
LightTraffic: On Optimizing CPU-GPU Data Traffic
for Efficient Large-scale Random Walks

Yipeng Xing1, Yongkun Li1,2, Zhiqiang Wang1, Yinlong Xu1,2 and John C. S. Lui3
1University of Science and Technology of China, 2Anhui Province Key Laboratory of High Performance Computing

3Department of Computer Science and Engineering, The Chinese University of Hong Kong
ypxing@mail.ustc.edu.cn, ykli@ustc.edu.cn, wzq666@mail.ustc.edu.cn, ylxu@ustc.edu.cn, cslui@cse.cuhk.edu.hk

Abstract—As a fundamental tool for graph analysis, random
walk receives extensive attention in both industry and academia.
For computing massive random walks, recent works show that
GPUs provide a good option to accelerate the performance.
However, due to the limited memory space of modern GPUs,
it is infeasible to have both the graph data and walk index
fully reside in GPU memory when running large-scale random
walks. Thus, it necessitates an out-of-GPU-memory design, but this
inevitably induces large amounts of CPU-GPU data transmission
traffic and thus hinders the overall performance. In this paper,
we develop LightTraffic, which optimizes the data transmission
between CPU and GPU memory under the constraint of GPU
memory capacity with various system designs, including a memory-
efficient scheme for partition-based management and multiple
scheduling techniques. LightTraffic is a fully out-of-GPU-memory
design, so it supports running large-scale random walks on GPUs.
Experiments on our prototype show that LightTraffic outperforms
various state-of-the-art CPU-based in-memory systems which also
support large-scale random walks. For example, compared to the
CPU-based systems FlashMob and ThunderRW, which are highly
optimized for random walks, LightTraffic achieves 1.7−5.0× and
1.4− 12.8× performance speedup, respectively. It also achieves
up to an order of magnitude speedup when compared to the GPU-
based system Subway which also supports large-scale random
walks with an out-of-GPU-memory design for graph data.

I. INTRODUCTION

As a basic building block of graph analysis, random walk is
widely used to support various applications, e.g., social network
analysis [3], [16], [26], [54], [70] and recommender systems [8],
[23], [57], [71]. Recent advances in graph machine learning,
e.g., graph embedding [7], [14], [45] and graph neural networks
[72], heavily use random walks to sample a large graph. As a
result, random walks receive extensive efforts in academia to
optimize random walk based system designs [15], [21], [25],
[44], [53], [55], [58], [60], [68], [69].

As graphs become larger, to develop efficient random walk
based graph systems, it is necessary to support massive random
walks concurrently. For example, sampling a graph with billions
of vertices may need to start millions or even billions of random
walks, which is very common in big corporations such as
Tencent [62], Pinterest [71] and Alibaba [57]. Thus, if the
scale of random walks becomes large, running massive random
walks is a heavy computation task. One option to alleviate the
computation bottleneck is to leverage the abundant computing
resources of GPU devices with thousands of cores and high
memory access bandwidth. Multiple systems are also developed
to support random walks on GPUs [15], [44], [58].

However, when the graph and walk scale become large,
leveraging GPUs to accelerate massive random walks still faces
multiple challenges, and one critical issue is the limited GPU
memory capacity. To address this scalability issue, large efforts
are made to develop out-of-GPU-memory graph processing
systems [19], [34], [50], [51], [74], and their key idea is to
leverage a partition-based processing framework. Specifically,
they divide the graph into multiple partitions, and load the
graph partitions iteratively into GPU memory for computation.
We find that out-of-GPU-memory designs may incur a high data
transmission traffic between CPU and GPU memory, because
the required data is iteratively swapped multiple times. Besides,
the bandwidth of the commonly used PCIe 3.0 connecting CPU
memory and GPU memory is only 12 GB/s in practice, and it
is much smaller than the bandwidth of memory bus connected
to CPU/GPU cores. As a result, the high transmission cost
limits the efficiency of random walks on GPUs. For example,
GPU-based graph sampling system NextDoor [15] reported that
running DeepWalk and PPR on GPUs performs even worse
than CPU-based system KnightKing [69] on a single machine
due to the high data transmission cost.

