
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023 3153

Dynamic GPU Scheduling With Multi-Resource
Awareness and Live Migration Support

Xiaoyang Wang , Yongkun Li , Fan Guo , Yinlong Xu , and John C. S. Lui , Fellow, IEEE

Abstract—In clouds and data centers, GPU servers with multiple
GPUs are widely deployed. Current state-of-the-art GPU schedul-
ing policies are “static” in assigning applications to different GPUs.
These policies usually ignore the dynamics of the GPU utilization
and are often inaccurate in estimating resource demand before
assigning/running applications, so there is a large opportunity to
further balance the loads and improve GPU utilization. Based
on CUDA (Compute Unified Device Architecture), we develop a
runtime system calledDCUDAwhich supports “dynamic” schedul-
ing of running applications between multiple GPUs. In particular,
DCUDA takes into consideration multidimensional resources, in-
cluding computing cores, memory usage, and energy consumption.
It first provides a real-time and lightweight method to accurately
monitor the resource demand of applications and GPU utilization.
Furthermore, it provides a universal migration facility to migrate
“running applications” between GPUs with negligible overhead.
More importantly, DCUDA transparently supports all CUDA ap-
plications without changing their source code. Experiments with
our prototype system show thatDCUDA can reduce 78.3% of over-
loaded time of GPUs on average. As a result, for different workloads
consisting of a wide range of applications we studied, DCUDA can
reduce the average execution time of general applications by up to
42.1%, and even up to 67% for memory-intensive tasks. Besides,
DCUDA also reduces 13.3% of energy in light-load scenarios.

Index Terms—Dynamic scheduling, GPU scheduling, live
migration, load balance.

I. INTRODUCTION

GRAPHICS Processing Units (or GPUs) are a class of com-
puting devices with massive simple cores and high band-

width memory. They have been widely used in various systems
for efficient parallel computing, such as scientific computing,
image processing, data mining, machine learning, and so on [13],
[28], [40]. In clusters, there are always many GPUs in each node,
to support more powerful computing capacity. However, many
past studies demonstrated that the computing resources of GPUs
are often under-utilized like when running only a single applica-
tion on each GPU [20], [31]. To improve GPU utilization, GPU

Manuscript received 14 December 2022; revised 3 March 2023; accepted
30 March 2023. Date of publication 3 April 2023; date of current version 6
September 2023. Recommended for acceptance by J. Zhai. (Corresponding
author: Yongkun Li.)

Xiaoyang Wang, Yongkun Li, Fan Guo, and Yinlong Xu are with the School
of Computer Science and Technology, University of Science and Technology
of China, Hefei 230026, China (e-mail: wxy1999@mail.ustc.edu.cn; ykli@
ustc.edu.cn; lps56@mail.ustc.edu.cn; ylxu@ustc.edu.cn).

John C. S. Lui is with the Department of Computer Science and Engi-
neering, The Chinese University of Hong Kong, Hong Kong (e-mail: cslui@
cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TCC.2023.3264242

sharing is adopted to run multiple applications concurrently on
each GPU, and this scenario is quite common in the current data
centers and clouds. To better utilize the computing power of
all GPUs in a GPU server, current GPU programming models
(e.g., CUDA for NVIDIA GPUs [3]) provide a functionality for
applications to explicitly select the GPU device on which they
wish to run. However, such user-specified assignments may lead
to severe load imbalance between GPUs due to the unawareness
of the GPU utilization. To further improve the efficiency of GPU
sharing, various scheduling methods are proposed to distribute
GPU resources between tenants or applications to balance the
load between GPUs. Some well-known GPU scheduling meth-
ods are Round-robin scheduling [23], Least-Loaded scheduling
[16], [34], [35], Prediction-based scheduling [39] and so on.
The main goal of these methods is to assign new applications to
proper GPUs, e.g., the Least-loaded scheduling always assigns
new applications to the GPU which has the least load. We call
these methods static scheduling, because they only make the
GPU-application assignment before running the application, and
once an application is assigned to a GPU, it cannot be migrated
to another GPU during its execution.

In this work, we show that the efficiency of GPU sharing is
still limited with static scheduling methods. The deficiency of
static scheduling not only comes from the difficulty of estimating
the exact resource demand of applications before running them,
but also comes from the variability of GPU utilization as well
as the lack of live migration support for running applications. In
particular, our experiments show the case that at least one GPU is
overloaded while some other GPUs are underloaded accounting
for 41.7% of the whole execution time of all applications. The
load imbalance problem not only reduces the GPU utilization but
also significantly prolongs the execution time of applications.
Furthermore, for static scheduling, it is also difficult to detect
real memory usage and memory oversubscription, which also
seriously affect GPU execution performance. Moreover, the
static scheduling methods do not fully explore the potential of
GPU sharing, so the static scheduling solution usually increases
energy consumption of GPUs.

To improve the efficiency of GPU sharing, it is important to
develop a dynamic scheduling method by providing accurate
monitor of GPUs and applications as well as live migration
support for running applications. We emphasize that it is not
an easy task to support “lightweight” monitor and “live” mi-
gration, and several challenges exist. First, current monitoring
tools (e.g., nvprof [6]) collect the trace data of each function
call by replaying APIs, and thus introduce a high performance

2168-7161 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8940-8042
https://orcid.org/0000-0002-3743-8511
https://orcid.org/0009-0007-6842-5899
https://orcid.org/0000-0001-9586-0561
https://orcid.org/0000-0001-7466-0384
mailto:wxy1999@mail.ustc.edu.cn
mailto:ykli@ustc.edu.cn
mailto:ykli@ustc.edu.cn
mailto:lps56@mail.ustc.edu.cn
mailto:ylxu@ustc.edu.cn
mailto:cslui@cse.cuhk.edu.hk
mailto:cslui@cse.cuhk.edu.hk

3154 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

penalty [14]. Therefore, it is challenging to accurately monitor
the utilization of each GPU and the resource demand of each
application without interrupting the running applications so as to
avoid the high overhead. Second, existing programming model
like CUDA (Compute Unified Device Architecture) does not
support live migration, so it is necessary to develop a new live
migration facility to support migrating running CUDA applica-
tions between GPUs, while the key challenging issue is how to
guarantee the same runtime environment and application data
with low overhead. Last but not the least, due to the dynamics
of GPU utilization, determining when and which applications
should be migrated is also challenging, especially with the goal
of balancing both cores and memory utilization, and reducing
the number of migration times and the amount of migration data.

In this work, we design and implement DCUDA, a runtime
system that supports accurately monitoring GPUs’ utilization
and applications’ resource demands with negligible overhead,
provides dynamic scheduling of running applications, and trans-
parently supports live migration for all CUDA applications with
a little overhead. Our main contributions are
� We propose a lightweight computing core monitoring

method by intercepting API calls with wrapper libraries
and tracking the utilization information from the function
parameters. We also propose a novel way to monitor GPU
memory utilization, we check the GPU memory usage on
the CPU side to obtain accurate results with low overhead.
Compared with current monitoring tools like nvprof, our
monitor scheme does not interrupt the running applica-
tions, and incurs negligible overhead, while also achieving
higher than 90% monitoring accuracy.

� We propose a dynamic scheduling mechanism to guar-
antee load balance between GPUs by migrating running
applications from overloaded GPUs to underloaded GPUs.
Besides doing load balance, we also propose two optimiza-
tion techniques to further reduce energy consumption by
compacting lightweight applications and improve fairness
with a priority-based time-slicing policy. We also develop
a memory-concerned scheduling policy to optimize the
performance of memory-intensive applications.

� We develop a live migration facility that is compatible with
all CUDA applications without requiring applications to
modify their source codes. Besides, the time cost of the
live migration task is less than 0.3% of the application
execution time due to our optimization techniques, such as
handle pooling and data prefetching.

� We implement a prototype and conduct experiments to
show the efficiency ofDCUDA. Results show thatDCUDA
reduces 78.3% of overloaded time of GPUs on average. As
a result, DCUDA reduces the average execution time of
general applications by up to 42.1%, even up to 67% for
memory-intensive tasks, and reduces the energy consump-
tion of GPUs by up to 13.3%.

The rest of the paper is organized as follows. In Section
II, we introduce background and analyze the limitations of
the current static scheduling policy, then motivate the design
of DCUDA. In Section III, we present the design details of
DCUDA. In Section IV, we describe the experimental setup and

Fig. 1. System architecture in a GPU cluster.

present the evaluation results. Section V reviews related work
and Section VII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. GPU Sharing

GPU sharing is proposed to fully utilize GPU resources. In
GPU clusters, there are different ways to share GPU resources.
First, we can use a single GPU to run applications concurrently
[43]. Second, in a single GPU node, there might be more than
one GPU installed, and applications in this node share these
GPUs [27], [39]. Finally, clients can manage the whole cluster
as a GPU pool, all nodes with multiple GPUs are shared [16],
[22]. Fig. 1 illustrates the architecture of a GPU cluster which
supports the above three ways of GPU sharing.

