
A General Framework for Estimating Graphlet Statistics via
Random Walk

Xiaowei Chen
1
, Yongkun Li

2
, Pinghui Wang

3
, John C.S. Lui

1

1
The Chinese University of Hong Kong

2
University of Science and Technology of China

3
Xi’an Jiaotong University

1{xwchen, cslui}@cse.cuhk.edu.hk, 2ykli@ustc.edu.cn, 3phwang@mail.xjtu.edu.cn

ABSTRACT

Graphlets are induced subgraph patterns and have been fre-
quently applied to characterize the local topology structures
of graphs across various domains, e.g., online social networks
(OSNs) and biological networks. Discovering and computing
graphlet statistics are highly challenging. First, the massive
size of real-world graphs makes the exact computation of
graphlets extremely expensive. Secondly, the graph topol-
ogy may not be readily available so one has to resort to web
crawling using the available application programming inter-
faces (APIs). In this work, we propose a general and novel
framework to estimate graphlet statistics of “any size”. Our
framework is based on collecting samples through consecu-
tive steps of random walks. We derive an analytical bound
on the sample size (via the Chernoff-Hoeffding technique)
to guarantee the convergence of our unbiased estimator. To
further improve the accuracy, we introduce two novel opti-
mization techniques to reduce the lower bound on the sample
size. Experimental evaluations demonstrate that our meth-
ods outperform the state-of-the-art method up to an order
of magnitude both in terms of accuracy and time cost.

1. INTRODUCTION

Graphlets are defined as induced subgraph patterns in
real-world networks [23]. Unlike some global properties such
as degree distribution, the frequencies of graphlets provide
important statistics to characterize the local topology struc-
tures of networks. Decomposing networks into small k-
node graphlets has been a fundamental approach to char-
acterize the local structures of real-world complex networks.
Graphlets also have numerous applications ranging from bi-
ology to network science. Applications in biology include
protein detection [21], biological network comparison [28]
and disease gene identification [22]. In network science,
the researchers have applied graphlets for web spam detec-
tion [5], anomaly detection [4], as well as social network
structure analysis [34].

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 3
Copyright 2016 VLDB Endowment 2150-8097/16/11.

Research Problem. In most applications, relative fre-
quencies among various graphlets are sufficient. One such
example is building graphlet kernels for large graph com-
parison [32]. In this work, we focus on relative graphlet
frequencies discovery and computation. More specifically,
we propose efficient sampling methods to compute the per-
centage of a specific k-node graphlet type within all k-node
graphlets in a given graph. The percentage of a particular
k-node graphlet type is called the “graphlet concentration”
or “graphlet statistics”.

Challenges. The straightforward approach to compute
the graphlet concentration is via exhaustive counting. How-
ever, there exist a large number of graphlets even for a
moderately sized graph. For example, Facebook [1] in our
datasets with 817K edges has 9⇥ 109 4-node graphlets and
2⇥ 1012 5-node graphlets. Due to the combinatorial explo-
sion problem, how to count graphlets efficiently is a long
standing research problem. Some techniques, such as lever-
aging parallelism provided by multi-core architecture [3], ex-
ploiting combinatorial relationships between graphlets [13],
and employing distributed systems [33], have been applied to
speed up the graphlet counting. However, these exhaustive
counting algorithms are not scalable because they need to
explore each graphlet at least once. Even with those highly
tuned algorithms, exhaustive counting of graphlets has pro-
hibitive computation cost for real-world large graphs. An
alternative approach is to adopt “sampling algorithms” to
achieve significant speedup with acceptable error. Several
methods based on sampling have been proposed to address
the challenge of graphlet counting [14, 37, 35, 6, 36, 9].

Another challenge is the restricted access to the complete
graph data. For example, most OSNs’ service providers are
unwilling to share the complete data for public use. The
underlying network may only be available by calling some
application programming interfaces (APIs), which support
the function to retrieve a list of user’s friends. Graph sam-
pling through crawling is widely used in this scenario to
estimate graph properties such as degree distribution [17,
19, 11], clustering coefficient [12] and size of graphs [15]. In
this work, we assume that the graph data has to be exter-
nally accessed, either through remote databases or by calling
APIs provided by the operators of OSNs.

The aim of this work is to design and implement effi-
cient random walk-based methods to estimate graphlet con-
centration for restricted accessed graphs. Note that estimat-
ing graphlet concentration is a more complicated task than
estimating other graph properties such as degree distribu-
tion. For degree distribution, one can randomly walk on

253

the graph to collect node samples and then remove the bias.
For graphlet concentration, one needs to consider the var-
ious local structures. A single node sample cannot tell us
information about the local structures. We need to map a
random walk to a Markov chain, and carefully define the
state space and its transition matrix so as to ensure that
the state space contains all the k-node graphlets.

1.1 Related Works and Existing Problems.

Previous studies on graphlet counts or concentration in-
clude sampling methods for (1) memory-based graphs [31,
14, 37, 29], (2) streaming graphs [36, 2], and (3) restricted
accessed graphs [12, 6, 35]. The state-of-the-art sampling
methods for memory-based graphs are wedge sampling [31]
and path sampling [14]. Wedge sampling in [31] generates
uniformly random wedges (i.e., paths of length two) from
the graphs to estimate triadic measures (e.g., number of
triangles, clustering coefficient). Later on, Jha et al. [14]
extended the idea of wedge sampling and proposed path
sampling to estimate the number of 4-node graphlets in the
graphs. However, both of wedge sampling and path sam-
pling need to access the whole graph data, which renders
them impractical for restricted accessed graphs.

Estimating graphlet counts for streaming graphs has been
studied in [36, 2]. Ahmed et al. [2] proposed the graph sam-
ple and hold method to estimate the triangle counts in the
graphs. Wang et al. [36] proposed a method to infer the
number of any k-node graphlets in the graph with a set
of uniformly sampled edges from the graph stream. These
streaming sampling methods access each edge at least once
and are not applicable to restricted accessed graphs.

Most relevant to our framework are previous random walk-
based methods [12, 6, 35] designed for graphs with restricted
access. Hardiman and Katzir[12] proposed a random walk-
based method to estimate the clustering coefficient, which
is a variant of the 3-node graphlet concentration we study.
Bhuiyan et al. [6] proposed GUISE, which is based on the
Metropolis-Hasting random walk on a subgraph relationship
graph, whose nodes are all the 3, 4, 5-node subgraphs. They
aimed to estimate 3, 4, 5-node graphlet statistics simultane-
ously, but GUISE suffers from rejection of samples. In [35],
authors proposed three random walk-based methods: sub-
graph random walk (SRW), pairwise subgraph random walk
(PSRW), and mix subgraph sampling (MSS). MSS is an ex-
tension of PSRW to estimate k � 1, k, k + 1-node graphlets
jointly. The simulation results show that PSRW outper-
forms SRW in estimation accuracy. To the best of our
knowledge, PSRW is the state-of-the-art random walk-based
method to estimate graphlet statistics for restricted graphs.

We denote the subgraph relationship graph in [35] as G(d),
and each element in G(d) is a d-node connected subgraphs
in the original graph. The main idea of PSRW is to col-
lect k-node graphlet samples through two consecutive steps
of a simple random walk on G(k�1) to the estimate k-node
graphlet concentration. One drawback of PSRW is its inef-
ficiency of choosing neighbors during the random walk. For
example, PSRW performs the random walk on G(3) to esti-
mate 4-node graphlet concentration. Populating neighbors
of nodes in G(3) is about an order of magnitude slower than
choosing random neighbors of nodes in G(2). If one can fig-
ure out how to estimate 4-node graphlet concentration with
random walks on G(2), the time cost can be reduced dra-
matically. Furthermore, since PSRW is more accurate than

the simple random walk on G(k) (SRW) when estimating
k-node graphlet concentration, we have reasons to believe
that random walks on G(d) with smaller d have the poten-
tial to achieve higher accuracy. Faster random walks and
more accurate estimation motivate us to propose more ef-
ficient sampling methods based on random walks on G(d)

to estimate k-node graphlet concentration. Different from
PSRW, we seek for d that is smaller than k � 1.

