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Abstract
A cloudlet is a small-scale cloud datacenter deployed at the network edge to support
mobile applications in proximity with low latency. While an individual cloudlet
operates on moderate power, cloudlet clusters are well-suited candidates for
emergency demand response (EDR) scenarios due to substantial electricity
consumption and job elasticity: mobile workloads in the edge often exhibit elasticity in
their execution. To efficiently carry out edge EDR via cloudlet cluster control, two
fundamental problems need to be addressed: how to incentivize the participation of
cloudlet clusters and how to schedule and allocate workloads in each cluster to satisfy
EDR requirements. We propose a two-stage control scheme, consisting of (i) an auction
mechanism to motivate clusters’ voluntary energy reduction and select participants
with the minimum social cost and (ii) an online task scheduling algorithm for chosen
clusters to dispatch workloads to guarantee target EDR power reduction. Using the
primal-dual optimization theory, we prove that our control scheme is truthful,
individually rational, runs in polynomial time, and achieves near-optimal performance.
Large-scale simulation studies based on real-world data also confirm the efficiency and
superiority of our scheme over state-of-the-art algorithms.

Keywords: Emergency demand response, Edge computing, Auction mechanism,
Online scheduling, Primal-dual optimization

1 Introduction
Cloudlet, in the form of a small datacenter, is a new computing paradigm that extends
today’s cloud architecture. As the middle tier of a 3-tier hierarchy: mobile or IoT device—
cloudlet—cloud, cloudlet is often placed at the edge of the network to provide low-latency
and high bandwidth services for nearby mobile or IoT devices [1]. A cloud service
provider often deploys a cluster of cloudlets to serve mobile users, since the computing
power of an individual cloudlet is limited. The wide distribution of cloudlets not only
increases the edge network’s capacity and coverage but also brings flexibility in workload
management [2, 3].
It is quintessential for a power network to be stable and reliable. When an emergency

happens (e.g., extreme weather conditions), supply scarcity needs to adjust immedi-
ately to avoid involuntary service interruptions [4]. Besides clouds, cloudlet clusters
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now serve as an important force in emergency demand response (EDR). While indi-
vidual cloudlet uses a moderate amount of electricity, a cluster of cloudlets consumes
substantial electricity. Furthermore, edge computing tasks (e.g., video surveillance and
analysis) are often elastic [5]. Hence, the task execution is flexible, which means that
a task can tolerate a certain level of delay. The above features make cloudlet clusters
well suited to participate in EDR programs to stabilize the power grid by reducing and
temporally shifting peak loads. To realize edge EDR via cloudlet cluster control, two
fundamental challenges need to be addressed. First, cloudlet clusters are often operated
by different service providers at their own cost. How to incentivize them to voluntar-
ily participate in EDR is a challenging problem. An efficient market mechanism must
be created to select cost-conscious participants and reward them accordingly. Second,
for a chosen cloudlet cluster which receives task execution requests from mobile users
online, the main issue is how to make decisions on accepting/declining tasks and sched-
ule accepted tasks, such that the target energy reduction is satisfied and its utility is
maximized?
Many efforts have been made on incentive mechanism design for demand response and

task scheduling. However, they cannot be applied to edge EDR directly. Previous work
either only focuses on electricity procurement [6, 7] or does not consider the electric-
ity consumption in scheduling algorithm design [8, 9]. More discussions can be found in
Section 2. The goal of this work is to design an online control scheme for cloud clusters to
participate in EDR.We propose a two-stage approach to address the above two problems.
We first propose an auction mechanism to stimulate the participation of cloudlet clus-
ters, such that (i) the auction is computationally efficient; (ii) the auction is truthful and
individually rational—all participants receive non-negative and maximum utility by bid-
ing their true cost; (iii) the power reduction goal in EDR is met with minimum possible
social cost. We then design an online task scheduling algorithm, tailored for a partici-
pant cloudlet cluster, to dispatch workloads to guarantee target EDR power consumption.
Our algorithm has the following goals: (i) the algorithm is time efficient and makes task
admission and scheduling decisions immediately upon the arrival of each task, (ii) the
total power consumption in the specified EDR time window plus the local electricity gen-
eration can satisfy the EDR requirement, (iii) the utility of the cluster, which is completed
tasks’ value minus the cluster’s operation cost, is maximized. Many edge-computing tasks
have flexibility in both placement and job completion time, so their workload can be dis-
tributed across different cloudlets. In addition, they allow a certain level of delay, and
the task’s value depends on the degree of deadline violation. The operating cost primar-
ily comprises of server maintenance cost and local generation cost. Our contributions are
listed as follows:
First, on the first stage of EDR, the smart grid acts as the auctioneer to elicit bids from

cloudlet clusters. Each cluster specifies its energy reduction and corresponding remuner-
ation it asks for. We formulate the social cost minimization problem as an integer linear
program (ILP), with a constraint to satisfy the EDR reduction target. The problem is
proven to be NP-hard. To solve the problem, we convert it to an equivalent ILP and adopt
the primal-dual method to obtain the solution based on its dual problem. We show that
our algorithm runs in polynomial time and achieves 2-approximation in social cost. We
further propose a payment rule to determine winning clusters’ reward, which guarantees
truthfulness as well as individual rationality.
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Second, we proceed to consider the second stage, where the winning cluster manages
its tasks scheduling to satisfy the EDR power consumption requirement. We design an
online scheduling algorithm to determine whether a task should be accepted or not, when
and where the accepted task should be processed, and the amount of local electricity
generation. The cluster’s utility maximization problem is formulated as a convex prob-
lem. To eliminate the non-linear constraints that capture the task’s temporal demand, we
introduce a set of new variables for each task to represent feasible schedules. Although
the new formulation has an exponential size of variables, we demonstrate that it can
be solved in polynomial time. A primal-dual method is applied to the new formula-
tion and its dual problem. Two dual variables can be interpreted as the unit workload
price and the unit local generation cost, respectively. They are used as the threshold
to compute the best schedule with the maximum utility for each task. The proof for
feasibility, efficiency, and a good competitive ratio are conducted in our theoretical
analysis.
Third, we conduct large-scale simulations based on the real-world circumstances. On

the first stage of EDR, our algorithm performs better than the theoretical 2-approximation
worst case, achieving nearly 1.05 in approximation ratio at a 50 clusters scale and 1.025
with 400 clusters. On the second stage of EDR, we also obtain several noticeable results:
(i) our algorithm achieves a low competitive ratio (< 1.6); (ii) our algorithm beats two
benchmark algorithms, a greedy algorithm based on the idea of [10] and a first-come,
first-served algorithm applying the scheme in [11], in terms of cluster utility, either in
different problem scales or time slots; (iii) our algorithm can control the peak usage of
electricity and save up to 49.8%, 22.4% of the local generation, compared with other two
algorithms, respectively; and (iv) the execution time of our algorithm grows mildly as
problem scale increases, proving that our algorithm runs in polynomial time. Through
extensive simulations in both theoretical and practical circumstances, we demonstrate
the superiority of our method.
In the rest of this paper, we discuss related work in Section 2 and introduce the system

model in Section 3. Algorithm designs for the first and second stage of edge EDR are pre-
sented in Sections 4 and 5, respectively. Section 6 evaluates the performance of proposed
algorithms and Section 7 concludes the paper.

