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Abstract. Rust is a promising system-level programming language that
can prevent memory corruption bugs using its strong type system and
ownership-based memory management scheme. In practice, programmers
usually write Rust code in conjunction with other languages such as
C/C++ through Foreign Function Interface (FFI). For example, many
notable projects are developed using Rust and other programming lan-
guages, such as Firefox, Google Fuchsia OS, and the Linux kernel.
Although it is widely believed that gradually re-implementing security-
critical components in Rust is a way of enhancing software security, how-
ever, using FFI is inherently unsafe. In this paper, we show that memory
management across the FFI boundaries is error-prone. Any incorrect
use of FFI may corrupt Rust’s ownership system, leading to memory
safety issues. To tackle this problem, we design and build FFIChecker,
an automated static analysis and bug detection tool dedicated to mem-
ory management issues across the Rust/C FFI. We evaluate our tool by
checking 987 Rust packages crawled from the official package registry and
reveal 34 bugs in 12 packages. Our experiments show that FFIChecker
is a useful tool to detect real-world cross-language memory management
issues with a reasonable amount of computational resources.
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1 Introduction

Rust is an emerging programming language that is famous for its strong security
guarantees and high performance. Many companies and open source communities
have been re-writing their software in Rust in an incremental manner, i.e., while
most of the source code remains intact, some security-critical components are
re-written in Rust. For example, Firefox contains a considerable amount of Rust
code [4], and the Linux kernel is in the process of integrating Rust as its second
language for kernel development [21,30]. New Rust projects also usually integrate
with third-party C/C++ libraries to avoid reinventing the wheels. Rust can be
used in conjunction with other languages because it supports Foreign Function
Interface (FFI), which enables Rust to call external interfaces and exchange
arbitrary data.
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The incremental development of Rust code is widely believed to improve the
security of software. However, calling external code is inherently unsafe in Rust
because the Rust compiler cannot perform security checks across the FFI bound-
aries. Programmers may accidentally misuse the unsafe abilities that lead to vul-
nerabilities. In addition, different assumptions made by different languages make
it possible for attackers to maneuver between the FFI boundaries and exploit
these vulnerabilities [24]. Recent empirical studies [12,41] have shown that the
incorrect use of FFI is one of the most significant causes of real-world memory-
safety bugs. Even for Rust packages written in pure safe Rust (i.e., without using
FFI), they may still be affected because they may depend on other packages
that include FFI. According to our statistics (Sect. 2.2), among around 77, 000
packages on the official Rust package registry1, more than 72% of the packages
depend on at least one package that contains unsafe FFI calls. Therefore exclud-
ing FFI is unrealistic in the current Rust ecosystem; instead, people have made
lots of efforts to secure the use of FFI. For example, the Rust community has
drafted several guidelines for writing unsafe code, including FFI [34,36,37,39].
Some Rust packages such as rust-bindgen and safer ffi can automatically
generate FFI, preventing developers from misusing it. However, they can only
help developers to write correct interfaces with appropriate data types. Mem-
ory corruption caused by heap memory allocation/deallocation across the FFI
boundaries remains an open problem. Moreover, Rust has a unique ownership
system for memory management (Sect. 2.1), which creates its own paradigm of
memory safety issues [22,31,41]. Hence existing works on misusing FFI for other
memory-safe programming languages [19,20] such as Java and Python are no
longer applicable.

In this paper, we study the security impacts of heap memory management
issues across the FFI boundaries, especially those caused by the combination
of Rust’s ownership-based memory management and C/C++’s manual memory
management. To tackle this problem, we propose to use static analysis tech-
niques to detect potential memory management bugs across the FFI bound-
aries. Our method is based on the theory of Abstract Interpretation [7–9]. We
design an augmented taint analysis algorithm to keep track of the states of heap
memory, which captures the paradigms created by the ownership-based memory
management. We implement our tool called FFIChecker, which automatically
collects all the generated LLVM intermediate representation (IR) for both Rust
and C/C++ code, then performs static analysis and outputs diagnostic reports.
Security analysts can then inspect the reports and determine whether there are
any real bugs. Our evaluation shows that FFIChecker can successfully detect
real-world memory safety issues within acceptable time and with reasonable pre-
cision. To our knowledge, our work is the first effort that addresses the memory
management issues across FFI boundaries in Rust programs.

We summarize our contributions as follows.

– We show the potential security and memory management issues when pro-
grammers intermix Rust and C/C++ via FFI.

1 https://crates.io.

https://crates.io
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– We propose an augmented abstract domain that captures the memory states
in the ownership-based memory management scheme.

– We design and build FFIChecker, an automated static analyzer that can
detect potential memory management bugs across the FFI boundaries in Rust
packages and report informative diagnostic messages. The source code is avail-
able online2, which can be the basis of other research in the future.

– We perform extensive evaluations in the Rust ecosystem. We evaluate 987
packages crawled from the official package registry and detect 34 bugs among
12 packages. All the detected bugs have been manually confirmed and reported
to the authors and 15 of them have been fixed at the time of writing.

