout tree extractor and certificate extractor
pre-process the input apps for further detection. Similarity
comparator will use the layout edit distance algorithm to
determine the similarity distance between two layout trees.
By comparing the layout in the repository, similarity com-
parator will find out a set of similar apps. Certificate verifier
will determine the fake apps by verifying the certificate of
these similar apps.

3.2.3 Implementation
In the pre-processing stage, because layout files in APK files
are in binary XML format, layout extractor uses apktool to
translate these files to plain XML files. Since some layout
files use “<include />” or “<merge />” statement to include
other layout files. Hence, the layout tree extractor needs
to first combines all referenced layout files into a single file.
Furthermore, when constructing a layout tree, RepoEagle

will not consider any invisible View objects. For example,
nodes with “visibility="invisible"” or zero width and
height attribute. This is because this kind of objects will
not display on the user interface, and hackers often like to
use this trick to add a number of invisible nodes with the
hope to bypass detection. Finally, the layout tree extrac-
tor stores all plain layout trees of the apps in the repository
into database. The layout tree extractor will also store the
number of elements of an app into the database as a meta-
data. This metadata will help similarity comparator to opti-

mize the comparison process (which we will elaborate next).
For the certificate extractor, it unzips all APK files and ex-
tracts certificate files (e.g., CERT.RSA and CERT.DSA) in the
/META-INF/ directory. Then the system utilizes the keytool
to extract certificate information such as issuer and certifi-
cate fingerprint, and stores the information in the certificate
database. Note that the certificate information will be used
in our detection to identify the authority of the apps.

In the similarity comparator module, we implement the LED
metric based on Zhang and Shasha [28] tree edit distance al-
gorithm to calculate the visual similarity score among apps.
The algorithm can achieve O(m2n2) time complexity with
O(mn) space complexity, where m and n is the number of
nodes in two trees. The similarity score of two apps is the
LED between the layout trees of these two apps. Note that
an app may have multiple layout trees, therefore, one should
compare all pairs of the two apps. Suppose there are m lay-
out trees in app A and n layout trees in app B. The simi-
larity score between A and B is the minimum number of all
layout edit distances among mn layout tree pairs. Because
there can be many comparisons, we utilize two methods to
optimize our comparison process. Firstly, some layout trees
may only contain few nodes, the result of LED cannot ac-
curately represent the visual similarity of two layout trees.
Hence, we will not use those layout trees whose number of
nodes is less than a threshold, say N , for LED compari-
son. Secondly, we can use the number of elements to re-
duce the comparison pairs. Suppose we want to find apps
in the repository whose similarity distance between the in-
put app is lower than a threshold T . Before comparing the
two layout files, the layout comparator will first compare
the element number in these two files. If the di↵erence be-
tween these two numbers is larger than T , the system will
not compare these pairs. This is because according to our
layout edit distance, insertion is one of the transformation
operations. The di↵erence (say d) on the number of ele-
ments in two layout files represents that one needs at least d
insertion operations to transform into another. Because we
store the number of elements as metadata in the database
during the pre-processing stage, the layout comparator will
not compute this number every time. Using these two op-
timization methods, we significantly reduce the number of
layout tree comparison. We will present the e↵ectiveness of



these optimization techniques in Section 4.

For the certificate verifier, we use certificate information
including issuer and certificate fingerprint from certificate
database. Certificate fingerprint is the cryptographic hash
value of the certificate. Apps published by the same devel-
opers will have the same certification fingerprint. The cer-
tificate verifier compares the fingerprints of visually similar
apps to the fingerprint of the input o�cial app. In Section 1,
we discussed that if a hacker repackages an app or creates a
phishing app, he needs to sign this app using his own private
key. Hence, if an app has a similar appearance with the in-
put app (i.e., the o�cial app) but has a di↵erent certificate
fingerprint, this means that the app is published by other
unknown third party (e.g., hackers).

