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Abstract—Federated learning (FL) has been widely regarded
as a promising distributed machine learning technology that
utilizes on-device computation while protecting clients’ data
privacy. To adapt FL to wireless networks, the over-the-air
(OTA) computation, which employs the superposition nature of
wireless waveforms, can prevent excessive consumption of the
communication resources. However, energy harvesting technology
can overcome the energy limitation of clients to realize durable
computation. Despite the existing works devoted to OTA FL from
various aspects, they mostly neglect jointly performing client
selection and energy management for energy harvesting devices.
In this paper, we investigate the combined problem of client
selection and energy management for OTA FL and formulate it
as a nonlinear integer programming (NIP) problem to minimize
the optimality gap. To solve the NIP problem, we propose
a client selection scheme that jointly considers channel state
information, residual battery capacities, and dataset size. Our
simulation results show that the proposed solution outperforms
other comparison schemes within various parameter settings.

Index Terms—Federated learning, over-the-air computation,
client selection, energy harvesting.

I. INTRODUCTION

With the increasing number of deployed Internet of Things
(IoT) devices, a vast amount of data is constantly being
generated by these devices. Developers often use deep learning
methods to extract valuable information from this data. Fur-
thermore, due to advancements in hardware, the computing
and storage capabilities of terminal devices, such as mobile
phones, smartwatches, and wearable devices, have been greatly
improved. Federated learning (FL) [1] is regarded as a po-
tential solution to performing information extraction on the
distributed IoT data and preventing privacy leaks.

Under the FL paradigm, clients cooperatively train a shared
model using their local data and upload the updates to the
parameter server (PS). Then, the PS conducts the updated
aggregation and broadcasts the global model updates to clients.
The clients need to communicate with the PS multiple rounds
during the training process. However, since communication
resources are usually limited, the communication bottleneck
is a dominant issue that needs to be addressed. Different

client selection [2]–[4] strategies have been proposed to realize
communication efficiency. An energy-efficient client selection
is designed in [2] to realize green computation. In [4], client
selection and bandwidth allocation are jointly optimized to
realize fast convergence.

The above works related to FL are implemented with
digital transmission. Recently, works [5], [6] based on over-
the-air (OTA) computation have been successfully used to
reduce the communication cost of FL. Compared with digital
transmission, clients can share the same wireless channel via
analog transmission due to the superposition property of the
multiple access channel. Recent research works related to OTA
FL systems focus on power control [7], data heterogeneity
[8], and energy constraints [9]. The authors in [7] design a
client selection scheme with transmission power control and
carry out a convergence analysis for OTA FL. Convergence
analysis for heterogeneous data is given in [8], and the
conclusion is that FL based on analog transmission could
achieve convergence even when heterogeneous data and fading
channels existed. The Lyapunov optimization technique is used
in [9] to design a stable client selection scheme under the
energy constraint via an online optimization formulation.

However, the majority of existing works related to OTA FL
do not consider energy harvesting, which is a technology that
enables clients to acquire energy resources from the environ-
ment, such as wind, solar power, and human motion, allowing
clients to continuously engage in training and realize green
computing. Some prior works combine energy harvesting with
FL via digital transmission [10], [11]. In [10], clients are pow-
ered by separate energy harvesting resources, and an online
client selection and client association algorithm is proposed to
minimize the training loss within multiple base station settings.
The authors in [11] investigate two different energy harvesting
settings: deterministic energy arrivals and stochastic energy
arrivals. They conclude that energy harvesting makes sense
for sustainable distributed learning.