In this paper, we focus on the scenario of multiple GPUs
on a single node. To share the resources of multiple GPUs more
easily, unified memory technology [8] provides a single memory
address space to all GPUs and CPUs, with an automatic page mi-
gration for data locality. The page migration engine also allows
GPU threads to trigger page fault when the accessed data does
not reside in GPU memory, and this makes the system efficiently
migrates pages from anywhere in the system to the memory
of GPUs in an on-demand manner, which enables a GPU to
handle larger memory demand than its capacity by memory
swap. DCUDA also takes advantage of the unified memory.

B. GPU Scheduling Schemes and Limitations

To improve the fairness and effectiveness in GPU sharing,
various GPU scheduling methods are proposed, such as Round-
Robin scheduling [23], Least-Loaded scheduling [16], [34],
[35], and Prediction-based scheduling [39], [45]. Round-robin
scheduling uses a round-robin strategy for choosing GPU to
execute a new application. Least-Loaded scheduling assigns the
GPU with the lightest load to run new applications. Prediction-
based scheduling makes scheduling decisions based on work-
load pattern predictions and might focus on certain types of
applications, like deep learning [29], [44], [45]. We point out
that all these methods are static scheduling methods, as they
are responsible for only assigning new applications to different
GPUs before running, and can not dynamically migrate running
applications. Thus, the static scheduling policy still has multiple

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: DYNAMIC GPU SCHEDULING WITH MULTI-RESOURCE AWARENESS AND LIVE MIGRATION SUPPORT 3155

Fig. 2. Load imbalance with Least-Loaded scheduling.

limitations on the GPU sharing performance, including core
utilization, memory utilization, and energy efficiency.

1) Limitation on Load Imbalance of GPU Cores: We find
that load balance could still be greatly improved in GPU sharing
with static scheduling. The main reasons are as follows. First,
it is hard to obtain the exact resource demand of applications
before running them on GPUs, so static scheduling methods
could not find out the most appropriate GPU to assign for a newly
arrived application. Second, GPU utilization is time-varying
due to the dynamic arrivals and departures of applications, but
static scheduling methods cannot migrate running applications
to re-balance loads of GPUs. Third, static scheduling methods
do not distinguish applications with different resource demands,
so applications with low resource demands are often blocked by
applications with high resource demands. All the above prob-
lems may lead to load imbalance between GPUs, which further
causes resource contention on overloaded GPUs and energy
inefficiency on underloaded GPUs. We emphasize that all these
problems may become severe in a multi-tenant GPU-sharing
environment, because applications from different tenants usually
have different resource demands.

To further validate the load imbalance problem of static
scheduling, we conducted experiments to show GPUs’ load by
deploying the Least-Loaded scheduling. We run a workload
consisting of twenty different applications, which arrive with
a fixed interval with the length being smaller than the execution
time of the application (see Section IV-A for details of the
system setup). We use this setup because DCUDA focuses on
the scenario of GPU sharing which inherently has multiple
applications concurrently running on each GPU.

We classify each GPU into three utilization types, i.e., from
0-50% utilization, 50%-100% utilization, up to “overloaded”
which denotes the case in which the total resource demand of
all applications exceeds the resource capacity of the GPU. We
present the fraction of time of being at each utilization type
for each GPU, and the results are shown in Fig. 2. We find
that even with the Least-Loaded scheduling method, it is quite
common to have GPUs at the overloaded state or underloaded
state (i.e., 0-50% utilization). We also find that the case of load
imbalance, in which at least one GPU is overloaded and some
other GPUs are still underloaded, accounts for 41.7% of the
whole execution time. This is because static scheduling can not
migrate running applications from the overloaded GPUs to the
underloaded GPUs.

Fig. 3. Normalized Job finish time in a single GPU for running several times
of a same application.

2) Limitation on Memory Usage: GPU memory capacity is
limited, and it is easy to be over-subscribed when it is shared
among multiple tasks. [26] While memory swap is a feasible
way to guarantee running applications on memory overloaded
GPUs, it has potential performance degradation problems when
too many pages are requested and frequently swapped in and
swapped out, leading to memory access time even longer than
execution time, thus leading to memory thrashing. We empha-
size that thrashing may become more severe in a multi-tenant
GPU-sharing environment because applications usually have
different resource demands and memory access models leading
to unpredictable page replacement requirements.

To further validate the thrashing problem in GPU sharing, we
conduct experiments to show GPUs memory thrashing by con-
sidering the situation when memory is heavy-loaded. As shown
in Fig. 3, we run the same application (alexnet) multiple times,
and it has 80% core utilization and 16% memory utilization
for a single task. We analyze the total job finish time of the
applications in both cases of serially and parallelly running the
application, respectively. In theory, the parallel execution’s job
finish time should be never higher than 100% of the serial run-
ning time However, we find that after the GPU memory is fully
utilized after the memory requirement increases even higher than
150% of the original serial running time. And we also find that
when the memory is not over-subscribed, the increase in the job
finish time does not happen. The main result of the overhead
is caused by memory oversubscribing and thrashing. For the
static scheduling policies, the scheduling design considers only
the core utilization, and they do not take into consideration the
memory usage which may induce the potential performance
problem.

3) Limitation on Energy Consumption: Energy consumption
is a major cost of data centers, and GPUs are the major electricity
consuming devices. To improve the energy efficiency, NVIDIA
GPUs support adaptive management of the energy consumption
[18]. Precisely, a GPU can be configured to run at multiple levels,
and a lower level means lower performance with lower energy
consumption. GPUs will adaptively change their power level
based on their utilization, e.g., when a GPU becomes idle, it
will switch to the lowest level so as to save energy.

To explore the relationship between GPUs’ load and their
energy consumption, we conduct experiments to evaluate the
energy consumption of a GPU by varying the number of appli-
cations simultaneously running on it. As shown in Fig. 4, we find
that running a single application on a GPU, which we call single

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

3156 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

Fig. 4. Energy consumption when run a single application or concurrently run
two applications on a GPU.

execution, usually increases a lot of energy consumption (note
that the GPU power in idle state is around 15W), but running two
applications concurrently, which we call concurrent execution,
only increases the energy consumption a little compared with
a single execution. The main reason is that running a single
application needs to wake up the GPU from the idle state and
increase its clocks, and this consumes a lot of energy. Note
that the applications we tested here are very lightweight, and
running them concurrently on one GPU only causes a small
slowdown in their performance (< 2%). Thus, compacting mul-
tiple lightweight applications to run on fewer GPUs in DCUDA
can improve the overall energy efficiency. We add this part’s
management to DCUDA’s scheduling model.

C. Challenges of Dynamic Scheduling

To further improve load balance and alleviate resource con-
tention between GPUs, we developedDCUDA, a runtime system
that supports the dynamic scheduling of running applications.
The main challenges of DCUDA are as follows.

Selection of Key Factors. The GPU sharing performance
can be influenced by multi-dimensions, like GPU cores, GPU
memory, and GPU transport(I/O), so DCUDA should choose
suitable metrics to balance the complexity and performance in
monitoring and scheduling.

Monitoring GPUs and Applications. DCUDA needs to moni-
tor both GPUs and applications in real-time, and this task can not
be accomplished by current monitor tools, such as nvidia− smi
[4] and nvprof [6]. Specifically, nvidia− smi can only monitor
GPUs but not applications, while nvprof imposes a large over-
head as it collects trace data of each function call by replaying
APIs. Thus, how to accurately monitor applications and GPUs
with low overhead remains challenging.

Live Migration. CUDA and existing studies do not provide a
universal live migration function, and we face three challenges in
the design and implementation of the live migration facility. The
first challenge is to migrate memory data to the target GPU while
keeping the virtual addresses of the data the same as that in the
source GPU. The second one is how to construct a consistent
runtime environment and how to resume the computing tasks
of applications correctly on the target GPU. The third and most
important challenge is that from the perspective of performance,

Fig. 5. DCUDA architecture.

all the above tasks may introduce a large overhead, so only a
lightweight live migration scheme is practical.

Dynamic Scheduling. Dynamic scheduling is more efficient
to achieve higher load balance and better GPU utilization. How-
ever, three problems need to be addressed. First, we need to
be aware of the ping-pong effect to avoid flip-flop migrations.
Second, we need to carefully choose candidate applications
for migration to reduce the number of migrations. Finally, we
need to balance the performance of all applications and avoid
lightweight applications being blocked by heavyweight ones
during live migration.

III. DESIGN OF DCUDA

DCUDA is a CUDA-based GPU-sharing platform that sup-
ports dynamic scheduling of running applications between
GPUs. In this section, we first introduce the overall design of
DCUDA, then present the design details of its key components.

A. Overview of DCUDA

Similar to many other GPU sharing platforms, like DGSF
[19], AvA [46], vCUDA [36], and rCUDA [33] ,DCUDA adopts
a frontend-backend architecture to ease the implementation
while providing full compatibility to all CUDA applications.
As shown in Fig. 5, the frontend of DCUDA is implemented as
a CUDA wrapper library, which dynamically links user applica-
tions and intercepts CUDA API calls. The backend is realized
as a daemon responsible for receiving GPU requests from the
frontend, dispatching CUDA API calls to the corresponding
GPUs, and returns error codes and/or output parameters to the
frontend. In particular, DCUDA consists of three modules in
the backend to realize its key features: Monitor, Scheduler, and
Migrator. The Monitor tracks the real-time utilization of GPUs
and the resource demand of each application from intercepted
API calls. The Scheduler dynamically schedules running ap-
plications by taking advantage of the monitored information to
balance the load between multiple GPUs. Finally, the Migrator is
responsible for migrating CUDA applications between different

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: DYNAMIC GPU SCHEDULING WITH MULTI-RESOURCE AWARENESS AND LIVE MIGRATION SUPPORT 3157

GPUs, including cloning runtime, replicating memory data, and
computing tasks.