2 Background

In this section, we provide the background knowledge needed to understand the
rest of the paper. We first introduce the Rust programming language and its
security guarantees. Then we illustrate the prevalence of FFI and how Rust’s
memory management scheme interacts with it.

2.1 The Rust Programming Language

Rust is famous for its ability to build high-performance and secure programs.
As a strongly-typed and compiled language, its rigorous type system and the
unique ownership system enforce strict disciplines to eliminate memory safety
issues. The ownership system is an automated memory management strategy
derived from linear logic [13] and linear types [40]. Under the ownership system,
each value has a unique owner (called owner variable), which keeps track of the
lifetime of the value. Once the owner variable goes out of its scope, the ownership
system automatically releases the memory allocated for the value. Note that the
scope of each variable is determined at compile time so that the Rust compiler
can insert appropriate memory reclamation routines to the generated binary.
Thus neither reference counting nor garbage collection is needed. This enables
Rust to build fast programs since no runtime overhead is introduced.

To pass a value to other parts of code, one can either copy/clone, move, or bor-
row the owner variable. Copying/cloning is usually used for data types that have
semantics where copying their bytes is a valid way of creating a real copy, e.g.,
basic data types like integers. For more complicated data types, especially those
that maintain internal heap memory (e.g., vectors), Rust’s assignments move the
ownership by default. After the ownership is moved, due to the uniqueness of the
owner, the previous owner is immediately invalidated. A value can also be bor-
rowed by taking a reference of it, through which the value can be temporarily
accessed without changing the ownership. The references can be either mutable or
immutable. The Rust type system regulates that there are no “mutable aliases”,
meaning that a read-only value can be immutably referenced multiple times; when
the value is writable, only one mutable reference is allowed at a time.
2 https://github.com/lizhuohua/rust-ffi-checker.

https://github.com/lizhuohua/rust-ffi-checker
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The Rust compiler enforces the above rules to make security guarantees as
follows. On the one hand, since the ownership system keeps track of the life-
time of each value, it ensures that the lifetime of a reference cannot exceed the
value it points to. Therefore memory safety issues caused by dangling point-
ers such as use-after-free can be effectively prevented. On the other hand, since
the ownership system eliminates mutable aliases, many security issues caused
by concurrent reading/writing, such as race conditions and iterator invalidation,
are avoided.

2.2 Foreign Function Interface (FFI) and Memory Management

As a system-level programming language, Rust can easily collaborate with other
languages through the Foreign Function Interface (FFI). In this paper, we con-
sider the case where the external code is written in C/C++ since this is the most
common usage of FFI. Integrating Rust code with C/C++ code is prevalent and
necessary because (1) Many C/C++ projects integrate Rust into existing code-
bases (e.g., the Linux kernel and Firefox) to enhance their security. (2) It can
avoid duplicated work and benefit from the rich ecosystem of libraries written
in C/C++. (3) C/C++ can be used for performance-critical scenarios.

However, since the Rust compiler cannot reason about the security of external
code, calling FFI is inherently unsafe. Programmers need to explicitly use the
unsafe keyword to bypass the security check enforced by the compiler. Therefore,
using FFI is extremely error-prone. Existing studies [12,24,41] have shown that
the incorrect use of FFI has become a severe source of memory safety bugs.

We would like to point out that even if programmers restrict themselves in
pure safe Rust, their programs may still implicitly rely on FFI through depen-
dencies. In fact, we find that more than 72% of packages on the official Rust
package registry (crates.io) depend on at least one unsafe FFI-bindings pack-
age, as shown in Fig. 1. The data is crawled by reading the metadata of reverse
dependencies3 on crates.io. Among all the 76, 894 packages, we start from all the
packages that are of category “external-ffi-bindings” (900 packages). These pack-
ages contain direct Rust FFI bindings to libraries written in other languages,
often denoted by a “-sys” suffix. Then we collect all the reverse dependencies
of them and repeat this process to get multi-level dependencies. As a result, the
number of packages converges at the 10th level, with a total of 55, 762 packages
(55, 762/76, 894 ≈ 72.52%). Note that the “external-ffi-bindings” category by no
means includes all the FFI binding libraries since many packages’ categories are
not tagged properly, hence the actual percentage can only be higher.

Since the manual memory management in C/C++ is naively unsafe, in this
paper, we only consider the case where the heap memory is allocated in Rust and
passed to C/C++. There are two ways of passing a heap-allocated object across
FFI: (1) by borrowing the object as a reference, (2) by moving the ownership to
the FFI. For borrowing as a reference, the ownership remains on the Rust side, so
the ownership system is responsible for releasing the memory after it goes out of

3 As of February 14, 2022.

https://crates.io
https://crates.io
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Fig. 1. Number of packages that depend on unsafe FFI

its scope. For moving the ownership, one can first “forget” it from the ownership
system, then pass it to the FFI via a raw pointer. The Rust standard library
provides several functions to “forget” an object, e.g., std::mem::forget and
Box::into raw. In this case, the responsibility of memory management returns
back to the programmers, who have to take extra care because the ownership
system no longer takes charge.