1.2 Our Contributions

Novel framework. In this paper, we propose a novel
framework to estimate the graphlet concentration. Our frame-
work is provably correct and makes no assumption on the
graph structures. The main idea of our framework is to
collect samples through consecutive steps of a random walk
on G(d) to estimate k-node graphlet concentration, here d
can be any positive integer less than k, and PSRW is just a
special case where d = k�1. We construct the subgraph re-
lationship graph G(d) on the fly, and we do not need to know
the topology of the original graph in advance. In fact, one
can view d as a parameter of our framework. As mentioned
in [35], it is non-trivial to analyze and remove the sampling
bias when randomly walking on G(d) where d is less than
k � 1. The analysis method in PSRW cannot be applied to
the situation where d < k � 1. Our work is not a simple
extension of PSRW. More precisely, we propose a new and
general framework which subsumes PSRW as a special case.
When choosing the appropriate parameter d, our methods
significantly outperform the state-of-the-art methods.
Efficient optimization techniques. We also introduce
two novel optimization techniques to further improve the
efficiency of our framework. The first one, corresponding
state sampling (CSS), modifies the re-weight coefficient and
improves the efficiency of our estimator. The second tech-
nique integrates the non-backtracking random walk in our
framework. Simulation results show that our optimization
techniques can improve the estimation accuracy.
Provable guarantees. We give detailed theoretical anal-
ysis on our unbiased estimators. Specifically, we derive an
analytic Chernoff-Hoeffding bound on the sample size. The
theoretical bound guarantees the convergence of our meth-
ods and provides insight on the factors which affect the per-
formance of our framework.
Extensive experimental evaluation. To further vali-
date our framework, we conduct extensive experiments on
real-world networks. In Section 6, we demonstrate that
our framework with an appropriate chosen parameter d is
more accurate than the state-of-the-art methods. For 3-
node graphlets, our method with the random walk on G
outperforms PSRW up to 3.8⇥ in accuracy. For 4, 5-node
graphlets, our methods outperform PSRW up to 10⇥ in ac-
curacy and 100⇥ in time cost.

2. PRELIMINARY

2.1 Notations and Definitions

Networks can be modeled as a graph G = (V,E), where
V is the set of nodes and E is the set of edges. For a node
v 2 V , dv denotes the degree of node v, i.e., the number
of neighbors of node v. A graph with neither self-loops nor
multiple edges is defined as a simple graph. In this work,
we consider simple, connected and undirected graphs.

254

Induced subgraph. A k-node induced subgraph is a sub-
graph Gk = (Vk, Ek) which has k nodes in V together with
any edges whose both endpoints are in Vk. Formally, we have
Vk ⇢ V , |Vk| = k and Ek={(u, v) : u, v 2 Vk ^ (u, v) 2 E}.
Subgraph relationship graph. In [6, 35], the authors
proposed the concept of subgraph relationship graph. Here
we adopt the definition in [35] and define the d-node sub-
graph relationship graph G(d) as follows. Let H(d) denote
the set of all d-node connected induced subgraphs of G.
For si, sj 2 H(d), there is an edge between si and sj if
and only if they share d � 1 common nodes in G. We use
R(d) to denote the set of edges among all elements in H(d).
Then we define G(d) = (H(d), R(d)). Specially, we define
G(1) = G,H(1) = V,R(1) = E when d = 1. If the origi-
nal graph G is connected, then G(d) is also connected [35,
Theorem 3.1]. Figure 1 shows an example of G(2) and G(3)

for a 4-node graph G. Let H(2) denote all 2-node induced
subgraphs of G, then the node set of G(2) is H(2), i.e., node
pairs {(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)}. Note that there is an
edge between node pair (1, 2) and (2, 3) in G(2) because they
share node 2 in G.

1 2

4 3

e1

e2

e3

e4 e5

G

1 2 2 3

3 41 4

1 3

G(2)

14

3

21

4

23

4

12

3

G(3)

Figure 1: Original graph G and its 2 and 3-node

subgraph relationship graph G(2)
and G(3)

.

In general, constructing G(d) is impractical due to in-
tensive computation cost. However, for our random walk-
based framework, there is no need to construct G(d) in ad-
vance since we can generate the neighborhood subgraphs of
s 2 H(d) on the fly according to the definition of G(d).
Isomorphic. Two graphs G = (V,E) and G0 = (V 0, E0)
are isomorphic if there exists a bijection ' : V ! V 0 with
(vi, vj) 2 E , ('(vi),'(vj)) 2 E0 for all vi, vj 2 V . Such
a bijection map is called an isomorphism, and we write iso-
morphic G and G0 as G ' G0.

Definition 1. Graphlets are formally defined as connected,
non-isomorphic, induced subgraphs of a graph G.

Figure 2 shows all 3, 4-node graphlets. There are 2 differ-
ent 3-node graphlets and 6 different 4-node graphlets. The
second row of Table 3 shows 21 different 5-node graphlets.
The number of distinct graphlets grows exponentially with
the number of vertices in the graphlets. For example, there
are 112 different 6-node graphlets and 853 different 7-node
graphlets. Due to the combinatorial complexity, the compu-
tation for graphlets is usually restricted to 3, 4, 5 nodes [14,
37, 3, 35, 6, 36, 13]. Note that various applications, e.g., [32,
34], focus on graphlets with less than 6 nodes since graphlets
with up to 5 nodes have the best cost-benefit trade off [6].
Problem definition. Given an undirected connected graph
G and all the distinct k-node graphlets Gk = {gk1 , gk2 , · · · , gkm},
where gki is the ith type of k-node graphlets. Let Ck

i denote
the number of induced subgraphs that are isomorphic to

1

2

3

g31
wedge

1

2 3

g32
triangle

1

23

4

e 1

e2e
3

g41
4-path

2

1

3 4

e1

e2

e
3

g42
3-star

1

2 3

4

e
2

e3

e 4

e1

g43
cycle

3

2

1 4
e1

e
2 e3

e4

g44
tailed-triangle

2

3

4

1
e1

e
2 e3

e
4

e5

g45
chordal-cycle

2 3

4

1

e 1 e
3

e4

e2
e5
e
6

g46
clique

Figure 2: All 3, 4-node distinct graphlets.

graphlet gki . Our goal is to estimate the concentration of
gki 2 Gk for G, where the concentration of gki is defined as

cki , Ck
iPm

j=1 C
k
j

. (1)

Applications. In the following, we list some important
applications involving graphlet concentration.
• Clustering coefficient. Friends of friends tend to become

friends themselves in OSNs. This property is referred to
as “transitivity”. Clustering coefficient, which is defined as
3C3

2/(C
3
1 +3C3

2) = 3c32/(2c
3
2 +1), quantifies the transitiv-

ity of networks, i.e., the probability that two neighbors of
any vertex are connected. The clustering coefficient is im-
portant to understand the networks and can be obtained
directly with the triangle concentration c32.

• Large graph comparison and classification. One can use
the graphlet concentration as the fingerprint for graph
comparison [3]. The 3, 4, 5-node graphlet concentration
was proposed as the features for large graph classification
in [32]. The intuition of using the graphlet concentration
instead of the graphlet counts is that the differences in
sizes of graphs skew the graphlet counts greatly and may
result in poor performance of graph classification.

• Intrinsic properties analysis. Graphlet concentration can
be used to understand the intrinsic properties of the net-
works. For example, Ahmed et al. [3] computed the 4-
node graphlet concentration of the OSN Friendster and
found that Friendster is lack of community related graphlets
(e.g., cliques), which indicates the collapse of Friendster.
Wang et al. in [35] used the concentration of directed 3-
node graphlets to analyze the differences in functions of
two OSNs, i.e., Douban and Sinaweibo.

Computing graphlet concentration is by no way an easier
task than computing graphlet counts. Actually, graphlet
counts are just reflections of the sizes of graphs. In Sec-
tion 3.3 we show that the graphlet counts can be recon-
structed easily if we have access to the whole graph data.

2.2 Random Walk and Markov Chain

Our framework is to generate samples from random walks.
A simple random walk (SRW) over graph G is defined as fol-
lows: start from an initial node v0 in G, we move to one of
its neighbors which is chosen uniformly at random, and re-
peat this process until certain stopping criteria. The random
walk on graph G can be viewed as a finite and time-reversible
Markov chain with state space V . More specifically, let {Xt}

255

be the Markov chain representing the visited nodes of the
random walk on G, the transition probability matrix P of
this Markov chain is defined as

P(i, j) =

(
1
di
, if (i, j) 2 E,

0, otherwise.

The SRW has a unique stationary distribution ⇡⇡⇡ where ⇡(v) =
dv
2|E| for v 2 V [20, 26]. The stationary distribution is vital
for correcting bias of samples generated by random walks.
Strong Law of Large Numbers. Below, we review the
Strong Law of Large Numbers (SLLN) for Markov chain
which serves as the theoretical foundation for our random
walk-based framework. For a Markov chain with finite state
space S and stationary distribution ⇡⇡⇡, we define the expec-
tation of the function f : S ! R with respect to ⇡⇡⇡ as

µ = E⇡⇡⇡[f] ,
X

X2S

f(X)⇡(X).

The subscript ⇡⇡⇡ indicates that the expectation is calculated
with the assumption that X ⇠ ⇡⇡⇡. Let

µ̂n =
1
n

nX

s=1

f(Xs)

denote the sample average of f(X) over a run of the Markov
chain. The following theorem SLLN ensures that the sample
mean converges almost surely to its expected value.

Theorem 1. [10, 17] For a finite and irreducible Markov
chain with stationary distribution ⇡⇡⇡, we have

µ̂n ! E⇡⇡⇡[f] almost surely (a.s.)

as n!1 regardless of the initial distribution of the chain.

The SLLN is the fundamental basis for most random walk-
based graph sampling methods, or more formally, Markov
Chain Monte Carlo (MCMC) samplers, e.g., [19, 6, 12]. The
SLLN guarantees the asymptotic unbiasedness of the esti-
mators based on any finite and irreducible Markov chain.
Mixing Time. The mixing time of a Markov chain is the
number of steps it takes for a random walk to approach its
stationary distribution. We adopt the definition of mixing
time in [24, 25, 8]. The mixing time is defined as follows.