B. Key Factors

To efficiently schedule jobs between GPUs, there are multiple
resource requirement factors to be concerned, for example,
Liquid [21] uses a resource requirement vector including GPU
computing power, GPU memory, and network bandwidth and
proposes a network-efficient scheduling solution to improve
the execution performance of DL jobs. So before introducing
the design of DCUDA, we first discuss about the performance
metrics that must be considered in the monitor and scheduling,
and we conclude that it is important to simultaneously pay
attention to multiple resources of GPUs in DCUDA design, e.g.,
the computing cores, GPU memory, and energy consumption.

The first key factor is the GPU computing core. In Section
II-B1, we have illustrated the GPU load imbalance through
core usage, showing that computing core is the central metric
for GPU sharing, so it is the key factor being considered in
DCUDA scheduling policy design. That is, DCUDA takes into
consideration the core usage, and takes it as the most important
scheduling metric.

The second factor is GPU memory. For many GPU tasks,
especially for deep learning applications, GPU memory require-
ment in clusters significantly increases under the growth of the
computing model and the input data size. So we have to also
pay attention to the memory utilization of GPU sharing, by
developing memory concerned design and implementation in
DCUDA, we can alleviate the memory thrashing effect showing
in Section II-B2 and further improve the stability of GPU sharing
system.

The third factor is energy consumption. In Section II-B3,
we have illustrated the potential energy-efficient optimization
on GPU memory scheduling, which is both economical and
challenging. DCUDA also considers this challenge, to provide
not only high performance but also energy-efficient scheduling
design.

We now discuss the NUMA (Non-Uniform Memory Access)
effect when scaling up the number of GPUs in a node. In this
case, it is inevitable to face the scenario that GPUs are connected
with different CPUs (called different NUMA regions), thus
causing cross-CPU passing latency. As shown in Fig. 1, GPUs
connected with the same CPU have nearly 2× larger transmis-
sion bandwidth compared to the GPUs which are connected
across CPU-QPI transmission, because the data transmission
path includes two CPUs, while the transmission between GPUs
within the same NUMA region can be finished by two GPUs
using GPU p2p technology and it bypasses CPUs.
DCUDA does not consider the NUMA effect. The main reason

is that transmission across NUMA regions is not critical for
DCUDA, due to the use of the optimization methods like handle
pool and asynchronous migration. We find that the average
transmission time cost is less than 100 milliseconds for a 12GB
GPU migration, which accounts for only 0.01% - 0.3% of the
total execution time. Thus, we do not consider the NUMA effect
on the transmission overhead when optimizing GPU scheduling
within a node.

C. The Monitor

The Monitor needs to track two kinds of information in real-
time, the utilization of each GPU and the resource demand of
each application, both on cores and memory.

1) Monitoring the Usage of GPU Cores: We first show how
to monitor the core demands of each application. Note that
in CUDA applications, most computing tasks of an applica-
tion are performed by kernel functions. Thus, we can obtain
applications’ demands of GPU cores by evaluating the occu-
pancy of GPU cores and the execution time of each kernel
function, which can be obtained with the timer function. The
kernels’ occupancy of GPU cores can be estimated by using
cuOccupancyMaxActiveBlocksPerMultiprocessor() as well as
some parameters of the kernel functions, including the pointer of
the kernel function, the number of blocks, the number of threads
per block, and so on.

However, evaluating the occupancy of GPU cores each time
when a kernel function is called will severely degrade the appli-
cations’ performance, e.g., it may cause 20%-30% performance
slowdown. To handle this problem, DCUDA evaluates a kernel
function and records its information when it is called the first
time, and uses this recorded information when the kernel is
called again with the same system parameters (e.g, the number
of threads). The rationale is that GPU applications are usually
iteration-based computing, so they may call the same kernel
function many times. With this method, DCUDA can still accu-
rately monitor the usage of GPU cores with a small overhead.

On the other hand, to monitor the realtime utilization of each
GPU, DCUDA uses a thread to periodically scan the resource
demand of each application, and then aggregates them together.
We point out that this thread introduces negligible overhead and
its accuracy is guaranteed by the accuracy of monitoring each
application.

In summary, by tracking only the parameters of API calls
with some optimizations, DCUDA can monitor both GPUs
and applications with high accuracy and negligible overhead,
before the tasks’ execution. Different from the high overhead in
traditional monitoring tools using API-replying like nvprof [14],
our experiment results validate that DCUDA brings very little
overhead. Meanwhile, it achieves higher than 90% accuracy.

2) Monitoring the Usage of GPU Memory: A CUDA appli-
cation allocates most of its needed GPU memory with APIs
like cuMemAlloc(), so we can obtain the allocated memory size
and the range of virtual addresses from the parameters of the
allocation APIs, and futher aggregate them to get the GPU deive
memory utilization. However, not all allocated GPU memory
would be used by the application and unified memory only
maps virtual addresses to physical GPU memory when they
are being accessed by the application. For example, in some
machine learning platforms implemented based on the CUDA
libraries, such as Tensorflow [10] and theano [13], applications
usually allocate the whole GPU memory, while they may only
use a very small portion of it. To avoid prefetching unused data,
we need to detect the actual usage of GPU memory.

To detect the actual usage of GPU memory, we propose a
monitoring method by checking whether the memory page is
zero-paged, that DCUDA will mark the zero page as a free page

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

3158 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

Fig. 6. Scheduling flow of DCUDA.

no matter whether this page is allocated or not. This method
mainly has two challenges. The first one is the page-fault allo-
cation and external kernel function cost caused by GPU memory
check. The second one is the high memory access cost for the
whole memory space. We use a CPU-side monitor approach and
sample-based design to solve these problems.

When the monitor is trying to access GPU memory to check
zero-page, page-fault will be triggered and the accessed memory
page will be truly mapped on the GPU, which may be a serious
waste before the application’s access. In addition, GPU-side
memory access should run a kernel function on the GPU device,
leading to frequent switches of kernel execution contexts, and
finally, prolonging applications’ execution time. To overcome
this problem, DCUDA makes use of the unified memory’s char-
acteristics. By accessing GPU memory at the CPU side, the
monitor can call a memory access function at the CPU side to
check GPU memory’s status, so it has no effect on GPU kernel
execution, and because of remote memory access, no external
GPU memory mapping will happen in the monitored process,
and there is no GPU memory being wasted.

For the other challenge, i.e., the large overhead caused by
checking all memory pages, we use a sampling method to reduce
the monitor overhead. Specifically, we sample memory usage
information with fixed step size (i.e., 8 MB). For every 8 MB
region, we only check one page, and randomly check a page in
the 8MB region. We find that this monitor step size is suitable
for realizing high accuracy and low latency. This result is also
used in migration, if this page is being used, then we migrate the
whole 8 MB region data via prefetching.

The memory monitor also supports collection of each GPU’s
memory utilizatiom, like the core monitor, it first collects mem-
ory demand of each application, by recording applications’
allocated memory regions, and then aggregates them to each
GPU, which can be higher than 100% when swap happening.

D. The Scheduler

DCUDA develops a scheduler to manage running applications
on GPUs (see Fig. 6), and it considers core utilization, memory
utilization, energy-efficient and fairness.

First, in the core-based scheduling part, DCUDA decides
the candidate applications to be migrated from an overloaded

GPU to an underloaded GPU so as to achieve dynamical load
balance. DCUDA adopts hysteresis control to manage the load
balancing operation and uses a greedy policy to determine
the applications to be migrated. These methods can efficiently
reduce the overloaded time of GPUs, prevent flip-flop migrations
(the “ping-pong” effect) and reduce the migration times as well
as the number of migrated applications.

After doing load balancing, it is still possible for GPUs
to be either overloaded with heavyweight applications, or un-
derloaded with multiple lightweight applications. So DCUDA
further explore the opportunity of additional optimizations.
DCUDA energy-efficient scheduling part leverages energy
awareness by compacting several lightweight applications on
underloaded GPUs. AndDCUDA fairness-based scheduling part
ensures the fairness of applications by adopting a priority-based
time slicing policy to schedule the applications concurrently
running on the same GPU.

Finally, because memory influences the performance only
when thrashing happens, we split the memory scheduling as
an external module. When potential thrashing is detected, the
memory scheduling part will take effect and influence other
parts in the scheduling work flow, including static scheduling,
load balancing and fairness scheduling. In the following, we
introduce the details of each part.