3.3 HostEagle: Host-based Detection
Because users may install apps from unknown sources (e.g.,
shared file in cloud storage, forums or third-party markets),
one cannot ensure the safety and authenticity of these apps.
We develop HostEagle, a host-based detection system for
Android devices. HostEagle can detect repackaged apps
and phishing malware based on visually similar detection on
mobile devices. Due to the computation and storage limita-
tion of smartphones, we cannot directly use the previously
proposed disassembling approaches in smartphones. Hence
we design a system based on layout hashing (LH) method.
This method not only has an accurate detection rate and
fast response time, but also has low computation demand
on mobile devices.

3.3.1 Layout Hashing
Layout hashing (LH) is a method to generate layout hash
(i.e., a hash value) for a layout tree. The layout hash values
of visually similar layout trees are likely to be same. Fig-
ure 5 illustrates the process of generating a layout hash of a
layout tree. It consists of two steps: (1) leaf pruning and (2)
tree hashing. Firstly, we prune all leaves in the layout tree.
Leaf nodes in a layout tree consist of di↵erent kinds of View
objects. After removing all View objects in the leaves, the
remaining subtree contains all ViewGroup objects represent-
ing the layout skeleton of the user interface. For example, in
Figure 5, we prune the leaves (i.e., “ToolBar”, “CheckBox”,
“TextView” and “EditText” objects) in the original layout
tree and get a subtree with all ViewGroup objects. The sec-
ond step is to generate a hash value for the remaining lay-
out tree. For each node, we generate a node hash value by
hashing the concatenated string of node name and specific
node attributes. Because there are many attributes of one
node, some of them do not have visual e↵ects. Therefore,
to make LH value more accurate, we only choose node at-
tributes which have visual e↵ects. In our implementation,
we use “width”, “height”, “text” attributes for the calcula-
tion of a node hash value. To keep the attributes in order,
we first sort these attributes and then concatenate them as
a string. For each layer, we concatenate all node hash val-
ues in this particular layer and generate a layer hash value.
Lastly, we obtain the final layout hash value by hashing the
concatenated layer hash values of each layer. Algorithm 1
summarizes the process of generating layout hashing. The
algorithm generates one single hash value representing this
whole layout file. For implementation, one can use a cryp-
tographic hash function (e.g., MD5 and SHA1) to compute

Figure 5: Layout Hashing

Algorithm 1 Layout Hashing

1: procedure Hash Layout(layoutTree)
2: initialize layerHashList
3: for all layer in layoutTree do

4: initialize nodeHashList
5: for all node in layer do

6: nodeValues  getNodeAttributes(node)
7: sortedNodeValues  sort(nodeValues)
8: valueStr  concatenate(sortednodevalues)
9: nodeHash  hash(valueStr)
10: append nodeHash to nodeHashList
11: end for

12: append nodeHashList to layerHashList
13: end for

14: return hash(sortedLayerHashList)
15: end procedure

hash values of string. The time complexity of generating a
layout hashing is O(V +E), where V is the number of nodes
and E is the number of edges in layout tree.

There are several reasons why we use the layout hashing al-
gorithm to detect visually similar apps on Android devices.
Firstly, layout hashing generates a unique hash value for
a given layout structure, and this hash value is easy and
fast to query and compare. Secondly, the algorithm prunes
all leaves in the layout tree before hashing. We need the
pruning step because visually similar layout trees are likely
to have the same layout structure, but some View objects
(which are the leaf nodes) may have di↵erent names and
attributes. So by removing these leaf nodes, we generate a
hash value only for the layout skeleton. Hence, any modifica-
tions of the leaves (i.e., View objects) will not a↵ect the final
hash value. In addition, because any modifications on the
remaining tree (i.e., pruned layout tree) will dramatically
change the appearance of a user interface, which defeats the
requirement of creating a repackaged app since it aims to ap-
pear as similar as the original and legitimate app. Therefore,
this hash value can accurately represent the user interface
of an app. Besides, the algorithm requires low computation
resources and the transmission of a hash value over the net-
work consumes only a small amount of network bandwidth.
Another important feature of our algorithm is that it can be
easily implemented on smartphones. We will evaluate the
e↵ectiveness of this algorithm in Section 4.



