
DCAR: Distributed Coding-Aware Routing in Wireless Networks

Jilin Le, John C.S. Lui
Department of Computer Science and Engineering

Chinese University of Hong Kong
{jlle, cslui}@cse.cuhk.edu.hk

Dah Ming Chiu
Department of Information Engineering

Chinese University of Hong Kong
dmchiu@ie.cuhk.edu.hk

Abstract

The practical network coding system proposed in [1] has
two fundamental limitations: 1) the coding opportunity is
crucially dependent on the established routes; 2) the cod-
ing structure is limited within a two-hop region. To over-
come these limitations, we propose DCAR, the first dis-
tributed coding-aware routing mechanism which combines
(a) the discovery for available paths between a given source
and destination, and (b) the detection for potential network
coding opportunities. DCAR has the potential to find high
throughput paths with coding opportunities while conven-
tional routing fails to do so. In addition, DCAR can detect
coding opportunities on the entire path, thus eliminating
the “two-hop” coding limitation in [1]. We also propose a
novel routing metric called “CRM” (Coding-aware Routing
Metric) which facilitates the comparison between coding-
possible and coding-impossible paths. We implement the
DCAR system in NS-2 and conduct extensive evaluation,
which shows that DCAR achieves 7% to 20% throughput
gain over the coding system in [1].

1 Introduction

Network coding has been shown to be able to improve
the throughput of wireless networks. In particular, authors
of [1] proposed COPE, the first practical wireless network
coding system. Fig. 1 shows the basic scenarios where
COPE works. In Fig. 1(a), suppose node S1 needs to
send a packet P1 to node D1, relayed by node C; and S2

needs to send a packet P2 to node D2 relayed by node C.
The dashed arrows S1 ��� D2 and S2 ��� D1 indicate that
D2,D1 are within the transmission range of S1, S2 respec-
tively. Therefore, D1,D2 can perform “opportunistic lis-
tening”: when S1 (S2) transmits P1 (P2) to node C, node
D2 (D1) can overhear the transmission. When node C for-
wards the packets, it only needs to broadcast (P1 ⊕ P2) to
both D1 and D2 because they have already overheard the
necessary packets for decoding via the opportunistic listen-

ing. In this case, using network coding can save one trans-
mission at node C and enhance the bandwidth efficiency.
Another potential coding scenario is illustrated in Fig.1(b),
where no opportunistic listening is required. In this case,
the source node S1 (S2) needs to send a packet P1 (P2) to
its destination node S2 (S1). Since each source is also a
destination node, it has the necessary packets for decoding
upon receiving the encoded packet P1 ⊕ P2. Last but not
least, Fig.1(c) shows a hybrid form of coding which com-
bines the former two cases, namely, some packets for de-
coding are obtained via opportunistic listening while other
packets are obtained by the fact that the node is the source
of that packet. In this case, node C can encode at most four
packets from different flows and save 3/8 of transmission
times.

(a) Coding scenario
with opportunistic
listening.

(b) Coding scenario
without opportunis-
tic listening.

(c) Hybrid scenario.

Figure 1. Basic coding scenarios in COPE [1].

Essentially, COPE takes advantage of the “broadcast na-
ture” of the wireless channel to perform opportunistic lis-
tening and encoded packet broadcasting so that the number
of packet transmissions can be reduced. Nevertheless, there
are two fundamental limitations in COPE, as we illustrate
as follows.

The first limitation is that coding opportunity is crucially
dependent on traffic pattern. In other word, network coding
is possible only when different flows form certain coding
structures. If one uses the shortest-path routing, or some re-
cently proposed ETX-like routing [2], the potential for net-



work coding may be significantly reduced. To illustrate,
consider the example in Fig. 2 where there are two flows
that need to be routed. Without consideration on potential
coding opportunities, the disjoint paths shown in Fig. 2(a)
may very likely be chosen. On the other hand, if we use a
coding-aware routing decision as shown in Fig. 2(b), node
3 has the opportunity to encode packets. Clearly, in this
example, coding-aware routing will result in higher end-to-
end throughput for both flows.

(a) Routing without coding con-
sideration.

(b) Routing with coding consider-
ation at node 3.

Figure 2. Example: effect of routing decision
on the potential coding opportunity.