3 Security and Memory Management Issues via FFI

To explain why the memory management across the FFI boundaries may lead
to security vulnerabilities and how the Rust ownership system gets involved,
we give several bug examples detected by FFIChecker. We also categorize the
vulnerabilities caused based on our observations: (1) common memory corrup-
tion, (2) exception safety, and (3) undefined behavior caused by mixing memory
management mechanisms.

3.1 Memory Corruption

When heap memory is passed across the FFI boundaries, the ownership system
cannot guarantee its safety. Therefore the responsibility of memory management
returns back to the programmers, meaning that all kinds of common memory
corruption bugs that happen in C, like use-after-free, double free, and memory
leak, still exist. Listing 1 shows a memory leak found in package emd4. In Rust,
Box is a smart pointer type used to securely manage heap memory. The developer
uses Box::into raw to expose the raw pointer of the heap memory managed by
the Box in order to pass it to the FFI. However, after using Box::into raw, the
ownership system will “forget” the memory and hence will not automatically

4 https://crates.io/crates/emd.

https://crates.io/crates/emd
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reclaim it. Instead, the developer is responsible for releasing the memory previ-
ously managed by the Box. Otherwise, there will be a memory leak.

1 let mut cost = Vec::with_capacity(X.rows());

2 for x in X.outer_iter() {

3 let mut cost_i = Vec::with_capacity(Y.rows()); // Allocate a vector

4 for y in Y.outer_iter() {

5 cost_i.push(distance(&x, &y) as c_double);

6 }

7 // Forget the memory using `Box::into_raw`

8 cost.push(Box::into_raw(cost_i.into_boxed_slice()) as *const c_double);

9 }

10

11 // Call FFI function

12 let d = unsafe { emd(X.rows(), weight_x.as_ptr(), Y.rows(), weight_y.as_ptr(), cost.as_ptr(), null())

};↪→

Listing 1: Box::into raw leaks memory but it is not released by the developer.

3.2 Exception Safety

Unlike many other programming languages, Rust does not support the
try-catch statement for catching “exceptions”. Instead, Rust provides a more
reliable error handling mechanism: All recoverable errors must be handled or
propagated back to the caller function, and all unrecoverable errors are handled
by terminating the execution and unwinding the stack. All the stack objects’
destructors will be called during the stack unwinding to prevent resource leakage.
However, when passing heap memory across the FFI boundaries and cooperat-
ing with external code, developers usually have to transiently create unsound
states via unsafe code (e.g., creating temporarily uninitialized data). Then after
the external code finishes, developers manually clean up the states. If some error
happens in between, the execution stops and the stack is unwound, so the clean-
up procedure will not be executed. The remaining unsound state may cause
security issues.

Listing 2 gives an example found in package libtaos5. At line 2, variable
params is initialized by allocating heap memory. The memory is passed to FFI
in the following unsafe block in lines 3–8. Note that the question mark operator
(?) at lines 5 and 7 means that if the operation fails, the function returns early
and propagates the error to the caller function. Therefore, the memory may be
leaked if the function returns early and hence the free function at line 10 will
not be called.

3.3 Mixing Memory Management Mechanisms

It is common that some C libraries provide functions for construct-
ing/destructing data structures (usually implemented through malloc and
5 https://crates.io/crates/libtaos.

https://crates.io/crates/libtaos
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1 pub fn bind(&mut self, params: impl IntoParams) -> Result<(), TaosError> {

2 let params = params.into_params();

3 unsafe {

4 let res = taos_stmt_bind_param(self.stmt, params.as_ptr() as _);

5 self.err_or(res)?;

6 let res = taos_stmt_add_batch(self.stmt);

7 self.err_or(res)?;

8 }

9 for mut param in params {

10 unsafe { param.free() };

11 }

12 Ok(())

13 }

Listing 2: When errors happen, bind returns before calling free.

free). To reuse these libraries, Rust developers usually implement Rust wrap-
pers to handle these C APIs. One possible error is mixing different memory allo-
cation/deallocation procedures provided by different languages. For example, it
is illegal to allocate memory on the Rust side using Box and release it on the C
side using free. Mixing different memory management mechanisms is undefined
behavior, because (1) Rust and C may use different memory allocators. (E.g., on
Linux, Rust can be configured to use jemalloc, while C uses ptmalloc by default.)
(2) Rust and C have totally different memory management mechanisms and they
operate on different levels. Specifically, Rust calls the constructors/destructors
for constructed objects while C only deals with raw memory.

Listing 3 shows an example of mixing the memory management mechanisms
of Rust and C, found in package jyt6. At line 5, a string is constructed through
CString::new, which internally allocates memory on the heap using Rust’s own
memory allocator. Then at line 7, the string is explicitly leaked by mem::forget,
and a raw pointer that points to the string is returned (line 8). Finally, at
line 16, the heap memory is freed by the standard C function free. Note that
the heap memory is obtained through Rust’s allocator but freed on the C side
through function free. This may lead to allocator corruption since the Rust
code is compiled as a library and may be used in multiple projects with different
memory allocators. Even if this may “work” in practice, it is undefined behavior
and hence it is not guaranteed to work on other machines or on newer compilers.