Definition 2. The mixing time ⌧(✏) (parameterized by ✏)
of a Markov chain is defined as

⌧(✏) = max
Xi2S

min{t : |⇡⇡⇡ �Pt⇡⇡⇡(i)|1 < ✏},

where ⇡⇡⇡ is the stationary distribution of the Markov chain,
⇡⇡⇡(i) is the initial distribution when starting from state Xi 2
S, Pt is the transition matrix after t steps and | · | is the
variation distance between two distributions1.

Later on, we will use the mixing time based Chernoff-Hoeffding
bound [8] to compute the needed sample size to guarantee
that our estimate is within (1 ± ✏) of the true value with
probability at least 1� �.

1The variation distance between two distributions d1 and
d2 on a countable state space S is given by |d1 � d2|1 ,
1
2

P
x2S |d1(x)� d2(x)|.

Table 1: Summary of Notations

G G = (V,E), underlying undirected graph
G(d)

G
(d)=(H(d)

,R
(d)), d-node subgraph relationship graph

gki the ith type of k-node graphlets
Ck

i number of subgraphs isomorphic to gki in graph G
cki concentration of graphlet gki in G
dv degree of node v in G
dX degree of state X, X is also a node in G(d)

M(l) state space of the expanded Markov chain
X(l) state in state space M(l)

V (X(l)) set of graph G’s nodes contained in state X(l)

s(X(l)) subgraph induced by node set V (X(l))
⇡⇡⇡ stationary distribution of the random walk
⇡⇡⇡e stationary distribution of the expanded Markov chain
↵k
i number of states X(l) in M(l) s.t. s ' gki , s(X(l)) = s.

C(s) set of states X(l) in M(l) s.t. s(X(l)) = s.

3. GENERAL FRAMEWORK

In this section, we introduce our random walk-based gen-
eral framework for graphlet concentration estimation. For
ease of presentation, we summary the notations in Table 1.

3.1 Basic Idea

We are interested in finding the concentration of gki , where
k � 3 (since it is not difficult to find for k = 1 or 2). The
core idea is to collect k-node graphlet samples through l=
k�d+1 consecutive steps of the random walk on G(d), where
d 2 {1, . . . , k � 1}. Specifically, for each state Xi (i � l) of
the random walk on G(d), suppose we keep the history of pre-
viously visited l � 1 states, then we consider the subgraph
induced by nodes contained in X(l) = (Xi�l+1, . . . , Xi) as
a k-node graphlet sample. Note that we only consider con-
secutive l steps which visit k distinct nodes in V . If the
consecutive l steps on G(d) fail to collect k distinct nodes in
V , we just continue the random walk until we find l consec-
utive steps which contain k distinct nodes in V .
Example: Consider the graph in Figure 1. (a) Suppose we
want to get 3-node graphlet samples and choose a random
walk on G. Then l = 3�1+1 = 3, i.e., we need to walk for 3
steps on G to get the 3-node graphlet samples. Assume the
random walk sequence is 1! 2! 1! 4! 3. Then we can
obtain two 3-node graphlet samples induced by {2, 1, 4} and
{1, 4, 3} respectively. The sequence 1 ! 2 ! 1 is discarded
since it only visits two distinct nodes. (b) If we want to
explore possible graphlets g4i and have decided to perform a
random walk on G(2) (i.e., d = 2). Assume we make l = 3
transitions on the following states: (1, 2) ! (1, 3) ! (3, 4),
then we can obtain a 4-node graphlet sample induced by the
node set {1, 2, 3, 4}, because {1, 2, 3, 4} is contained in the
three states (1, 2), (1, 3) and (3, 4). In this case, the obtained
graphlet sample corresponds to g45 in Figure 2.

The main technical challenge is to remove the bias of the
obtained graphlet samples. To analyze the bias theoretically,
we first introduce the concept of expanded Markov chain.

3.2 Expanded Markov Chain

We define an expanded Markov chain which remembers
consecutive l steps of the random walk on G(d) = (H(d), R(d)).
Each l consecutive steps are considered as a state X(l) =
(X1, · · · , Xl) of the expanded Markov chain. Here we use

256

the superscript “l” to denote the length of the random walk
block. Each time the random walk on G(d) makes a transi-
tion, the expanded Markov chain transits to the next state.
Assume the expanded Markov chain is currently at state
X(l)

i = (X1, · · · , Xl), it means the random walker is at Xl.
If the walker jumps to X(l+1), i.e., one of the neighbors of
Xl, then the expanded Markov chain transits to the state
X(l)

i+1 = (X2, · · · , Xl+1). Let N = H(d) denote the state
space for the random walk and M(l) denote the state space
for the corresponding expanded Markov chain. The state
space M(l) consists of all possible consecutive l steps of the
random walk. More formally, M(l) = {(X1, · · · , Xl) : Xi 2
N , 1 i l s.t. (Xi, Xi+1) 2 R(d) 81 i l � 1} ✓
N ⇥ · · ·⇥N . For example, if we perform a random walk on
G, any (u, v) and (v, u) where euv 2 E are states in M(2).
Note that the expanded Markov chain describes the same
process as the random walk. The reason we define it here is
for the convenience of deriving unbiased estimator.

The bias caused by the non-uniform sampling probabili-
ties of the graphlet samples arises from two aspects. First,
the states in the expanded Markov chain have unequal sta-
tionary probabilities. Second, a graphlet sample corresponds
to several states in the expanded Markov chain. To derive
the unbiased estimator of the graphlet concentration, we
need to compute the stationary distribution and the num-
ber of states corresponding to the same graphlet sample.
Stationary distribution. Let ⇡⇡⇡ denote the stationary dis-
tribution of the random walk and ⇡⇡⇡e denote the stationary
distribution of the expanded Markov chain. dX is number of
neighbors of state X in G(d). The following theorem states
that ⇡⇡⇡e is unique and its value can be computed with ⇡⇡⇡.

Theorem 2. The stationary distribution ⇡⇡⇡e exists and is
unique. For any X(l) = (X1, · · · , Xl) 2M(l), we have

⇡e(X
(l)) =

8
>><

>>:

dXl

2|R(d)| if l = 1,
1

2|R(d)| if l = 2,
1

2|R(d)|
1

dX2
· · · 1

dXl�1
if l > 2

(2)

The proof is in the technical report [7]. In fact, ⇡⇡⇡e can be
derived directly using conditional probability formula. For
the state X(l) = (X1, · · · , Xl), X1 is visited with probability
⇡(X1) =

dX1

2|R(d)| during the random walk and ⇡e(X
(l)) can

be written as dX1

2|R(d)| ⇥
1

dX1
⇥ · · ·⇥ 1

dXl
.

Example: Still using the graph in Figure 1 as an exam-
ple, if we walk on G(2) and visit states X1 = (1, 2), X2 =

(1, 3), X3 = (3, 4), then the corresponding state X(3)
1 in

M(3) is (X1, X2, X3). The number of edges in G(2) is 8.
The degrees of X1, X2, X3 are 3, 4, 3 respectively. Then the
stationary distribution of X(3)

1 is 1/16 · 1/4 = 1/64.
State corresponding coefficient. Let V (X(l)) represent
the set of graph G’s nodes contained in the state X(l), and
s(X(l)) be the subgraph induced by V (X(l)). We define X(l)

as the corresponding state for the subgraph s(X(l)). A key
observation is that a subgraph may have several correspond-
ing states in M(l). For example, if we perform a random
walk on G, then a triangle induced by {u, v, w} in G has 6
corresponding states (u, v, w), (u,w, v), (v, u, w), (w, v, u),
(v, w, u), (w, u, v) in M(3). To describe this idea formally,
we define the state corresponding coefficient ↵k

i .

Table 2: Coefficient ↵k
i for k = 3, 4 nodes graphlets.

Graphlet g31 g32 g41 g42 g43 g44 g45 g56

↵k
i /2

SRW (1) 1 3 1 0 4 2 6 12
SRW (2) 1 3 1 3 4 5 12 24
SRW (3) 1/2 1/2 1 3 6 3 6 6

Definition 3. For any connected induced subgraph s '
gki , we define the set of corresponding states for s as C(s) =
{X(l)|s(X(l)) = s,X(l) 2 M(l)} and state corresponding
coefficient ↵k

i as |C(s)|.