Despite that the partition-based method is a standard way to
achieve out-of-GPU-memory processing, we argue that it is still
challenging to optimize the data transmission between CPU
and GPU memory. First, the partition of random walks changes
during the computation, because a walk may move to other
partitions when the state of the walk is updated. Under the
constraint of GPU memory capacity, it is a common practice
[39], [60] to also organize the computation tasks (e.g., random
walks) in a partition-centric manner, and load only the related
data into GPU memory when processing each partition. Thus,
we need to keep track of the walks in each partition as walks
move among different partitions. In particular, we need to
efficiently handle their memory allocation as CUDA does not
efficiently support growing or shrinking memory space by
dynamic memory reallocation [65]. Furthermore, recording the
state of walks costs a lot of memory space so it is necessary to
save them in CPU memory and optimize the transmission. Also,
we need to alleviate the random access and data contention
problems during the insertion of updated walks because adjacent
threads may write to different partitions and many threads may
also try to write the same partition.

Second, a large portion of the loaded graph is usually useless
for updating random walks. Generally, we use GPUs for



memory-intensive tasks such as neural networks [46] where
every element of the loaded data is accessed. However, for
random walks, a walk visits only one neighbour of its current
vertex, leaving most edges to be useless. Moreover, the required
edges are only known during the random walks execution. Zero
copy [37] is a GPU-specific feature to allow GPU cores to
access data directly through PCIe at a cacheline granularity
during execution. However, it is not scalable in comparison
with the high-bandwidth GPU memory. So the key is to provide
a design to balance the trade-off.

Third, the computation workload changes in different itera-
tions and it is often insufficient to fully utilize the GPU. For
most applications on GPUs, the computation time is constant
when data is evenly divided. Thus, using a simple pipeline
can easily achieve a steady speedup because the ratio of
computation to transmission time is the same in each iteration
[40]. However, the computation workload for random walks
over a partition depends on the number of walks in the partition,
rather than the size of the graph partition. As random walk
tasks dynamically move among partitions, simply adopting
a pipelined design to overlap computation and transmission
would not provide much benefit if the computation time is
relatively too small. Also, in an iteration, only the random
walks in the currently selected partition are processed with the
partition-based method. This makes the computation workload
in an iteration insufficient to hide the transmission overhead.
So the key to improving the pipeline efficiency is to accumulate
and schedule enough computation tasks in an iteration so that
we can hide the data transmission time as much as possible.

Moreover, adopting the partition-based method introduces
stragglers which further exacerbate the above issues. Graph-
Walker [60] and GraSorw [25] reported that even when most
walks finish their computation, it still needs many iterations to
process the small number of unfinished stragglers. So in later
iterations, more data of the loaded graph become useless, and
the problem of limited pipeline efficiency due to inadequate
computation workload in an iteration becomes more serious.

To address the above challenges, we propose LightTraffic,
which supports massive random walks on GPUs with an effi-
cient out-of-GPU-memory design for both graph data and walk
index. Specifically, LightTraffic optimizes the data transmission
traffic between CPU and GPU memory with multiple design
efforts. We summarize our main contributions as follows.

• We develop a memory-efficient scheme to manage graphs
and walks. We follow the partition-based idea to organize
graph data, while for updated walk indexes, we use fine-
grained batches with append-only writes. We manage
memory with reserved pools and allocate space for graph
partitions and walk index batches in GPU memory in a
cached fashion, so as to efficiently realize dynamic memory
reallocation when walks are traveling among partitions.
We also reduce the data contention and random access
overheads via two-level walk index caching.

• We develop an efficient pipeline with preemptive schedul-
ing and selective scheduling to reduce the data transmis-
sion cost. Preemptive scheduling breaks the dataflow of

vanilla partition-based framework by fully utilizing all
computable walks with required data already cached on
GPUs. Selective scheduling differentiates partitions in
loading to maximize the utilization of cached data. In
addition, we develop adaptive scheduling by leveraging
zero copy in graph loading to optimize data transmission.