3.4 Our Methodology

Based on the above motivating examples, we propose to use static analysis to
detect these bugs because static analysis can examine every control flow path in
a program and catch all potential bugs. It is especially appropriate for catching
defects in exceptional situations because they are hard to be triggered with
normal execution paths. At a high level, our approach does the following: We
first compile both the Rust and C/C++ code into LLVM IR. Then we perform

6 https://crates.io/crates/jyt.

https://crates.io/crates/jyt
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1 // Rust code:

2 pub unsafe extern "C" fn to_json(from: ext::Ext, text: *const c_char) -> *const c_char {

3 ... ...

4 // CString internally allocates heap memory

5 let output = CString::new(ext::json::serialize(&value.unwrap()).unwrap()).unwrap();

6 let ptr = output.as_ptr();

7 mem::forget(output); // Memory is "forgotten" by the ownership system

8 ptr // The raw pointer will be passed across the FFI boundary

9 }

10

11 // C code:

12 int main() {

13 ... ...

14 const char* output = to_json(Yaml, input);

15 ... ...

16 free((char*)output); // Memory allocated in Rust is freed by free()

17 return 0;

18 }

Listing 3: Memory allocated on the Rust side but is freed on the C side.

static analysis on the LLVM IR and keep track of the states of all the heap
memory allocations, i.e., while the heap memory is propagated among the control
flow graph, we determine whether it is borrowed or moved. Finally, if any heap
memory is passed across the FFI boundaries, we continue to analyze whether it
is freed in the external code. Depending on its state, we can find out whether the
memory is incorrectly managed and generate diagnostic messages accordingly.

4 System Design

In this section, we show the high-level architecture of FFIChecker and elaborate
on the functionality of each component. The workflow of FFIChecker is depicted
in Fig. 2. The whole system consists of three parts: (1) the user interface and the
driver program, (2) the entry point and foreign function collector, and (3) the
static analyzer and bug detector.

4.1 User Interface

The goal of the user interface is to get a Rust package being analyzed from the
user and prepare all the ingredients that the static analyzer requires, such as the
LLVM bitcode and a set of appropriate entry points. Then it works as a driver
program that delegates the remaining procedures to other components. The user
interface takes a Rust package as input, which contains one or many Rust crates
and C/C++ source files (if they exist). A crate is a unit of compilation and
linking for the Rust compiler. It contains one or many Rust source files and may
depend on other crates. We leverage the official build system Cargo to resolve
dependencies and download all the dependent crates. Then different source files
are dispatched to either the Rust compiler or the C/C++ compiler, and both
the compilers are configured to generate LLVM bitcode. The Cargo integration
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Fig. 2. The architecture of FFIChecker

provides a user-friendly interface similar to many existing tools used by Rust
developers, such as Clippy, so that users can easily integrate FFIChecker into
their daily development workflow.

4.2 Entry Point and Foreign Function Collection

Performing static analysis requires an appropriate function as the entry point.
We focus on public functions/methods for a Rust program because they are
visible to attackers and hence may be exploited. Also, since we care about the
cross-language scenario, we want to distinguish whether a function is written in
Rust or C/C++. The entry point/foreign function collector is designed to collect
all of the information we need. Specifically, after the user interface downloads
all the dependencies, the collector is invoked to process each of these crates and
collects: (1) a list of public functions/methods, and (2) a list of C/C++ func-
tions called in the Rust program. The collector is implemented as a customized
callback function of the Rust compiler, so that it can access the internal data
structures inside the compiler. It first goes through the Rust High-level Inter-
mediate Representation (HIR) generated by the Rust compiler, which contains
required information such as the function names, visibility, and whether it is
implemented in Rust or C/C++. Then it extracts the required function names
and passes them to the static analyzer.

4.3 Static Analysis and Bug Detection

The LLVM bitcode, entry points, and foreign functions are sent to the static ana-
lyzer as input. The static analyzer performs analysis by traversing the control
flow graph (CFG) provided by the LLVM bitcode. The details of the algorithms
will be discussed in Sect. 6. Once the static analysis finishes, a bug detection
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module reads the analysis results and generates diagnostic messages. The mes-
sages are filtered by user-specified rules in order to suppress false positives, and
then printed to users (Sect. 6.3). According to the diagnostic messages, users can
manually inspect the source code and pinpoint potential bugs in their programs.

5 Abstract Interpretation

In this section, we present the definition of our abstract domain and transfer
functions based on the language model of LLVM IR.

5.1 LLVM IR, Abstract Values and Abstract Domain

In LLVM IR, a single function is modeled as a Control Flow Graph (CFG),
where each node is a basic block containing one or more instructions without
any jumps. At the end of each basic block, there is one terminator, a special
instruction representing a jump among the control flow. Static analysis models
the program execution in a certain abstract domain, and each element of the
domain represents a certain execution state, which is referred to as an abstract
state. It first assigns abstract states to each variable and basic block, then tra-
verses the CFG and updates these states according to the semantics of each
instruction. The abstract domain varies depending on different purposes. We
design our abstract domain as follows in order to capture the ownership state
of heap memory. Note that our design is derived from the classical Abstract
Interpretation literature [26,29].