2 Related work
Demand response and edge EDR. Previous analyses for EDR tend to investigate the
mutual impact between service providers and customers [12, 13], without fully consider-
ing energy provisioning. A series of recent studies exist on the reduction goal and social
welfare maximization in demand response. For instance, in [14], a storage-assisted sys-
tem is considered, with batteries and plug-in vehicles helping balance between supply and
user demand. Demand response in residential power allocation is investigated by Ma et
al. [15], in which two types of electricity applications are analyzed. Sun et al. [16] study
an eco-friendly objective for reducing diesel generation. Chen et al. [17] argue that edge
computing represents a natural subject of EDR. Their work differs from ours in that they
fix the execution time slot of each workload and assume a simplified linear cost for dead-
line violation; our model is comparatively more practical. There are also several studies
on online task allocation in EDR, including [18] and [19]. The former only maximizes the
operator’s cost while the latter ignores local generator consumption. Our work presents
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a general scenario in edge computing where auction and scheduling take place, target-
ing EDR in the provision of electricity supply and scheduling tasks online with more
flexibility.
Datacenter EDR. Existing studies mainly focus on EDR with colocation data cen-

ters. Each colocation tenant submits a bid, including its energy reduction and cost,
to the operator controller who provisions electricity and other services to them. Ren
and Islam [20] are the first to study “split incentive” in a demand response scenario.
They propose a mechanism, iCODE, based on a reverse auction. More efforts can be
seen in the work of Zhang et al. [6], which designs an efficient truthful mechanism to
achieve 2-approximation in colocation social cost. Zhou et al. [21] investigate a decen-
tralized method in a geo-distributed data center. Zhou et al. [22] and Chen et al. [7] both
study the FPTAS auction to design a truthful and energy-saving scheme. However, their
assumptions of allocation in response to demand are barely offline situations. In our cir-
cumstance, the challenge escalates as a series of tasks arrive at the cloudlet stochastically
over time.
Online Scheduling.Online scheduling is fundamental in cloud computing, where com-

puting and storage resources are limited for task processing. Zhang et al. [8] propose
a primal-dual style auction to dynamically allocate tasks into different VMs, in which
the time windows of users’ bids are fixed. Subsequently, Zhou et al. [9] develop the
compact exponential method to handle hard and soft deadline constraints for job exe-
cution, showing more elastic than [8]. Scheduling jobs online is also studied in a general
way to suit every aspect of daily life. Specifically, Garg et al. [23] and Devanur et al.
[24] study online scheduling jobs on unrelated machines, with the first paying atten-
tion to weighted flow time and the latter considering arbitrary power functions of the
machine. Their researches share a primal-dual based framework with our model, but
their problems are different from ours. Agrawal et al. [25] introduce a general version
to solve online problems with a concave objective and convex constraints. However,
they assume the inputs are independent and identically distributed. We study edge
computing, targeting not only truthfulness and efficiency for the online mechanism
appeared in cloud computing, but also the flexibility to schedule tasks in heterogeneous
clusters.

3 Systemmodel
3.1 System overview

We consider a community where a smart grid provisions electricity to multiple het-
erogeneous cloudlet clusters. Each cluster signs a contract with the grid, specify-
ing the electricity demand in a certain time period and the corresponding payment.
While the grid is only in charge of power supply, the cloudlet cluster is responsi-
ble for their own operation, i.e., considering how to schedule computing tasks, such
that its utility is maximized under limited energy. Let [X] denote the integer set
{1, 2, . . . ,X}. The cloudlet clusters are denoted as [ I]= {1, 2, . . . , I}. Cluster i consists
of heterogeneous cloudlets, denoted by [Li]= {1, 2, . . . , Li}, ∀i ∈[ I]. A set of tasks
[ Ji]= {1, 2, . . . , Ji}, ∀i ∈[ I] run in cluster i where they reside, receiving their work-
loads at end users via access points and transmitting them to the particular service
providers.
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3.2 Emergency demand response via cloudlet clusters

EDR process. According to an agreement signed by the cloudlet operators and the smart
grid, when an emergency event takes place, the smart grid acts as an auctioneer and sends
signals to cloudlet clusters in the community to specify the total energy reduction target
Eall in the following T time slots. In response, each cloudlet cluster voluntarily submits
a bid. Recently, in edge computing, the tasks are mainly involved with video surveillance,
whose power consumption usually varies little [26]. Based on records in the past, the
clusters estimate an energy reduction when the emergency takes place. Cluster i sub-
mits a bid (ci,Ei), where Ei is the amount of power consumption it is willing to shed and
ci is the corresponding remuneration asked for. After receiving bids from cloudlet clus-
ters, the smart grid determines which clusters are chosen for the EDR, as well as how
much it should pay for the selected clusters. Figure 1 illustrates the first stage in the
EDR event.
EDR decision variable.We introduce a binary variable zi for each bid. If zi = 1, the bid

submitted by cluster i is successfully chosen for EDR and earns a reward Pi from the grid;
otherwise, the bid is not selected for EDR.
Truthful auction. Let vi denote the true cost of Ei. vi can be obtained from the previous

data, usually proportional to the workload and duration. Pi is the reward for winning the
bid in EDR. Cluster i’s utility with bidding price ci is:

ui(ci) =
{
Pi − vi, if zi = 1

0, otherwise.
(1)

Each cluster is assumed to be selfish yet rational and aims to maximize its own utility.
Cluster i may lie about its cost, i.e., ci $= vi, if doing so leads to a higher utility. Since our
goal is to minimize the social cost of the community, it is important to elicit truthful bids
from clusters.

Definition 1 (Truthful auction): An auction is a truthful auction if for any cluster i, its
dominant strategy is to bid with its true cost, and its utility is maximized, i.e., ui(vi) ≥
ui(ci),∀ci $= vi.

Definition 2 (Individual rationality): Clusters always obtain non-negative utility, i.e.,
ui(ci) ≥ 0.

Fig. 1 A demonstration of EDR via cloudlet clusters control
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Definition 3 (Social welfare, social cost): The social welfare is the sum of the grid’s utility
− ∑

i∈[I] Pi and clusters’ utility
∑

i∈[I](Pi−viz). Maximizing the social welfare is equivalent
to minimizing the social cost ∑

i∈[I] vizi, since payments cancel themselves.

EDR problem formulation. Our goal is to minimize the social cost in the community
while ensuring the total reduction meets the EDR requirement Eall. The social cost min-
imization problem under truthful bidding (ci = vi) can be formulated into the following
integer linear program (ILP):

minimize
∑

i∈[I]
cizi (2)

subject to:
∑

i∈[I]
Eizi ≥ Eall. (2a)

zi ∈ {0, 1},∀i ∈[ I] . (2b)

3.3 Scheduling in cloudlet clusters

Computing task information. Assume that cluster i is chosen at EDR, where a total
number of Li cloudlets are in the cluster. Each cloudlet l ∈[ Li] can process at most Rl
workloads. Let [ Ji] denote the task set for i. Each task j in [ Ji] is expressed by a tuple:
!ij = {bij, aij, dij,wij, λij, fij(τij)}, where bij is the value of task j if it completes before its
deadline. aij and dij are the arrival time and the deadline for task j, wij is the total num-
ber of time slots required to complete the task. We assume that the deadline for each task
should be no longer than the end of the EDR period; otherwise, auctionsmust be executed
again for those tasks. The workload in one time slot is λij, so the total workload of task
j is wijλij. τij refers to the level of deadline violation, whose penalty function is denoted
by fij(τij). fcij(τij) is a piecewise function of fij(τij), fij(τij) is a non-decreasing function, and
fij(0) = 0, defined as:

fij(τij) =
{
fcij(τij), τij ∈[ 0,T − dij]
+∞, otherwise.

