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Abstract—Pollution attack is a severe security problem in
network-coding enabled wireless mesh networks (WMNs). Under
such form of attack, malicious nodes can easily create an epidemic
spreading of polluted packets to deplete network resources.
We address this security problem even when the attackers are
“ intelligent” in the sense that they may pretend to be legitimate
nodes toprobabilistically transmit valid packets so as to reduce the
chance of being detected. We use the batch verification technique
to determine the existence of polluted packets, and proposefully
“distributed” and “randomized” detection algorithms to id entify
the attackers who inject polluted packets, and purge them for
future communication. Formal analysis is provided to quantify
performance measures of the algorithms, e.g., probabilityof
false positive and probability of false negative, as well asthe
probability distribution of time needed to identify all mal icious
nodes. Simulation and system prototype are carried out to show
the effectiveness and efficiency of the detection algorithms.

Index Terms—Wireless Mesh Networks; Network Coding;
Pollution Attack; Security; Performance Evaluation

I. Introduction

In recent years, wireless mesh networks (WMNs) have
emerged as a promising platform to provide easy Internet
access [1], [3], [14]. However, due to the spatial and temporal
fading of the wireless channels, communication links between
nodes usually have high loss rates. As reported in [1], half of
the operational links have a loss probability greater than 30%.
Therefore, traditional routing protocols, which determine the
next hop in forwarding a packet, cannot guarantee a high end-
to-end throughput. To improve the performance of WMNs,
opportunistic routing protocol[4], [8] is used instead. To fur-
ther improve the spatial reuse, a transmission scheduler based
on network coding [16], [17] was proposed. This promising
approach can not only improve the end-to-end throughput, but
can also reduce packet collision and improve the network
capacity. As demonstrated in [16] and systems like COPE
[11] and MORE [5], one can achieve the above claims for
unicast and multicast data delivery in WMNs. The core idea
of using network coding is in “packets mixing”: intermediate
nodes along the source-destination path can mix (or encode)
received packets and then forward the coded packet to other
nodes. As long as the destination receives enough innovative
(or linearly independent) packets, the receiver can decodethe
received packets and obtain the original data.

However, allowing nodes in a WMN to perform network
coding opens the door forpollution attackas malicious nodes

can inject polluted packets into the network. If an intermediate
node is unaware of receiving a polluted packet, it continues
to perform the packet encoding and forwards the encoded but
polluted packet to its neighbors. Since all nodes participate
in coding and packet forwarding, polluted packets will behave
like an epidemic and can be easily propagated across the entire
network, thereby significantly consume network resource and
degrade the performance of legitimate flows. As indicated in
[6], pollution attack can be easily launched, and some related
work, e.g., [9], [12], [15], [20], [21] address this problem, in
particular, on detecting the existence of pollution attackand
how to discard polluted packets.

In this paper, we focus on “identifying” pollution attackers
in WMNs by implementing the idea of shrinking suspicious
set [19], then isolate them from the network so as to defend
against the pollution attack. Moreover, attackers can beintel-
ligent in the sense that they can choose to forward polluted
packets, or they can choose to forward valid packets. The
rationale that attackerspretend to be legitimate nodes is to
thwart the detection process so as to reduce the chance of
being detected. Contributions of our work are:

• We propose arandomizedand fully distributed identifi-
cation mechanism: any legitimate node in a WMN can
execute our algorithms to identify its malicious neighbors.

• We present a general analytical framework to quantify
performance measures of our detection algorithms.

• We validate our analytical model via extensive simula-
tions as well as system prototype, and show the effec-
tiveness and efficiency of the detection algorithms.

The outline of the paper is as follows. In Section II, we
briefly provide the necessary background on network coding
and batch verification. In Section III, we present the detection
methodology in detail and also provide the analysis on its
performance measures. We validate our analytical model and
present experiment results in Section IV. Section V concludes.

II. Background on Network Coding and Batch
Verification

WMNs consist of two types of nodes: mesh routers and
mesh clients. Each node operates not only as a host but also
as a router which forwards packets for other nodes that are not
in the direct transmission range of their destinations. Although
mesh clients can be stationary or mobile, mesh routers usually



have minimal mobility. For most commonly used architecture
of WMNs, there is a backbone network which consists of
mesh routers. In this paper, we focus on the backbones of
WMNs and use network-coding enabled opportunistic routing
protocol, which is commonly configured in realistic WMNs to
improve network throughput and spatial reuse.