1) GPU Core Awareness: Note that the first key issue in
scheduling is to balance the loads of cores between GPUs. So
in this part, we just focus on the utilization on computing cores,
as shown in Algorithm 1. First, we need to find out a core over-
loaded GPU and a core underloaded GPU, and then shift some
tasks from the overloaded one to the underloaded one. However,
to realize this idea, an underloaded GPU may become over-
loaded right after the migration, and then it may trigger another
migration immediately. To alleviate this kind of “ping-pong”
effect, DCUDA leverages hysteresis control to classify GPUs
into three states with two threshold parameters, Threshover

and Threshunder, according to their utilization. Specifically, if
the utilization of a GPU is greater than Threshover, then we
classify this GPU as an overloaded GPU, and if the utilization
is smaller than Threshunder, then we say this GPU is under-
loaded. Otherwise, we consider this GPU to be in a normal state.
Based on this classification,DCUDA checks every pair of GPUs,
and selects a pair as candidate for live migration if one GPU is
overloaded and the other is underloaded. By defining a normal
state,DCUDA can avoid GPUs changing too frequently between
overloaded state and underloaded state, and thus alleviates the
“ping-pong” effect.

After selecting a pair of candidate GPUs, it is also important to
determine which applications on the overloaded GPU should be
migrated to the underloaded GPU. The goal is to migrate as few
applications as possible so as to reduce the number of migrations
which directly affects the migration overhead. DCUDA uses a
greedy policy to balance the load between the GPUs by always
choosing the most heavyweight and feasible application for
migration, i.e., the application which has the largest resource
demand but will not make the underloaded GPU become
overloaded if it is migrated. Finally, DCUDA adds all selected
applications into a candidate list to wait for real migration. Note

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: DYNAMIC GPU SCHEDULING WITH MULTI-RESOURCE AWARENESS AND LIVE MIGRATION SUPPORT 3159

Algorithm 1: GPU Core Awareness Scheduling.
candidate = new(List), util = 0
//GPUList is descending order by CoreUtil
//Select over from the start and under from the end
for all i in [1, 2, . . . , len(GPUList)/2] do
over, under = GPUList[i], GPUList[−i]
if under.CoreUtil < Threshunder &
over.CoreUtil > Threshover then

//TaskList is descending order by CoreUtil
for all task in over.TaskList do

c = under.CoreUtil + task.CoreUtil + util
if c < Threshover then

candidate.add(task)
util += task.CoreUtil

end if
end for
Migrate(under, over, candidate)

end if
end for

that the greedy policy tries to migrate heavyweight applications
first and tries to migrate as many applications as possible in one
operation so as to reduce the overhead.
DCUDA’s load balancing algorithm can scale for a larger

number of GPUs with little overhead. Although we scan every
pair of GPUs to find candidates for migration, we only perform
migration between overloaded and underloaded GPUs based
on the scheduling priority and only introduce a little scanning
overhead.

2) Energy Awareness: As mentioned before, static schedul-
ing methods usually assign applications to all GPUs to achieve
better performance. However, such an assignment makes all
GPUs active, even though some of them may be under-utilized,
e.g., when the whole system load is low. Even in the heavy
load case, the load-balancing operation only reduces the load
on overloaded GPUs, but it may still leave some GPUs being
underloaded.

On the other hand, the energy consumption of GPUs depends
on their load, e.g., a GPU which stays in the idle state consumes
only a little energy, but running even a single application on it
may increase the energy consumption a lot as it needs to wake
up the GPU from the idle state. However, running one more
application on active GPUs only increases the energy consump-
tion a little, comparing to the energy consumption caused by
waking up from the idle state. Thus, compacting lightweight
applications to run on fewer GPUs and letting more GPUs stay
idle will save a lot of energy.

To achieve this goal, after calling the load-balancing opera-
tion, DCUDA further scans all GPUs and finds the two most
under-loaded GPUs. If the applications running on the two
GPUs can be compacted together to run on only one GPU, then
DCUDA migrates the applications from one GPU to the other
and let one GPU stay idle, as shown in Fig. 7. DCUDA repeats
the above steps until no GPU pair can be compacted. We like
to emphasize that this energy-aware scheduling is performed

Fig. 7. Energy aware scheduling.

Fig. 8. Fairness aware scheduling.

after load balancing, and more importantly, it does not affect
the performance as the compaction is performed only when
the computing resource demand of these applications can be
satisfied by one GPU.

3) Fairness Awareness: The load balancing operation can
only reduce the variance of loads between GPUs, and it is still
possible that some GPUs are overloaded after load balancing.
When multiple applications with very different resource core
demands running on a single overloaded GPU, the applications
with low resource demand are harder to compete for a fair
share of computing resource and result in a very long execution
time. Thus, how to ensure fairness among multiple applications
concurrently running on overloaded GPUs is also important.
DCUDA uses a priority-based time slicing policy to guarantee
the fairness.

First, DCUDA divides time into many slices (i.e., 100ms)
and classifies applications on an overloaded GPU into multiple
groups. Then DCUDA allocates time slices equally to each
group, and allows only one group of applications to run at each
time slice, as shown in Fig. 8.

To decide which applications belonging to a group, the key
principle is to make sure that the applications in same groups
should try to fully use resources and not cause severe compe-
titions on computing resources. So the total resource demand
of the applications in a group should be close to the total
computing power of the GPU as much as possible. DCUDA
also allow the total demand to slightly exceed the computing
power for the consideration of GPU utilization, for example,
one application with 100% resource requirement and one with
5% can be compact into one group, instead of letting 5% usage
application exclusive using resources in one group.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

3160 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

TABLE I
PRIORITY IN DCUDA SCHEDULING PAIR SELECTION (CHOOSE PAIR WITH THE

HIGHEST PRIORITY DIFFERENCE AND MIGRATE FROM HIGHER PRIORITY TO

LOWER PRIORITY ONE)

Note that though allowing group’s demand to slightly exceed
GPU computing power can improve utilization, it may still lead
to the problem of unfair competition between applications within
the same group. To handle this problem, DCUDA dynamically
adjusts the priority of applications within the same group, set
higher priority to applications with low resource demand to
increase their share of computing resource so as to guarantee a
fair competition. This priority scheme does not cause significant
slowdown on the performance as low resource demand tasks
only need a little GPU resource to complete their computing
tasks.

4) Memory Awareness: Last but not least, as we mentioned
before, memory over-subscription is a potential performance
bottleneck because of the page thrashing problem. To solve this
performance challenge, we propose the memory-aware schedul-
ing. It works only when memory overloading happens and if
not, the scheduling policy will return to the previous three parts
without external performance influence. The key design is to
reduce the proportion of memory overloaded time by restricting
the memory usage when designing the scheduling policies.

On the one hand, DCUDA uses a memory-concerned least-
loaded static policy before the dynamic scheduling. When a new
task arrives, the scheduler will choose candidates from devices
with enough free memory space as the first priority, and if there
is no suitable device, then it returns all the devices as candidates.
After generating candidates, we use the normal least-loaded
static policy to select the device to load. DCUDA uses a static
watermark to determine whether it has a chance to encounter
memory thrashing, e.g., the device with memory usage higher
than 90%, and DCUDA will not choose the devices having the
risk of thrashing as the candidate.

On the other hand, in the load balance part, both core and
memory are considered in the scheduling, so DCUDA provides
a dynamic scheduling policy by giving a priority definition as
shown in Table I, and uses scheduling progress as shown in
Algorithm 2. We think that the device with both core and memory
being overloaded is the most critical candidate, then we focus on
the device with core overloaded becauseDCUDA takes the cores
as the highest priority for scheduling, and finally we consider the
devices with only memory being overloaded. DCUDA selects a
candidate GPU pair according to the above defined priority, the
GPU pair has the largest difference of priorities will be chosen.
When there are multiple pairs with the same difference value,
we choose the pair with the highest difference of core utilization.
After choosing a candidate GPU pair,DCUDA selects migration
tasks by predict the memory usage, according to the memory
monitor, and prevent overloaded and “ping-pong” effect.

Algorithm 2: Core and Memory Awareness Scheduling.
candidate = new(List), utilcore = 0, utilmem = 0
//GPUList is ascending order by Priority
//Select over from the start and under from the end
for all i in [1, 2, . . . , len(GPUList)/2] do
over, under = GPUList[i], GPUList[−i]

isCorePair=under.CoreUtil < Threshunder &
over.CoreUtil > Threshover

isMemPair=under.MemUtil < Threshmem &
over.MemUtil > Threshmem

if isCorePair || isMemPair then
//TaskList is descending order by CoreUtil
for all task in over.TaskList do
c = under.CoreUtil + task.CoreUtil + utilcore
m =
under.MemUtil + task.MemUtil + utilmem

if c < Threshover & (m < Threshmem ||
under.MemUtil > Threshmem) then

candidate.add(task)
utilcore += task.CoreUtil
utilmem += task.MemUtil

end if
end for
Migrate(under, over, candidate)

end if
end for

Moreover, in the fairness aware part, when applications on
overloaded GPU are split into different groups, a group with the
total memory usage being larger than the GPU memory is also
unsuitable, so we will limit each group’s memory requirement
to be lower than 100%. The same consideration is used in the
energy aware part,DCUDA prevents the total memory cost from
being larger than 100% in compaction to a single GPU. This two
part is easy to understand, as Figs. 7 and 8 shown, the GPU space
in illustrate means both GPU core and memory resource in the
memory awareness model.