Another limitation of COPE is that it limits the entire
coding scenario within a two-hop region. Take Fig.1(a) as
an example, it is assumed that the transmitters for oppor-
tunistic listening (i.e., node S1, S2) are the one-hop pre-
decessors of node C, and that the intended decoders (i.e.,
node D1,D2) are the one-hop successors of node C. These
assumptions may unnecessarily eliminate coding opportu-
nities in a wireless network with flows that traverse longer
than two hops. To illustrate, consider the scenario in Fig. 3
where two flows 1 → 2 → 3 → 4 and 5 → 3 → 6 → 7 in-
tersect at node 3. Node 3 can encode packets from these two
flows and broadcast the encoded packets to both node 4 and
6. Although node 6 cannot perform the necessary oppor-
tunistic listening for decoding, it can forward the encoded
packet to node 7, where the opportunistic listening and de-
coding can take place. In general, both the opportunistic
listening and decoding can be several hops away from the
coding node (i.e., the node that encodes packets). If these
generalized coding opportunities can be detected, we can
further enhance the bandwidth efficiency and throughput.

The above limitations raise some challenging questions.
For example, how to incorporate consideration on poten-
tial coding opportunities into the route selection? How can
we look beyond two hops to discover more coding oppor-
tunities? How to evaluate and compare the performance
of a coding-possible path and a coding-impossible path?
To answer these questions, we revisit the system design
of practical network coding system, and propose a novel
wireless routing system: Distributed Coding-Aware Rout-
ing (DCAR).

The contributions of our work are:

Figure 3. Example: the generalized coding
scheme.

• We propose a distributed routing mechanism that can
discover the available paths and potential coding op-
portunities concurrently.

• We formally define the generalized coding conditions,
in which the practical network coding can occur. These
conditions lead us to look beyond two hops and detect
more coding opportunities.

• We propose a unified framework, which we called the
“coding-aware routing metric” (CRM), to evaluate the
performance of a path, may it be coding-possible or
coding-impossible.

• We implement the DCAR routing system in NS-2
and carry out extensive evaluation showing the perfor-
mance gain over COPE and conventional routing.

The outline of our paper is as follows. In Section 2,
we describe the “Coding+Routing Discovery” which com-
bines the detection processes of available paths and poten-
tial coding opportunities. The new discovery mechanism
removes the “two-hop” limitation of COPE, and makes pos-
sible the coding-aware route selection. In Section 3, we
introduce our coding-aware routing metric, which quanti-
fies the potential benefit of “coding-possible” paths, and
facilitates the comparison between “coding-possible” and
“coding-impossible” paths. In Section 4 we present the sim-
ulation results under NS-2. Related work is given in Section
5 and finally, Section 6 concludes.

2 The “Coding+Routing” Discovery

The limitations of COPE, in particular the “coding-
oblivious” route selection and the “two-hop” coding sce-
nario, are mainly due to the “separation” between its cod-
ing discovery process and the routing discovery process. In
COPE, each node initiates some active or passive detection
for coding opportunities based on the established routes,
therefore, routes in Fig. 2(a) may be chosen instead of the
routes with coding opportunity in Fig. 2(b). On the other
hand, because the coding detection is made only based on
local information, the coding structure is inevitably limited
within a region with short hops from the coding node. This



observation leads us to a “coding+routing” combined solu-
tion to tackle such limitations.

2.1 Coding Conditions

Before presenting the algorithm, let us state the neces-
sary and sufficient conditions in which coding can occur.
To formally define this concept, we introduce the following
notations. Let a denote a node, and let N(a) denote the set
of one-hop neighbors of node a. Let F be a flow1 and we
use a ∈ F to denote that node a is along the flow F . Let
U(a, F ) denote the set of all upstream nodes of node a in
flow F , and let D(a, F ) denote the set of all downstream
nodes of node a in flow F . For example, in Fig. 3, we have
U(3, F1) = {1, 2}, U(3, F2) = {5}, D(3, F1) = {4} and
D(3, F2) = {6, 7}. Generally, when two flows F1 and F2

intersect at a node denoted by c, packets of these two flows
can be encoded for transmission at node c if and only if the
following conditions are met:

Coding Conditions
for two flows F1 and F2 intersecting at node c
1. There exists d1 ∈ D(c, F1), such that
d1 ∈ N(s2), s2 ∈ U(c, F2), OR d1 ∈ U(c, F2).
2. There exists d2 ∈ D(c, F2), such that
d2 ∈ N(s1), s1 ∈ U(c, F1), OR d2 ∈ U(c, F1).