Now, let us provide a brief background on network coding
[2], [10], [18]. When a source disseminates a file to desti-
nations, it first breaks up the file into multiple generations.
Each generation is further divided inton packets, which are
usually referred to asnative packets. Each packet is composed
of m codewords, each of which is regarded as an element in a
finite field Fq, whereq is a positive power of a prime number.
Each native packet−→pi can be viewed as anm-dimensional
vector over the fieldFq, i.e., as a column vector withm
symbols:−→pi = (p1i, p2i, ..., pmi)

⊤, pji ∈ Fq. When the 802.11
MAC is ready to send a packet, the source creates a random
linear combination of then native packets, then transmits
the coded packet. Formally, acoded packetis (−→ej ,

−→cj ) where
−→ej =

∑

i cji
−→pi . Eachcji is a random coefficient and we call

−→cj = (cj1, cj2, ..., cjn) a code vector.
For an intermediate node, when it is ready to transmit and

has received multiple packets, it first encodes the received
packets, then forwards the result packet after encoding. Note
that, the possibility of packets mixing using network coding
makes WMNs vulnerable to pollution attack, which is induced
by malicious nodes injecting polluted packets. We say a coded
packet (−→ej ,

−→cj ) is valid/correct if and only if−→ej can be
represented as a linear combination of the native packets by
using the code vector−→cj , i.e.,−→ej =

∑

i cji
−→pi holds. Otherwise,

we call it a polluted/bogus packet. As shown in [7], the threat
of pollution attack is very severe.

One common approach to filter out polluted packets is
to perform hash verification by using homomorphic hash
functions [13]. However, due to the high computational cost
of modular exponentiation, verifying every received packet is
impractical for wireless systems [6]. Therefore, batch verifi-
cation must be considered when design practical verification
schemes. Specifically, to verify a set ofl coded packets
(−→ej ,
−→cj ) (j = 1, 2, ..., l), we only check whether the random

linear combination of thel packets,(−→e ,−→c ), is correct or not.
If it is correct, then all of thel packets are correct. Otherwise,
at least one of thel packets is polluted and we haveno
knowledgeof which are the polluted packets. In this paper, if
the result of the batch verification shows that the coded packet
is correct, we call it the batch verification matches, otherwise,
we call it the batch verification does not match.

III. Detection Methodology

In this section, we present the detection algorithms to iden-
tify pollution attackers in a network-coding enabled WMN, as
well as the performance measures of the detection algorithms.

A. Core Idea of the Detection Algorithms

Since the detection algorithms we propose arefully dis-
tributed, i.e., each legitimate node in a WMN can execute them

in an asynchronous fashion to identify attackers among its
neighbors. In this paper, we only focus on one legitimate node,
say nodei, and describe its operations to identify malicious
neighbors. LetN i be the set representing the neighbors of
node i, and we assume that|N i| = N . Among theseN
neighbors, there can bemultiple maliciousnodes.

For a malicious node, when it is ready to broadcast a packet
to other nodes, it may choose one of the following actions:

1) with probability δ, imitating as a legitimate node by
performing correct coding operation and broadcasting
a valid encoded packet, or

2) with probability(1− δ), broadcasting a polluted packet
to neighboring nodes.

The reason why a malicious node may choose to imitate as a
legitimate node is to thwart the detection so as to reduce the
chance of being detected. On the other hand, for any legitimate
node, to guarantee the correctness of received packets and
reduce the end-to-end delay,batch verificationis used, and we
assume that legitimate nodes only forward valid packets, i.e.,
they discard packets which do not pass the batch verification,
so as to prevent the epidemic spreading of polluted packets.

We define the duration of nodei receiving packets and
performing batch verification as around. In other words, round
t is the time period from right after the(t−1)th verification to
right after thetth verification performed by nodei. At round
t, some neighbors of nodei may forward packets to it and
others may not. We defineF(t) as the set of neighbors of
nodei which forward innovative packets to it at roundt, and
F̄(t) as the set of neighbors which do not forward innovative
packets to it at roundt. Obviously, we haveN i = F(t)∪F̄(t).

The core idea of our detection algorithms is that, at round
t, nodei determines the suspicious setS(t), which contains
all potentially malicious neighborsof node i until the end
of round t. As time proceeds in later rounds, nodei can
shrink the size of the suspicious setS(t) so that, eventually, it
only contains malicious neighbors. After the detection, node i
claims that a node is an attacker if and only if it stays in the
suspicious set. We use a simple example to illustrate the idea.

Fig. 1: Illustration of the detection mechanism.