(3)

Decision variable. As shown in Fig. 2, in the second stage, every cloudlet cluster oper-
ates individually and schedules computing tasks to satisfy EDR energy consumption. For
simplicity, we omit i in the element of the tuple for cluster i. We introduce two additional
binaries, xij and yijl(t), to indicate whether task j in cluster i is scheduled and whether task
j is scheduled at cloudlet l at time slot t. Important notations are summarized in Table 1
for ease of reference.
Problem formulation. Cluster i aims to maximize its own utility, i.e., the sum of its

reward and value minus the sum of the delay penalty, local generation cost, and main-
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Fig. 2 Task scheduling in the cluster

tenance cost. The objective is to maximize Pi +
∑

j∈[J] bijxij − ∑
j∈[J] fij(τij) − pug − θi,

where Pi indicates its reward, θi is its maintenance cost. Since Pi and θi are constants, we
can omit them for simplicity in our integer program. p is the per-unit local generation
cost, and ug is the amount of local generation. The optimization problem is formulated
as follows:

Table 1Major notations

I # of cloud clusters

T # of time slots

Li # of cloudlets in cluster i

Ji # of tasks in cluster i

Di Amount of electricity that i purchased from the grid

ci Asking price of Ei
Ei Electricity reduction that cluster i can offer

Pi Cluster i’s reward earned from the smart grid

zi Cluster i’s bid is accepted (1) or not (0)

Eall EDR target

bij Value of task j in cluster i

aij The arrival time of task j in cluster i

dij The deadline of task j in cluster i

wij # of time slots required for task j in cluster i

λij The workload of task j in cluster i in one slot

τij # of slots that pass the deadline for task j in i

Zl(t) Marginal price of unit workload at cloudlet l at t

Rl(t) The amount of allocated resources in cloudlet l at t

θi Maintenance cost for cluster i

p Local generation cost per unit

etl Energy consumption of cloudlet l at t

ug Total local generation

xij Task j in cluster i is accepted (1) or not (0)

yijl(t) Task j is allocated in cluster i’s l at t (1) or not (0)
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maximize
∑

j∈[J]
bijxij −

∑

j∈[J]
fij(τij) − pug (4)

subject to :
∑

j∈[J]
λijyijl(t) ≤ Rl,∀t ∈[T] ,∀l ∈[ L] , (4a)

∑

t∈[T]

∑

l∈[L]
etl ≤ D − E + ug , (4b)

t
∑

l∈[L]
yijl(t) ≤dij + τij,∀t ∈[T] ,∀j ∈[ J] : aij ≤ t, (4c)

∑

l∈[L]
yijl(t) ≤1,∀j ∈[ J] ,∀t ∈[T] , (4d)

wijxij =
∑

l∈[L]

∑

t∈[T]
yijl(t),∀j ∈[ J] , (4e)

yijl(t),xij ∈ {0, 1},

∀j ∈[ J] ,∀l ∈[ L] ,∀t ∈[T] , (4f)

ug ≥ 0, τij ≥0,∀j ∈[ J] . (4g)

In the above problem, etl denotes the electricity consumption of cloudlet l at time slot t.
An empirical study on cloudlet [27] formulates the energy consumption through a linear
function: etl =

(
NlPlidle +

(
Plpeak − Plidle

) ∑
j∈J λijyijl(t)

)
· PUEl, where Nl represents the

number of running servers in cloudlet l. Pidle is the power consumption when the server
is idle and Ppeak is the sever power when the cloudlet is fully utilized. ∑j∈J λijyijl(t) is the
amount of workload. PUEl, the power usage efficiency ratio, is determined by statistical
records of the ratio between the datacenter facility power and computational consump-
tion. Next, since the EDR requires the chosen cloudlet cluster to reduce Ei electricity, its
expected power consumption is the original demand minus the EDR requirement, D− E.
Constraint (4a) guarantees that in each time slot, the cloudlet l has enough computing

resource to execute tasks. Constraint (4b) ensures that the total power consumption does
not exceed the sum of the EDR requirement and local generation. For any possible tasks
to be scheduled, they should run between the arrival time and the deadline, which is
described by (4c). Additionally, in (4d), we assume that each task runs on one cloudlet at
most. Constraint (4e) connects two binary variables, xij and yijl(t), to guarantee sufficient
execution.
Challenges.We notice that the first ILP (2) is the classical knapsack problem. The chal-

lenge escalates as we need to ensure truthfulness and individual rationality in the auction
design. For the second problem (4), if we let ug = 0 and τij = 0,∀j ∈ J , as well as ignore
(4c), it becomes a knapsack problem. It is known to be NP-hard, let alone the difficul-
ties concerning online scheduling. In Section 4, we propose a 2-approximation algorithm
based on the primal-dual method to select winning clusters and compute payments for
EDR event. In Section 5, we propose an online algorithm to schedule tasks while satisfying
EDR requirement in the winners.
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4 Methods for EDR auctionmechanism
In Section 4.1, we propose an efficient algorithm to determine the winners and calculate
payments in the first stage of EDR event. We analyze its performance in Section 4.2.

4.1 EDR auction design

In the winner determination process, we introduce a set of inequalities [28] and reformu-
late ILP (2) to obtain an approximate solution. Consider a set of cloudlet clusters S, i.e.,
S ⊂[ I], we denote %(S) = Eall −

∑
i∈S Ei as the remaining electricity reduction goal when

all bids in S are accepted. Furthermore, we define a variable, Ei(S), to represent how a bid
excluded from S can fill the gap between Eall and %(S), i.e., Ei(S) = min{Ei,%(S)}. We
reformulate ILP (2) into:

minimize
∑

i∈[I]
cizi (5)

subject to:
∑

i∈[I]\S
Ei(S)zi ≥ %(S),∀S ⊂[ I] : %(S) > 0. (5a)

zi ∈ {0, 1},∀i ∈[ I] . (5b)

Constraint (5a) states that when S ⊂[ I] is chosen, we enumerate all possible items in the
rest of the set, [ I] \S, to cover the EDR target. It can be seen that all feasible integer solu-
tions in ILP (2) are feasible in (5) and vice versa. Therefore, the two ILPs have equivalent
optimal solutions. Next, we introduce dual variablem(S) to constraint (5a) and formulate
the dual of (5) as:

maximize
∑

∀S⊂[I]:%(S)>0
%(S)m(S) (6)

subject to:
∑

∀S⊂[I]:i⊂[I]\S,%(S)>0
Ei(S)m(S) ≤ ci,∀i ∈[ I] , (6a)

m(S) ≥ 0,∀S ⊂[ I] : %(S) > 0. (6b)