Lemma 1: The above conditions are the necessary and suf-
ficient conditions for any proper coding and decoding to
occur2.
Proof: Due to lack of space, please refer to our technical
report [9].

The importance of the above coding conditions is that
each node can individually and distributively determine
whether it can play the role of a coding node or not, if it
has the following information:

• The “path” information: U(c, F ) and D(c, F ) for any
flow F relayed by node c.

• The “who-can-overhear” information: N(a) for each
node a ∈ U(c, F ), for any flow F relayed by node c.

In what follows, we present a distributed algorithm to gather
the above information and to realize coding and routing dis-
covery concurrently.

2.2 Distributed “Coding+Routing” Discovery

Now we describe how to discover the available path(s)
for a new flow initiated into the wireless network, and at

1In the remaining of this paper, unless we state otherwise, we refer to
“paths” and “flows” interchangeably.

2Note that we assume perfect channel condition and scheduling for op-
portunistic hearing here. We will deal with imperfect overhearing in later
sections.

the same time, detect the potential coding opportunities of
the paths. The detection for coding opportunity is based
on the conditions described in Section 2.1. Note that when
we detect a path with coding opportunity (or what we call
a coding-possible path), we do not impose the requirement
that the new flow has to take this path as its routing outcome,
instead, we have another module which will evaluate the
benefit of each path and to make the final path selection.
We will discuss this further in Section 3.

For each node a in a wireless network, it maintains a list
of all its one-hop neighbors (i.e. N(a)) and the packet loss
probabilities of all its outgoing links. These information
can be collected by periodically sending probing messages
as in [2], or by estimating the loss probability based on pre-
viously transmitted traffic. We use P (a, b) to denote the
packet loss probability on the link a → b where b ∈ N(a).

When a new flow arrives, it activates the coding+routing
discovery process which has the following steps:
Step 1. The source node s initiates the route discovery by
broadcasting the Route Request (RREQ) message. The
RREQ contains the following information:

• One-hop neighbors of the source node, which
have high overhearing probabilities, i.e. {a|a ∈
N(s), P (s, a) > threshold} where threshold is set
to 0.8 in our NS-2 implementation.

• The path that it has traversed, as any source routing
does.

Step 2. Upon receiving a RREQ, an intermediate node,
say node c, first checks whether the RREQ has already tra-
versed through itself. If so, node c discards the RREQ to
prevent loop; otherwise node c performs the following:

• Temporally storing the RREQ, which contains the
“who-can-overhear” information for the new path. In
other words, node c stores the list of overhearing nodes
that can perform “opportunistic listening” when the
upstream nodes transmit.

• Updating the “who-can-overhear” information. Node
c appends its high quality neighbors into the RREQ,
such that the list gradually enlarge when the RREQ
travels through the network.

• Re-broadcasting the updated RREQ to discover re-
maining path to the destination node.

Step 3. When a RREQ reaches the destination node, the
destination replies with Route Reply (RREP) message us-
ing the reverse path back to the source node. The RREP is
a unicast message that contains the “path” information.
Step 4. Upon receiving a RREP, an intermediate node, say
node c, compares the upstream path contained in the RREP
with the paths in its temporally stored RREQs. If there is a
match, then it has obtained both the “path” and “who-can-
overhear” information for the new path. Each node also



maintains the “path” and “who-can-overhear” information
for all the existing flows relayed by itself. Given these in-
formation, node c can check whether the new flow can be
encoded with some existing flow(s) using the coding con-
ditions stated in Section 2.1. If there is coding opportunity,
node c marks its link as “coding-possible” in the RREP.
Step 5. When the RREP(s) return to the source node, a
routing decision is made based on the potential coding op-
portunities and the benefit of each available paths (which
we will present in Section 3), and the source node begins to
send data packets on the selected path.
Step 6. When the first data packet reaches an intermedi-
ate node, say node c, it stores the “who-can-overhear” and
“path” information for the selected path, while discarding
other temporally stored information.