Consider the example in Figure 1 in which node4 is an
attacker, we focus on node3 and take it as a detector. Node 1,
node 2, node 4 and node 5 are all within the transmission
range of node 3, i.e.,N 3 = {1, 2, 4, 5}. We initialize the



suspicious set at round 0 asS(0) = N 3. In the first round,
if node 1 and node 2 forward valid packets to node 3, then
node 3 knows that node 1 and node 2 must be legitimate nodes
after performing batch verification, or the attacker existsin the
suspicious setS(1) = {4, 5}. In the second round, if node 2
and node 4 forward packets, since node 4 is a malicious node
and it forwards polluted packets, the batch verification will
not match. Therefore, node3 knows that node 2 and node 4
are suspicious nodes and it can shrink the suspicious set as
S(2) = S(1)∩{2, 4} = {4}. In other words, node 3 identifies
the attacker by shrinking the suspicious set.

Besides developing algorithms to implement the above idea,
we also provide theoretic analysis on their performance. In
particular, we quantify the performance measures:

• Pfn(t), probability of false negative until roundt,
• Pfp(t), probability of false positive until roundt, and
• E[R], expected number of rounds needed to detect the

attackers with high accuracy.

The first two performance measures quantify theaccuracy
of the detection algorithms, while the third one quantifies the
efficiency. Precisely,Pfn(t) is defined as the probability of a
malicious node being wrongly removed from the suspicious
set at the end of roundt. Since we claim that a node is an
attacker if and only if it belongs toS(t) aftert rounds,Pfn(t)
is in fact theprobability of false negative. On the other hand,
Pfp(t) is defined as the probability of a randomly chosen
node in S(t) being a legitimate node, which is in fact the
probability of false positive. Lastly, r.v.R denotes the number
of detection rounds until all nodes inS(t) are malicious nodes.
In the following, we separate the analysis into two cases to
illustrate our detection algorithms:
Case 1: malicious nodes will not imitate the action of a
legitimate node, or the imitation probabilityδ = 0;
Case 2:malicious nodes will imitate the action of a legitimate
node to reduce the chance of being detected, orδ > 0.

Note that detection in the second case is more challenging
since attackers are trying to thwart the detection process.
However, our detection algorithms can still effectively identify
them even if they may disguise as legitimate nodes.

B. Case 1: Attackers with Imitation Probabilityδ = 0

In this subsection, we consider the case whenδ = 0,
i.e., when a malicious node attempts to transmit, it always
broadcasts polluted packets. We only focus on a particular
nodei and take it as a detector. We initialize the suspicious
set S(0) asN i. At each round, nodes inN i are classified
into different types according to their behaviors. Based onthis
classification, the suspicious setS(t) shrinks and eventually,
it only contains malicious nodes, then nodei can claim that it
has identified its malicious neighbors. Formally, our detection
algorithm at roundt can be described as follows.

Algorithm A: Detection Algorithm for δ = 0

if (the batch verification matches):S(t)← S(t− 1) ∩ F̄(t);
else: S(t)← S(t − 1);

The rationale of Algorithm A is as follows. At roundt,
nodei performs batch verification, if it matches, i.e., the coded
packet is valid, then malicious nodes cannot be in the forward-
ing setF(t) because they only forward polluted packets. On
the other hand, if there is a mismatch of verification, it may be
caused by two cases: (1) all malicious nodes forward polluted
packets, or (2) only some of the malicious nodes forward
polluted packets but others do not perform packet forwarding.
Therefore, nodei cannot classify its neighboring nodes and
the suspicious setS(t) remains unchanged.

Since fairness is a built-in feature in the medium access con-
trol (MAC) protocol in wireless networks, a node cannot mo-
nopolize the wireless resource by repeatedly sending packets,
i.e., when the communication channel is free, all nodes which
have backlog packets will compete for the channel. Therefore,
a successful forwarding does not depend on whether a node is
malicious or not, but rather depends on whether it has packets
to be forwarded or not. We define variableα to represent
the probability that a neighbor of nodei performs forwarding
at each round, which is calledforwarding probability. Note
that, a generation only contains 32 independent packets in
the common setting under MORE, and a node may perform
multiple verifications during the period of transmitting one
generation. Furthermore, when a node is ready to transmit,
it not only performs one transmission, but performs multiple
transmissions. Therefore,α is less than one for most cases,
i.e., the neighbors of nodei can be distinguished such that the
suspicious set can shrink.