Coefficient ↵k
i is vital to the design of unbiased estimator. If

states in M(l) are uniformly sampled, then the probability
of getting a subgraph isomorphic to gki is ↵k

i C
k
i /|M(l)|. The

physical interpretation of ↵k
i is that each subgraph isomor-

phic to gki is replicated ↵k
i times in the state space. If ↵k

i is
larger, we have a higher chance to get samples of gki . Note
that coefficient ↵k

i only depends on different graphlets and
random walk types. Hence we can compute ↵k

i in advance.
In fact, ↵k

i denotes how many ways we can traverse the gki .
Theoretically, ↵k

i equals to twice of the number of Hamilton
paths2 (each Hamilton path is counted from both directions)
in the subgraph relationship graph of gki . The detailed com-
putation process of ↵k

i is in the technical report [7]. Table 2
lists the coefficient ↵k

i for k = 3, 4. SRW (d) in the table
represents a random walk on G(d). Notice that ↵4

2 = 0 if
we choose SRW (1), i.e., if we walk on G, there is no chance
to get samples of g42 . In this case, we can only estimate
the relative concentration for all 4-node graphlets except g42
(3-star). Table 3 lists the coefficient for all 5-node graphlets.

3.3 Unbiased Estimator

Now we derive an unbiased estimator for the graphlet con-
centration. Define an indicator function hk

i (X
(l)) as

hk
i (X

(l)) = 1{s(X(l)) ' gki }. (3)

Function hk
i (X

(l)) = 0 if the number of distinct nodes in X(l)

is less than k or s(X(l)) (subgraph induced by G’s nodes in
X(l)) is not isomorphic to gki . Since each subgraph isomor-
phic to gki is replicated ↵k

i times in the state space, we have
X

X(l)2M(l)

hk
i (X

(l)) = ↵k
i C

k
i .

Using above fact, we have

E⇡⇡⇡e

hk
i (X

(l))

⇡e(X(l))

�
=

X

X(l)2M(l)

hk
i (X

(l))

⇡e(X(l))
⇡e(X

(l)) = ↵k
i C

k
i .

Suppose there are n samples {X(l)
s }ns=1 obtained from the ex-

panded Markov chain. Combining the SLLN in Section 2.2
and above equation, we have

µ̂n , 1
n

nX

s=1

hk
i (X

(l)
s)

⇡e(X
(l)
s)
! ↵k

i C
k
i .

Hence, we estimate Ck
i as

Ĉk
i , 1

n

nX

s=1

hk
i (X

(l)
s)

↵k
i ⇡e(X

(l)
s)
! Ck

i . (4)

2Hamilton path is defined as a path that visits each vertices
in the graph exactly once.

257

Table 3: Coefficient ↵5
i for 5-node graphlets

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Shape

↵5
i /2

SRW (1) 1 0 0 1 2 0 5 2 2 4 4 6 7 6 6 10 14 18 24 36 60
SRW (2) 1 2 12 5 4 16 5 6 24 24 12 18 15 54 36 42 34 82 76 144 240
SRW (3) 1 5 24 8 5 24 5 16 30 24 16 63 26 63 30 43 63 63 90 90 90
SRW (4) 1 3 6 3 3 6 10 12 12 12 12 10 10 10 12 10 10 10 10 10 10

The bias of each graphlet sample induced by nodes in X(l) is
corrected by dividing its “inclusion probability” ↵k

i ⇡e(X
(l)).

Note that this is a special case of importance sampling [27,
Chapter 9]. With the graphlet count estimator in Equa-
tion (4), we can derive the graphlet concentration estimator
easily. Define hk(X(l)) = 1{|V (X(l))| = k} and ↵k(X(l)) =
P|Gk|

i=1 ↵k
i h

k
i (X

(l)). The concentration cki is estimated with
the following formula:

ĉki ,
Pn

s=1 h
k
i (X

(l)
s)/

⇣
↵k
i ⇡e(X

(l)
s)

⌘

Pn
s=1 h

k(X(l)
s)/

⇣
↵k(X(l)

s)⇡e(X
(l)
s)

⌘ ! cki . (5)

Remarks: The common denominator in ⇡e(X
(l)) is 2|R(d)|,

which is usually unknown for graphs with restricted access.
Fortunately, |R(d)| in the numerator and denominator of ĉki
cancels out. That means cki can be estimated without know-
ing |R(d)|. Local information (i.e., degree of nodes, adja-
cent relationship) collected along the random walk is enough
for the estimation. If we replace ⇡e(X

(l)) with ⇡̃e(X
(l)) ,

2|R(d)|⇡e(X
(l)) in Equation (5), the estimator ĉki remains

unchanged. For the state X(l) = (X1, · · · , Xl), ⇡̃e(X
(l)) can

be computed directly with the degrees of X1, · · · , Xl.
Algorithm 1 depicts the process of k-node graphlet con-

centration estimation. Note that we can easily estimate the
count of graphlets with Equation (4) if we know |R(d)|. For
random walk on G, we have R(1) = |E|. For SRW on G(2),
|R(2)| = 1

2

P
euv

(du+dv�2) and a single pass of graph data
is enough to compute this value.
Bound on sample size. The next important question we
like to ask is what is the smallest sample size (or random
walk steps) to guarantee high accuracy of our estimator?
In the following, we show the relationship between accu-
racy and sample size using the Chernoff-Hoeffding bound
for Markov chain. Let W denote maxX(l) 1/⇡e(X

(l)) and
↵min = mini ↵

k
i . The following theorem states the relation-

ship between the estimation accuracy and sample size.

Theorem 3. For any 0 < � < 1, there exists a constant
⇠ such that

Pr
h
(1� ✏)cki ĉki (1 + ✏)cki

i
> 1� � (6)

when the sample size n � ⇠(W⇤) ⌧
✏2
(log

k'k⇡⇡⇡e
�). Here ⇤ =

min{↵k
i C

k
i ,↵minC

k}, ⌧ is the mixing time ⌧(1/8) of the orig-
inal random walk, ' is the initial distribution and k'k⇡⇡⇡e

is
defined as

P
X(l) '2(X(l))/⇡e(X

(l)).

Remarks: The proof for Theorem 3 is in the technical re-
port [7]. From Theorem 3, we know that the needed sample
size is linear with the mixing time ⌧ . This implies our frame-
work performs better for graphs with smaller mixing time.

Algorithm 1 Unbiased Estimate of Graphlet Statistics
Input: sample budget n, SRW on G(d), graphlet size k
Output: estimate of

⇥
ck1 , · · · , ckm

⇤
(m = |Gk|)

1: random walk block length l k � d+ 1
2: counter Ĉk

i 0 for i 2 {1, · · · ,m}
3: walk l steps to get the initial state X(l)=(X1,· · · ,Xl)
4: random walk step t 0
5: while t < n do

6: i graphlet type id of subgraph s(X(l))

7: Ĉk
i Ĉk

i + 1/
⇣
↵k
i ⇡̃e(X

(l))
⌘

8: Xl+t+1 uniformly chosen neighbor of Xl+t

9: X(l) (Xt+2, · · · , Xl+t+1)
10: t t+ 1
11: ĉki = Ĉk

i /
Pm

j=1 Ĉ
k
j for all i 2 {1, · · · ,m}

12: return
⇥
ĉk1 , · · · , ĉkm

⇤

Furthermore, some graphlet types are relatively rare in the
graphs. For these rare graphlet types, we need larger sample
size to guarantee the same accuracy. If ↵k

i is higher for rare
graphlet gki , the needed sample size is smaller.

4. IMPROVED ESTIMATION

We now introduce two novel optimization techniques to
reduce the need sample size in Theorem 3. The first tech-
nique is to correct the bias by combining the stationary prob-
abilities of the corresponding states. The second technique
integrates the non-backtracking random walk into our sam-
pling framework. With these two optimization techniques,
we obtain a more efficient estimator.

4.1 Corresponding State Sampling (CSS)

Recall that C(s) is defined as the set of states which cor-
respond to the subgraph s, i.e., states in C(s) contain the
same set of nodes as subgraph s. The key observation is that
for X(l)

a , X(l)
b 2 C(s), the “inclusion probabilities” ↵k

i ⇡e(X
(l)
a)

and ↵k
i ⇡e(X

(l)
b) may be different even though X(l)

a and X(l)
b

correspond to the same subgraph. In other words, the inclu-
sion probability of a subgraph is determined not only by the
nodes in the subgraph, but also the orders in which these
nodes are visited.
Example: To illustrate, consider a triangle � induced by
nodes u, v, w. Suppose we choose a random walk on G.
Then both of states X(3)

1 = (u, v, w) and X(3)
2 = (v, u, w)

correspond to the triangle �. We know that ↵3
2⇡e(X

(3)
1) =

6
2|E|

1
dv

while ↵3
2⇡e(X

(3)
2) = 6

2|E|
1
du

. If nodes u and v have
different degrees, then ↵3

2⇡e(X
(3)
1) 6= ↵3

2⇡e(X
(3)
2), i.e., the

same triangle � has different inclusion probabilities when
visited in orders u, v, w and v, u, w.

258

Based on this observation3, we define “sampling probabil-
ity” p(X(l)) for the subgraph induced by nodes in X(l). The
value of p(X(l)) only depends degrees of nodes in X(l).

Definition 4. For a state X(l) and a subgraph s = s(X(l)),
we define the sampling probability for s as

p(X(l)) ,
X

X
(l)
j 2C(s)

⇡e(X
(l)
j).

In the following, we prove that if we substitute ↵k
i ⇡e(X

(l))
with p(X(l)) in Equation (4), we still obtain an unbiased
estimator of Ck

i .