2.3 An Illustrative Example

We use the simple wireless network in Fig. 3 to illustrate
how the “coding+routing” discovery works. Suppose the
flow 1 → 2 → 3 → 4 (i.e. flow F1) is an existing flow,
and Fig. 4(a) shows the information for the existing flow
F1 stored at node 3. Now we wants to find a path for the
new flow 5 → 7, the discovery process goes as follows:

(a) Information stored at node
3 for the existing flow.

(b) Information contained in
the temporally stored RREQ
at node 3.

Figure 4. An example of the data structures
maintained at the coding node.

1. Node 5 initiates the discovery by sending RREQ, and
adds its high quality neighbors 3, 4 into the RREQ.

2. When node 3 receives the RREQ, it temporally stores
the “who-can-overhear” information (i.e. node 4 can
overhear the transmission of the upstream nodes) and
the “upper” path. The data structure is shown in Fig.
4(b): the “upper” path is 5 → 3 and the overhearing
node is 4. Node 3 then updates the overhearing in-
formation (i.e. adding node 2, 6 into the list) before
rebroadcasting the RREQ.

3. Suppose one RREQ reaches node 7 through the path
5 → 3 → 6 → 7, node 7 replies with RREP, which
contains the complete node list on the entire path.

4. When node 3 receives this RREP, it matches the path
5 → 3 → 6 → 7 with its temporally stored RREQ

information as shown in Fig. 4(b), and discovers that
the new path can be encoded with the existing flow
1 → 2 → 3 → 4, thus marking the link 3 → 6 as
“coding-possible” in the RREP.

5. The RREP finally returns to the source node 5 with
information of potential coding opportunities.

3 Designing Coding-Aware Routing Metric

In the previous section, we presented the discovery pro-
cess for both available paths and their potential coding op-
portunities. The remaining question is how to choose a good
path among these available choices. One important point to
note is that we should not always choose a path with coding
opportunity because a coding-possible path may not provide
the best possible performance: it may already be congested,
or it may take too many hops to reach the destination and
consume more network resource. In other words, there may
exist some “coding-impossible” paths with higher through-
put or lower delay. The essential issue in path selection is to
design a good routing metric which can be used to quantify
the merit between coding-possible and coding-impossible
paths. In the following, we present CRM, the Coding-aware
Routing Metric. Please refer to our technical report [9] for
a general review of existing routing metrics.

3.1 Necessary Properties of CRM

First let us consider what routing metric is suitable for
the coding-aware route selection. Suppose there are some
existing flows in the wireless network, and we want to find
a path for a new flow. Some of the potential paths may have
coding opportunities while some may not. For proper path
evaluation, we impose the following two properties onto the
coding-aware routing metric:

• The metric should take into account the benefit of the
coding-possible paths. If a new path can be encoded
with some existing flows, it can “free-ride” on the
bandwidth used by the existing flows.

• The metric should be universal for both coding-
possible paths and coding-impossible paths. In other
words, the interpretation of “free-ride” benefit for
coding-possible paths should be transferable to the
performance measure for coding-impossible paths.

Based on the first property, a coding-aware routing met-
ric must take into account the existing traffic load infor-
mation in making the evaluation because the saving in the
“free-ride” bandwidth is crucially dependent on the exist-
ing traffic. The technical difficulty of this requirement is
that typically one does not know the actual throughput of
the existing flows. For the second property, we also face



another technical challenge of how to compare the per-
formance measure of coding-possible paths versus coding-
impossible paths. In the following, we show how to tackle
these two technical issues.

3.2 Interpreting the “Free-Ride” Benefit

Let us first work out a proper way to interpret the “free-
ride” benefit. To achieve this, let us consider the following
simple example to gain the intuition: suppose a node has
an on-going flow, and it finds out that a new flow traversing
through it has a coding opportunity with the on-going flow,
then what is the potential benefit on this the coding-possible
link? If the current bandwidth consumption of the on-going
flow at the node is B1, then in the best case, the node only
needs to use B1 bandwidth as long as the throughput on
the new flow (denoted by B2) does not exceed B1, because
all the new traffic can “free-ride” on (or be encoded with)
the existing traffic. If B2 > B1, then the node needs to
consume B2 bandwidth to deliver all the traffic.