To quantify the performance measures of Algorithm A, we
assume that the number of malicious neighbors of nodei is k
(k ≥ 1). Moreover, since the suspicious set cannot be shrunk
in every round, we define those rounds in which the suspicious
set shrinks asdetectable roundsand use random variableD
to indicate the number of detectable rounds. The performance
measures of Algorithm A are stated in Lemma 1.
Lemma 1: In the case whenδ = 0, after Algorithm
A runs for t rounds, Pfn(t) = 0, Pfp(t) = |S(t)|−k

|S(t)|

and R follows the distribution of P (R = r) =
∑r

d=1

(

r−1
d−1

)

(1−α)kd[1−(1−α)k]r−dP (D = d).
Proof: According to Algorithm A, since no malicious node is
wrongly removed fromS(t), the probability of false negative
is simply zero, i.e.,Pfn(t) = 0.

Note that, all of thek malicious nodes stay in the suspicious
setS(t). Furthermore, all of the nodes in the suspicious set are
taken as malicious nodes at the end of the detection process.
Therefore,Pfp(t) = |S(t)|−k

|S(t)| . Since limt→∞ |S(t)| = k as
Pfn(t) = 0, we havelimt→∞ Pfp(t) = 0.

To derive the distribution ofR, we first derive the distribu-
tion of D. Note that, in a detectable round, a legitimate node
is removed from the suspicious set only when it forwards at
that round, which happens with probabilityα. Therefore,

P (D ≤ d) = P (after d detectable rounds, no legitimate

node remains in the suspicious setS)

=
(

1− (1− α)d
)N−k

. (1)



Using detection Algorithm A, a detectable round only happens
when no attacker forwards packets to nodei, sopd = (1−α)k.
On the other hand, given the number of detectable roundsD,
the conditional distributionP (R = r|D = d) is a negative
binomial distribution, so we have:

P (R = r)=

r
∑

d=1

P (D = d)P (R = r|D = d)

=
r

∑

d=1

(

r − 1

d− 1

)

(pd)
d(1 − pd)

r−dP (D=d). (2)

By replacing P (D = d) based on Equation (1), we have
the distribution ofR, andE[R] can be easily computed via
E[R] =

∑∞
r=1 rP (R = r).

C. Case 2: Attackers with Imitation Probabilityδ > 0

Let us consider a more interesting case where a malicious
node may imitate as a legitimate node by forwarding valid
packets with probabilityδ (δ > 0). Under this situation, if
the verification does not match, nodei knows it must have
received some polluted packets. However, due to the existence
of multiple attackers, nodei can not be certain whether all
attackers are in the forwarding set or not. On the other hand,
if the verification matches, nodei still faces with the problem
of accurately distinguishing the malicious attackers since they
may pretend to be legitimate nodes. Note that, the goal of the
malicious nodes is to reduce the system performance or to
damage the system by injecting polluted packets. Obviously,
the action of imitation violates this objective. Therefore, the
imitation probabilityδ cannot be too large. Based on this fact,
we propose the following “randomized detection algorithm”.

Algorithm B: Randomized Detection Algorithm for δ > 0

if (the batch verification matches):
with probabilityp: S(t)← S(t − 1);
with probability1− p: S(t)← S(t− 1) ∩ F̄(t);

else: S(t)← S(t − 1);

We use a 0-1 random variabled(t) to indicate whether
round t is detectable or not,d(t) equals to one if roundt
is a detectable round and zero otherwise. In algorithm B, a
round is detectable if and only if the verification matches
and that round is not ignored. We calld(t) the detectable
indicator. At roundt, nodei knows the forwarding setF(t)
which contains its neighbors that forwarded packets to it.
Therefore, nodei has two parameters which are the for-
warding setF(t) and the detectable indicatord(t) to record
the information it obtains at roundt. We define the state
of node i at round t as s(t) = (F(t), d(t)). Given the
state of nodei at round t, the conditional probability of a
neighbor (malicious or legitimate) of nodei forwarding at
that round is simply|F(t)|/N , and we letα(t) = |F(t)|/N .
The collection of all states int rounds compose the detection
history of nodei until round t, which is denoted asH(t),
i.e.,H(t) = (F(1), d(1)), (F(2), d(2)), ..., (F(t), d(t)). Based

on the detection historyH(t), the performance measures of
Algorithm B can be derived, which are stated in Lemma 2.
Lemma 2: In the case whenδ > 0, after Algorithm B runs
for t rounds,Pfn(t) = 1−

∏t
τ=1,d(τ)=1

1−α(τ)
1−α(τ)+α(τ)δ and

Pfp(t)=
(N−k)

Q

t
τ=1,d(τ)=1(1−α(τ))

(N−k)
Q

t
τ=1,d(τ)=1(1−α(τ))+k

Q

t
τ=1,d(τ)=1(1−

α(τ)δ
1−α(τ)+α(τ)δ )

.