Figure 6: Architecture of HostEagle.

3.3.2 Host-based Detection System
Based on the layout hashing algorithm, we design HostEa-

gle, a host-based detection system to actively defend against
repackaged apps and phishing malware. Figure 6 shows the
architecture of HostEagle. The system monitors app instal-
lation events and then generates a layout hash for the in-
stalled app. Using the layout hash value and its certificates,
HostEagle can verify the authority of the app. HostEagle

can conduct detection locally on the smartphone if there is
no network connection. Due to the flexibility of our hashing
algorithm, HostEagle can also upload the hash to a remote
server for cloud-based detection. The detection consumes
low network bandwidth and provides accurate result.

HostEagle consists of five building blocks: (1) layout hash-
ing, (2) certificate extractor, (3) detector, (4) local detec-
tion database and (5) cloud detection server. Layout hash-
ing generates layout hashes for every layout file of an in-
stalled app. Certificate extractor obtains certificate finger-
print from the app package. We represent layout hashes
and certificate fingerprint as visual signature. With this vi-
sual signature, detector first detects in its local detection
database. The local detection database contains visual sig-
natures of apps which are frequently repackaged (e.g., pop-
ular paid games) and sensitive apps (e.g., banking apps and
shopping apps). In our current implementation, the size of
the local database is about 100KB. The detector will com-
pare the visual signature of installed app with that in local
detection database. If the layout hashes are same but cer-
tificate fingerprints are not, the detector will notify users
that the installed app are most likely a repackaged app or
phishing malware. If the local detection database does not
contain the layout hashes of the installed app. The detec-
tor will upload visual signature to cloud server for further
detection.

3.3.3 Implementation
In our implementation, we first extract visual signatures for
apps from trusted authority (e.g., Google Play) and store
them in the cloud detection server. For simplicity, we put vi-
sual signatures of the top five hundred apps from the Google
Play in the local detection database on an Android device.
For the system in Android devices, it listens to the an-

droid.intent.action.PACKAGE_INSTALL and android.intent.

action.PACKAGE_ADDED broadcasts so as to monitor the in-
stallation event. When receiving these broadcasts, the sys-
tem generates layout hashes for every layout file and certifi-

Table 1: Apps Statistics

Category Name URL
#

of Apps
Size

O�cial Google Play play.google.com 500 7.0GB

Third-party

appchina appchina.com 34 989 238GB

appfun appfun.cn 12 427 154GB

hiapk apk.hiapk.com 5287 87GB

android.d.cn android.d.cn 4064 163GB

jimi168 jimi168.com 23 723 76GB

anzhi anzhi.com 18 736 118GB

Cloud Storage
Baidu pan.baidu.com 200 3.5GB

Huawei dbank.com 200 3.1GB

Total 100 126 849.6GB

cate fingerprint in the newly installed app as visual signa-
ture. We utilize SSL/TLS to encrypt the messages between
detector and cloud detection server to secure the commu-
nication channel. Note that we do not need to modify the
Android firmware or request a higher privilege (e.g., root
privilege). HostEagle only requires package and network
related permissions. Therefore, HostEagle can be easily de-
ployed on users’ devices to prevent repackaged and phishing
malware.

3.4 Supplementary Detection
Note that some apps may not have any layout files or there
are only few elements in their layout files. For example, some
mobile game apps only use 3D engines to render the user in-
terface or game graphics on the screen so these apps have
few elements in their layout files. Hence, we cannot utilize
the layout files for detection using the above two methodolo-
gies. To supplement our method, we utilize drawable images
for detection. In our implementation, if there is no layout
file or if the number of elements in layout files is less than
a threshold, we use perceptual hash values (pHash) [26] of
images in the /res/drawable directory as visual signatures
for detection. pHash algorithm can tolerate less than 25%
modifications of the image. In Section 4, we will discuss the
usage of this supplementary detection.