Based on the primal-dual method, when the i∗th constraint (6a) becomes tight, zi∗ in
(5) is larger than 0. Due to the intrinsic 0 − 1 nature, zi will be automatically adjusted to
1. The basic idea is we initialize an empty setR to represent the accepted bid in accumu-
lation and then gradually increase the value of dual variables, m(S), to reach the energy
reduction objective in the aggregated accepted bids. In each round, we add one cluster to
the setR until no more clusters are left or the EDR target is successfully achieved.
AMEDR aims to tighten the constraints (6a) so that the corresponding cluster is

selected and its indicated variable is set to 1. First, we initialize all primal and dual vari-
ables in line 1. Line 2 states that the algorithm terminates only when the EDR demand is
met. We increase the dual variable until one of the dual constraints is tight, as is shown in
line 3. After calculating the minimum required value of the dual variablem(S), the corre-
sponding cluster i∗ is selected, added to R in lines 3–4. Next, we design a payment rule
to ensure truthfulness in lines 5–9. By picking the second smallest value, m(R̃) from all
m(S), we find the critical bid and compute the payment based on it. Then, cost values are
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updated in line 10. Finally, the winner set Ŝ and their payments are found. Although many
other auction mechanisms have been designed for such problems, our method has nice
properties which are listed as follows.

Algorithm 1 A 2-Approximation Auction Mechanism for EDR: AMEDR
Input: {ci,Ei}{i∈[I]},Eall
Output: Ŝ,P(̂S)
1: Initialize zi = 0,∀i ∈[ I] ;m(S) = 0,∀S ⊂[ I] ;R = ∅.
2: while %(R) > 0 do
3: i∗ = argmini∈[I]{ ci

Ei(R) }.
4: zi∗ = 1;R = R ∪ {i∗}.
5: m(R) = ci∗

Ei∗ (R)

6: [ I]=[ I] \i∗.
7: ĩ = argmini∈[I]{ ci

Ei(R) }.
8: m(R̃) = cĩ

Eĩ(R) .
9: Pi∗ = ci∗ + (m(R̃) − m(R))Ei∗(R).

10: ci = ci − Ei(R)m(R),∀i ∈[ I] .
11: end while
12: Ŝ = R.
13: P(̂S) = {Pi∗}i∗∈̂S.

4.2 Theoretical analysis

4.2.1 Correctness and polynomial time

Lemma 1 ILP (2) is equivalent to ILP (5).

All missing proofs can be found in the Appendix.

Theorem 1 AMEDR produces a feasible solution for ILP (2) (5) and dual LP (6).

Theorem 2 AMEDR runs in polynomial time.

4.2.2 Approximation ratio

Definition 4 (approximation ratio) : Let the social cost calculated by AMEDR be SC and
the optimal objective value of ILP (2) be OPT. The approximation ratio is the upper bound
ratio of SC to OPT.

Theorem 3 The approximation ratio of AMEDR is 2.

Proof The primal problems (2) (5) have equivalent optimal value, OPT, with the dual
problems (6). AMEDR terminates only when %(R) ≤ 0. The last cluster picked by the
algorithm is denoted as in, so we have %(̂S\in) > 0.
Since every i in Ŝ\in has a tight constraint in (6a), we reformulate the social cost

among such items into:∑i∈̂S
∑

∀S⊂[I]:i⊂[I]\S,%(S)>0 Ei(S)m(S). However, due to the initial-
ization, the non-negative variables m(S) remains zero unless S ⊂ Ŝ\in. The equality
above is simplified as ∑

S⊂Ŝ m(S)∑i∈̂S\S′ Ei(S′). We further transform ∑
i∈̂S\S Ei(S) into
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∑
i∈̂S\S Ei(S) =

∑
i∈̂S\in Ei−

∑
i∈S Ei+Ein(S), which is smaller than Eall−

∑
i∈S Ei+Ein(S).

Moreover, it is no larger than 2%(S). Since%(̂S\in) > 0 holds, SC ≤ 2∑
S′⊂Ŝ m(S)%(S) ≤

2OPT , ensuring that the approximation ratio is 2.

4.2.3 Truthfulness and individual rationality

Theorem 4 An auction mechanism is truthful if [29, 30]: (i) as the costs submitted by
clusters decrease, and zi is non-decreasing in its value; (ii) the winning bid payment is
critical.

Lemma 2 Algorithm AMEDR is bid-monotonic: if cluster i∗ submits an alternative cost
cĩ subject to cĩ < ci∗ and zi∗ = 1, then zĩ = 1.

Lemma 3 The payment design in AMEDR is critical: the cost ci∗ submitted by winning
bid i∗ should be not larger than the payment Pi∗ . If i∗ bids ci∗ which is larger than Pi∗ , i∗
will fail in the auction.

Theorem 5 AMEDR is a truthful auction.

Proof By combining Lemma 2, 3 and the definition in Theorem 4, we finish the proof.

Theorem 6 Algorithm AMEDR ensures individual rationality in each successful bid: the
payments for bids are at least the cost of them.

Proof Lemma 3 guarantees that any bid that violates Pi < ci cannot be chosen to win,
and therefore, individual rationality holds during the auction.

5 Methods for online task scheduling
In the second stage of EDR event, supposing cluster i is selected, a primal-dual algo-
rithm is proposed to schedule tasks in Section 5.1. The theoretical analysis is presented
in Section 5.2.

5.1 Online scheduling design

Reformulation. We consider how to schedule tasks in the chosen cloudlet cluster i. To
deal with non-conventional scheduling constraints in (4c) and (4e), we reformulate (4)
into an equivalent convex problem. Though the new formulation is packed with an expo-
nential number of variables, it greatly simplifies the subsequent algorithm design. The
new problem is formulated as follows:

maximize
∑

j∈J

∑

h∈ζij

b′
ijhχijh − g(u) (7)

subject to:
∑

j∈[J]

∑

h:t∈T(h),l∈L(h)
λijχijh ≤ Rl,∀l ∈[ L] ,∀t ∈[T] , (7a)

∑

l∈[L]

∑

j∈[J]

∑

h:l∈L(h)

∑

t:t∈T(h)
βlλijχijh ≤ u, (7b)
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∑

h∈ζij

χijh ≤ 1,∀j ∈[ J] , (7c)

χijh ∈ {0, 1},∀j ∈[ J] ,∀h ∈ζij, (7d)

u ≥ 0. (7e)

In the above program, ζij is the set of all feasible schedules for task j. A feasible schedule
is a vector h = (xij, {yijl(t)}∀l∈[L],∀t∈[T], τij) that satisfies constraints (4c) and (4e). Binary
variable, χijh, indicates whether task j is accepted and scheduled according to schedule h
(χijh = 1) or not (χijh = 0). b′

ijh is the task value based on schedule h, i.e., b′
ijh = bij−fij(τij).