For each CFG, we denote the set of all the variables that appear in the CFG
as Var, and the set of all basic blocks in the CFG as Block. To distinguish
whether a variable stores heap memory and its state in the ownership system
(e.g., whether it is borrowed or moved), we define the state MState as a lattice
with 5 elements, a partial ordering relation � and a join operator �, as shown in
Fig. 3. Intuitively, the bottom element (⊥) is the default value for all variables.
When a variable is initialized by a heap memory allocation procedure, we mark
it as Alloc. Note that a heap memory can be passed to FFI by either taking a
reference (borrow) or forgetting its ownership (move). We distinguish them by
the corresponding states Borrowed and Moved. To be conservative, when the
state cannot be determined, we set it as the top element (�).

To keep track of the abstract values for each basic block, we maintain a
lookup table σb : Var → MState for each basic block b. The abstract state
AState is defined as a map lattice consisting of all the mappings from Var to
MState. Intuitively, an element in AState is a lookup table, which depicts the
abstract memory state for each variable after executing the current basic block
of the program. AState is still a lattice and the partial ordering is defined as:

For σ1, σ2 ∈ AState, σ1 � σ2 ⇐⇒ ∀a ∈ Var, f(a) � g(a).

And the � operator is defined pointwise in terms of the operators from MState:

∀σ1, σ2 ∈ AState, σ1 � σ2 = {(a, σ1(a) � σ2(a)) : ∀a ∈ Var} .
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�

Borrowed Moved

Alloc

⊥

Fig. 3. MState lattice used by FFIChecker

Finally, the abstract domain is defined as a mapping from all basic blocks
Block to AState. Equivalently, it is defined as the powerset of AState, i.e.,
Domain = 2AState.

5.2 Transfer Functions

In static analysis, transfer functions are used to extract information from the
program semantics and update the abstract states. Since FFIChecker runs on
LLVM IR, we assign a transfer function to each LLVM instruction according to
its semantics. Specifically, we focus on the following instructions: (1) Instructions
that affect the data flow such as load, store, and GetElementPtr, because we
need to propagation the abstract states. (2) Instructions that call other functions,
such as Call and Invoke, through which we perform context-sensitive interpro-
cedural analysis (Sect. 6.2). For details, please refer to our implementation.

6 Algorithms

In this section, we present the main algorithms used in FFIChecker. The
algorithms consist of three parts: (1) A fixed-point algorithm that traverses
a CFG and executes transfer functions until a fixed point is reached. (2) An
algorithm that achieves context-sensitive interprocedural analysis. (3) A bug
detection algorithm used to determine whether there are any potential bugs.

6.1 Fixed-Point Algorithm

Similar to most static analysis tools, FFIChecker traverses a given CFG and
iteratively runs transfer functions to update the abstract state until it reaches
a fixed point. The fixed-point algorithm is formulated in the Appendix (Algo-
rithm 1). We implement the classical worklist algorithm [26,29], where the work-
list W is a set initialized to contain all the basic blocks in the CFG. Then the
algorithm chooses a basic block b from W and analyzes it by executing the trans-
fer functions of its instructions. The state is updated by joining the states of all the
predecessors of b. If the state changes, all the successors of b will be inserted into
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the worklist, waiting for a re-analysis. This procedure is repeated until the work-
list W becomes empty. The algorithm terminates because either the state goes
“up” in the lattice (because of the join operator), or the length of W decreases.
Since the lattice we defined has finite height, W will eventually be depleted.

6.2 Analyzing Function Calls

When analyzing instructions that call other functions, such as Call and Invoke,
FFIChecker performs interprocedural analysis. Different functions need differ-
ent treatments, therefore we categorize functions into different types: (1) Func-
tions that allocate heap memory, e.g., exchange malloc. These are the “taint
sources” of our algorithm, indicating that the resulting variable stores heap mem-
ory, so we can mark its abstract state into Alloc. (2) Functions that borrow a
reference (e.g., Vec::as mut ptr) or move the ownership (e.g., Box::into raw).
These functions change the abstract state of heap memory into either Borrowed
or Moved. (3) Foreign functions called through FFI. These are the potentially
vulnerable functions that FFIChecker cares about. FFIChecker will analyze
these functions and see whether there are any bugs (Sect. 6.3). (4) LLVM intrinsic
functions and the Rust standard library functions. The former are implemented
by the compiler backend so their implementations do not even exist in LLVM IR.
The latter are commonly used but usually hard to be analyzed because of their
complexity and heavy abstraction. These functions are also not FFIChecker’s
targets because our goal is to find bugs in third-party libraries instead of in the
Rust compiler or the standard library. Therefore, we provide some special han-
dlers that work as the model of these functions by resembling their behaviors.
FFIChecker internally maintains a map between such functions and their han-
dlers, and will execute the handler instead of launching a new function analysis.
(4) For all other functions, FFIChecker launches context-sensitive interpro-
cedural analysis by initializing a new fixed-point algorithm instance for this
function. The algorithm is formulated in the Appendix (Algorithm 2).