Lemma 4. For a specific subgraph s ' gki , we have

E⇡⇡⇡e [
1

↵k
i ⇡eX(l)

1{V (X(l)) = V (s)}] =

E⇡⇡⇡e [
1

p(X(l))
1{V (X(l)) = V (s)}]

Lemma 4 can be proved directly using the definition. It is
trivial to verify that the function hk

i (X
(l)) in Equation (3)

is the linear combination of function 1{V (X(l)) = V (s)}.
Using the linearity of expectation and the result in Lemma 4,
we have

E⇡⇡⇡e

hk
i (X

(l))

p(X(l))

�
= E⇡⇡⇡e

hk
i (X

(l))

↵k
i ⇡e(X(l))

�
.

Hence, we can rewrite the estimator in Equation (4) as

1
n

nX

s=1

hk
i (X

(l)
s)

p(X(l)
s)

! Ck
i a.s. (7)

Similarly, we estimate graphlet concentration as
Pn

s=1 h
k
i (X

(l)
s)/p(X(l)

s)
Pn

s=1 h
k(X(l)

s)/p(X(l)
s)

! cki a.s. (8)

Remarks: The pseudo code of computing p(X(l)) is pre-
sented in the technical report [7]. The estimator in Equa-
tion (7) corrects the bias of graphlet samples using the sam-
pling probability p(X(l)) instead of ↵k

i ⇡e(X
(l)). It indicates

that the probability that a subgraph s is generated by the
random walk actually equals to

P
X

(l)
j 2C(s) ⇡e(X

(l)
j).

Example: Table 4 lists the corresponding p(X(l)) when we
choose SRW (1) for 3-node graphlets and SRW (2) for 4-
node graphlets. Labels for nodes and edges are defined in
Figure 2. Note that an edge euv in the graph G is a node
in G(2). The degree of euv in G(2) should be du + dv � 2,
i.e., deuv = du + dv � 2. Here du and dv are degrees of
nodes u and v in G. In Table 4, the first column is the
graphlet type of subgraph induced by nodes in X(l). The
second column is the random walk type. The third column is
the state corresponding coefficient and the fourth column is
the sampling probability p(X(l)). To further understand the
sampling probability, we give an example of triangle (g32). If
we randomly walk on G and visit nodes 1, 2, 3 sequentially,
then the state we are visiting is X(3) = (1, 2, 3). Assume
3Here we require l > 2 since when l = 2, the inclusion
probabilities are the same for the states corresponding to
the same subgraph.

{1, 2, 3} induces a triangle �. We know that the corre-
sponding states of � are (1, 2, 3), (3, 2, 1), (1, 3, 2), (2, 3, 1),
(2, 1, 3) and (3, 1, 2). The sampling probability p(X(l)) for
X(3) = (1, 2, 3) is 1

2|E| (2/d1+2/d2+2/d3) while ↵k
i ⇡e(X

(l))

for X(3) is 6
2|E|

1
d2

. Observe that p(X(l)) makes better use of
the degree information for the nodes in the subgraph.

Table 4: Sampling probability p(X(l)) for all 3, 4-node

graphlets.

Graphlet SRW(d) ↵k
i /2 2|R(d)| · p(X(l))/2

g31 SRW (1)
1 1/d2

g32 3 1/d1 + 1/d2 + 1/d3
g41 1 1/de2
g42

SRW (2)

3
P3

j=1 1/dej
g43 4

P4
j=1 1/dej

g44 5 2/de2 + 2/de3 + 1/de4
g45 12 2

P5
j=1 1/dej + 2/de5

g46 24 4
P6

j=1 1/dej

Bound on sample size. Define W 0 , maxX(l) 1/p(X(l)).
When the sample size n � ⇠(W

0

Ck
i
) ⌧
✏2
(log

k'k⇡⇡⇡e
�), the estimate

in Equation (8) is within (1± ✏)cki with probability at least
1 � �. Here, ⇠ is a constant independent of ✏, �. ⌧ is the
mixing time ⌧(1/8) of the random walk. ' is the initial
distribution. Since max 1/p(X(l)) max 1/↵k

i ⇡e(X
(l)), the

bound on the sample size for the new estimator in Equa-
tion (8) is smaller.

4.2 Non-backtracking Random Walk

Many techniques have been proposed to improve the ef-
ficiency of random walk-based algorithms, for example, non-
backtracking random walk [17], random walk leveraging walk
history [39], rejection controlled Metropolis-Hasting random
walk [19], random walk with jump [38], etc. In this sub-
section, we introduce non-backtracking random walk (NB-
SRW) to our estimation framework as an example to show
how to integrate these techniques with our framework.

The basic idea of NB-SRW is to avoid backtracking to the
previously visited node. Due to the dependency on previ-
ously visited node, the random walk on G(d) = (H(d), R(d))
is not a Markov chain on state space H(d). However, we
can define an augmented state space ⌦ = {(i, j) : i, j 2
H(d), s.t. (i, j) 2 R(d)} ✓ H(d) ⇥H(d). The transition ma-
trix P0 , {P 0(eij , elk)}eij ,elk2⌦ for the NB-SRW is defined
as follows

P0(eij , ejk) =

8
<

:

1
dj�1 , if i 6= k and d(j) � 2,

0, if i = k and d(j) � 2,
1, if i = k and d(j) = 1.

All other elements of matrix P are zeros. Let ⇡⇡⇡0 be the
stationary distribution of the NB-SRW. A useful fact is that
NB-SRW preserves the stationary distribution of the original
random walk, i.e., ⇡0(i) = di/2|R(d)| and ⇡0(eij) = 1/2|R(d)|.
To apply NB-SRW, we just need to replace our previously
used simple random walk with NB-SRW. The estimator in
Equation (5) and (8) can still be used except that we need
to replace the ⇡e(X

(l)) with ⇡0
e(X

(l)). Define the nominal
degree for Xi 2 H(d) as d0Xi

= max{dXi � 1, 1}. For any
X(l) = (X1, · · · , Xl), the ⇡0

e(X
(l)) can be computed by sub-

stituting dX with d0X in Equation (2).

259

Applying NB-SRW helps us eliminate some “invalid” states
from the state space. For example, if we want to estimate
3-node graphlet concentration using SRW (1), we need to
walk for 3 steps on G to collect a sample. It is possible for
us to get only 2 distinct nodes from 3 steps. We call such
samples as invalid samples. The invalid samples do not con-
tribute to the estimation. If we apply NB-SRW here, it is
less likely to get such invalid samples. Hence NB-SRW helps
to improve the estimation efficiency of our framework.

5. IMPLEMENTATION DETAILS

We explain how to obtain neighbors of currently visited
state (subgraph) s 2 H(d) on the fly. Obtaining a uniformly
chosen neighbor of a node in G or G(2) takes O(1) time.
We give details about the random walk on G(2). The set of
neighbors of euv is N(euv) = {euw : w 2 N(u)\v} [{evz :
z 2 N(v)\u}. Recall that N(v) denotes the set of neighbors
of v 2 V . To ensure each neighbor of euv is chosen uniformly,
we first select one of u and v with probability du/(du + dv)
and dv/(du+dv) respectively. Suppose we have chosen node
u, we then randomly select a node w 2 N(u). If w 6= v, euw
is proposed as the next step after euv. Otherwise, we restart
the process until we obtain a neighbor of euv. Based on
above discussion, we know that getting a uniformly sampled
neighbor of a state in G(2) can be done in constant time.

To obtain a randomly chosen neighbor of s in G(d), we can
replace one node vi in V (s) with a node vj 2 [v2V (s)\viN(v)
and ensure the connectivity of this new subgraph induced
by node set {vj} [V (s)\vi. Here V (s) is the node set of
the subgraph s. However, to ensure the neighbors of s are
uniformly sampled, we need to generate all neighbors of s
when d > 2, which requires d merge operations over d � 1
adjacent lists of nodes in the currently visited subgraph.
Hence, the time complexity of selecting a random neighbor
for a state in G(d) is simply O(d2 |E|

|V |) when d > 2.
According to Algorithm 1, we also need to identify the

graphlet type of the obtained samples at each step. We
refer interested readers to the implementation details and
time complexity analysis in the technical report [7].

Note that our framework does not need any preprocessing
of the graph data. The time complexity of our framework is
O(n) when d 2 and O(nd2 |E|

|V |) when d > 2 for the k-node
graphlets. Here n is the random walk steps.

6. EXPERIMENTAL EVALUATION

We evaluate the performance of our framework on 3, 4, 5-
node graphlets. The algorithms are implemented in C++ and
we run experiments on a Linux machine with Intel 3.70GHz
CPU. We aim to answer the following questions.
Q1: How accurate is our framework? Do the optimization

techniques really improve the accuracy?
Q2: How does the random walk on G(d) affect the perfor-

mance? What is the best parameter d for 3, 4, 5-node
graphlets?

Q3: Does our framework provide more accurate estimation
than the state-of-the-art methods?