In this paper, we study the joint problem of client selection
and energy management for an OTA FL system. As a result,
we first formulate it as a nonlinear integer programming (NIP)978-1-6654-3540-6/22/$31.00 © 2022 IEEE
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problem with an objective function to minimize the optimality
gap over multiple training rounds. Due to the intractability
of the optimality gap, we provide a thorough convergence
analysis, based on which we transform the NIP problem into
an online NIP problem, so that we can optimize the client
selection in a per-training round basis. To achieve this, we first
define the channel-energy-data (CED) coefficient to quantita-
tively characterize the influence of selecting one certain client
on the convergence rate, and then propose a client selection
algorithm that jointly considers channel state information,
residual battery capacity, and dataset size. Our simulation
results demonstrate that the proposed solution outperforms
other comparison schemes due to wisely selecting clients
according to the CED coefficient. In addition, the proposed
solution remains superior even if the impacts of noisy channels
become pronounced.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an OTA FL system that consists of K single-
antenna clients and one single-antenna PS. The set of all
clients is denoted as K. Each client k ∈ K has a num-
ber of feature-label pairs, which can be denoted as Dk =
{(xk,i, yk,i) , i ∈ {1, . . . , Dk}}, where xk,i is the feature vec-
tor, yk,i is the ground-truth label, and Dk is the total number
of local training samples owned by client k. The total number
of samples for all clients is D =

∑
k∈K Dk. Clients can

harvest energy from various energy harvesting resources. In
this section, we first provide some background knowledge
about the FL model, the communication model, the energy
consumption and harvesting model. Then, we formulate the
problem to minimize the optimality gap by jointly optimizing
the client selection and energy management for the OTA FL
system.

A. Federated Learning Model

In the considered OTA FL system, the PS continually
exchanges information with the clients over multiple training
rounds until the training process converges. At the t-th training
round, it carries out the following four steps:
• Client selection: Initially, the PS selects a subset of clients

to participate in the training. The client selection vector is
defined as βt = [β1,t,β2,t, . . . ,βk,t], where βk,t ∈ {0, 1}
indicates whether client k is selected, with 1 indicating that
client k is selected to upload the local gradients to the PS,
and 0 otherwise.

• Global model broadcast: The global model wt =
[w1

t ,w
2
t , . . . ,w

s
t ] ∈ Rs is broadcasted to the selected clients,

where s denotes the total number of weight parameters.
• Local model update: After receiving the global model
wt, the local model wk,t for client k is updated as
wk,t = wt. The local loss for client k is calculated
as Fk,t (wk,t,Dk) = 1

Dk

∑Dk

i=1 f (wk,t,xk,i, yk,i), where

f (wk,t,xk,i, yk,i) is the loss value for the local training
sample (xk,i, yk,i), i ∈ {1, . . . , Dk}. The local gradient
gk,t = [g1k,t, g

2
k,t, . . . , g

s
k,t] ∈ Rs is computed as gk,t =

1
Dk

∑Dk

i=1 ∇f (wk,t,xk,i, yk,i), where ∇f (wk,t,xk,i, yk,i)
is the gradient for the local training sample (xk,i, yk,i). The
learning rate is denoted as η, and the local model update
can be computed as wk,t+1 = wk,t − ηgk,t. The selected
clients upload the local gradients gk,t to the PS.

• Model aggregation: The global gradient is aggregated as

gt =

∑
k∈K βk,tDkgk,t∑

k∈K βk,tDk
. (1)

The global model is then updated through the following:

wt+1 = wt − ηgt. (2)

The total loss for all training samples belonging to the
selected clients can be expressed as follows:

Ft (wt,βt) =

∑
k∈K βk,tDkFk,t (wk,t,Dk)∑

k∈K βk,tDk
. (3)

B. Communication Model

For the OTA FL system, clients need to upload their gradi-
ents to the PS with the shared wireless channel synchronously.
In this work, we assume that the channel coefficients are quasi-
static during the same training round, but they may fluctuate in
different training rounds. Let ĥk,t ∈ C represent the channel
coefficient of client k at the t-th training round, and hk,t means
the magnitude of ĥk,t. Let pk,t denote the power control factor
of client k at the t-th training round. The power control factor
pk,t needs to satisfy the requirement for the selected client k
at the t-th training round [12] as follows:

pk,t =
αtDk

hk,t
, (4)

where αt is the scaling factor for obtaining the transmission
energy (i.e., the second term of (8)) at the t-th training round.
The preprocessing operation for local gradients gk,t at client
k during the t-th training round is as follows:

ϕk,t = pk,tβk,tgk,t. (5)