E. The Migrator

The Migrator is responsible for performing live migration of
specified applications from source GPU to target GPU. We note
that our live migration method only migrates the unlaunched ker-
nels, i.e., the kernels which have not been launched to GPUs. But
we emphasize that it is still necessary to migrate the unlaunched
kernels. Because lots of kernels are blocked in the CPU side due
to various synchronous operations.

As illustrated in Fig. 9, the key issues and challenges of
the live migration are (1) how to efficiently clone a consistent
runtime environment on the target GPU? (2) how to reduce the
overhead of migrating memory data? and (3) how to guarantee
the consistency of the computing tasks contained in a running
application after migration?

1) Cloning Consistent Runtime Environment: By analyzing
CUDA applications, we find that the runtime environment of
an application includes kernel binaries, streams, and relevant

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: DYNAMIC GPU SCHEDULING WITH MULTI-RESOURCE AWARENESS AND LIVE MIGRATION SUPPORT 3161

Fig. 9. Process of live migration.

libraries’ handles, such as cublas handle, cudnn handle, cufft
handle and so on. These variables hold all the management
data which controls and uses GPUs. Thus, to clone a consistent
runtime environment, we first initialize all needed libraries and
create new handles of these libraries on target GPU, then copy
the configuration information from the corresponding variables
on the source GPU. In addition, we need to register the binary of
kernel functions so that they could be called by the applications
on target GPU.

Note that we also discovered that cloning runtime causes a
large overhead, and it mainly comes from libraries initialization,
and in particular, the time needed by initializing the necessary
libraries of an application may be as high as 200 ms - 400 ms,
which accounts for more than 80% of the total cloning time. To
reduce this overhead, we employ a handle pooling technique by
maintaining a pool of libraries’ handles for each GPU which
initializes libraries and creates handles at background. During
the cloning, DCUDA can immediately fetch the handles of
required libraries from the handle pool, instead of creating new
handles.

To reduce the overhead caused by registering the binaries of
kernel functions, considering that many binaries may not be
needed by the remaining tasks of an application after being mi-
grated to the target GPU, so DCUDA uses an on-demand policy
to register the binary of kernel functions. Specifically, DCUDA
maintains a copy of the binary of kernel functions required
by applications in CPU memory and records the relationship
between each binary and its corresponding kernel function.

2) Migrating Memory Data: Note that the key challenge of
live migration is to migrate memory data, because it requires
to keep the virtual memory addresses of the application data on
target GPU being exactly the same as those on source GPU.
DCUDA addresses the issue of preserving the same virtual
memory addresses by leveraging unified memory. Specifically,
when an application is triggered to be migrated, we just need to
guarantee all the memory of this application is allocated with the
unified memory, and we can run tasks of this application on the
target GPU immediately without explicitly migrating data first,
as shown in Fig. 10. Accessing data not residing on the target
GPU causes page fault which triggers data migration.

However, two problems need to be addressed when taking use
of unified memory. The first problem is that most applications
do not allocate GPU memory with unified memory. To trans-
parently support unified memory in these applications, DCUDA

Fig. 10. Data migration with unified memory.

Fig. 11. Procedure of migrating tasks.

intercepts all GPU memory allocation APIs and replaces them
with unified memory allocation APIs, and finally returns unified
pointers to applications.

The second problem is that on-demand migration with the
support of unified memory may trigger many page faults, which
also introduce a large overhead. To mitigate this problem,
DCUDA uses a thread at background to asynchronously prefetch
data to the target GPU, and the overhead of moving data is hidden
in the computation time. Furthermore, this way of prefetching
also eliminates data migration overhead across NUMA regions
so that DCUDA does not need to take into consideration the
transmission latency across NUMA regions when doing migra-
tion.

3) Resuming Computing Tasks: An application may consist
of multiple computing tasks (i.e., kernels), and these tasks are
usually submit to GPUs in batches. As a result, when migrating
a running application, it is possible that some of the computing
tasks are still running, which we call “running tasks”, but others
are waiting for execution, which we call “waiting tasks”. That
is, the running tasks have been submitted to GPU but have
not completed the computation, and the waiting tasks are still
waiting to be submitted. Thus, we need to migrate all waiting
tasks to the target GPU and wait for the running tasks to finish
first so as to preserve the executing order of all computing tasks.
DCUDA uses two techniques to guarantee the executing order

of computing tasks as shown in Fig. 11. DCUDA first sends a
synchronization command to the source GPU to wait for the
completion of all running tasks, then resumes the waiting tasks
on the target GPU to preserve the executing order between
running tasks and waiting tasks. Besides, DCUDA preserves the
executing order among waiting tasks by managing all waiting
tasks with a FIFO-queue based on their submitted order during

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

3162 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

TABLE II
BENCHMARKS

the synchronization. Note thatDCUDA needs to replace the han-
dles used by the waiting tasks with new handles belonging to the
target GPU. After the migration completes, the corresponding
resources on source GPU will be released.

IV. EVALUATION

To evaluate DCUDA, we implemented a prototype based on
CUDA toolkit 8.0. For comparison, we also implemented the
Least-Loaded scheduling scheme in our prototype, because it is
the most practical and efficient scheme within the class of static
scheduling algorithms and has been widely studied in gCloud
[16], Rain [34], and Strings [35]. In particular, we evaluate
DCUDA to answer the following questions.
� How large are the overheads of CPU cycles and system

memory introduced by DCUDA (Section IV-B)?
� How much improvement can DCUDA achieve for load

balance between GPUs (Section IV-C1) and reduction of
application execution time (Section IV-C2)?

� How much improvement can DCUDA achieve for fairness
and QoS between applications (Section IV-C3)?

� What is the impact of different load levels on the perfor-
mance and the energy saving of DCUDA (Section IV-D1)?

� How is the efficiency of the memory concerned scheduling
in DCUDA, and how does it improve the load balance and
the speed up the application execution (Section IV-D2)?

A. Setup

We conducted our experiments on a server with two Intel Xeon
E5-2620 v4 2.10 GHz processors, 64 GB system memory, and
four NVIDIA 1080Ti GPUs, which are based on the PASCAL
architecture and interconnected with PCIe. Each GPU has 3,584
computing cores and 12 GB memory.

We select twenty distinct benchmark programs taken from the
CUDA Samples [2], SHOC [15], and Tensorflow Benchmarks
[7]. Table II lists all of the workloads used in our evaluation. We
emphasize that these benchmarks represent a majority of GPU
applications, including high performance computing (Matrix-
Mul), data mining (Kmeans), machine learning (Mnist_mlp),
graph Algorithm (BFS), and deep learning (Mnist_cnn) [2], [7],
[15].

Since we focus on the scenario of GPU sharing which natu-
rally requires multiple applications concurrently run on a GPU
server node, we evaluate DCUDA by generating a workload
which combines all the twenty benchmark programs together.
Precisely, we sequentially submit the twenty benchmark pro-
grams to the prototype system with a fixed time interval, and
let them compete for the GPU resources. The interval is set as
5s by default in our core-intensive experiment on Section IV-C,
smaller than the executing time of a benchmark program (around
30s) so as to simulate a medium-weight workload, and the length
of the arrival interval is adjusted to show different load levels
impact on DCUDA (see Section IV-D1). We select 50 random
application arrival sequences in all 20! (2.43e18) possible se-
quences to evaluate DCUDA.

The threshold settings are chosen by heuristics based on
experimental results. We set the threshold Threshover as 100%
default, and for Threshunder, considering that as long as the
GPU utilization is smaller than 100%, it has a chance to be
further improved, so we set default Threshunder as 90% so
as to achieve high GPU utilization. These threshold parameters
are verified to work well for many applications. And we set the
monitoring interval as 100ms.

Note that in this task setting, the requirements of memory in
most times are lower than the memory capacity of the GPUs.
Thus, for these workloads, the memory scheduling part will not
take effect, we call these tasks core-intensive workloads, so as
to differentiate the scenarios of memory heavy loads. We will
evaluate the performance under memory heavy workloads in
Section IV-D2.

B. Overhead of DCUDA

Overhead of Monitoring and Scheduling. We first evaluate the
overhead of CPU cycles and memory usage caused by the mon-
itoring and scheduling processes in DCUDA. Our experiments
show that DCUDA uses no more than 0.2% CPU and consumes
around 7MB system memory only. This is mainly because our
monitoring and scheduling mechanisms are both lightweight,
e.g., our monitoring scheme just tracks the usage information
from the parameters of API calls and uses CPU-side access to
bypass GPU cores, and the scheduling mechanism only needs to
run when some GPUs become overloaded, so they only consume
a few CPU cycles. In terms of memory overhead, DCUDA only
needs to keep the metadata of each application, including handle
pointers, kernel binaries and so on, so the metadata size is small
compared to the whole memory size. In summary, the memory
and CPU overheads of DCUDA are both negligible. We point
out that the lightweight monitoring scheme in DCUDA also
achieves very high accuracy, due to page limit, we do not show
this result, and instead, we show the improvement of DCUDA in
load balancing which relies on the accurate monitoring results
(see Section IV-C1).

Overhead of Unified Memory. Next, we also evaluate the
performance loss caused by the support of unified memory in
all scheduling applications. The performance slowdown caused
by unified memory is within 1% in most test cases, and the
average performance loss is 0.96%. Thus, the overhead of unified

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: DYNAMIC GPU SCHEDULING WITH MULTI-RESOURCE AWARENESS AND LIVE MIGRATION SUPPORT 3163

Fig. 12. Reduction of migration overhead with DCUDA.

memory can be negligible, compared with the improvement
brought by DCUDA (see Section IV-C2).