The above approach of interpreting the “free-ride” bene-
fit is straightforward, however, it inevitably needs the actual
throughput of the on-going traffic, which, as we discussed,
is difficult to obtain in practice. Now let us consider an-
other approach: examining the buffered queue length of the
node. Intuitively, the average queue length can be an indica-
tor for how busy the node is (and therefore how much free-
time is left) and the delay for incoming traffic. Suppose the
queue length of the node is Q1 before the new flow is initi-
ated. Without network coding, there are Q1 packets ahead
of those packets for the new flow. However, when coding
is used, the new flow actually see zero packets ahead in the
queue, because its packets can always be encoded with the
existing ones! In short, if using average queue length as an
indicator, the actual calculation of the queue length need to
be “modified” in case there is a coding opportunity. In what
follows, we present how to modify the queue length in the
general case.

3.3 Modified Queue Length

For a considered node, we modify the calculation of its
queue length according to the coding relationships. For ex-
ample, if two flows with average queue length Q1 and Q2

can be encoded together, then their total contribution in the
modified queue length should be max{Q1, Q2}. To assist
the analysis for the general case, we first introduce “coding
graph” as an analytical tool to represent the coding relation-
ships.
1) Coding Graph. A coding graph is an undirected graph,
with each vertex representing a flow relayed by the consid-
ered node. For the existing flows, each vertices i is associ-
ated with a value Qi, which is equal to its average number

of packets in the queue. An edge between two vertices in-
dicates that these two flows satisfy the coding condition.
Consequently, if a subgraph of the coding graph is a com-
plete graph, then the vertices (i.e. flows) in this subgraph
can be encoded all together.

(a) The stable case. (b) The dynamic case.

Figure 5. Examples of coding graph for the
considered node c.

Fig. 5 shows two examples of the coding graph for
a considered node, in the stable case and dynamic case
respectively. In stable case (Fig. 5(a)), there is no new
paths (or flows) to be added. In dynamic case (Fig. 5(b)),
there is a new path to be examined, which we represent by
vertex x.

2) Modified Queue Length in Stable Case. First of
all, if there is no edges in the coding graph (i.e. no coding
opportunity), then the modified queue length is simply the
sum of average queue lengths for all flows. If there exists
some edges, we know that for a complete subgraph (i.e.
a clique) of the coding graph, their total contribution in
the modified queue length should be the maximal queue
length among them. The larger the clique is, the more
we can reduce in the modified queue length. Upon each
transmission, finding the maximum clique in the coding
graph can help us encode the maximum number of packets,
however, the maximum clique problem is NP-complete [7].
To reduce computational cost, we calculate the modified
queue length based on a “round-robin” encoding scheme.
Let the considered node be node c, we use MQs(c) to
denote the modified queue length of node c in the stable
case. The calculation steps are shown in Table 1.

In Table 1, Step 3-8 shows the round-robin coding
scheme: randomly pick one flow and encode with as
many flows as possible. Because the maximum number
of flows that can be encoded with a given flow is bounded
by a small number [8], the computational cost in each
iteration is insignificant. Using Figure 5(a) as a example,
suppose we choose vertex 2 in the first iteration, and choose
vertex 3 in the second iteration, the resulting MQs(c)
will be max{Q2, Q5, Q6} + max{Q3, Q4} + Q7 + Q1 or
max{Q2, Q5, Q6} + max{Q3, Q7} + Q4 + Q1.

3) Modified Queue Length in the Dynamic Case.



1. Remove all vertices with zero queue length and
their corresponding edges.

2. Initialize MQs(c) = 0, vertex set V = ∅.
3. Randomly pick vertex i among remaining vertices.
4. Find out the maximal complete subgraph that contains i.
5. Add vertices of the subgraph into V .
6. Add maxi∈V {ni} into MQs(c).
7. Remove all vertices in V and their edges.
8. Reset V = ∅.
9. Repeat Step 3-8, until all vertices are removed.

Table 1. Calculation of modified queue length
in the stable case.

In this case, we examine the the average queue length
“seen” by packets from the new flow x. We use MQd(c) to
denote the modified queue length of node c in the dynamic
case. The calculation goes as follows:

1. Initialize MQd(c) = 0.
2. Remove vertex x and all the vertices that are adjacent

to x, and their corresponding edges.
3. For the rest of the graph, go through the same calculation

as in the stable case.