Let zt = [z1t , z
2
t , . . . , z

s
t ] ∈ Cs represent the additive white

Gaussian noise (AWGN) vector, and zst follows the distribution
CN

(
0,σ2

)
. The received gradients vector rt ∈ Cs at the

PS side via OTA computation at the t-th training round is
calculated as:

rt =
∑K

k=1
hk,tϕk,t + zt. (6)

To obtain the averaged gradients of the OTA FL system, the
PS conducts the postprocessing operation for the received
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aggregated gradients [7] as follows:

r̄t =
rt

αt
∑

k∈K βk,tDk
=

∑
k∈K βk,tDkgk,t +

zt
αt∑

k∈K βk,tDk
. (7)

C. Energy Consumption and Harvesting Model
Let ck denote the computation energy consumption for

one training sample on client k. We assume that ck remains
unchanged for client k, but ck varies across different clients
because of client heterogeneity. The data size Dk for client k
may also be different across different clients. By combining
(4), the total energy consumption etotk,t [9] for client k during
the t-th training round can be obtained as follows:

etotk,t = Dkck︸ ︷︷ ︸
Computation energy

consumption

+
α2
tD

2
k

h2
k,t

‖gk,t‖22
︸ ︷︷ ︸

Transmission energy consumption

. (8)

We assume that each client can harvest energy from its
resources. The energy harvesting process is built based on a
successive energy arrival model. The newly arrived energy at
the t-th training round is as follows: earrt = [earr1,t , . . . , e

arr
K,t],

where earrk,t follows a Poisson process with the parameter ēk.
For each client, the harvested energy can be stored in the
battery and used for further operations. The current battery
energy is denoted as bk,t at the initial time of the t-th training
round for client k. The maximum battery capacity for client
k is denoted as Bmax.

For each selected client k at the t-th training round, the
total energy consumption cannot exceed the residual battery
capacity, which is denoted as follows:

etotk,t ≤ bk,t. (9)

The updated battery energy of the client k is less than the
maximum capacity Bmax. The battery level can be expressed
as follows:

bk,t+1 = min
{
bk,t − etotk,t + earrk,t , B

max
}
, (10)

where bk,1 = B1
k is the initial battery energy at client k.

D. Problem Formulation
The total number of training rounds is set as T . Let

w∗ indicate the optimal global mode, and let F (w∗) rep-
resent the global loss of the optimal global model. The
optimality gap is defined as E[F (wT+1)]− F (w∗) after T
training rounds. Our goal is to minimize the optimality gap
E[F (wT+1)]− F (w∗) within the energy constraint via client
selection for the OTA FL system. The optimization problem
is formulated as follows:

P1 : min
β

E[F (wT+1)]− F (w∗)

s.t. etotk,t ≤ bk,t, ∀k ∈ K, 1 ≤ t ≤ T,

βk,t ∈ {0, 1} , ∀k ∈ K, 1 ≤ t ≤ T,

where the first constraint denotes that the total energy con-
sumption at the t-th training round for each selected client
k is less than its residual battery capacity, and the second
constraint indicates the binary client selection vector at the
t-th training round.

III. CONVERGENCE ANALYSIS AND PROBLEM
TRANSFORMATION

In this section, we present the convergence analysis of the
OTA FL system. Note that the energy consumption and the
energy harvesting are introduced into the convergence analysis.
The derived convergence result can measure the impacts of the
channel state information, residual battery capacity and dataset
size on the convergence rate. Based on the convergence result,
the transformed problems are rebuilt from P1.

A. Convergence Analysis

According to (2) and (7), the global weight parameters for
the OTA FL system are updated as follows:

wt+1 = wt − ηr̄t. (11)

For the convenience of convergence analysis, we make the
following three assumptions on the loss function as used in
[4], [7].