T(h) and L(h) are the set of time slots and cloudlets indicating when and where task
j is running based on schedule h. g(u) is the local generation cost of cluster i. We let
D′ = D−E−T(∑l∈[L]NlPlidle) ·PUEl and u = D′+ug . g(u) can be defined as a piecewise
function as follows:

g(u) =
{

0, u ≤ D′

p(u − D′), u > D′.

g(u) indicates the energy consumption either below or above the EDR cap. We simplify
the LHS of (4b), and let βl = (Plpeak−Plidle)·PUEl. Constraints (7a) and (7b) are equivalent
to (4a) and (4b).
Though we reformulate the problem into a packing structure, many challenges are still

ahead of us. A primal-dual technique can be applied to solve the problem in polynomial
time. By introducing dual variables Zl(t),C and φij, as well as relaxing χijh ∈ {0, 1} to
χijh ≥ 0, the dual of the primal problem is:

minimize
∑

l∈[L]

∑

t∈[T]
Zl(t)Rl +

∑

j∈[J]
φij + g∗(C) (8)

subject to:

φij ≥ b′
ijh −

∑

l∈L(h)

∑

t∈T(h)
Zl(t)λij −

∑

l∈L(h)

∑

t∈T(h)
Cβlλij,

∀j ∈[ J] ,∀h ∈ζij, (8a)

Zl(t),C,φij ≥ 0,∀j ∈[ J] ,∀l ∈ L(h),∀t ∈ T(h) (8b)

where g∗(C) is the Fenchel conjugate [31] of the function g(u):

g∗(C) = sup
u≥0

{Cu − g(u)} =
{
+∞, u > D′ and C > p.
CD′. otherwise

Allocation and scheduling. Based on the idea of complementary slackness [32], each
χijh has a corresponding constraint in (8a). Only when the constraint goes tight, can χijh
be updated to 1. In that case, we automatically assign 1 to xij and {yijl(t)}l∈L(h),t∈T(h) before
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we renew dual variables φij,Zl(t) and C. Since φij in dual constraint is non-negative, we
assign φij as the maximum value between 0 and the RHS of (8a):

φij = max




0,max
h∈ζij




b′
ijh −

∑

l∈L(h)

∑

t∈T(h)
Zl(t)λij −

∑

l∈L(h)

∑

t∈T(h)
Cβlλij









 . (9)

When φij > 0, dual constraint (8a) holds tight so that the related primal variable χijh >

0. In this case, task j is accepted, and h is the corresponding schedule for j. Otherwise, if
∀h ∈ ζij,φij = 0, b′

ijh − ∑
l∈L(h)

∑
t∈T(h) Zl(t)λij −

∑
l∈L(h)

∑
t∈T(h) Cβlλij ≤ 0, this task is

rejected.
The reason can be explained as follows: If we interpret Zl(t) as the per unit workload

per unit time slot price for cloudlet l, and C as the per unit local generation cost, then the
RHS of (8a) is the utility of task j. Therefore, when φij > 0, the utility of task j becomes
positive so that the cluster is willing to process it. Note here C = 0 when the task does not
exceed the EDR cap; otherwise, C = p. p is the local generation cost per unit. If there is a
delay in the task completion, b′

ijh should contain the penalty expense; otherwise, b′
ijh = bij.

When the value of the RHS of (9) is 0, the task is rejected. Equality (9) determines the
cloudlets and slots to schedule tasks for the maximum utility, which is a key to the utility
maximization.

Algorithm 2 Primal-Dual Based Online Allocation PD
Input: {βl,Rl}{l∈L},C,N ,M,D′.
1: Initialize xij = 0, yijl(t) = 0, τij = 0,φij = 0,Rl(t) = 0,u = 0,∀j ∈[ J] ,∀l ∈[ L] ,∀t ∈

[T], by default.
2: On the arrival of task j
3: Run CORE({Rl(t),Zl(t)}{l∈[L],t∈[aij ,T]}, p,!ij,u).
4: if xij = 1 then
5: Schedule the jth task according to yijl(t).
6: else
7: Reject the jth task.
8: end if

We next discuss the update of Zl(t). It is natural to think that as computing resource
in a cloudlet decreases, the cluster may be reluctant to allocate more workload to this
cloudlet. We develop a cost function for the cloudlet to reduce the possibility of accepting
a task when it is almost fully occupied. The cost function is:

Zl(t) = Zl(Rl(t)) =
N
eσ

(eσM
N

) Rl(t)
Rl .

Where Zl(t) starts at N
eσ and grows exponentially with the increase of Rl(t). N refers to

the minimum value per unit workload per unit slot, and σ = T
minj{wij} . By the time l is fully

utilized, Zl(t) is close to M, the maximum value per unit workload per unit slot. More
specifically, N = minj∈[J] bij

wijλij
,M = maxj∈[J] bij

wijλij
.



Song et al. EURASIP Journal onWireless Communications and Networking        (2020) 2020:175 Page 14 of 24

Algorithm 3One-Round Task Scheduling: CORE
Input: {Rl(t),Zl(t)}{l∈[L],t∈[aij ,T]}, p,!ij,u.
1: Initialize H = ∅, H̃ = ∅, ht = {t}; xij = 0, yijl(t) = 0,φij = 0,∀l ∈[ L] ,∀t ∈[T], by

default.
2: Add (t, l), t ∈[ aij,T] , l ∈[ L] to H if Rl(t)+ λij ≤ Rl,∀t ∈[T] ,∀l ∈[ L].
3: for all (t, l) ∈ H do
4: Calculate q(t, l) = Zl(t)λij.
5: if u > D′ then
6: q(t, l) = q(t, l)+ Cβlλij.
7: end if
8: end for
9: Find lt = argminl:(t,l)∈H q(t, l),∀t. Add (t, lt),∀t to H̃ .

10: Arrange time slots by sequence, and denote the wijth slot as t0.
11: for all t′ ∈ H̃ : t0 ≤ t′ ≤ T do
12: Select wij − 1 slots in H̃ with minimum q(t, l), t < t′ and add them to ht′ .
13: Calculate Q(t′) = ∑

t∈ht′ q(t, lt).
14: if t′ > dij then
15: Calculate bij = bij − fj(t′ − dij).
16: end if
17: end for
18: φij(t′) = bij − Q(t′),∀t′ ∈ H̃ .
19: Find t∗ = argmaxt′∈H̃:t0≤t′≤T Q(t′).
20: if φij > 0 then
21: Rlt (t) = Rl(t)+ λij,∀t ∈ ht∗ .
22: Zl(t) = N

eσ
( eσM

N
) Rl(t)

Rl ,∀l ∈[ L] ,∀t ∈[T].
23: xij = 1; yijl(t) = 1,∀t ∈ ht∗ .
24: u = u+ ∑

l:(t,l)∈H ,t∈ht∗ βlλij.
25: end if
26: Output {xij, {yijl(t),Rl(t)}{∀l∈[L],∀t∈[T]},u}.