6.3 Bug Detection and False Positive Suppression

After the fixed-point algorithm terminates, FFIChecker checks whether there
are any variables that store heap memory but are passed to FFI. If this is the
case, some heap memory leaks into the external code, which may lead to poten-
tial vulnerabilities. To further determine the bug type, FFIChecker launches
a new function analysis instance for all foreign functions to which some heap
memory is passed, and checks whether the heap memory is freed or not in the
external code. Then it generates warnings according to the ownership state of
the heap memory. For example, suppose a variable is moved across FFI by Rust
and freed in C. In that case, this is an undefined behavior caused by mixing
memory management mechanisms (Sect. 3.3). The rules of warning generation
are summarized in Table 1.

As shown in the table, we also tag a confidence level on each generated
warning depending on how much information we can leverage during the analysis.
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For example, the LLVM IR of a foreign function is not always available because it
may come from a dynamically linked C library. Or it may be called via a function
pointer, so FFIChecker cannot statically know which function is called. In this
case, FFIChecker cannot further analyze the foreign function, so it generates
warnings with lower confidence. This design helps us to suppress false alarms.
We implement a precision filter to determine what level of warning messages
is reported to users. Only warnings with a confidence level higher than the
filter’s threshold will be issued. Users can pass command-line options to the user
interface to override the default filter configuration.

Table 1. Rules of warning generation. The reported warnings include use-after-free
(UAF), double free (DF), undefined behavior (UB), and memory leak (LEAK). SAFE
means no warning is issued. The confidence levels (high, medium, or low) are enclosed
in parentheses

C Code is Unavailable C Code is Available

Freed Not Freed

Borrowed UAF/DF (Low) UAF/DF (High) SAFE

Moved UB/LEAK (Mid) UB (High) LEAK (Mid)

7 Implementation

FFIChecker is written in Rust (2, 468 lines of code) and has three bina-
ries, which are the user interface, entry point/foreign function collector, and
static analyzer. The user interface is implemented as a cargo sub-command,
which tightly integrates with the official build system. Users can easily inte-
grate FFIChecker in their daily workflow and check their packages by a single
command: cargo ffi-checker. The entry point/foreign function collector is
implemented as a customized Rust compiler, in which we insert the collector
routine as a callback function. The callback function is invoked automatically
after the compiler gathers all the information of the source code. Thus it can
access the internal compiler data structures such as HIR. The static analyzer is a
standalone binary configurable through the user interface. Users can specify the
precision filter, which determines whether to issue a warning message according
to its priority. We also provide several Python scripts for downloading packages
on the official package registry and running evaluations.

8 Evaluation

In order to evaluate FFIChecker in terms of its effectiveness and performance,
we collect Rust packages as test cases on the official package registry https://
crates.io. Since we care about the cross-language scenario and focus on exter-
nal code written in C/C++, we only crawl packages that heavily use the FFI

https://crates.io
https://crates.io
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between Rust and C/C++. Specifically, we download packages that are of cate-
gory “external-ffi-bindings”, or depend on other packages that assist the use of
FFI, such as cc, bindgen, or cbindgen. Finally, we collect a total of 987 packages
as our analysis targets, which contain 3, 232, 574 lines of Rust and 46, 321, 573
lines of C/C++.

All the experiments were done on a machine with a 3.70 GHz Intel Xeon
E5-1630 v4 CPU and 16GB RAM, running Gentoo Linux (kernel 5.15.32).

8.1 Effectiveness and Performance of FFICHECKER

We run FFIChecker on our dataset, and it generates 222 warnings. Then
we manually inspect the output at a rate of about 100 reports per person-
hour. Finally, 34 bugs (19 memory leaks, 3 exception-related bugs, 12 undefined
behaviors) in 12 packages are confirmed. The statistical details are listed in
Table 2, where columns “# of Bugs” and “Reports” show the number of true
positives we confirmed and the number of warnings in the emitted diagnostic
messages with different confidence levels. We have reported all the bugs to the
package maintainers. At the time of writing, 15 bugs were confirmed and fixed.
For more details, we refer readers to our GitHub repository7.