Overhead of Live Migration. We further evaluate the time
overhead of the live migration process with DCUDA, and com-
pare it with NVCR [30], which is also a live migration approach.
The migration overhead is measured as the percentage of the
time for one single migration to the total execution time of
each application. The results are shown in Fig. 12, we can
see that DCUDA uses less than 100 milliseconds to migrate a
running application, which accounts for only 0.01% - 0.3% of the
total execution time of an application. In general, DCUDA can
reduce up to 97.4% migration overhead compared with NVCR.
Because the overhead of cloning runtime environment already
becomes negligible due to the handle pooling technique used
by DCUDA, and the overhead of migrating data can be hidden
in the execution of computing tasks with the on-demand data
migration technique.

More importantly, NVCR cannot work correctly in the GPU
sharing scenario for scheduling applications, because it adopts
the replaying technique to keep virtual address unchanged after
migration, specifically, it replays memory-related API calls on
the target GPU. However, in GPU sharing scenarios, some
virtual addresses may be occupied by other applications, so
NVCR cannot work correctly. DCUDA is the first work which
supports universal live-migration and it can work well in all
scenarios, including GPU sharing with multi-tenants.

C. Performance Under Core-Intensive Workloads

The main benefit of DCUDA is to balance the loads on
GPU cores via dynamic scheduling, so we first evaluate the
performance of DCUDA under core-intensive workloads, and
we compareDCUDAwith the Least-Loaded scheduling scheme.

1) Improvement of the Load Balance of GPU Cores: We
classify each GPU into three states like in Section II-B, based
on its utilization, which is the ratio of the computing resource
demand of all applications running on the GPU to its resource
capacity, i.e., 0%-50% utilization, 50%-100% utilization, and
overloaded state, and show the fraction of time of being at each
state for each GPU. We only show the results under one sequence
of applications in Fig. 13, and the results are similar for other
sequences.

From Fig. 13(a), we find that when using the Least-Loaded
scheduling, GPUs are very likely to become overloaded, e.g.,

Fig. 13. Load of GPU under one application sequence.

Fig. 14. GPU utilization under different app. sequences.

the overloaded time of each GPU accounts for 14.3% - 51.4%
of the whole running time. And the utilization of other GPUs
may be very low (< 50%) for a long time even some GPUs are
already overloaded.

As shown in Fig. 13(b), under the same workload, DCUDA
significantly improves the load balance between GPUs com-
pared to the Least-Loaded scheduling. Specifically, DCUDA
reduces the overloaded time of GPUs by 79.5%, and improves
overall GPU utilization by 38.1%. Moreover, the overloaded
time of each GPU is always within 6% and the underloaded time
of each GPU is also greatly reduced. The main reason of this
improvement is that DCUDA can migrate running applications
from overloaded GPUs to underloaded GPUs when overload or
underload situation occurs.

We further evaluate the performance of DCUDA in load
balancing under all 50 application sequences. Fig. 14(a) shows
the average GPU utilization and Fig. 14(b) shows the proportion
of overloaded time. We can see that DCUDA can achieve a
large improvement in load balancing under all workloads. In
particular, comparing with the Least-Loaded scheme, DCUDA
can improve the GPU utilization by 14.6% and reduce the
overloaded time by 78.3% on average.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

3164 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

Fig. 15. Average execution time of applications under different application
sequences.

2) Execution Time Reduction: In this section, we evaluate
the benefit that comes from the improvement of core load
balance by comparing the average execution time of applications
under different general application sequences. We normalize the
execution time of applications to their single execution. The
results are shown in Fig. 15. We can see that DCUDA can
reduce the average execution time of all applications by up to
42.1% compared to the Least-Loaded scheduling. Moreover,
DCUDA achieves a more stable performance across different
workloads, e.g., the difference of the average execution time
of different workloads is always within 20%. This is because
DCUDA achieves better load balance and mitigates resource
contentions between applications.

3) Improvement of QoS and Fairness: Besides the execution
time, Quality of Service(QoS) and fairness are also two impor-
tant metrics to measure the efficiency of scheduling methods.
First, we analyze the performance degradation of each appli-
cation in a shared scenario compared to its single execution. If
the performance degradation is less than 20%, we see that the
QoS requirement is satisfied. We count the proportion of appli-
cations which can satisfy the QoS requirement under different
application sequences. The results are shown in Fig. 16(a). We
observe that across the 50 application sequences, on average,
more than 80% of the applications achieve the QoS goal using
DCUDA, and for some sequences, the proportion of applications
that satisfy the QoS requirement is up to 100%.

Next, we use the Jain’s fairness index to measure the fairness
between applications with different scheduling methods. Jain’s
fairness index is a number between zero and one [24], and one
indicates perfect fairness (i.e., concurrent executing processes
experience equal performance slowdown), while zero indicates
no fairness at all. We evaluate the fairness index of applications
under different sequences and show the results in Fig. 16(b).
From the figure, we find that DCUDA can improve the fair-
ness index by 12.1% on average compared with Least-Loaded
scheduling. Furthermore, the fairness index under DCUDA is
very close to one, which means that DCUDA almost guarantees
the perfect fairness.

D. Performance Under Different Workloads

In this subsection, we evaluate DCUDA on different core and
memory demands to further show the effectiveness of DCUDA.

1) Impact of Heavy Loads on GPU Cores: Note thatDCUDA
reduces the execution time of applications by balancing the

Fig. 16. QoS and fairness under different app. sequences.

Fig. 17. Reduction of the execution time of applications with DCUDA under
different loads.

loads between GPUs to improve GPU utilization, so clearly
the improvement of DCUDA may depend on the load levels
of applications submitted to GPUs. To show the effectiveness
of DCUDA, we consider different load levels by adjusting the
time interval of application arrivals. In particular, we vary the
length of the arrival interval from 7s, 5s to 3s to represent the
cases of light load, medium load, and heavy load. The results
of execution time are shown in Fig. 17. We can see that the
improvement of DCUDA, which is measured by the reduction
of average execution time of applications, is the largest under
medium load. The reason is that if all GPUs are overloaded or all
are underloaded, then there is not much room to further improve
GPU utilization by balancing the load, so the benefit of dynamic
scheduling should decrease. However, DCUDA still achieves a
large improvement in a wide range of load levels, because the
scenario of load imbalance is usually very common.

We also show the improvement of DCUDA in energy saving
by comparing the energy consumption of all GPUs withDCUDA
and Least-Loaded scheduling. The results are shown in Table III.
We can see thatDCUDA can save more energy if the system load

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

WANG et al.: DYNAMIC GPU SCHEDULING WITH MULTI-RESOURCE AWARENESS AND LIVE MIGRATION SUPPORT 3165

TABLE III
REDUCTION OF THE ENERGY CONSUMPTION OF APPLICATIONS WITH DCUDA

UNDER DIFFERENT LOADS

Fig. 18. Memory load of each GPU.

is lighter, which is 13.3% in the light load case in our setting. This
is because when more GPUs are underloaded in the light load
case, DCUDA has more opportunities to compact applications
to run on fewer GPUs and make more GPUs stay at idle so as
to save more energy. However, with the increase of system load,
the opportunity to compact multiple applications to fewer GPUs
also decreases, and this is the scenario in which load balancing
operation can play an important role.

2) Impact of Heavy Loads on Memory: To further show the
performance improvement benefited from the memory schedul-
ing policy in DCUDA, we select a set of workloads which have
heavy loads on memory, including 12 times alexnet (each needs
6GB memory), 15 times vgg (each needs 7 GB) and 8 times
Mnist_cnn (each needs 5 GB) [7], [9], so it requires 300%
more memory than the actual GPU memory. We sequentially
submit these applications to the DCUDA prototype system with
a fixed time interval, which is set as 4 seconds. We select 20
random arrival sequences to evaluate DCUDA with and without
the memory scheduling.

Improvement of Balancing Memory Load. We first evaluate
the improvement of DCUDA in memory load balance. We clas-
sify each GPU into four states based on its utilization, which
is the ratio of the memory demand of all applications running
on the GPU to its memory capacity, and show the fraction time
of being at each state for each GPU. Like Section IV-C1, we
only show the results under one sequence of applications, other
sequences have similar results. From Fig. 18(a), when using
DCUDA without memory scheduling, GPUs are very likely to
become overloaded, e.g., the overloaded time of GPU0 and
GPU1 accounts for over than 40% of the whole running time.
The utilization of other GPUs like GPU3 is very low (< 50%) for
a long time even some GPUs are already overloaded. As shown
in Fig. 18(b), under the same workload, DCUDA improves
the memory load balance between GPUs compared to the one
without memory scheduling, the overloaded time of each GPU
reduces to under 20%. The main reason of this improvement is
that DCUDA’s memory scheduling policy can reduce the time
when memory is overloaded by migration.