For task j, given Zl(t) andC, the key step is to find the best schedule that maximizes task
j’s utility. The scheduling algorithm works as follows: upon the arrival of task j, we firstly
fix the schedule between [ aij,T]. Since the original value of each task before the deadline
is constant, we manage to calculate the resource consumption and energy expense in each
plausible cloudlet and time slot. Then, in every situation, we fix the last time slot in order
to find the minimal cost of the former (wij − 1) slots. After adding the sum to the cost of
the last time slot, we calculate the RHS of constraint (8a) and select the most economical
one. Finally, we figure out the utility of task j according to (9) in each slot. We reject j if
φij = 0; otherwise, j is accepted and we output the optimal schedule of task j.
Online scheduling algorithm. The online schedule algorithm PD for workload allo-

cation in EDR is demonstrated in Algorithm 2. We input the needed variables for every
cluster chosen by Algorithm 1. Initially, in line 1, all binary variables should be 0. Lines
2–8 call CORE in algorithm 3 and schedule each arriving task in the cluster. CORE com-
putes xij and yijl(t) for each task while also updating dual variables Zl(t), with estimated
M, N values by former data. In CORE, upon the arrival of task j, we make initialization in
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line 1 and add all possible tuple (t, l) in line 2. Lines 3–8 compute the cost per time slot in
the feasible set. Local generation cost is added if and only if processing task j exceeds the
EDR cap. Then, we choose the cloudlets with minimum costs in each time slot to be the
candidates for the schedule in line 9. In line 10, we mark the wijth slot. Lines 11–17 work
as follows: by fixing the last slot for processing the task, the minimum cost of previous
wij−1 slots should be picked up.When the completion time t′ violates the deadline, value
for the task is diminished. Line 18 computes each possible utility and line 19 finds the
max one. Lines 20–25 update binary and dual variables. If the previously selected utility is
larger than 0, we accept the task and update cloudlet costs, amount of allocated resource,
xij and {yijl(t)}; otherwise, no change is made.

5.2 Theoretical analysis of online task scheduling

5.2.1 Correctness and polynomial time

Theorem 7 The Algorithm PD computes a feasible solution for problems in (4) (7)
and (8).

Theorem 8 PD runs in polynomial time.

5.2.2 Competitive ratio

The competitive ratio is defined as the upper bound ratio of the optimal objective value of
(4) to the objective value achieved by PD. In reality, the ratio is always larger than 1.
We use OPT1 and OPT2 to denote the optimal objective values of (4) and (7). The

equivalence between the two program indicates OPT1 = OPT2. Let P0 = 0 and D0 =
∑

l
∑

t
N
eσ Rl be the beginning primal and dual values. We assign different values to Pj

and Dj in the accumulation process, until the algorithm finishes the tasks allocation by
achieving PJ and DJ .

Lemma 4 If one constant value α exists, such that (i) Pj − Pj−1 ≥ 1
α (Dj −Dj−1),∀j ∈[ J],

ii) P0 = 0,D0 ≤ OPT2
e , the algorithm obtains e

e−1α-competitive.

Lemma 5 D0 in PD is at most OPT2
e under the condition that the optimal objective value

of (4) is at least ∑
l
TN
σ Rl.

Definition 5 The allocation-utility relationship for PD with a parameter α is λijZj
l(t) ≥

1
αRl(Zj

l(t) − Zj−1
l (t)),∀j ∈[ J] ,∀l ∈[ L] ,∀t ∈[T].

Lemma 6 The allocation-utility relationship with α guarantees:

λij
∑

l∈L(h)

∑

t∈T(h)
Zj
l(t)+ φij ≥ 1

α

∑

l∈L(h)

∑

t∈T(h)
Rl(Zj

l(t) − 1
α
Zj−1
l (t))

+ 1
α

φij,∀j ∈[ J] ,∀h ∈ ζij.

Lemma 7 If α ensures the allocation-utility relationship for PD, then Pj−Pj−1 ≥ 1
α (Dj−

Dj−1),∀j ∈[ J].
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We posit that the resource consumption of the workload is much less than the existing
resource capacity, which is λij - Rl,∀j,∀l. As a result, the differential dZl(t) equalsZj

l(t)−
Zj−1
l (t). The adaptation of allocation-utility relationship is interpreted in the version:

Definition 6 The allocation-utility relationship in a differential version with α is
λijZj

l(t) ≥ 1
αRldZl(t),∀j ∈[ J] ,∀l ∈[ L] ,∀t ∈[T].

Lemma 8 We let αij = 1
λij

(
ln

(
σM
N

)
+ 1

)
, and it satisfies λijZj

l(t) ≥
1
αij

(
Rl(Zj

l(t) − Zj−1
l (t))

)
for task j.

Proof According to our function,

Zl(t) = Zl(Rl(t)) =
N
eσ

(eσM
N

) Rl(t)
Rl ,

dZl(t) = Zl((Rl(t)))′ =
N
eσ

(eσM
N

) Rl(t)
Rl 1

Rl
ln

(eσM
N

)
.

For any j, we can find an αij holds the inequality such that αij = RldZl(t)
λijZj

l(t)
=

1
λij

(
ln

(
σM
N

)
+ 1

)

Theorem 9 With α = maxj∈[J]{ 1
λij

(
ln

(
σM
N

)
+ 1

)
}, the task scheduling algorithm PD is

e
e−1α-competitive.

Proof Combining Lemma 4–8 and the definition of allocation-utility relationship, we
can figure out the competitive ratio for all tasks in [ J], and hence, the proof is completed.

6 Performance evaluation
6.1 Experiment setup

To simulate the whole edge system, we collect real-world data about EDR. According to
a real EDR event happening in New York on August 28, 2018, which lasted for 6 h [33].
Besides, the real field tests show that the EDR energy reduction rate under 25% would
be tolerable for a data center to sustain the normal operation [34]. As for cloudlet, it is a
small-scale cloud data center with 1–40 servers [35]. In this case, the typical PUE value
is around 2.1 [36]. As for the strike price for the EDR event, mostly it is around $1100
to $1800 per MWh [37]. The EDR dispatch rate (i.e., the percentage of the number of
clusters to engage in EDR event) is around 58% [38]. The idle power for each server is
60 w, and the peak power is 180 w [39]. The diesel price for local generation is set to
0.32$/kWh [40, 41].
We use the data stated above to construct our simulations. We assume that on average,

a cloudlet should have a PUE of 2.2 and contain 20 servers. And the overall energy-cutting
rate (i.e., the demand for energy reduction in the EDR event) is 25% with a 6-h dura-
tion. We randomly scale the number of servers for each cloudlet from 16 to 20 and the
PUE value from 1.9 to 2.5. In the experiment setting, one cluster contains 15 distributed
cloudlets and is capable of executing 40 tasks. We set the length of one time slot into 10
min and divide the whole EDR process into 36 time slots. We randomly generate each
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cluster’s bidding price based on the cutting energy amount and the unit price. The origi-
nal power for one cluster is estimated to be 600 kWh according to the number and power
of servers and cloudlets. In the aspect of tasks, we randomly generate the workload from
0.4x to 1.0x toward normalized 20 servers. We use the Poisson distribution to randomly
set each task’s arriving time and randomly generate the deadline before the EDR ends.
The value of a task is proportional to its workload and the number of time slots required.
We set M to be the upper bound of unit price, and N to be the lower bound because we
randomly generate the unit price of each task from 0.01$ to 0.04$.
To deal with the objective value of integer programming (4), we use the MINLP solver

SCIP [42] to obtain the offline optimal solution. We find the average acceptance rate is
higher than 95%without using any local power generation, indicating that our experiment
setting is suitable to simulate the real-world scenario.