Table 2. Calculation of Modified Queue
Length in Dynamic Case.

Compared to the stable case, the difference is that we
treat all flows that can be encoded with the new flow as
“non-existing”, because an incoming packet of the new flow
can “override” on the transmission for any of these existing
flows. For example, in Figure 5(b), we first remove ver-
tex x, 1, 2, 3, 4 and all their edges from the graph, and the
resulting MQd(c) is max{Q5, Q6} + Q7.

3.4 MIQ: Modified Interference Queue Length

The modified queue length of a node, however, is not
sufficient to estimate its available bandwidth in the wire-
less network, because a node with very short queue length
can still be congested if its interfering nodes have a lot of
packets to send. Let I(c) denote the set of node c’s interfer-
ing nodes. We define MIQ(c), the “Modified Interference
Queue” length, as

MIQs(c) = MQs(c) +
∑

i∈I(c)

MQs(i)

MIQd(c) = MQd(c) +
∑

i∈I(c)

MQs(i)

where MIQs,MIQd are the MIQ values in stable and dy-
namic cases respectively. For evaluating a new path, we
should use MIQd(c).

Essentially, we model the considered node c and its in-
terfering nodes as a big queueing system, with the wire-
less channel around them as a service center which needs to
serve packets for node c and all its interfering nodes. The
MIQ value indicates how busy the channel is and the delay
for an incoming packet. Furthermore, the MIQ value for a
node represents its private view of the channel status, which
may vary significantly from node to node.

3.5 CRM: Coding-aware Routing Metric

For each link l on a path L, let MIQd(l) be the dynamic
MIQ value of the transmitter on l, and let Pl denote the
packet loss probability on l. The CRM metric of link l is
calculated as:

CRMl =
1 + MIQd(l)

1 − Pl

Intuitively, CRMl corresponds to expected number of
transmissions for successfully transmitting the existing
packets as well as one incoming packet for the new flow3.
We use the dynamic MIQ value on link l because the
path to be evaluated is for the new flow. For the met-
ric of the entire path L, we define the CRM values as
CRML =

∑
l∈L CRMl.

CRM incorporates topology, traffic load and interfer-
ence information together in a unified manner. By using the
“modified interference queue length (MIQ)” as the indicator
for channel status, CRM does not require the wireless card
to report “channel busy time” to higher layers, and also does
not need to be aware of the actual throughput of existing
flows. More importantly, CRM provides a unified measure
for both coding-possible and coding-impossible paths.

The message overhead of CRM lies in that it re-
quires neighboring nodes to communicate “modified queue
length” with each other to compute the MIQ value, and it
also needs the packet loss probability on each link. In our
NS-2 implementation, we let each node broadcast HELLO
message periodically within its one-hop neighbors, and pig-
gyback its modified queue length into the HELLO mes-
sage. Therefore, the only message overhead is the HELLO
exchange, which is already used by many wireless rout-
ing protocols like AODV. For implementation details of the
DCAR system, please refer to our technical report [9].

3Note that this is an approximation, because the packet loss probabili-
ties for different outgoing links may vary.



4 Simulation Results

We now present the simulation results. We implement
the DCAR and COPE [1] system under NS-2. There are
two main differences between DCAR and COPE: 1) COPE
uses ETX [2] as the routing metric while DCAR uses CRM;
2) COPE limits the coding structure within two hops while
DCAR eliminate such limitation. The goals of our sim-
ulation are to evaluate the effectiveness of CRM in find-
ing high-throughput path with coding opportunities, and to
quantify the benefit of breaking the “two-hop” limitation.
Throughout the experiments, we use 802.11b and UDP traf-
fic sources. The transmission range is set to 250 and the
carrier sensing range is set to 550. When a new flow is to
be added, we allow 3 seconds for the “coding+routing” dis-
covery to find the available paths. Once a flow decides on
one path, it uses the path towards the end of the simulation
time.