4. EXPERIMENTS & EVALUATION
In this section, we first present the analysis of RepoEagle,
our apps repository detection system. Then we evaluate the
e↵ectiveness of HostEagle and demonstrate its e↵ectiveness
in detecting repackaged apps or phishing malware on An-
droid devices.

4.1 Repository Statistics
We crawled and collected 100 096 apps from the Google o�-
cial market and various third-party markets. Table 1 shows
the statistics of the apps in our app repository. There are five
hundred apps from a trusted authority (via Google Play).
Other apps are obtained from various third-party markets
and shared links from cloud storage.

Let us first discuss some characteristics of the layout files in
our app repository. We analyze the disassembled layout files
from 500 apps which is randomly selected from our repos-
itory. Figure 7 shows the distribution of the total number
of elements in a layout file. Layout files are stored in two

play.google.com
appchina.com
appfun.cn
apk.hiapk.com
android.d.cn
jimi168.com
anzhi.com
pan.baidu.com
dbank.com
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Figure 7: Distribution of the number of elements in
layout files for an app from layout*/ directory ( )
and layout/ directory ( ).
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Figure 8: Distribution of the number of layout files
for an app from layout*/ directory ( ) and layout/

directory ( ).

directories: (a) layout*/ and (b) and layout/. The direc-
tory “layout*/” stores all layout files of that app packages
for di↵erent screen sizes (e.g., layout-xlarge/ and layout-

hdpi/ directory), while the directory “layout/” stores those
files for general screen size. From Figure 7, one can observe
that most of the apps contains more than two hundred ele-
ments within a layout file. Figure 8 shows that the number
of layout files per application. The number of layout files
are mostly distributed in two ranges. For general apps (e.g.,
tools or social networking apps), the number of layout files
is between 1 to 50. On the other hand, game apps usually
have above 200 layout files. Figure 9 shows the distribution
of the average number of elements within a layout file in an
app. Note that the average number of elements for most of
the apps in our repository is between five to 15. From this
analysis, we know that the visual resources (i.e., the number
of layout files) and visual characteristics (i.e., the number of
elements in layout files) in the majority of apps can be uti-
lized for our LED and LH detection methodologies.

4.2 Experiments
We conduct an analysis on our repository with 99 596 apps
which were obtained from third-party markets and cloud
storage. We downloaded five hundred o�cial apps from
the Google Play, and analyze whether there is any visu-
ally similar apps within our app repository. Table 2 depicts
our experimental results. There are 1159 visually similar
apps found in third-party markets. Via static analysis, we
discover that most of these apps are cracked games with
unlocked in-app paid functions. We also use an anti-virus
engine (i.e., Kaspersky) to scan these repackaged apps and
discover there exist some malware within these repackaged
apps. These results show that hackers like to put their
repackaged apps and malware on the cloud storage, and they
publish these URL links of the cloud storage to many mobile
related forums and social media. This way, hackers not only
can hide their identity, but at the same time, take advan-
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Figure 9: Distribution of the average number of ele-
ments in layout files for an app from layout*/ direc-
tory ( ) and layout/ directory ( ).

Table 2: Results of Repository Analysis

Market
# of Visually Similar

Apps (Percentage)

# of

Malware

Third-party Market 1159 (1.6%) 10

Cloud Storage (Baidu) 50 (10.0%) 0

Cloud Storage (Huawei) 89 (17.8%) 15

Total 1298 (1.3%) 25

tage that cloud storage providers usually do not scan any
uploaded files, so hackers can easily distribute their repack-
aged apps or malware.