6.2 Results and discussion

We consider several indexes to evaluate our algorithm: total social cost and approxima-
tion ratio on the first stage, and cluster utility, competitive ratio, and task acceptance rate
on the second stage. Specifically, we compare four different approaches: (i) Greedy algo-
rithm, which is based on [10], and always executes the maximum value task first in order
to get optimal value; (ii) first-come, first-served (FCFS) algorithm, which always lets the
early-arriving task schedules first and cannot be preempted by a later task [11]; (iii) Opti-
mum programming, which returns the optimal offline solution; and (iv) mixed-integer
programming (MIP), with PD on the second stage, which gets the optimal solution until
current slot.
Performance of AMEDR. Figure 3a shows the trend of approximation ratio under dif-

ferent energy-cutting rates. Here, we fix the EDR dispatch rate to 60%, we can see that the
ratio of AMEDR tends to converge to 1.025. This result in practice is much better than
the theoretical bound. Figure 3b reflects the same result when we adjust the EDR dispatch
rate. These simulations demonstrate that AMEDR has a close-to-optimal performance,
especially with a large number of clusters.
Performance of PD. Firstly, we have to consider the influence of setting different M

and N, the maximum and the minimum value per unit workload per unit slot, on the
performance of PD. In Fig. 4a, suppose we already know all the task information and try
to vary this ratio to 0.5x, 1.0x, and 1.5x. The simulation result indicates that this ratio only
slightly influences the optimal value. Besides, in the simulation, this figure also reflects
that competitive ratio is likely to increase as the number of tasks rises.
Figure 4b is the comparison between three online algorithms. We implement two

benchmark algorithms, the Greedy algorithm and the FCFS algorithm. Figure 4c modifies
the EDR duration time. We can find that the performance of PD is better than the greedy
algorithm and the FCFS algorithm. Both algorithms do not take the task’s elastic deadline
into consideration, so they will reject some of the tasks. PD performs better because it
looks for flexible scheduling.
We change the energy-cutting rate to evaluate our algorithm in a relatively extreme

situation. In Fig. 4c, we can see that the cluster’s utility decreases because we do not have
enough power to execute all the tasks, or we have to pay the local generation cost for
power replenishment. However, PD still beats the other two algorithms as well, because
PD includes local generation cost if we have to replenish electricity and compare this cost
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Fig. 3 Performance evaluation on AMEDR

with the task’s utility. This utility measurement can avoid consuming power to execute
low-value tasks.
In Fig. 4e, we assign different weights to the penalty function and analyze sensitiv-

ity. We find the weight of the penalty function can influence the acceptance rate. This
means PD rejects the task if the delay penalty is too heavy. As for the greedy algorithm
or the FCFS algorithm, they do not consider this condition but finish the task before the
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Fig. 4 Performance evaluation on PD

deadline. However, this attribute is useful in an extreme condition with substantial worth-
less tasks to execute. We assume there are enough cloudlets to finish all the tasks. Hence,
the differences are slight in the figure.
Figure 4f shows the electricity usage of different algorithms at each slot. We find that all

algorithms perform well at low computation time, but PD can schedule tasks more effi-
ciently at peak computation time. The local electricity usage of PD is 49.8%, 22.4% lower
than the greedy algorithm, FCFS algorithm respectively, nearly close to the optimum. In
this case, PD is more eco-friendly, compared with other algorithms.

7 Conclusion
In this work, we study how to enable edge emergency demand response via cloudlet clus-
ters control. To address challenges in incentive mechanism design and task scheduling at
participant cloudlet cluster, we propose a two stage control mechanism to facilitate edge
EDR. In the first stage, a reverse auction, AMEDR, is proposed to select cost-efficient
clusters and provide monetary remuneration to winners based on their energy reduc-
tion.We prove that AMEDR is computationally efficient, truthful, individual rational, and
achieves 2-approximation in social cost. In the second stage, we design an online primal-
dual algorithm, PD, for chosen cluster to schedule and allocate its workload while satisfy
EDR energy reduction requirement. PD runs in polynomial time and achieves a prov-
able competitive ratio. We conduct large-scale simulations to verify the efficiency and
advantages of our method over existing methods.

Appendix
Appendix A: Proof of Lemma 1
Proof We first demonstrate that a feasible solution to (5) also satisfies the constraint

of (2), via proof of contradiction. Let S∗ denote the set of variables that equal 1 in
a feasible solution to ILP (5), i.e., zi = 1 iff. i ∈ S∗. Then, we transform (2a) into
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∑
i∈[S∗] Ei ≥ Eall and (5a) into ∑

i∈S∗∩([I]\S) Ei(S) ≥ %(S),∀S ⊂[ I] : %(S) > 0.
Assume that this solution is not feasible to (2), ∑

i∈[S∗] Ei < Eall, which is equiva-
lent to %(S∗) > 0. Thus, we have ∑

i∈S∗∩([I]\S∗) Ei(S) ≥ %(S∗). Since the left-hand
side (LHS) of this inequality equals zero and the right-hand side (RHS) is greater than
0, we reach a contradiction. As a result, an arbitrary solution to (5) is also feasible to
(2). Here, we omit the proof of the reverse that all the feasible solutions to ILP (2)
are also feasible to (5), which can also be deducted by proof of contradiction. Since
ILP (2) and (5) share the same set of solution as well as objective value, they are
equivalent.

Appendix B: Proof of Theorem 1
Proof (primal feasibility) Algorithm 1 stops at %(R) ≤ 0, which suggests Eall −

∑
i∈R Ei ≤ 0. If we set all zi, i ∈ R to 1, otherwise to 0, constraint (2a) is satisfied. There-

fore, the feasibility in ILP (2) is proved. Combining Lemma 1, Algorithm 1 guarantees
feasibility in both primal problems.
(Dual feasibility) Consider the situation that cluster i is chosen in a loop. Since R con-

tains i, the update in the following loop will not change the variable in the previous loop
and the constraints are not violated. As the number of tight constraints increases withR
accumulating, no constraints in (6a) are violated.

Appendix C: Proof of Therorem 2
Proof The While loop in line 2 iterates at most I times because only one winner i ∈[ I]

is added into the winner set Ŝ at a time as long as the previous winners are not able tomeet
the whole EDR requirement. In each loop, calculations are performed at most O(I) times
in the minimum value selection and the assignments of zi∗ ,R, [ I] and ci∗ . After adding all
the running time together, we obtain O(I2) in overall computation complexity.

Appendix D: Proof of Lemma 2
Proof The chosen bid i∗ has the minimum value for ci

Ei(Si∗ ) , i ∈[ I] \Si∗ . As cĩ < ci∗ ,
two inequalities cĩ

Eĩ(Si∗ )
<

ci∗
Ei∗ (Si∗ ) and cĩ

Eĩ(Si∗ )
< m(S̃i) hold true. Therefore, i∗ =

argmini∈[I]{ ci
Ei(R) }. It can be seen that i∗ is also selected in the auction.

Appendix E: Proof of Lemma 3
Proof From lines 7–8 in AMEDR, we can deduce that m(S̃i) is the smallest value of
ci

Ei(Si∗ ) ,∀i ∈[ I] \(Si∗ ∪i∗). However, when we assume ∃i∗,Pi∗ < ci∗ , we havem(S̃i) < m(Si∗)
according to line 9. In this case, cluster ĩ should be selected as the winning bid, and cluster
i∗ fails to earn the payment.