4.1 Results from Illustrative Scenarios

Experiment 1. Bidirectional flows (Fig. 2): We first study
the simple scenario shown in Fig. 2. We start a flow from
node 1 to node 2, and then add the new flow 2 to 1. The
flows are given the same traffic load. We vary the offered
load and plot the resulting end-to-end throughput in Fig.
6. Three types of system are considered: DCAR, COPE,
and ETX routing without network coding. We observe that
DCAR always chooses the intersecting paths for both flows,
while the routes chosen by COPE (and ETX) vary between
the disjoint and intersecting patterns. The throughput gain
of DCAR tends to be more significant when the offered load
increase, resulting in a 20% gain for the new flow and a 12%
gain for the total throughput over COPE.

100 200 300 400 500
80

100

120

140

160

180

200

220

Offered load (Kbps)

T
hr

ou
gh

pu
t o

f n
ew

 fl
ow

 (
K

bp
s)

 

 

DCAR
COPE
ETX

(a) Throughput of the new flow
from 2 to 1.

100 200 300 400 500
150

200

250

300

350

400

450

500

Offered load (Kbps)

T
ot

al
 th

ro
ug

hp
ut

 (
K

bp
s)

 

 

DCAR
COPE
ETX

(b) Total throughput.

Figure 6. Results from the topology in Fig. 2.

Experiment 2. Generalized coding (Fig. 3): We compare
the performance of DCAR and COPE using the topology
shown in Fig. 3. In this case, the routes chosen by DCAR
and COPE are the same, however, COPE can not detect the
potential coding opportunity at node 3, because it misses
the fact that node 7 can perform opportunistic listening. For

each offered load, we repeat the experiment 10 times, vary-
ing the arrival orders of flow 5 → 7 and flow 1 → 4. The
resulting average throughput of both flows is plotted in Fig.
7. The throughput gain by the generalized coding scheme
ranges from 7% to 16% in this scenario.

100 200 300 400 500
80

100

120

140

160

Offered load (Kbps)

T
hr

ou
gh

pu
t (

K
bp

s)

 

 

DCAR
COPE

(a) Flow from 5 to 7.

100 200 300 400 500
80

100

120

140

160

Offered load (Kbps)

T
hr

ou
gh

pu
t (

K
bp

s)

 

 

DCAR
COPE

(b) Flow from 1 to 4.

Figure 7. Results from the topology in Fig. 3.

Experiment 3. “Wheel” topology: It is interesting to study
how DCAR works in a “wheel” topology as shown in Fig.
8(a), where a central node (0) is surrounded by six nodes (1
to 6) evenly distributed along the cycle. Each node along
the cycle can reach everyone else except for the node on
the opposite end of the diameter (e.g. node 1 can reach
everyone else except for 4, vice versa). We let each node
along the cycle starts a flow to the node at the opposite end
of the diameter. There are plenty of coding opportunities
in this scenario, not only at the central node 0 but also at
other nodes. For example, if two flows 1 → 4 and 2 → 5
use the paths 1 − 3 − 4 and 2 − 3 − 5 respectively, then
node 3 can also encode packets. In the experiment, we vary
the traffic load and arrival order of each flow, and plot the
average throughput in Fig. 8(b). We can see that DCAR
typically offers higher throughput than COPE, but the gain
is not significant. The underlying reason is that even if the
paths are randomly chosen between available shortest paths,
there are still many coding opportunities at the surrounding
nodes as we discussed.

(a) ”Wheel” topology.

0 1 2 3 4 5
0

100

200

300

Flow index

T
hr

ou
gh

pu
t (

K
bp

s)

 

 

DCAR
COPE

(b) Throughput of each flow.

Figure 8. Results from a “wheel” topology.

4.2 Results from Ad Hoc Networks

Experiment 4. Grid topology: We construct a 4 by 4
grid topology where each node can only reach its northern,



southern, eastern and western nodes. The experiment is of
10 rounds. At each round, we randomly add 5 flows into
the network and repeat the process for 3 times. We plot the
average end-to-end throughput achieved by DCAR, COPE
and ETX respectively in Fig. 9(a). Not surprisingly, the
gain by DCAR tends to be larger with higher offered load.
In Fig. 9(b), we make the network even more congested by
adding 10 flows in each round, the results also reveal the
potential of offering higher throughput by DCAR.