Assumption 1: (l-Smoothness) This indicates that a non-
negative constant l exists for parameters w and v to make the
inequality satisfy the following:

F (w)− F (v) ≤ (w − v)T ∇F (v) +
l

2
‖w − v‖22 . (12)

Assumption 2: (PL Inequality) For a nonnegative µ con-
stant, the Polyak-Lojasiewicz (PL) condition should hold the
following:

‖∇F (w)‖22 ≥ 2µ [F (w)− F (w∗)] . (13)

Assumption 3: (Gradient Bound) The local gradients have
the bound constraint of the global gradients as follows:

‖∇f (w)‖22 ≤ λ1 + λ2‖∇F (w)‖22, (14)

where λ1 ≥ 0 and λ2 ≥ 0.
The optimality gap at the t-th training round is defined as

E[F (wt+1)]− F (w∗). We can derive the relationship of the
optimality gap for two adjacent rounds as in Lemma 1.

Lemma 1: Based on Assumptions 1-3, when the learning
rate satisfies η = 1

l , given the residual battery capacity vector
bt and the client selection vector βt, the optimality gap at
the t-th training round within the energy constraint can be
represented as follows

E[F (wt+1)]− F (w∗) ≤ ψt (E[F (wt)]− F (w∗)) +
λ1

l
φt,

(15)
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where ψt and φt can be expressed as follows:

ψt = 1− µ

l
+

2µλ2φt

l
, (16)

φt =
sσ2

2
(∑

k∈K Dkβk,t

)2

(
max
k∈K

βk,tD2
k

h2
k,t (bk,t −Dkck)

)

+
2
(
D −

∑
k∈K βk,tDk

)2

D2
. (17)

Proof: See Appendix A.
By repeatedly applying Lemma 1 and collecting terms, we

have the optimality gap as follows.
Theorem 1: (Optimality Gap) We assume that the total

training round is T and the initial global model is w1. The
optimality gap after T training rounds of the OTA FL system
can be expressed as follows:

E [F (wT+1)]− F (w∗) ≤ ΩT (β) , (18)

where

ΩT (β) =
T∏

t=1

ψt (E [F (w1)]− F (w∗))

+
λ1

l




T−1∑

t=1

T∏

j=t+1

ψjφt + φT



 . (19)

B. Problem Transformation

According to Theorem 1, the optimality gap is related to
the client selection vector βt. If more clients are selected to
upload the gradients, the loss decreases faster. However, due to
the energy constraint, the induced noise increases when more
clients are selected. In contrast from P1, the energy constraint
is added into the problem formulation for P2. When the total
training round is T , we can formulate P2 as follows:

P2 : min
β

ΩT (β)

s.t. βk,t ∈ {0, 1} , ∀k ∈ K, 1 ≤ t ≤ T.

In fact, it is difficult to solve P2 directly due to the
stochasticity of the channel state information ht and the
harvested energy earrt for each training round t. We focus on
solving the problem via an online pattern based on Lemma 1.
The optimality gap E[F (wt+1)]−F (w∗) at the t-th training
round can be represented by φt when E[F (wt)]− F (w∗) is
known. Therefore, P2 can be transformed to P3 to minimize
φt, which can be formulated as follows:

P3 : min
βt

φt (βt)

s.t. βk,t ∈ {0, 1} , ∀k ∈ K.

Note that P3 is in essence an NIP. There is an inverse
correlation between the optimality gap and the maximum

Algorithm 1 The Joint Channel-Energy-Data (CED)-based
Client Selection Algorithm
Input: ht, bt, ct, D, and D.
Output: βt.

1: for k = 1, . . . ,K do
2: Calculate qk,t based on (20);
3: Sort Qt in ascending order to obtain Q′

t;
4: Let q′k,t be the k-th smallest value in Q′

t, and let S [k] be
the client subset decided by the k smallest values of Q′

t;
5: for k = 1, . . . ,K do;
6: Calculate φ[k]

t based on (21);
7: Calculate k∗ = argmink∈K φ[k]

t ;
8: for k = 1, . . . ,K do
9: if qk,t ≤ qk∗,t then

10: Set βk,t ← 1;
11: else
12: Set βk,t ← 0.

constraint part maxk∈K

(
βk,tD

2
k

h2
k,t(bk,t−Dkck)

)
. We define the CED

coefficient for client k at the t-th training round as follows:

qk,t =
βk,tD2

k

h2
k,t (bk,t −Dkck)

, (20)

which is decided by the channel state information hk,t, resid-
ual battery capacity bk,t and the dataset size Dk. The list
of CED coefficients is denoted as Qt = [q1,t, q2,t, . . . , qK,t].
The maximum value in Qt is defined as follows: Qmax

t =
maxk∈K qk,t. If the selected clients have less available battery,
worse channel quality and larger data size, Qmax

t becomes
larger.