6.1 Experiment Setup

We use publicly available real-world networks to evaluate
our framework. We focus on undirected graphs by removing
the directions of edges if the graphs are directed. We only
retain the largest connected component (LCC) of the graphs

and discard the rest nodes and edges. The detailed infor-
mation about the LCC of the graphs is reported in Table 5.

The exact graphlet concentration is obtained through well-
tuned enumeration methods [3, 13]. For 5-node graphlets,
the ground-truth value is only computed for the four smaller
datasets due to the extremely high computation cost. As an
example, we state the exact concentration of the 3, 4, 5-node
cliques (i.e., c32, c46, and c521) in Table 5, and we can see that
the 3, 4, 5-node cliques take a relatively low percentage.

Table 5: Datasets

Graph |V | |E| c32
(10�2)

c46
(10�3)

c521
(10�5)

BrightKite [1] 57K 213K 3.98 1.447 4.661
Epinion [18] 76K 406K 2.29 0.225 0.147
Slashdot [18] 77K 469K 0.82 0.092 0.115
Facebook [1] 63K 817K 5.46 1.419 2.511
Gowalla [18] 197K 950K 0.80 0.008 -
Wikipedia [1] 1.9M 36.5M 0.10 0.00009 -
Pokec [1] 1.6M 22.3M 1.6 0.035 -
Flickr [1] 2.2M 22.7M 3.87 0.886 -
Twitter [30] 21.3M 265M 0.86 0.0166 -
Sinaweibo [30] 58.7M 261M 0.03 0.00008 -

We use the following normalized root mean square error
(NRMSE) to measure the estimation accuracy:

NRMSE(ĉki) ,
p

E[(ĉki � cki)
2]

cki
=

p
Var[ĉki] + (cki � E[ĉki])2

cki
,

where ĉki is the estimated value and cki is the ground-truth.
NRMSE(cki) is a combination of variance and bias of the
estimate ĉki , both of which are important to characterize
the accuracy of the estimator.

The names of the methods are given in the following way.
SRWd represents random walks on G(d). If the method also
integrates the optimization techniques corresponding state
sampling (CSS) and non-backtracking random walk (NB-
SRW), we append CSS and NB at the end of the method
name, respectively. For example, SRW1CSSNB means that
we perform the random walk on G(1) (i.e., G) and use both
techniques CSS and NB-SRW for further optimization.

6.2 Framework Evaluation

6.2.1 Accuracy
Comparison between different random walks. We
first demonstrate the effects of the parameter d and the op-
timization techniques on the estimation accuracy. The esti-
mation results are presented in Figure 3 for all the graphs
whose ground truth has been obtained. Note that only
graphlets g32 , g46 , g521 are presented since they have the small-
est concentration value among 3, 4, 5-node graphlets respec-
tively and are observed to have the least accurate estimates.
The NRMSE is estimated over 1,000 independent simula-
tions except that the NRMSE of SRW4 is only estimated
over 100 simulations since the random walk on G(4) is rela-
tively slow. We do not study SRW1 for 4, 5-node graphlets
because ↵4

2,↵
5
2,↵

5
3,↵

5
6 are zeros with SRW1. The sample

size, i.e., the random walk steps, equals to 20K for all meth-
ods in the framework. We summarize our findings as follows.
• The method SRW1CSSNB, i.e., random walk on G with

optimization techniques CSS and NB-SRW, has the high-
est accuracy in estimating the concentration of 3-node

260

graphlets. The method SRW2CSS has the best perfor-
mance in estimating 4, 5-node graphlet concentration.

• The best methods in our framework provide accurate es-
timates. The NRMSE of SRW1CSSNB for graphlet g32 is
in the range 0.025 ⇠ 0.13. The NRMSE of SRW2CSS
for graphlets g46 , g521 is in the range 0.08 ⇠ 4.3, and 0.20 ⇠
0.86 respectively. Note that we only use 20K random walk
steps. The sample size is small compared with the graph
size. E.g., we only exploit 0.03% nodes of Sinaweibo.

• For the same graphlets, the random walk on G(d) with
smaller d outputs better estimates. E.g., SRW1 outputs
estimates of c32 which has 3.8⇥ smaller NRMSE than that
of SRW2 for Twitter; SRW2 produces estimates of c46 with
10⇥ smaller NRMSE than SRW3 for Gowalla. In con-
clusion, we should choose d = {1, 2, 2} for 3, 4, 5-node
graphlets respectively.

• The optimization technique CSS improves the accuracy of
estimates a lot while the performance gain of NB-SRW is
negligible. For example, SRW1CSS reduces the NRMSE
of SRW1 more than 3 times for Wikipedia and Sinaweibo
when estimating the triangle (g32) concentration.

Weighted concentration and accuracy. We now in-
troduce the concept of weighted concentration to explain
how the parameter d affects the performance. From Equa-
tion (4), we know that 1

n

Pn
s=1

hk
i (X

(l)
s)

⇡e(X
(l)
s)
! ↵k

i C
k
i . To further

understand the performance of our framework, we define the
weighted concentration for graphlet gki as ↵k

i C
k
i /(

Pm
j=1 ↵

k
jC

k
j).

As an example, we plot the weighted concentration of 4-node
graphlets for Epinion in Figure 4a. From Figure 4, we know
the parameter d and the concentration value affect the per-
formance of our framework in the following way.
• Effect of the parameter d. Compared with the origi-

nal concentration, the weighted version lifts the percent-
age of relatively rare graphlets, i.e., g43 (), g45 (),
and g46 (). For the graphs Epinion, the weighted con-
centration of SRW2 is much larger than that of SRW3
for graphlets g45 , g

4
6 , while for graphlet g43 , the weighted

concentration of SRW3 is slightly higher than that of
SRW2. For example, the weighted concentration for g46
with SRW2 is about 8⇥ higher than the original one while
SRW3 only increases the concentration 2⇥ higher. In
other words, SRW2 increases the probability of getting a
sample of g46 about 8⇥ higher compared with uniform sam-
pling of graphlets, while SRW3 only increases the prob-
ability about 2⇥ higher. Consequently, the NRMSE of
SRW2 in estimating c46 is 2⇥ smaller than that of SRW3.
From Theorem 3 we know that more samples are needed to
achieve specific accuracy for graphlets with smaller ↵k

i C
k
i .

Hence the error of the estimation for rare graphlets is the
major error source. If we are able to assign rare graphlets
higher weighted concentration, the overall performance is
less likely to degenerate. Based on above discussion, we
conclude that random walks on G(d) with smaller d have
better overall performance since they have a higher chance
of getting the relatively rare graphlets.

• Effect of the concentration value. From Figure 4b we
can see that SRW2 and SRW2CSS perform better than
SRW3 for all the 4-node graphlets except g43 (because
the weighted concentration of g43 computed with SRW3 is
higher than that of SRW2). Besides, the smaller the con-
centration value, the higher the estimation error, which is
consistent with our analysis in Theorem 3.

Table 6: Running time of performing 20K random

walk steps for different methods.

Graph SRW2 SRW2CSS SRW3 SRW4 Exact
BrightKite [1] 19.4 ms 110.2 ms 271.1 ms 20.6 s 511 s
Epinion [18] 20.6 ms 68.6 ms 540.0 ms 51.4 s 11091 s
Slashdot [18] 19.6 ms 50.6 ms 538.8 ms 47.4 s 5702 s
Facebook [1] 21.8 ms 114.8 ms 214.2 ms 19.8 s 4405 s

6.2.2 Convergence
To show the convergence properties of the methods, we

vary the sample size from 2K to 20K in increment of 1K.
We present the simulation results in Figure 5 for 3, 4, 5-node
cliques since they have the smallest concentration value and
the least accuracy. Due to the space limitation, we only
choose 6 representative graphs in the datasets for the pre-
sentation. We summarize the observations as follows.
• The estimates are more concentrated around the ground-

truth as we increase the sample size.
• SRW1CSSNB exhibits consistent best performance in es-

timating c32. SRW2CSS has consistent best performance
in estimating 4, 5-node clique concentration.

• There are spikes in the line plot of NRMSE v.s. sample
size. This is caused by burn-in period of the random walks
and inadequate simulation times.

6.2.3 Running time
In Table 6, we show the average running time of perform-

ing 20K random walk steps for different methods when esti-
mating 5-node graphlet concentration. Among them, Exact
represents the enumeration time of [13]. Since SRW3CSS
incurs high computation cost, we do not consider this algo-
rithm. The time cost of the random walk consists of popu-
lating a random neighbor and identifying the graphlet types.
Here we do not consider the APIs response delay. From Ta-
ble 6, we know that the random walk on G(d) is faster when
d is smaller. For example, SRW2 is much faster than SRW3
and SRW4. This also validates the choice of smaller d.

6.3 Comparison with Competing Methods

6.3.1 Methods with restricted access assumption
Our framework is mainly designed for graphs with re-

stricted access, i.e., the graph data can only be accessed
through APIs. For graphs with restricted access, random
walk-based methods are commonly used to exploit the prop-
erties of the graphs. In this part, we compare the best
methods in our framework with two state-of-the-art random
walk-based methods [35] and [12].