Proof: Based on the randomized Algorithm B, when a ma-
licious node pretends to be a legitimate node (forwarding
valid packets) in a detectable round, it is removed from
the suspicious set forever, which means that it evades the
detection. Therefore, the probability of false negative is:

Pfn(t) = P (after t rounds, a malicious node

is not in the suspicious setS(t) | H(t))

= 1−
∏t

τ=1,d(τ)=1

1− α(τ)

1− α(τ) + α(τ)δ
. (3)

On the other hand, if Algorithm B is not executed for
sufficient number of rounds, it is possible that some legitimate
nodes still remain in the suspicious setS(t), and they are
wrongly claimed as attackers. Observe that, a node is removed
from the setS(t) only when it forwards valid packets in some
detectable roundτ . For a malicious node, this probability is

α(τ)δ
1−α(τ)+α(τ)δ , and we denote it asPM (τ). Similarly, for a
legitimate node, the probability is justα(τ), and we denote it
asPL(τ). We have:

Pfp(t) = P (j is legitimate| H(t) & j ∈ S(t))

=
P (j is legitimate&j ∈ S(t) | H(t))

P (j ∈ S(t) | H(t))

=
(N−k)

∏t

τ=1,d(τ)=1(1−PL(τ))

(N−k)
∏

τ=1...t
d(τ)=1

(1−PL(τ))+ k
∏

τ=1...t
d(τ)=1

(1−PM (τ))
. (4)

By substitutingPL(τ) andPM (τ), we have Lemma 2.
The performance measure ofE[R] of Algorithm B is similar

with the results stated in Lemma 1, so we omit it here. The
only parameter we need to recalculate ispd, the probability
of a round being detectable. When algorithm B is employed,
this probability changes to bepd = (1− α + αδ)(1 − p).

D. Detection Algorithm to EnhancePfn(t)

In the case where the imitation probabilityδ > 0, when
algorithm B runs for sufficient number of rounds such that
all nodes in the suspicious set are attackers, the probability
of false negative does not converge to zero. In other words,
some malicious attackers evade the detection. To improve the
detection accuracy, we develop an enhanced algorithm. The
idea is as follows. After running the detection Algorithm B
for sufficient number of rounds, all nodes in the suspicious set
S(t) are malicious with very high probability. One can first
remove them (i.e., blacklist them for further data exchange),
then repeat the detection process again. After executing the de-
tection process multiple times, one can be certain in removing
all malicious nodes from the neighbor list.



Algorithm C: Enhanced Detection Algorithm

repeat{
do {

if (the batch verification matches){
with probabilityp : S(t)← S(t − 1);
with probability1− p : S(t)← S(t− 1)∩F̄(t);}

else:S(t)← S(t− 1);}
while (S(t) contains legitimate node)
remove nodes inS(t) from the neighbor listN i; }

until (all malicious nodes inN i are detected)

IV. Performance Evaluation

In this section, we validate the analysis by comparing the
theoretical results with simulation results. In the simulation, at
each round, we randomly choose the forwarding probability
α from [0, 1] to simulate the forwarding process. We also
consider two cases: (1)δ = 0, and (2)δ > 0. We first validate
the performance measure ofE[R], then consider probability
of false negative and probability of false positive.

A. Performance Measure ofE[R]

The performance measure ofE[R] is an average view of the
number of rounds needed to detect malicious nodes. Figure 2
shows the theoretical results and the simulation results when
α = 0.5 in all rounds. In both figures, the horizontal axes are
the size of the neighboring set, and we assume that two of
the N neighbors are malicious, i.e.,k = 2. The vertical axes
show the average number of rounds,E[R]. Figure 2a shows
the results in the case whenδ = 0 and Figure 2b corresponds
to the case whenδ > 0. From both figures, we can see that the
theoretic results fit well with the simulation results. Moreover,
when the size of the neighboring set gets larger, the average
number of rounds needed for detection increases accordingly.
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Fig. 2: Average number of rounds,E[R].