IV. ALGORITHM DESIGN

By analyzing the problem P3, we can observe that there is
a trade-off between

∑
k∈K Dkβk,t and Qmax

t . If more clients
participate in the training,

∑
k∈K Dkβk,t will be larger, which

will make global loss converge faster. However, if more clients
are selected, Qmax

t will be larger, which will lead to a slow
convergence. As a result, we need to design an effective client
selection scheme.

The proposed solution is referred to Algorithm 1. First, we
sort Qt in ascending order to obtain Q′

t. Let q′k,t be the k-th
smallest value in Q′

t, and let S [k] be the subset consisting of
k clients selected according to the k smallest values of Q′

t.
There are K possible client selection decisions, and the final
client selection decision is based on the following:

φ[k]
t =

sσ2q′k,t

2
(∑

i∈S[k] Di

)2 +
2
(
D −

∑
i∈S[k] Di

)2

D2
.

(21)
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(b) Residual battery comparison
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(c) The impacts of noise variance

Fig. 1: Performance evaluation among the comparison schemes.

We obtain the indicator k∗ by calculating the index of the
minimum value of φ[k]

t as follows:

k∗ = argmin
k∈K

φ[k]
t . (22)

The client can be selected if k ≤ k∗ for the sorted queue Q′
t,

which means qk,t ≤ qk∗,t. The complete process includes the
following procedures:
1) At the beginning of the t-th training round, the PS selects

a subset of the clients based on Algorithm 1.
2) The PS sends the global model to the selected clients.
3) Local clients update the global model and upload the

gradients via OTA computation.
4) The PS obtains the aggregated gradients based on (7).
5) Clients obtain the energy from the energy resources and

update the current batter level queue based on formula (10).
The time complexity of Algorithm 1 is mainly determined

by the sorting process (see Line 3 therein), which takes
O(KlogK) operations. In addition, as Algorithm 1 is con-
ducted T times for convergence, the overall time complexity
is given by O (TK logK).

V. PERFORMANCE EVALUATION

In the simulation, there are 40 clients randomly located
within the range of a circle with a radius of 250 meters,
and the PS is located at (0, 0, 10). The average channel
gain for the free-space path loss model is calculated as
h̄k = GPGC

(
3×108

4πfcLk

)ρ
, where GP = 5 dBi is the antenna

gain of the PS, GC = 0 dBi is the antenna gain of clients,
fc = 915 MHz is the carrier frequency, Lk is the distance
between client k and the PS, and the pass loss exponent is
ρ = 2.7. The channel gain hk,t during the t-th training round
is calculated as hk,t = h̄kγk,t, where γk,t is generated from
the Gaussian distribution with zero-mean and unit-variance.
The noise variance is set as −100 dB by default. The Poisson
parameter ēk for client k regarding the arrivals of the harvested
energy is set in the range of 0.1 J to 1 J.

We carry out the experiments with the Fashion-MNIST
dataset [13]. There are two kinds of settings regarding the data
distribution among clients according to [14]. The first setting
is a balanced data setting (denoted as ‘B’) where the number
of samples is equal among all clients. The second setting is an
unbalanced data setting (denoted as ‘UnB’), where the number
of samples per client is randomly from [100, 200] for half of
the clients and the number of samples per client is randomly
from [1000, 2000] for the other clients. We use the four-layer
convolutional neural network for training, which is composed
of two 5× 5 convolution layers, each followed by one 2× 2
max pooling layer, one fully connected layer with 50 units,
and one softmax layer. The learning rate η is set as 0.01.

We compare the proposed algorithm (denoted as CED) with
the following comparison methods:
1) Channel-Prioritized (CP): we select kavg clients with better

channels and sufficient energy from K, where kavg is the
averaged number of the selected clients of the proposed
method.