The state-of-the-art random walk-based method in esti-
mating any k-node graphlet concentration is the PSRW pro-
posed in [35]. Note that PSRW is equivalent to choosing
d = k�1 in our framework. Specifically, PSRW corresponds
to SRW2, SRW3, and SRW4 when estimating 3, 4 and 5-node
graphlet concentration respectively. We recap the compari-
son results in Figure 3 and Table 6 as follows.
• For 3-node graphlets, SRW1CSSNB performs best for all

the datasets in Table 5, and it outperforms PSRW up to
3.8⇥ (for “Twitter”). For 4, 5-node graphlets, SRW2CSS
performs better than PSRW both in time cost and accu-
racy, e.g., SRW2CSS outperforms PSRW in estimating 4-
node graphlet concentration up to an order of magnitude
(for “Gowalla”) in accuracy.

261

Brightkite Epinion Slashdot Facebook Pokec Flickr
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

N
R
M

SE

SRW1 SRW1CSS SRW1CSSNB SRW2 SRW2NB

Gowalla
0.00

0.05

0.10

0.15

0.20

0.25

Wikipedia Twitter Sinaweibo
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

(a) Triangle (g32 ,)

Brightkite Epinion Slashdot Facebook Pokec Flickr
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
R
M

SE

SRW2

SRW2CSS

SRW3

Gowalla
0

1

2

3

4

5

6

Wikipedia Twitter Sinaweibo
0
5

10
15
20
25
30
35
40

(b) 4-node clique (g46 ,)

Brightkite Epinion Slashdot Facebook
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

N
RM

SE

SRW2

SRW2CSS

SRW3

SRW4

(c) 5-node clique (g521,)

Figure 3: NRMSE of concentration estimates (sample size = 20K).

1 2 3 4 5 6
Graphlet id

10�3

10�2

10�1

100

W
ei

gh
te

d
co

nc
en

tr
at

io
n Epinion

Origin
SRW2
SRW3

(a) Weighted concentration

1 2 3 4 5 6
Graphlet id

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

N
R
M

SE

Epinion
SRW3
SRW2
SRW2CSS

(b) NRMSE

Figure 4: Relationship between the weighted con-

centration and the accuracy (sample size = 20K).

The triangle concentration has strong relationship with
the global clustering coefficient which is defined as 3C3

2/(C
3
1+

3C3
2) = 3c32/(2c

3
2+1). Similarly, c32 can be computed directly

with the clustering coefficient. Hence we also consider the
method proposed by Hardiman et al. [12], which is primarily
designed for clustering coefficient, as the competing method
for 3-node graphlet concentration. The method in [12] uses
the simple random walk on G, and at each step, the vis-
ited node vt checks whether the node visited before vt and
the node visited after vt are connected. Detailed analysis
of this method reveals that it is equivalent to SRW1 under
our framework, but derived in a totally different way. From
Figure 3, we observe that our method SRW1CSSNB outper-
forms [12] (SRW1). Especially for Wikipedia and Sinaweibo,
SRW1CSSNB has at least 3⇥ smaller NRMSE.

6.3.2 Methods with full access assumption
Now we assume the graph data is readily available and fits

in the main memory. We evaluate our framework in such full
access setting with the purpose to shed light on the advan-
tages and disadvantages of applying the MCMC samplers for
memory-based graphs. We compare with two state-of-the-
art methods: wedge sampling [31], and path sampling [14].
Wedge sampling [31]. This method estimates the triadic
measures (e.g., number of triangles) by generating uniform
wedge () samples. To get a uniform wedge sample, it first
selects a random node v according to the probability pv,
here pv ,

�
dv
2

�
/
�P

u2V

�
du
2

��
, and then chooses a uniform

random pair of neighbors of v to generate a wedge. Note
that wedge sampling needs to compute the probability pv
for each node v. The time complexity of wedge sampling is
O(|V |+n log |V |), where n is the number of wedge samples.

0.4 0.8 1.2 1.6 2.0
Random walk steps �104

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

N
R
M

S
E

Twitter(21M/265M)
SRW1
SRW1CSS
SRW1CSSNB
SRW2
SRW2NB

0.4 0.8 1.2 1.6 2.0
Random walk steps �104

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
R
M

S
E

Sinaweibo(59M/261M)
SRW1
SRW1CSS
SRW1CSSNB
SRW2
SRW2NB

(a) Triangle ()

0.4 0.8 1.2 1.6 2.0
Random walk steps �104

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

N
R
M

S
E

Pokec(1.6M/22.3M)
SRW2
SRW2CSS

SRW3

0.4 0.8 1.2 1.6 2.0
Random walk steps �104

0.0
0.2
0.4
0.6
0.8
1.0
1.2

N
R
M

S
E

Flickr(2.2M/22.7M)
SRW2
SRW2CSS

SRW3

(b) 4-node clique ()

0.4 0.8 1.2 1.6 2.0
Random walk steps �104

0

5

10

15

20

N
R
M

S
E

Epinion(76K/406K)
SRW2
SRW2CSS

SRW3
SRW4

0.4 0.8 1.2 1.6 2.0
Random walk steps �104

0

5

10

15

20

N
R
M

S
E

Slashdot(77K/469K)
SRW2
SRW2CSS

SRW3
SRW4

(c) 5-node clique ()

Figure 5: Convergence of the estimates.

Path sampling [14]. It estimates 4-node graphlet counts
by generating uniform 3-path () samples. For each edge
e = (u, v) 2 E, denote ⌧e = (du � 1)(dv � 1) and S ,P

e ⌧e. To get a uniform 3-path, it first selects an edge
e = (u, v) with probability pe , ⌧e/S. Then picks uniform
random neighbor u0 of u other than v, picks uniform random
neighbor v0 of v other than u, and outputs the three edges
{(u0, u), (u, v), (v, v0)} as the sampled 3-path. The time com-
plexity of path sampling to generate n 3-path samples is
O(|E|+ n log |E|).

Note that these two methods focus on estimating graphlet
counts. Our framework is also capable of estimating graphlet
counts for memory-based graphs according to Equation (4)
and (7). We compare SRW1CSSNB with wedge sampling,
and SRW2CSS with path sampling for 3, 4-node graphlet

262

Brig
htk

ite

Fac
ebo

ok
Flic

kr
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018

N
R
M

SE

Epin
ion

Sla
shd

ot

Gow
alla

Wikip
edi

a
Poke

c

Twitte
r

Sin
aw

eib
o

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

SRW1CSSNB

Wedge

(a) Triangle (g32 ,)

Brig
htk

ite

Epin
ion

Sla
shd

ot

Fac
ebo

ok

Gow
alla

Wikip
edi

a
0.00

0.02

0.04

0.06

0.08

0.10

N
R
M

SE

SRW2CSS 3-path

Poke
c

Flic
kr

Twitte
r

Sin
aw

eib
o

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

(b) 4-node clique (g46 ,)

Figure 6: NRMSE of graphlet counts estimation.

counts estimation. For fair comparison, we run wedge sam-
pling and path sampling for 200K samples (200K samples are
used in the original papers), and then run the SRW1CSSNB
and SRW2CSS for the same running time as wedge sampling
and path sampling respectively. The results are shown in
Figure 6. For path sampling, we only show the accuracy of
4-node clique due to space limitation. We summarize the
results in Figure 6 as follows.
• In Figure 6a, we compare our method SRW1CSSNB with

wedge sampling (denoted as Wedge in the figure). For
graphs BrightKite, Facebook, and Flickr, Wedge is more
accurate than SRW1CSSNB given the same running time.
Actually, these three graphs have the highest triangle con-
centration in the datasets. SRW1CSSNB performs bet-
ter than Wedge given the same running time for the rest
graphs. Both of SRW1CSSNB and Wedge generate wedge
samples. The difference is that Wedge generates indepen-
dent wedge samples while SRW1CSSNB generates corre-
lated samples. However, SRW1CSSNB generates samples
much faster than Wedge. Hence for large graphs with
small triangle concentration, we recommend to use the
SRW1CSSNB to estimate the triangle counts.

• In Figure 6b, we evaluate our proposed method SRW2CSS
and path sampling (which is denoted as 3-path in the fig-
ure). For the large graphs Pokec, Flickr, Twitter, and
Sinaweibo, our method SRW2CSS performs better than
3-path. This is because SRW2CSS does not need a pre-
process step and generates samples much faster than 3-
path. For large graphs with more than 100M edges, we
recommend to use our method SRW2CSS.

Remarks: The wedge sampling can be adapted to restricted
access via Metropolis-Hasting random walks. We present
the detailed adapted wedge sampling method and compare
it with our framework in the technical report [7]. The simu-
lation results show that our method SRW1CSSNB has much
higher accuracy than the adapted wedge sampling method.