We further measure the execution time and memory usage of FFIChecker
for all the 987 packages. We run the evaluation in 8 parallel threads, and
FFIChecker can finish all the analysis in 5.2 h with at most 4.1 GB memory
consumption. On average, FFIChecker can analyze a package in 116.9 CPU
seconds with 1, 056.6 MB memory consumption. Note that the execution time

Table 2. Bugs detected by FFIChecker. The types of bugs include memory leak
(LEAK), exception safety (EXC), and undefined behavior (UB). “N/A” means that
the foreign functions are from shared libraries instead of the Rust package

Package
# of

Bugs

Reports
Bug Type

Elapsed

Time (s)

Memory

Usage (MB)

# of

Entries

# of

FFIs

LoC

HighMidLow RustC/C++

arma-rs 3 0 1 0LEAK 38.67 1040.85 29 4 1686 N/A

cobyla 1 0 1 0LEAK 48.14 1979.54 2 1 225 1635

emd 1 0 1 0LEAK 7.21 237.75 4 1 87 541

impersonate 1 0 1 0LEAK 19.11 767.54 6 1 117 61

iredismodule 11 0 0 10EXC, LEAK 78.15 1958.46 364 230 3761 777

jyt 6 0 0 1UB 97.25 2711.75 3 6 450 N/A

liboj 1 0 0 3LEAK 108.58 3109.21 86 38 1342 N/A

libtaos 1 0 0 1EXC 99.23 1724.13 461 50 5491 N/A

moonfire-ffmpeg 1 0 0 1UB 7.83 228.78 53 92 1513 231

pdb wrapper 1 0 0 1EXC 68.04 2530.41 20 14 499 375

snap7-rs 2 0 1 4LEAK 8.97 203.77 387 276 6110 14085

triangle-rs 5 0 1 0UB 47.46 1095.58 34 2 681 15050

7 https://github.com/lizhuohua/rust-ffi-checker/tree/master/trophy-case.

https://github.com/lizhuohua/rust-ffi-checker/tree/master/trophy-case
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and memory usage do not correlate to the lines of code or the number of inter-
faces, because the convergence of the fixed-point algorithm mainly depends on
the structure of the CFG. Overall, FFIChecker is scalable enough to analyze
real-world Rust packages with a reasonable amount of computational resources.

8.2 Understanding False Positives and False Negatives

FFIChecker reports numbers of false positives. After inspecting the reported
warnings, we summarize two reasons that lead to the false alarms: (1) It is com-
mon that Rust calls foreign functions from dynamically linked shared libraries.
Therefore the LLVM IR of the foreign code is not available. In this case,
FFIChecker cannot further analyze the foreign function, so it generates impre-
cise results. (2) FFIChecker cannot always distinguish whether a variable is
borrowed or moved via LLVM IR because the borrowing/moving operations may
be optimized away by the Rust compiler.

During the manual inspection, we also observe some bugs in functions with
generic type parameters but they are not reported by FFIChecker. The reason
is that the Rust compiler will not generate code for generic functions unless they
are monomorphized, meaning that FFIChecker cannot find the LLVM IR for
generic functions that are only implemented in the package but not used.

Nevertheless, as presented in Sect. 6.3, FFIChecker generates warnings
with different confidence levels. Users can configure the precision filter through
command-line options to only output warnings with high confidence. Even if all
the warnings are issued, users can still filter out false alarms quickly during the
manual inspection with the help of the confidence levels attached to them.

9 Discussion

Thoughts About Rust’s Security Guarantees. As shown in Table 2, most
bugs we found are memory leaks. We interpret this as a limitation of Rust’s
security guarantees: memory leak is considered safe in Rust [16]. The reason
behind this design choice is that leaking resources is possible in pure safe Rust
(consider creating a cycle of reference-counted pointers using interior mutabil-
ity). Therefore, the authors of the Rust standard library decide not to mark
functions that leak memory as unsafe, such as mem::forget. As a result, the
Rust compiler will not give any warnings when inexperienced programmers mis-
use these functions and cause memory leaks, leading to denial of service attacks
or information leakage.

Future Work. Although we focus on Rust combined with C/C++, the idea
of FFIChecker and the threat model can be extended to other cross-language
scenarios. Especially, the static analyzer is designed to be an individual binary
that operates on LLVM IR. Therefore by changing the Rust-specific part of the
system, our approach can be adapted to analyze other FFIs, as long as they
support the LLVM backend for code generation, e.g., languages such as Haskell,
Julia, and Swift.
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10 Related Work

10.1 Static Analysis for Rust

Many existing studies extend off-the-shelf static analysis engines to perform bug
detection on LLVM IR generated by the Rust compiler. Lindner et al. [23] use the
symbolic execution engine KLEE [5] to verify whether a program is panic-free.
SMACK [3,32] translates LLVM IR into the Boogie intermediate verification
language [11]. Rust2Viper [14] and Prusti [1] utilize user-provided specifications
and the Viper [28] symbolic execution engine to verify functional correctness
properties. CRUST [38] translates functions that contain unsafe code to C, then
it generates tests and checks them by the CBMC [6] model checker.

There are also many tools that work on Rust’s own intermediate represen-
tation. Qin et al. [31] build two bug detectors for use-after-free and double-lock
bugs according to their empirical studies on Rust security issues. SafeDrop [10]
focuses on the deallocation of heap memory and detects memory corruptions by
performing alias analysis and taint analysis on Rust MIR. MIRAI [25] is a for-
mal verification tool that performs symbolic execution on Rust MIR. It enables
users to add annotations and utilizes the SMT solver Z3 [27] to prove the cor-
rectness of Rust programs. MirChecker [22] collects both the numerical and
symbolic information from Rust MIR, and detects runtime panics and memory-
safety issues without the need for annotations. Rudra [2] uses both Rust MIR
and HIR, and detects potential memory safety bugs in unsafe Rust.