Repackaged Apps. Let us now illustrate the e↵ective-
ness of LED (i.e., layout edit distance) and LH (i.e., lay-
out hashing) methodologies. In our repository analysis, we
find eight apps which are visually similar with the o�cial
app “Angry Bird” from the Google Play. Table 3 illustrates
the information of these apps, including LED and LH as
compared with the original app, certificate issuer and cer-
tificate fingerprint. Three apps have zero LED with the
original app. However, they have di↵erent certificate issuers
and fingerprints. We can confirm that these are repack-
aged apps. From the issuers, we discover that one app (ID:
666cc8f79a32cc8) is repackaged by a tool called “Virtuous
Ten Studio” [8] and another app (ID: 0f6f93bbc7c6f00) is
signed by a debug key from the Android SDK. Via static
analysis, we find that 666cc8f79a32cc8 cracked the in-app
paid function in the original “Angry Bird” so that users do
not need to purchase any virtual commodities, and both
666cc8f79a32cc8 and 0f6f93bbc7c6f00 are reported as ad-
ware. Furthermore, 3b524dd4a7bbd2d is reported as Droid-
KungFu trojan. This trojan will contact a remote server
(http://data.flurry.com/aap.do) to download an updated
file (logo). Once users install and open this update app,
this app will gain the root privilege and copy itself to the
/system/ directory so that users cannot uninstall the app.
This malware also has a number of backdoor functions (e.g.,
deleting files, installing APK and launch app), and can re-
spond to a command & control server. One suspicious app
(ID: ed0e5232ded2314) has an LED value equal to two as
compared with the original app. We check the certificate
fingerprint of this suspicious app and find out it is in fact
a legitimate app signed by a trusted company. This app is
in fact an updated legitimate app. It has an LED value of
2 is because the updated app contains similar “login” user
interface, and has two additional TextView objects.

1For display purpose, we cut o↵ the last 16 characters of
the hash value. This will not a↵ect the results shown in the
table.



Table 3: Case Study of Repository Analysis for Angry Bird
App ID1 LED LH1 Certificate Issuer Cert Fingerprint 1 Repackaged Market Detection Result

22d397b900f86e3 0 1cd5ec09fd1bfad7 Rovio Mobile Ltd. 5557CBE41C109409 Google Play

233ce0378da3eec 0 1cd5ec09fd1bfad7 Rovio Mobile Ltd. 5557CBE41C109409 appfun.com

5803487d1a44ccf 0 1cd5ec09fd1bfad7 Rovio Mobile Ltd. 5557CBE41C109409 appfun.com

666cc8f79a32cc8 0 1cd5ec09fd1bfad7 Virtuous Ten Studio A925D13B36571880 3 appfun.com Android.Adware.
Jumptap.a

7a433c193466744 0 1cd5ec09fd1bfad7 Rovio Mobile Ltd. 5557CBE41C109409 appfun.com

9ee436e7b365485 0 1cd5ec09fd1bfad7 databin FC007C2E2C0A43CD 3 appfun.com

22d397b900f86e3 0 1cd5ec09fd1bfad7 Rovio Mobile Ltd. 5557CBE41C109409 android.d.cn

0f6f93bbc7c6f00 0 1cd5ec09fd1bfad7 android-debug 264BF7D71E0EDC4F 3 android.d.cn Android.Adware.
Dowgin

3b524dd4a7bbd2d 0 1cd5ec09fd1bfad7 keystore3 990B1C84F6558298 3 dbank.com Android.Trojan.
DroidKungFu

ed0e5232ded2314 2 1cd5ec09fd1bfad7 Rovio Mobile Ltd. 5557CBE41C109409 jimi168.com

Table 4: Experimental Result of Layout Hashing

Name
# of

Samples

Layout File LH1 Time⇤

FakeAV 8 activity_scanning.xml 5a7ee504cc3a58e61 0.466

FakeMart 3 main.xml d41d8cd98f00b204e 0.355

Agent 5 activity_main.xml 93447baff373b9b90 0.501
⇤ Generation time of LH in second on Nexus 5.