6.4 Applications

In this subsection, we apply our framework to analyze
the intrinsic properties of the large scale graph Sinaweibo
in our datasets. Sinaweibo is the most popular microblog
service in China and has reached 222 million monthly active
users as of September 2015. It allows users to follow oth-

ers, post and repost messages, comment on others’ posts,
etc. With the fact that Facebook is an online social network
while Twitter is more like a news media [16], we now study
whether Sinaweibo acts like a social network or a news me-
dia by measuring its similarity to Twitter and Facebook. To
measure the similarity, we adopt the definition of graphlet
kernel in [32] and restrict the definition to 4-node graphlets.
Specifically, for two graphs with 4-node graphlet concentra-
tion c1 and c2, we define the similarity between them as
cT1 ·c2/(kc1k ·kc2k). We run the random walk for 20K steps
for graphs Facebook, Twitter, and Sinaweibo to estimate
the 4-node graphlet concentration and compute the similar-
ity with the estimated value. The results of 100 simulations
are reported in Table 7. Our proposed method SRW2CSS
gives a more accurate estimate of similarity value compared
with PSRW. Besides, we find that Sinaweibo has more sim-
ilar subgraph building blocks to Twitter, which indicates
Sinaweibo also acts like an efficient platform for information
diffusion. Note that for these large graphs, it is impractical
to crawl the whole datasets for later on analysis. Our frame-
work produces accurate estimates based on a small portion
of crawled nodes, which implies our framework is an efficient
analysis tool for large graphs with restrict access.

Table 7: Similarity between Sinaweibo and social

network Facebook, as well as news media Twitter.

Graph SRW2CSS PSRW Exact
Facebook [1] 0.5809±0.0501 0.5856±0.0676 0.5757
Twitter [30] 0.9988±0.0236 0.9957±0.0200 0.9999

7. CONCLUSION

In this paper, we propose a novel random walk-based
framework which takes one tunable parameter to estimate
the graphlet concentration. Our framework is general and
can be applied to any k-node graphlets. We derive an an-
alytic bound on the number of random walk steps required
for convergence. We also introduce two optimization tech-
niques to further improve the efficiency of our framework.
Our experiments with many real-world networks show that
the methods with appropriate parameter in our framework
produce accurate estimates and outperform the state-of-the-
art methods significantly in estimation accuracy.

8. ACKNOWLEDGMENTS

We thank the reviewers for their valuable comments. The
work of Yongkun Li was sponsored by CCF-Tencent Open
Research Fund. Pinghui Wang was supported by Ministry
of Education & China Mobile Joint Research Fund Pro-
gram (MCM20150506), the National Natural Science Foun-
dation of China (61603290, 61103240, 61103241, 61221063,
91118005, 61221063, U1301254), Shenzhen Basic Research
Grant (JCYJ20160229195940462), 863 High Tech Develop-
ment Plan (2012AA011003), 111 International Collabora-
tion Program of China, and the Application Foundation Re-
search Program of SuZhou (SYG201311). The work of John
C.S. Lui is supported in part by RGC 415013 and Huawei
Research Grant.

9. REFERENCES
[1] KONECT Datasets: The koblenz network collection.

http://konect.uni-koblenz.de, 2015.

263

http://konect.uni-koblenz.de

[2] N. K. Ahmed, N. Duffield, J. Neville, and
R. Kompella. Graph sample and hold: A framework
for big-graph analytics. In KDD, pages 1446–1455,
2014.

[3] N. K. Ahmed, J. Neville, R. A. Rossi, and N. Duffield.
Efficient graphlet counting for large networks. In
ICDM, pages 1–10, 2015.

[4] L. Akoglu, H. Tong, and D. Koutra. Graph-based
anomaly detection and description: A survey. Data
Mining and Knowledge Discovery (DAMI), 2014.

[5] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis.
Efficient semi-streaming algorithms for local triangle
counting in massive graphs. In KDD, pages 16–24,
2008.

[6] M. Bhuiyan, M. Rahman, and M. Al Hasan. GUISE:
Uniform sampling of graphlets for large graph
analysis. In ICDM, pages 91–100, 2012.

[7] X. Chen, Y. Li, P. Wang, and J. Lui. A general
framework for estimating graphlet statistics via
random walk. arXiv:1603.07504, 2016.

[8] K.-M. Chung, H. Lam, Z. Liu, and M. Mitzenmacher.
Chernoff-hoeffding bounds for markov chains:
Generalized and simplified. STACS, pages 124–135,
2012.

[9] E. R. Elenberg, K. Shanmugam, M. Borokhovich, and
A. G. Dimakis. Beyond triangles: A distributed
framework for estimating 3-profiles of large graphs. In
KDD, pages 229–238, 2015.

[10] C. J. Geyer. Markov chain monte carlo lecture notes.
Course notes, Spring Quarter, 1998.

[11] M. Gjoka, M. Kurant, C. T. Butts, and
A. Markopoulou. Walking in facebook: A case study
of unbiased sampling of osns. In INFOCOM, pages
1–9, 2010.

[12] S. J. Hardiman and L. Katzir. Estimating clustering
coefficients and size of social networks via random
walk. In WWW, pages 539–550, 2013.

[13] T. Hočevar and J. Demšar. A combinatorial approach
to graphlet counting. Bioinformatics, pages 559–565,
2014.

[14] M. Jha, C. Seshadhri, and A. Pinar. Path sampling: A
fast and provable method for estimating 4-vertex
subgraph counts. In WWW, pages 495–505, 2015.

[15] L. Katzir, E. Liberty, and O. Somekh. Estimating
sizes of social networks via biased sampling. In
WWW, pages 597–606, 2011.

[16] H. Kwak, C. Lee, H. Park, and S. Moon. What is
twitter, a social network or a news media? In WWW,
pages 591–600, 2010.

[17] C.-H. Lee, X. Xu, and D. Y. Eun. Beyond random
walk and metropolis-hastings samplers: why you
should not backtrack for unbiased graph sampling. In
SIGMETRICS, pages 319–330, 2012.

[18] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, 2014.

[19] R.-H. Li, J. Yu, L. Qin, R. Mao, and T. Jin. On
random walk based graph sampling. In ICDE, pages
927–938, 2015.

[20] L. Lovász. Random walks on graphs: A survey. In
Combinatorics, pages 1–46. 1993.

[21] T. Milenkoviæ and N. Pržulj. Uncovering biological

network function via graphlet degree signatures.
Cancer Informatics, 6:257–273, 2008.

[22] T. Milenković, V. Memišević, A. K. Ganesan, and
N. Pržulj. Systems-level cancer gene identification
from protein interaction network topology applied to
melanogenesis-related functional genomics data.
Journal of The Royal Society Interface, 7:423–437,
2010.

[23] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan,
D. Chklovskii, and U. Alon. Network motifs: Simple
building blocks of complex networks. Science,
298:824–827, 2002.

[24] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

[25] A. Mohaisen, A. Yun, and Y. Kim. Measuring the
mixing time of social graphs. In IMC, pages 383–389,
2010.

[26] H. OLLE. Finite Markov Chains and Algorithmic
Applications. Cambridge University Press, 2000.

[27] A. B. Owen. Monte Carlo theory, methods and
examples. 2013.

[28] N. Przulj. Biological network comparison using
graphlet degree distribution. Bioinformatics, pages
853–854, 2010.

[29] M. Rahman, M. Bhuiyan, and M. A. Hasan. Graft:
An approximate graphlet counting algorithm for large
graph analysis. In CIKM, pages 1467–1471, 2012.

[30] R. A. Rossi and N. K. Ahmed. Social network
collection - networkrepository.
http://networkrepository.com/soc.php, 2013.

[31] C. Seshadhri, A. Pinar, and T. G. Kolda. Triadic
measures on graphs: The power of wedge sampling. In
SDM, pages 10–18, 2013.

[32] N. Shervashidze, S. Vishwanathan, T. Petri,
K. Mehlhorn, and K. Borgwardt. Efficient graphlet
kernels for large graph comparison. In Artificial
Intelligence and Statistics, pages 488–495, 2009.

[33] S. Suri and S. Vassilvitskii. Counting triangles and the
curse of the last reducer. In WWW, pages 607–614,
2011.

[34] J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph
frequencies: Mapping the empirical and extremal
geography of large graph collections. In WWW, pages
1307–1318, 2013.

[35] P. Wang, J. C. S. Lui, B. Ribeiro, D. Towsley, J. Zhao,
and X. Guan. Efficiently estimating motif statistics of
large networks. TKDE, pages 8:1–8:27, 2014.

[36] P. Wang, J. C. S. Lui, D. Towsley, and J. Zhao.
Minfer: A method of inferring motif statistics from
sampled edges. In ICDE, pages 1050–1061, 2016.

[37] P. Wang, J. Tao, J. Zhao, and X. Guan. Moss: A
scalable tool for efficiently sampling and counting 4-
and 5-node graphlets. arXiv:1509.08089, 2015.

[38] X. Xu, C.-H. Lee, and D. Y. Eun. A General
Framework of Hybrid Graph Sampling for Complex
Network Analysis. In INFOCOM, pages 2795–2803,
2014.

[39] Z. Zhou, N. Zhang, and G. Das. Leveraging history for
faster sampling of online social networks. PVLDB,
pages 1034–1045, 2015.

264

http://snap.stanford.edu/data
http://networkrepository.com/soc.php