1000 1500 2000 2500 3000 3500 4000 4500
700

800

900

1000

1100

1200

1300

Average offered load (Kbps)

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

K
bp

s)

 

 

DCAR
COPE
ETX

(a) Results by adding 5 flows.

20 40 60 80 100 120
3

4

5

6

7

8

Average offered load (Kbps)

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

K
bp

s)

 

 

DCAR
COPE
ETX

(b) Results by adding 10 flows.

Figure 9. Results from a grid topology.

Experiment 5. Random topology: Finally we compare
DCAR and COPE in a 15-node random topology as shown
in Fig. 10(a). The average node degree is 3.2. We randomly
pick 8 flows and vary their arrival orders and loads in each
round. The average throughput for each flow is plotted in
Fig. 10(b). Because there is a rich set of coding opportu-
nities and available paths, DCAR achieves substantial gains
over COPE.

(a) 15-node random topol-
ogy.

0 1 2 3 4 5 6 7
0

100

200

300

400

500

Flow index

T
hr

ou
gh

pu
t (

K
bp

s)

 

 

DCAR
COPE

(b) Throughput of each flow.

Figure 10. Results from a 15-node random
topology.

5 Related Work

The concept of network coding is first proposed in
[3]. For wireless networks, authors of [1] propose COPE,
the first practical XOR coding system and demonstrate
the throughput gain via implementation and measurement.
COPE uses ETX [2] as its routing function. Based on
COPE, authors of [4, 5] introduce the concept of coding-

aware routing and formulate the max flow LP with cod-
ing considerations, however, their work is a centralized ap-
proach and assumes perfect scheduling. Authors of [6] pro-
pose a complex optimization framework for adaptive cod-
ing and scheduling. Authors of [8] study limitations of
COPE under practical physical layer and link-scheduling
algorithms, propose the concept of coding-efficient link-
scheduling for practical network coding. Compared with
former works, DCAR is the first practical distributed
coding-aware routing system, and adopts a more general-
ized coding scheme by eliminating the “two-hop” limitation
in COPE.

6 Conclusion

We propose DCAR, the first distributed coding-aware
routing system for wireless networks. DCAR incorporates
potential coding opportunities into route selection using the
“Coding+Routing Discovery” and “CRM” (Coding-aware
Routing Metric). DCAR also adopts a more generalized
coding scheme by eliminating the “two-hop” limitation in
COPE [1]. Extensive evaluation under NS-2 reveals sub-
stantial throughput gain over COPE achieved by DCAR.

References

[1] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Médard and J.
Crowcroft. XORs in the Air: Practical Wireless Network
Coding. Proceedings of ACM SIGCOMM 2006.

[2] D. Couto, D. Aguayo, J. Bicket and R. Morris. A High-
Throughput Path Metric for Multi-Hop Wireless Routing.
Proceedings of ACM MOBICOM 2003.

[3] R. Ahlswede, N. Cai, S. Li and R. Yeung. Network Infor-
maion Flow. IEEE Trans. on Informaion Theory, 46(4), pp.
1204-1216, July 2000.

[4] B. Ni, N. Santhapuri, Z. Zhong and S. Nelakuditi. Routing
with Opportunistically Coded Exchanges in Wireless Mesh
Networks. Poster session of SECON 2006.

[5] S. Sengupta, S. Rayanchu and S. Banerjee. An Analysis of
Wireless Network Coding for Unicast Sessions: The Case
for Coding-Aware Routing. Proceedings of IEEE INFOCOM
2007. 2007.

[6] P. Chaporkar and A. Proutiere. Adaptive Network Coding
and Scheduling for Maximizing Throughput in Wireless Net-
works. Proceedings of ACM MOBICOM 2007.

[7] R.M. Karp. Reducibility Among Combinatorial Problems.
Complexity of Computer Computations. New York: Plenum,
85-103.

[8] J. Le, JCS Lui and DM Chiu. How Many Packets Can We En-
code? - An Analysis of Practical Wireless Network Coding.
Proceedings of IEEE INFOCOM 2008.

[9] J. Le, JCS Lui and DM Chiu. DCAR: Distributed Coding-
Aware Routing in Wireless Networks. CUHK CSE Technical
Report 2008-01. Available at http://www.cse.cuhk.
edu.hk/∼jlle/icdcs-report.pdf.