Phishing Malware. In this case study, we use HostEa-

gle to detect a phishing malware to evaluate the e↵ective-
ness of visual detection on Android devices. We consider
a phishing malware, Android.FakeDefender, and install it
on an Android device, Nexus 5. Upon launching, this mal-
ware displays a fake security alert and deceives users to pur-
chase some fake anti-virus products. Usually, the appear-
ance of the fake alert is similar to some popular anti-virus
apps in the o�cial markets. We conduct an experiment on
a fake malware sample which masquerades as the “Avast”
anti-virus software. We also download the original “Avast”
from its o�cial website. By generating layout hash values,
we find that both of the malware and the original apps have
a layout file (scan.xml) with the same layout hash values
(27501e19883cf1ab). From this experiment, it shows that
layout hashing can accurately detect visually similar layout
in phishing malware. Table 4 depicts three phishing mal-
ware, their layout files, and the corresponding layout hash
values and generation time. All samples in a malware fam-
ily contain the same layout files. The generation time of
layout hash value is less than one second. This shows the
e↵ectiveness of HostEagle in detecting phishing malware.

4.3 Methodology Analysis & Evaluation
To analyze our system, we use true positive (TP ), true neg-
ative (TN), false positive (FP ), false negative (FN) and ac-
curacy to evaluate the e↵ectiveness of our detection method-
ologies. If the system successfully detects a repackaged app,
we call it as a TP event. If a legitimate app is reported as
repackaged app, then it is a FP event. If the system suc-
cessfully determines a legitimate app as legitimate, then we
call it as a TN event. If an illegal app is reported as legiti-
mate, we call it a FN event. Suppose that the total number
of apps in our evaluation is N , the accuracy of the system
is (

P
TP +

P
TN)/N .

Table 5: Adversary Models and Descriptions
Adversay Model Description

Adversary I inserting one malicious class into the package

Adversary II injecting some garbage instructions into one class

Adversary III injecting garbage instructions into every class in
the disassembled code

Adversary IV splitting one method into several methods in dif-
ferent classes

Adversary V adding a button View object in one layout file

Adversary VI modifying one ViewGroup object in a layout file
from LinearLayout to RelativeLayout

Table 6: Detection Results for Adversary Models
Methodology Adversary Model

I II III IV V VI

LED 3 3 3 3 3 3

LH 3 3 3 3 3 7

FH [34] 3 3 7 7 3 3

PDG [10] 3 3 3 7 3 3

To evaluate the e↵ectiveness of our layout-based detection
methodologies, we use several adversary methods to com-
pare our systems with existing systems. Firstly, we down-
load an o�cial app, “Twitter”, from Google, and then we
use six adversary models to repackage this app. Table 5
shows the descriptions of these six adversary models includ-
ing normal repackaging, disassembled code obfuscation and
obfuscation on layout files. We evaluate the e↵ectiveness of
four detection methodologies under di↵erent adversary mod-
els. The four detection methodologies are layout edit dis-
tance (LED), layout hashing (LH), fuzzy hashing (FH) [34]
and program dependency graph (PDG) [10]. Because the
authors of FH and PDG did not provide source codes of
their systems, so we implement their detection methodolo-
gies. Table 6 illustrates the results of four methodologies
under di↵erent adversary models. We see that by obfuscat-
ing the disassembled codes, FH and PDG cannot detect the
repackaged apps. LH fails to detect the repackaged apps
of adversary VI. However, this adversary model will also
cause a messy arrangement of layout elements, so hackers
will abandon to use this adversary model to deceive users.