Reduction of Execution Time. We now evaluate the benefit
that comes from the memory load balance improvement by

Fig. 19. Reduction of the execution time in the situation when memory is
heavy-loaded.

comparing the total execution time of applications under dif-
ferent application sequences. We normalize the execution time
of applications to least-loaded scheduling execution time. The
results are shown in Fig. 19. DCUDA can reduce the average
execution time of all applications by up to 67% compared to
that of the Least-Loaded scheduling, and the lower bound of the
speedup is higher than 30%. This is because DCUDA reduces
the overloaded time and eliminates overhead of memory swap
and memory thrash.

V. RELATED WORK

GPU Scheduling. To improve GPU utilization in shared en-
vironment, many scheduling schemes are proposed to schedule
applications between multiple GPUs, including Round-Robin
scheduling [23], Least-Loaded scheduling [16], [34], [35], and
Prediction-based scheduling [39]. In gCloud [16], Khaled et al.
find that Least-Loaded scheduling can improve the performance
of applications by 10.3% than Round-Robin policy. Sengupta et
al. [34] also employ a weighted version of the Least-Loaded
policy to schedule applications between GPUs by taking into
account the different capability of each GPU in a heterogeneous
system. Yash et al. [39] develop Mystic, which predicts the
resource demand of applications to guide scheduling, while this
scheme requires to pre-execute applications for five seconds,
and thus brings a large overhead.

GPU Virtualization. For cloud providers, virtual machines
should have isolated GPU devices to use, but exclusively using
GPU resources will cause serious waste by traditional PCIe
passthrough for GPU virtualization [1]. And Full-virtualization
[25], [38], mediated pass-through [32], [38], para-virtualization
[17] and SR-IOV [5] techniques have limitations prevent them
to be actually used in cloud environments, like elasticity and
portability, more optimization is needed [47]. API remoting
[33], [42], [46] is another choice of virtualization technique
that interposes a user-mode API to client-side, and forwards
calls to server-side, with more flexibility and controllability. For
containerized environments, API remoting calls are used more
frequently. DGSF [19] optimize API-remoting specifically for
the serverless functions, and Fluid [22] is a novelty cloud-native
platform for DL training, with optimized scheduling scheme
under the concern of data cache.

Resource Monitoring. Resource monitor is necessary to get
the runtime resource utilities and requirements for efficient
scheduling in a multi-task system. The traditional way is to

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

3166 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 11, NO. 3, JULY-SEPTEMBER 2023

use hypervisor-level monitors like kubectl and cAdvisor, and
GPU resource statistics tools like nvidia-smi with negligible
overhead[11], [12], [41]. If more precise monitor results are
needed, API-replaying monitors like nvprof [6] may cause se-
rious performance influence, while API remoting platforms can
collect forwarded API calls and collect information lightly[19],
[46]. For certain scenarios like DL, more monitor metrics are
needed [42], [44], [45], like Synergy [29] profiles the sensitivity
of DNNs to auxiliary resources and allocates them dispropor-
tionately among jobs.

Live Migration. Live migration is an important feature in GPU
sharing systems, which has been widely used for fault tolerance
and load balance. Takizawa et al. first propose CheCUDA [37]
which provides checkpoint and restart library for CUDA applica-
tions, but CheCUDA requires re-compilation of the application’s
source code and can not handle software in binary format. NVCR
[30] also provides a live migration approach for CUDA appli-
cation which works transparently without re-compiling source
codes. In particular, NVCR can keep virtual address unchanged
after migration by replaying memory allocation APIs in order
on the target GPU.

VI. DISCUSSION AND FUTURE WORK

DCUDA also has some limitations. For one thing, the current
version of DCUDA only supports APIs in CUDA toolkit 8.0.
As most of the common API (e.g., cuLaunchKernel, cuMalloc,
cuMemAdvise) and the GPU thread and memory model are not
changed from CUDA 8.0 to the latest version, we believe that
DCUDA’s scheduling design can work well on the new version,
and the challenge mainly comes from DCUDA’s limited API
remoting technical support. As DCUDA adds APIs by hand,
keeping the client-side interception library up-to-date is not an
easy job with the API number increasing, e.g., the basic CUDA
Driver API Manual extending from CUDA 8.0 with 359 pages
to CUDA 12.0.1 with 629 pages. In the future, we will research
how to automatically collect all APIs supporting different types
of parameters and generate the API remoting library without
manually writing thousands of lines of code, given the latest
CUDA library.

For another,DCUDA only performs migration and scheduling
between GPUs intra a server. We will study live migration and
scheduling techniques for GPUs across different servers in our
future work.

VII. CONCLUSION

In this paper, we proposed DCUDA which supports dynamic
scheduling of running applications between GPUs and is fully
compatible to all CUDA applications. In particular, DCUDA
accurately and efficiently estimates the resource demand of
applications and GPU utilization with a lightweight scheme,
and dynamically migrates running applications to achieve load
balance between GPUs and improve GPU utilization. With
DCUDA, both the execution time of applications and the energy
consumption of GPUs can be significantly reduced.

REFERENCES

[1] Cloud computing is still dangerously underutilized, 2017. [Online].
Available: https://gigenet.com/blog/underutilizing-cloud-computing-
resources/

[2] CUDA samples, 2023. [Online]. Available: http://docs.nvidia.com/cuda/
cuda-samples/index.html

[3] CUDA toolkit, 2023. [Online]. Available: https://developer.nvidia.com/
cuda-toolkit

[4] nvdia-smi, 2023. [Online]. Available: https://developer.nvidia.com/
nvidia-system-management-interface

[5] NVIDIA GRID, 2023. [Online]. Available: https://www.nvidia.com/en-
us/data-center/virtual-gpu-technology/

[6] nvprof, 2023. [Online]. Available: http://docs.nvidia.com/cuda/profiler-
users-guide/index.html

[7] Tensorflow benchmarks, 2023. [Online]. Available: https://github.com/
tensorflow/benchmarks

[8] Unified memory on pascal, 2016. [Online]. Available: https://devblogs.
nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/

[9] VGG 16, 2016. [Online]. Available: https://github.com/ry/tensorflow-
vgg16

[10] M. Abadi et al., “TensorFlow: A system for large-scale machine learning,”
in Proc. 12th USENIX Conf. Operating Syst. Des. Implementation, 2016,
pp. 265–283.

[11] H. Albahar, S. Dongare, Y. Du, N. Zhao, A. K. Paul, and A. R. Butt,
“SchedTune: A heterogeneity-aware GPU scheduler for deep learning,”
in Proc. IEEE 22nd Int. Symp. Cluster Cloud Internet Comput., 2022,
pp. 695–705.

[12] T. Allen, X. Feng, and R. Ge, “Slate: Enabling workload-aware efficient
multiprocessing for modern GPGPUs,” in Proc. IEEE Int. Parallel Distrib.
Process. Symp., 2019, pp. 252–261.

[13] J. Bergstra et al., “Theano: Deep learning on GPUs with python,” in Proc.
NIPS, BigLearning Workshop, Citeseer, 2011, vol. 3.

[14] L. Braun and H. Fröning, “CUDA flux: A lightweight instruction profiler
for CUDA applications,” in Proc. IEEE/ACM Perform. Model. Benchmark-
ing Simul. High Perform. Comput. Syst., 2019, pp. 73–81.

[15] A. Danalis et al., “The scalable heterogeneous computing (SHOC) bench-
mark suite,” in Proc. 3rd ACM Workshop Gen.-Purpose Comput. Graph.
Process. Units, 2010, pp. 63–74.

[16] K. M. Diab, M. M. Rafique, and M. Hefeeda, “Dynamic sharing of GPUs
in cloud systems,” in Proc. IEEE 27th Int. Parallel Distrib. Process. Symp.
Workshops PhD Forum, 2013, pp. 947–954.

[17] M. Dowty and J. Sugerman, “GPU virtualization on VMware’s hosted
I/O architecture,” SIGOPS Oper. Syst. Rev., vol. 43, no. 3, pp. 73–82,
Jul. 2009.

[18] M. Ferro et al., “Analysis of GPU power consumption using internal
sensors,” in Proc. Anais do XVI Workshop em Desempenho de Sistemas
Computacionais e de Comunicação, 2017.

[19] H. Fingler, Z. Zhu, E. Yoon, Z. Jia, E. Witchel, and C. J. Rossbach, “DGSF:
Disaggregated GPUs for serverless functions,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp., 2022, pp. 739–750.

[20] C. Gregg, J. Dorn, K. M. Hazelwood, and K. Skadron, “Fine-grained
resource sharing for concurrent GPGPU kernels,” in Proc. 4th USENIX
Conf. Hot Topics Parallelism, 2012, Art. no. 10.

[21] R. Gu et al., “Liquid: Intelligent resource estimation and network-
efficient scheduling for deep learning jobs on distributed GPU clusters,”
IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 11, pp. 2808–2820,
Nov. 2022.

[22] R. Gu et al., “Fluid: Dataset abstraction and elastic acceleration for cloud-
native deep learning training jobs,” in Proc. IEEE 38th Int. Conf. Data
Eng., 2022, pp. 2182–2195.

[23] E. Hermann, B. Raffin, F. Faure, T. Gautier, and J. Allard, “Multi-GPU
and multi-CPU parallelization for interactive physics simulations,” in Proc.
Eur. Conf. Parallel Process., Springer, 2010, pp. 235–246.