B. Performance Measures ofPfn(t) andPfp(t)

Now, we focus on the performance measures of probability
of false negative and probability of false positive. Since the
derivation ofPfn(t) and Pfp(t) when δ = 0 is trivial, we
only validate the analysis for the case whenδ > 0. In the

simulation, we set bothδ, the imitation probability, andp, the
probability of ignoring a round, as 0.1.

Figure 3 shows the simulation results and theoretic results.
In both figures, the horizontal axes are the number of roundst,
and the vertical axes represent probability. Figure 3a shows the
performance measure of probability of false positive,Pfp(t),
and Figure 3b shows probability of false negative,Pfn(t). We
assume that nodei has ten neighbors, i.e.,N = 10, and two
of them are attackers. Firstly, we can see that the theoretic
results fit well with the simulation results. Secondly, when
the number of roundst gets larger,Pfp(t) converges to 0.
In other words, if the detection algorithm runs for enough
rounds, then all nodes in the suspicious setS(t) are malicious.
However, when the number of detection rounds increases, the
probability of attackers evading the detection also gets larger,
which is shown in figure 3b. Fortunately, by comparing with
Figure 3a, even when the number of rounds is large enough
such thatPfp(t) = 0, we still have some chances to detect the
malicious nodes, i.e.,Pfn(t) < 1. This shows the rationality
of our enhanced detection algorithm C.
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Fig. 3: Probability of false positive and probability of false
negative for the case whenδ > 0.

C. Effectiveness of the Enhanced Algorithm

Using the enhanced detection algorithm C in Section III-D,
we can identify all malicious nodes by repeatedly running
the detection algorithm. Table I shows the results. In this
simulation, we have|N i| = 10 and four of them are malicious.
Since each time the malicious node can only be detected with
probability1−Pfn(t), wheret satisfiesPfp(t) = 0, we repeat
the detection experiment three times (e.g., Exp. A, B and C)
to show the effectiveness of the enhanced algorithm. Each
row in Table I corresponds to an experiment outcome. We can
observe that in all experiments, we only need to repeat the
detection algorithm a few times to detect all malicious nodes,
e.g., in the first experiment, two of the four malicious nodes
are detected in the first execution, the remaining two malicious
nodes evade the detection in the second execution, but in the
third execution, the last two malicious nodes are both detected.
In summary, the enhanced detection algorithm can effectively
identify all malicious nodes.



Experiment # detected # detected # detected
Exp. A 2 0 2
Exp. B 3 1 -
Exp. C 2 2 -

TABLE I: Effectiveness of detecting all attackers.

D. Results from System Prototype

To show the effectiveness of identification and detection of
our algorithms, we build a prototype of WMN, which consists
of 20 nodes. Each node is equipped with 802.11n transceiver
and this WMN is deployed using the MORE protocol and
it is network-coding enabled. We consider a particular node
10, which has nine neighbors and they are node 1 to node 9.
Node i needs to send packets to nodei + 3 (for 1 ≤ i ≤ 3)
but since the destination node is not within the transmission
range of the sender, all transmissions have to go through node
10. Node 7, 8 and 9 are potentialmalicious nodes, and they
probabilistically transmit bogus packets so as to damage the
legitimate transmissions.

We carry out a series of experiments to get the time needed
for node 10 to detect all malicious nodes. In particular, we
perform the experiment 200 times. Each time we record the
time it takes to detect all malicious nodes, then we average
all these 200 values. Results are presented in Table II. As we
can see from the table, it takes a very short time to detect
malicious nodes. For Experiment C, we use the enhanced
detection Algorithm C. We see that it takes around 10 seconds
on average to detect node 7, 8 and 9, which send bogus packets
so as to create an epidemic spreading.

Experiment Malicious Nodes Average
Detection Time

Exp. A node 7 3.60 sec.
Exp. B node 7 and node 8 6.21 sec.
Exp. C node 7, node 8 and node 9 10.30 sec.

TABLE II: Experimental results: average time needed to detect
all malicious nodes.

V. Conclusion

In this paper, we present a set of fully distributed algorithms
to address the pollution attack problem in network-coding
enabled WMNs. The contribution of this paper is onhow
to effectively identify the malicious nodes without modifying
existing routing protocol and packets verification scheme, then
isolate them from the network so as to defend against the
pollution attack. We consider both cases of (1) malicious
nodes always forwarding polluted packets, and (2) smart
malicious nodes which may pretend to be legitimate nodes
and forward valid packets from time to time so as to evade
the detection. We also provide formal analysis on quantifying
the performance measures of the detection algorithms, and
validate them via extensive simulations and system prototype.
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