4.3.1 RepoEagle
In Section 4.1, we discussed the statistics of layout files.
Because the layout edit distance is sensitive to the number
of nodes in a layout tree. We evaluate the impact of nodes
number in our repository analysis system. We first define an
unqualified app as an app whose number of nodes is less than
a given threshold (say N ), while others are called qualified
apps. Because unqualified apps have few nodes in their lay-
out tree, we cannot directly adopt LED to these apps, so we
resort to our previously discussed supplementary detection
method. We analyze the impact of N to both the number
of qualified apps and on the accuracy of detection. Firstly,
we randomly select five hundred apps from our repository
and extract their layout files. The red line in Figure 10 il-
lustrates the impact of N on the number of qualified apps.
In other words, with the increase of N , the number of qual-
ified apps decreases. So we cannot adopt LED to the apps
using a large N . Secondly, to demonstrate the e↵ectiveness
of LED, we use a set of repackaged apps to evaluate the
detection accuracy. We choose two sets of repackaged apps
from third-party markets as our ground truth. Each of these
sets contains fifteen repackaged apps. We manually check
the disassembled code and certificate information via static
analysis, and confirm that these apps are repackaged from
a game “Fruit Ninja” and a tool “PPS”. Then we choose
five hundred legitimate apps from o�cial markets. We use
RepoEagle to detect repackaged apps of “Fruit Ninja” and
“PPS” from these 515 apps respectively. Because we want to
know the detection rate for various numbers of nodes in lay-
out tree. Hence, in the detection, we only use layout trees
whose number of nodes is in the range of [N � 5,N + 5]
for LED comparison. We record the number of TP and
TN , and compute the accuracy of each detection. Two blue
lines in Figure 10 illustrate the accuracy of detection for
di↵erent N . With the increase of N , the accuracy of detec-
tion goes up. If we choose layout tree with nodes number
greater than a larger N , the accuracy of detection is about
1. However, if we use layout trees with small nodes num-
ber, because the number of TN is low, the system performs
with a lower accuracy. However, when we combine LED and
our supplementary detection, we can achieve high accuracy
in detection, and this is depicted as an orange line in the
Figure 10.

In Section 3.2.3, we discussed the optimization of layout edit
distance methodology. The threshold T will influence the
comparison time. We analyze the impact of T on our repos-
itory analysis system RepoEagle. Figure 11 illustrates the
impact of T on the execution time of RepoEagle with di↵er-
ent number of apps in our repository. RepoEagle is deployed
on a server with dual cores 2.80GHz CPU and 4GB mem-
ory. From our experimental result in the previous section,
most of the repackaged apps and phishing malware have a
low LED score. Hence, we choose a small T in RepoEagle

to reduce the detection time.

We compare the performance of RepoEagle and disassembled-
code-based system. In the pre-processing stage, we only
need to extract layout files in apps, while disassembled-
code-based system needs to disassemble compiled Dalvik
bytecodes. Figure 12 shows the performance comparison
between RepoEagle and other disassemble-code-based sys-
tems. We plot the pre-processing time vs. numbers of apps,

0 20 40

200

300

400

500

Number of Nodes in Layout Tree (N )

N
u
m
b
er

of
A
p
p
s

Number of Qualified Apps

0

0.5

1

A
cc
u
ra
cy

Repackaged “Fruit Ninja”

Repackaged “PPS”

Repackaged “Fruit Ninja” with Supplementary Detction

Figure 10: Relationship between threshold and the
number of qualified apps.

0 200 400 600 800 1,000

0

200

400

600

800

Number of Apps

T
im

e
(s
ec
on

d
)

T = 0 T = 1

T = 2 T = 3

T = 4 T = 5

Figure 11: Relationship between threshold and the
analysis time.

which are randomly selected from our repository. RepoEagle
is about two times faster.