Appendix F: Proof of Theorem 7
Proof To begin with, in Algorithm 3, line 2 provides feasible pairs of (t, l) in (4a). Con-

straint (4b) is guaranteed by line 3–8 in CORE, since we only utilize local generation cost
when the consumption exceeds EDR cap. For each task j to be executed, we only add the
time slots to the feasible set H if they are no earlier than aij, and based on line 11, we
make it a rule that the wij − 1 task slots are scheduled between aij and aij + τij, which is
described in (4c). (4d) mentions that in each time slot, the working cloudlet for task j is at
most 1, a self-evident theory shown in line 9. Line 1 and 23 in CORE represent that xij and
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yijl(t) are binary, and the sum of yijl(t) is 0 or wij, satisfying (4e) (4f ) (4g). Furthermore,
IP (7) provides a packing structure that satisfies (4c) (4e) in IP (4), as is shown in line 23.
(7a), (7b), and (7e) are feasible for (4a), (4b), and (4g). (7c) and (7d) demonstrate at most
one feasible set is accepted, and they are guaranteed by ht∗ in line 19. Thus, the algorithm
can be proven feasible in IP (7). Last, by demonstrating φij in the initialization and line 20,
CORE ensures the non-negative quality of each variable for the dual problem (8).

Appendix G: Proof of Theorem 8
Proof We first analyze Algorithm CORE. The search for feasible sets in task j, as shown

in line 2, runs in O(LT). The time complexity in line 3–8 is O(LT). Line 9 and 10 work in
O(T) and O(T2), respectively. The loop from line 11 to 17 takes at most O(wijT2) time
to run. Line 18–25 works to provide a feasible schedule, runsO(LT) time. To sum up, the
total running time is O(LT + wijT2).
Then PD simply runs all tasks via CORE, O(LT + wijT2). The result, O(J(LT +

maxj∈[J],i∈[I]{wij}T2)), is also polynomial.

Appendix H: Proof of Lemma 4
Proof By summing up the inequalities in each turn, we obtain PJ = ∑

j(Pj − Pj−1) ≥
1
α

∑
j(Dj − Dj−1) = 1

α (DJ − D0). On account of weak duality [32], DJ ≥ OPT2. Addition-
ally, we assume D0 ≤ OPT2

e . As a result of PJ ≥
(
1 − 1

e
) 1

αOPT2 =
(
1 − 1

e
) 1

αOPT1, the
algorithm achieves an competitive ratio of e

e−1α.

Appendix I: Proof of Lemma 5
Proof We first make assumption that in a natural circumstance, when the resource

and electricity are sufficient, tasks will be completed before deadline. Under such con-
dition, if all cloudlets in the cluster process tasks in minwij,∀j ∈[ J] time slots, i.e., T

σ ,
and each Rl is fully occupied by workloads with minimum value per workload per time
slot, then the cluster would generate the minimum utility for the offline setting. Since
N = minj∈[J] bij

wijλij
, the above circumstance will bring about∑l

TN
σ Rl utility for the cluster,

definitely smaller than the objective value of (4).
Back to PD algorithm, the dual problem initializes its objective value D0 at

∑
l
∑

t
N
eσ Rl =

∑
l
TN
eσ Rl. Obviously, OPT2

e ≥ ∑
l
TN
eσ Rl = D0.

Appendix J: Proof of Lemma 6
Proof If χijh = 0, the inequality is obviously correct as the RHS should be 1

α φij,
smaller than the value on the LHS. If χijh = 1, we sum all cloudlets and time
slots of the allocation-utility relationship, and we have λij

∑
l∈L(h)

∑
t∈T(h) Z

j
l(t) ≥

1
α

(∑
l∈L(h)

∑
t∈T(h) Rl(Zj

l(t) − Zj−1
l (t))

)
,∀j ∈[ J] . Next, we add φij to each side of the

inequality, and

λij
∑

l∈L(h)

∑

t∈T(h)
Zj
l(t)+ φij

≥ 1
α
(

∑

l∈L(h)

∑

t∈T(h)
Rl(Zj

l(t) − Zj−1
l (t)))+ φij

≥ 1
α
(

∑

l∈L(h)

∑

t∈T(h)
Rl(Zj

l(t) − Zj−1
l (t))+ φij),∀j ∈[ J] .
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Appendix K: Proof of Lemma 7
Proof When the jth task is rejected, Pj − Pj−1 = Dj − Dj−1 = 0 certainly

holds the inequality. Otherwise, Pj − Pj−1 = b′
ijh − (g(uj) − g(uj−1)) repre-

sents the increased value in the scheduling, while Dj − Dj−1 = ∑
l
∑

t(Z
j
l(t) −

Zj−1
l (t))Rl + φij + (g∗(Cj) − g∗(Cj−1)). Note that b′

ijh is the value for task j. Due to
complementary slackness, the inequality in (8a) goes tight, we can replace b′

ijh with
φij + λij

∑
l∈L(h)

∑
t∈T(h) Zl(t) + Cjλij

∑
l∈L(h)

∑
t∈T(h) βl. Then, Pj − Pj−1 = φij +

λij
∑

l∈L(h)
∑

t∈T(h) Zl(t)+ Cjλij
∑

l∈L(h)
∑

t∈T(h) βl − (g(uj) − g(uj−1))
In order to simplify the proof, we discuss the problem in 3 subcases.
i) If uj ≤ D′: in this case, since Cj = 0, we have

Pj − Pj−1 = λij
∑

l∈L(h)

∑

t∈T(h)
Zl(t)+ φij,

Dj − Dj−1 =
∑

l∈[L]

∑

t∈[T]
Rl(Zj

l(t) − Zj−1
l (t))+ φij.

∑
l
∑

t(Z
j
l(t) − Zj−1

l (t)) can be further simplified to ∑
l∈L(h)

∑
t∈T(h)(Z

j
l(t) − Zj−1

l (t)) as
Zj
l(t)−Zj−1

l (t) = 0 if l $∈ L(h) or t $∈ T(h). According to Lemma ??, PD ensures Pj−Pj−1 ≥
1
α1
(Dj − Dj−1).
ii) If uj−1 ≥ D′: Cjλij

∑
l∈L(h)

∑
t∈T(h) βl is equivalent with (g(uj) − g(uj−1)) because

both represent an increment in the usage of local generator for processing task j. As a
result, Pj − Pj−1 and Dj − Dj−1 are the same pattern with (i), and hence, the rest of the
proof is similar to subcase (i).
(iii) if uj−1 ≤ D′ < uj: according to CORE, Cj−1 = 0,Cj = p, g(uj−1) = 0, g(uj) =

p(uj−1 + λij
∑

l∈L(h)
∑

t∈T(h) βl). Then,

Pj − Pj−1 = λij
∑

l∈L(h)

∑

t∈T(h)
Zl(t)+ PD′ + φij,

Dj − Dj−1 =
∑

l∈[L]

∑

t∈[T]
Rl(Zj

l(t) − Zj−1
l (t))+ PD′ + φij.

Since PD′ ≥ 0, it is easy to verify the lemma at this subcase.
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