[24] R. Jain, D.-M. Chiu, and W. Hawe, “A quantitative measure of fairness
and discrimination for resource allocation in shared systems,” Digital
Equipment Corporation, Maynard, MA, USA, Tech. Rep. DEC-TR-301,
1984.

[25] J. Song, Z. Lv, and K. Tian, “KVMGT: A full GPU virtualization solution,”
KVM Forum, 2014. [Online]. Available: http://www.linux-kvm.org/page/
KVM_Forum_2014

[26] A. K. Kulkarni and B. Annappa, “GPU-aware resource management
in heterogeneous cloud data centers,” J. Supercomput., vol. 77, no. 11,
pp. 12458–12485, Nov. 2021.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

https://gigenet.com/blog/underutilizing-cloud-computing-resources/
https://gigenet.com/blog/underutilizing-cloud-computing-resources/
http://docs.nvidia.com/cuda/cuda-samples/index.html
http://docs.nvidia.com/cuda/cuda-samples/index.html
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface
https://www.nvidia.com/en-us/data-center/virtual-gpu-technology/
https://www.nvidia.com/en-us/data-center/virtual-gpu-technology/
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
http://docs.nvidia.com/cuda/profiler-users-guide/index.html
https://github.com/tensorflow/benchmarks
https://github.com/tensorflow/benchmarks
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://devblogs.nvidia.com/beyond-gpu-memory-limits-unified-memory-pascal/
https://github.com/ry/tensorflow-vgg16
https://github.com/ry/tensorflow-vgg16
http://www.linux-kvm.org/page/KVM_Forum_2014
http://www.linux-kvm.org/page/KVM_Forum_2014

WANG et al.: DYNAMIC GPU SCHEDULING WITH MULTI-RESOURCE AWARENESS AND LIVE MIGRATION SUPPORT 3167

[27] C. Li et al., “Priority-based PCIe scheduling for multi-tenant multi-GPU
systems,” IEEE Comput. Archit. Lett., vol. 18, no. 2, pp. 157–160, Jul.–
Dec. 2019.

[28] N. Maruyama, T. Nomura, K. Sato, and S. Matsuoka, “Physis: An implic-
itly parallel programming model for stencil computations on large-scale
GPU-accelerated supercomputers,” in Proc. Int. Conf. High Perform.
Comput. Netw. Storage Anal., 2011, pp. 1–12.

[29] J. Mohan, A. Phanishayee, J. Kulkarni, and V. Chidambaram, “Look-
ing beyond GPUs for DNN scheduling on Multi-Tenant clusters,”
in Proc. USENIX Conf. Operating Syst. Des. Implementation, Carlsbad,
CA, USENIX Association, 2022, pp. 579–596.

[30] A. Nukada, H. Takizawa, and S. Matsuoka, “NVCR: A transparent
checkpoint-restart library for NVIDIA CUDA,” in Proc. IEEE Int. Symp.
Parallel Distrib. Process. Workshops Phd Forum, 2011, pp. 104–113.

[31] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative preemption
for multitasking on a shared GPU,” ACM SIGARCH Comput. Architecture
News, vol. 43, no. 1, pp. 593–606, 2015.

[32] B. Peng, H. Zhang, J. Yao, Y. Dong, Y. Xu, and H. Guan, “MDev-NVMe:
A NVMe storage virtualization solution with mediated Pass-Through,”
in Proc. USENIX Annu. Tech. Conf., Boston, MA, USENIX Association,
2018, pp. 665–676.

[33] J. Prades and F. Silla, “GPU-job migration: The rCUDA case,” IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 12, pp. 2718–2729, Dec. 2019.

[34] D. Sengupta, R. Belapure, and K. Schwan, “Multi-tenancy on GPGPU-
based servers,” in Proc. 7th ACM Int. Workshop Virtualization Technol.
Distrib. Comput., 2013, pp. 3–10.

[35] D. Sengupta, A. Goswami, K. Schwan, and K. Pallavi, “Scheduling multi-
tenant cloud workloads on accelerator-based systems,” in Proc. IEEE Int.
Conf. High Perform. Comput. Netw. Storage Anal., 2014, pp. 513–524.

[36] L. Shi, H. Chen, J. Sun, and K. Li, “vCUDA: GPU-accelerated high-
performance computing in virtual machines,” IEEE Trans. Comput.,
vol. 61, no. 6, pp. 804–816, Jun. 2012.

[37] H. Takizawa, K. Sato, K. Komatsu, and H. Kobayashi, “CheCUDA: A
checkpoint/restart tool for CUDA applications,” in Proc. IEEE Int. Conf.
Parallel Distrib. Comput. Appl. Technol., 2009, pp. 408–413.

[38] K. Tian, Y. Dong, and D. Cowperthwaite, “A full GPU virtualization
solution with mediated Pass-Through,” in Proc. USENIX Annu. Tech.
Conf., Philadelphia, PA, USENIX Association, 2014, pp. 121–132.

[39] Y. Ukidave, X. Li, and D. Kaeli, “Mystic: Predictive scheduling for GPU
based cloud servers using machine learning,” in Proc. IEEE Int. Parallel
Distrib. Process. Symp., 2016, pp. 353–362.

[40] M. Vogelgesang, S. Chilingaryan, T. dos_Santos Rolo, and A. Kopmann,
“UFO: A. scalable GPU-based image processing framework for on-line
monitoring,” in Proc. IEEE 9th Int. Conf. Embedded Softw. Syst. IEEE
14th Int. Conf. High Perform. Comput. Commun., 2012, pp. 824–829.

[41] W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep learn-
ing,” in Proc. 13th USENIX Conf. Operating Syst. Des. Implementation,
USA. USENIX Association, 2018, pp. 595–610.

[42] W. Xiao et al., “AntMan: Dynamic scaling on GPU clusters for deep
learning,” in Proc. USENIX Conf. Operating Syst. Des. Implementation,
USA, USENIX Association, 2020, Art. no. 30.

[43] T. T. Yeh, A. Sabne, P. Sakdhnagool, R. Eigenmann, and T. G. Rogers,
“Pagoda: A GPU runtime system for narrow tasks,” ACM Trans. Parallel
Comput., vol. 6, no. 4, Nov. 2019, Art. no. 21.

[44] G. Yeung, D. Borowiec, A. Friday, R. Harper, and P. Garraghan, “Towards
GPU utilization prediction for cloud deep learning,” in Proc. 12th USENIX
Conf. Hot Topics Cloud Comput., USA, USENIX Association, 2020,
Art. no. 6.

[45] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and P. Garraghan,
“Horus: Interference-aware and prediction-based scheduling in deep learn-
ing systems,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 1, pp. 88–100,
Jan. 2022.

[46] H. Yu, A. M. Peters, A. Akshintala, and C. J. Rossbach, “AvA: Accelerated
virtualization of accelerators,” in Proc. 25th Int. Conf. Architectural Sup-
port Program. Lang. Operating Syst., New York, NY, USA, Association
for Computing Machinery, 2020, pp. 807–825.

[47] H. Yu and C. J. Rossbach, “Full virtualization for GPUs reconsidered,”
in Proc. Annu. Workshop Duplicating, Deconstructing, Debunking, 2017.

Xiaoyang Wang received the bachelor’s degree in
computer science and technology from USTC, in
2020. He is now working toward the PhD degree
with the School of Computer Science and Technol-
ogy, University of Science and Technology of China.
His research interests include distributed operating
system, especially memory management for various
systems like GPU computing, RDMA remote mem-
ory and so on.

Yongkun Li received the BEng degree in computer
science from USTC, in 2008, and the PhD degree in
computer science and engineering from The Chinese
University of Hong Kong, in 2012. He is currently
an associate professor with the School of Computer
Science and Technology, University of Science and
Technology of China. After that, he worked as a
postdoctoral fellow with the Institute of Network
Coding, The Chinese University of Hong Kong. His
research mainly focuses on memory and file systems,
including key-value systems, distributed file systems,

as well as memory and I/O support for different applications.

Fan Guo received the PhD degree from the University
of Science and Technology of China, in 2019, and now
he works with the VirtAI Technology Corporation.
His main research interests are algorithm and system
optimization for AI accelerator, virtualization, and
operating system.

Yinlong Xu received the BS degree in mathematics
from Peking University, in 1983, and the MS and PhD
degrees in computer science from the University of
Science and Technology of China (USTC), in 1989
and 2004, respectively. He is currently a professor
with the School of Computer Science and Technol-
ogy, USTC, and is leading a research group in doing
some networking and high performance computing
research. His research interests include network cod-
ing, storage systems, as well as design and analysis
of parallel algorithms, etc.

John C. S. Lui (Fellow, IEEE) received the PhD de-
gree in computer science from the University of Cali-
fornia at Los Angeles. He is currently the Choh Ming
Li chair professor with the Department of Computer
Science and Engineering, The Chinese University of
Hong Kong. His current research interests include
machine learning, online learning, network science,
future Internet architectures and protocols, network
economics, network/system security, and large-scale
storage systems. He is an elected member of the IFIP
WG 7.3, a fellow of the ACM, and a senior research

fellow of the Croucher Foundation.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 25,2024 at 03:14:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