4.3.2 HostEagle
HostEagle aims to detect visually similar apps on Android
devices which have limited resources. So we evaluate its
performance on mobile devices. For comparison, we also im-
plement fuzzy hashing algorithm on Android. We compare
the time of hash value generation for detection on an An-
droid device. In the experiment, we use LG Nexus 5 which
has 2.26GHz CPU and 2GB memory with Android 4.4 in-
stalled. We randomly choose eight apps with di↵erent sizes
of DEX files in our repository. Figure 13 depicts the genera-
tion time under di↵erent DEX file sizes. Since fuzzy hashing
algorithm is based on disassembled instructions, the gener-
ation time depends on the size of DEX file. On the other
hand, HostEagle is based on layout files, and the size of
DEX file will not a↵ect the time of hash value generation. In
our experiment, the average hash generation time for fuzzy
hashing is 61.8 seconds per app, while HostEagle only takes
0.8 second. The experiment shows that HostEagle is appro-
priate for malware detection on mobile devices since it takes
much less them to generate a signature hash for detection.
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5. RELATED WORK
In conventional web security, several works [13, 20, 21] fo-
cus on detecting phishing webpages based on visual similar-
ity assessment. Because elements in webpages are di↵erent
from mobile applications, their techniques are not applica-
ble to Android system. For smartphone security, there are
several studies focusing on detecting repackaged apps. All
of them are based on the approach of disassembled Dalvik
bytecode of the apps. DroidMOSS [34] adopts fuzzy hash-
ing [7, 19] to disassembled code for Android repackaged apps
detection. However, the approach is based on pieces of in-
struction sequence, and malware writers can easily obfus-
cate instructions to bypass detection. To make the result
more accurate, DNADroid [10] proposes program depen-
dency graphs and uses subgraph isomorphism algorithm for
similarity comparison to detect cloned apps. But construct-
ing graphs and subgraph comparison are not scalable to an-
alyze a large number of apps in a repository. AnDarwin [11]
designs a detection method and it categorizes statements of
the disassembled code into several semantic types and con-
structs semantic vectors. AnDarwin leverages on a locality
sensitive hashing algorithm to speed up finding similar apps.
ViewDroid [27] proposes feature view graph for detecting
repackaged malware. The feature view graph is based on
the calling relations between user interfaces (UI). However,
phishing malware tend to utilize part of privacy sensitive
UIs (e.g., login UIs) to cheat users. Therefore, the feature
view graph cannot address the privacy leakage problem. In
addition, Zhou et al. [33] propose using the decoupled pro-
gram dependency graph to detect “piggybacked” apps. Jux-
tapp [16] uses machine learning algorithm to cluster similar
apps based on disassembled codes. However, these methods

are highly based on feature selections and learning-based
methods cannot be used for host-based detection.

All the above systems rely on the disassembled codes. There
are several reasons that using disassembled codes for detec-
tion is not su�cient and scalable. Firstly, the file struc-
ture will be di↵erent when hackers add some garbage in-
structions in the repackaged apps, so it is not di�cult to
bypass detection. Secondly, there are approaches [29, 22,
23] to obfuscate disassembled codes or make disassembling
tools crashed. Thirdly, constructing program dependency
graph is time consuming and it is not scalable for large apps
repository analysis, in particular, when we have to deal with
apps repository which has over millions of apps. There-
fore, code-based detection system cannot quickly and accu-
rately detect repackaged apps. Last but not least, because
of the power and computation limitations of smartphones,
the above mentioned approaches cannot be directly applied
to end users’ devices.

Gibler et al. [15] study the impact of Android app pla-
giarism. To prevent application repackaging, AppInk [32]
proposes an algorithm to generate watermark for an app
to prevent repackaging. DIVILAR [31] is proposed to en-
crypt original instructions so that hackers cannot modify or
repackage the application. On devices, DIVILAR interprets
or decrypts these obfuscated instructions and execute at run-
time. However, to make it deployable, DIVILAR needs to
customize the Android firmware so as to add a special in-
terpreter in the Dalvik virtual machine. In summary, app
repackaging is still a challenging and open problem.

6. CONCLUSION
We present a framework to detect visually similar Android
apps. This is important because close to 90% of Android
malware are repackaged apps and phishing malware which
are visually similar to the original and legitimate apps. We
present our detection methodologies based on visual resources.
Based on these methodologies, we implement two systems,
RepoEagle and HostEagle, for repository analysis and host-
based detection respectively. RepoEagle can quickly and
accurately detect visually similar apps within a large app
repository. HostEagle is designed for resource constrained
Android devices, and it can e�ciently detect repackaged
apps or phishing malware upon apps download. We con-
duct extensive experiments to demonstrate the e↵ectiveness
and scalability of our systems. From our experiments, we
show that RepoEagle only needs around 3 hours to detect
1298 visually similar apps from 99 626 apps in our repository,
and HostEagle only takes less than one second to determine
whether a downloaded app is a repackaged app or a phishing
malware.
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