10.2 Cross-language Bug Detection and Prevention

It is well-known that developing software using multiple languages may inter-
fere with each other and lead to subtle bugs. Mergendahl et al. [24] propose
a threat model to reason about cross-language attacks. They also demonstrate
these attacks on Rust and Go. Kondoh et al. [17] use static analysis to detect
common mistakes and bad programming practices when using Java Native Inter-
face (JNI). Tan et al. [35] apply static analysis and carry out an empirical security
study on a portion of the native code in Sun’s Java Development Kit (JDK).
JET [19,20] is a static analysis tool that enforces exception checking and reports
bugs on Java exceptions raised in native code through JNI. Jinn [18] is a compiler
and virtual machine independent bug detection tool for both JNI and Python/C.
Galeed [33] and PKRU-Safe [15] isolate heap memory at runtime using Intel
Memory Protection Keys (MPK), such that unsafe (external) code cannot cor-
rupt memory used exclusively by the safe-language components.

Unlike these existing efforts, our work focuses on the memory management
issues between Rust and C/C++. The new pattern of bugs introduced by the
interaction between the Rust ownership system and C/C++ is out of the scope
of all the existing detection or prevention efforts.

11 Conclusion

Rust leverages FFI to invoke external C/C++ code, making incremental soft-
ware development convenient and efficient. In this paper, we showed that there
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could be security issues since programmers may make mistakes when using FFI.
To secure the use of FFI, we designed and implemented FFIChecker, an auto-
mated static analysis tool based on augmented taint analysis, which captures
the state transitions of heap allocations when they are passed to external code
through FFI. It can detect potential memory management issues across the FFI
boundaries. We evaluated it by analyzing 987 real-world Rust packages. It suc-
cessfully revealed 34 bugs in 12 packages that were unknown previously. Finally,
we open-sourced FFIChecker with various examples and test scripts.

Acknowledgments. The work of Zhuohua Li, Jincheng Wang, and John C.S. Lui
were supported in part by the RGC’s RIF R4032-18.

Appendix

A Fixed-Point Algorithm

Algorithm 1: Fixed-point algorithm for FFIChecker

Input: Control Flow Graph: CFG
Output: Abstract State: State
Initialization: State[n] ← ⊥ for all n

1 Function FixedPoint(CFG, State):
2 W ← CFG.basicblocks
3 while W = ∅ do
4 b ← W.remove()
5 foreach instr ∈ b.instructions do
6 Transfer(State[b], instr)
7 Transfer(State[b], b.terminator)
8 new state ← ⊔

n∈Predecessors(b) State[n]
9 if new state � State[b] then

10 State[b] ← new state
11 foreach v ∈ Successors(b) do
12 W.insert(v)
13 return State

B Context-Sensitive Interprocedural Analysis

To avoid duplicated analysis for the same function, we also implement the clas-
sical summary-based method [26,29]. It caches previously computed results (i.e.,
summaries) in a lookup table cache : ((f, in state), out state) that maps a call-
ing context (f, in state) to an output out state. (f is a function, in state is the
abstract state of its input, and out state is the corresponding output.) Before
analyzing a function, we first check whether there is an existing summary that
has been computed. If it is the case, the fixed-point algorithm is skipped and



Detecting Cross-language Memory Management Issues in Rust 697

the result is directly returned. If not, the fixed-point algorithm is performed and
the analysis result is cached in the lookup table.

Algorithm 2: Interprocedural analysis algorithm for FFIChecker

Input: Function: f , Arguments: args, Destination: dest,
State of the current basic block: σ, Summary Cache: cache

Output: Updated State: σ
1 begin
2 switch FunctionType(f ) do
3 case Heap Allocation do
4 σ[dest] ← Alloc
5 case Borrow Arguments do
6 σ[arguments that are borrowed] ← Borrowed
7 case Move Arguments do
8 σ[arguments that are moved] ← Moved
9 case FFI do

10 Run AnalyzeFunction and generate warnings if necessary
11 case LLVM Intrinsic or Standard Library do
12 Handle it through function models
13 otherwise do
14 AnalyzeFunction(f , args, dest, σ)

// Subroutines
15 Function AnalyzeFunction(f , args, dest, σ):
16 in state ← state generated by args
17 summary ← GetFunctionSummary(f , in state)

// Set the state of the return value
18 σ[dest] ← summary.ret state

// Propagate the state of parameters
19 foreach (caller arg, callee arg) do
20 σ[caller arg] = σ[callee arg]

21 Function GetFunctionSummary(f , in state):
// If the summary has been computed, directly return it

22 if (f, in state) in cache then
23 return cache[(f, in state)]

// Initialize initial state for the fixed-point algorithm
24 forall n do
25 State[n] ← ⊥
26 foreach (state, param) in zip(in state, f.parameters) do
27 State[param] ← state

// Compute the summary and cache it
28 out state ← FixedPoint(f.CFG, State)
29 cache[(f, in state)] ← out state
30 return out state
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