2) Energy-Prioritized (EP): kavg clients with more energy are
selected from K at the t-th training round.

Fig. 1(a) demonstrates the performance of the test accuracy
of the three methods for the two data settings. The proposed
CED method is better than the CP method and the EP method
for both settings. The reason for this is that the CP method
may select clients with less energy, and the EP method may
select clients with worse channels, which may introduce more
noise and make the gradients deviate from the correct values.

Fig. 1(b) gives the cumulative probability density of the
residual battery for 3000 training rounds. The two data settings
have similar trends. It can be observed that the residual battery
of the CED method is lower than that of the EP method and
the CP methods. This is because the communication energy is
higher for CED method.

Fig. 1(c) shows the test accuracy for the proposed CED
method with different noise settings. It is evident that accuracy
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decreases when noise increases for both settings. This is
because the induced noise makes the gradients deviate from
true values for each training round.

VI. CONCLUSION

The energy management problem is one of the essential
challenges in the OTA FL system. Considering the energy
harvesting for the OTA FL system, in this paper, we con-
duct the convergence analysis of the optimality gap with
regard to client selection, the energy constraint, and the noise
error channel. Based on the convergence analysis results,
we formulate the online optimization problem to minimize
the optimality gap when jointly considering client selection
and energy harvesting. The CED-based method is proposed
to optimize client selection. The experiments show that our
proposed method surpasses the other benchmarks.

APPENDIX A
PROOF OF LEMMA 1

As denoted by o = ∇F (wt) − r̄t, the errors are induced
by client selection and noisy channels. When Assumption 1
exists, by incorporating (11) into (12), we have the following:

F (wt+1) ≤ F (wt)− η (∇F (wt)− o)T ∇F (wt)

+
lη2

2
‖(∇F (wt)− o)‖22 . (23)

By accessing the expected values of (23) and setting the
learning rate to η = 1

l , we see the following:

E [F (wt+1)]

≤ E [F (wt)]−
1

2l
‖∇F (wt)‖22 +

1

2l
E
[
‖o‖22

]
. (24)

Then, according to [4], E
[
‖o‖22

]
is bounded as

E
[
‖o‖22

]
≤ sσ2

∥∥αt
∑

k∈K Dkβk,t

∥∥2
2

+

4

D2
(D −

∑

k∈K
βkDk)

2(λ1 + λ2‖∇F (wt)‖22). (25)

By incorporating (25) into (24) and subtracting F (w∗) from
both sides of (24), we have the following:

E [F (wt+1)]− F (w∗) ≤ E [F (wt)]− F (w∗)

+
2

lD2
(D −

∑

k∈K
βkDk)

2(λ1 + λ2‖∇F (wt)‖22)

+
sσ2

2lαt
2(
∑K

k=1Dkβk,t)2
− 1

2l
‖∇F (wt)‖22 . (26)

According to (8) and (9), the variable αt at the t-th training
round can be expressed as follows:

αt = min
k∈K

(
βk,thk,t

√
bk,t −Dkck

Dk‖gk,t‖2
). (27)

By incorporating (27) into (26) and based on Assumption 2
and Assumption 3, we finally obtain the following:

E [F (wt+1)]− F (w∗)

≤ ψt [E [F (wt)]− F (w∗)] +
λ1

l
φt. (28)
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[11] B. Güler and A. Yener, “Energy-harvesting distributed machine learn-
ing,” in Proc. IEEE ISIT, Jul. 2021.

[12] L. Chen, X. Qin, and G. Wei, “A uniform-forcing transceiver design
for over-the-air function computation,” IEEE Wireless Commun. Lett.,
vol. 7, no. 6, pp. 942–945, 2018.

[13] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[14] H. Liu, X. Yuan, and Y.-J. A. Zhang, “Reconfigurable intelligent surface
enabled federated learning: A unified communication-learning design
approach,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7595–
7609, 2021.

2022 IEEE Global Communications Conference: Mobile and Wireless Networks

5074
Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 08:22:30 UTC from IEEE Xplore.  Restrictions apply. 