• We implement a prototype system LightTraffic and conduct
extensive experiments to show its effectiveness and effi-
ciency in running massive random walks on GPUs. Results
show that LightTraffic achieves 1.7−5.0× and 1.4−12.8×
performance speedup compared to the state-of-the-art CPU-
based systems optimized for random walks, FlashMob and
ThunderRW, and it also significantly outperforms out-of-
memory GPU-based graph processing system Subway.

The source code is available at https://github.com/ustcadsl/
LightTraffic.

II. BACKGROUND AND MOTIVATION

We first introduce the necessary background on random walk
and its computation on GPUs, then analyze the limitations of
leveraging GPU in speeding up massive random walks. Finally,
we motivate LightTraffic and summarize the design challenges.

A. Random Walk on GPUs

Random walk algorithms. A simple random walk over an
undirected graph G = (V,E), where V denotes the vertex
set and E denotes the edge set, proceeds as follows. A walk
w starts from a vertex, and moves to one neighbor with an
equal probability in each step. It repeats the process until the
termination condition is satisfied, e.g., it finishes the required
number of walking steps, which we call the walk length. The
simple random walk can be extended to handle weighted or
heterogeneous graphs in real applications for graph sampling,
e.g. rejection sampling and alias sampling [55].

We point out that random walk serves as a very basic function,
and it supports many graph applications, which usually require
to concurrently run a large number of walks. For example,
graph embedding [7], [45], [62] often takes hundreds of epochs
to converge, and each epoch requires to concurrently run |V |
walks to sample a path. To support these applications, we
have to record the state of each walk. In particular, we use
two variables to characterize the state of a walk at each step:
the current_vertex, which records the vertex at which
the walk stays, and the walked_steps, which denotes the
number of steps being moved. We call these data walk index. To
support applications based on random walks, we may need other
application-specific states, e.g., we need a visit frequency per
vertex for PageRank related algorithms and a unique identifier
per walk for sampling.
Computation on GPUs. As concurrently running billions
of random walks also consumes a lot of CPU resources,
recent works also focus on leveraging GPUs to speed up the
computation. To realize it, one choice is to keep the whole
graph and all computing data, e.g., the walk index for random
walks, in GPU memory [15], [44]. However, this approach is
infeasible to handle huge graphs and large-scale random walks,

https://github.com/ustcadsl/LightTraffic
https://github.com/ustcadsl/LightTraffic


All Index of Walks

0 3

1 2

4

6

7

9

8
5

2

6

7

9

8
5

Partial

Graph

w0

w1

w2

w3

9 7 2

0

8 6

5 Updating

GPUCPU

Fig. 1: Out-of-memory graph computation on GPUs. In the very
beginning, we can update w0 because v9 belongs to the partial graph
residing in GPU memory. After two steps, w0 stays at v2, but the
partial graph in GPU memory does not contain all neighbors of v2,
so w0 has to wait, and the computation resumes when another graph
partition containing v2 is loaded.

Host Mem Gloabl Mem

L2 Cache

···

Streaming

Multiprocessor-1

Shared 

Mem

L1 

Cache

Streaming

Multiprocessor-1

Shared 

Mem

L1 

Cache

Streaming

Multiprocessor-N

Shared 

Mem

L1 

Cache

Streaming

Multiprocessor-N

Shared 

Mem

L1 

Cache

Host

Core

Core

···

Large Small

PCIe 3.0  12GB/s

PCIe 4.0  24GB/s around 1TB/s

Fig. 2: GPU memory hierarchy.

due to the limited memory space on GPUs, e.g., the memory
capacity is usually tens of gigabytes for commodity GPUs.

To address the scalability issue, state-of-the-art designs, e.g.,
C-SAW [44] and Subway [50], enable out-of-memory graph
computation on GPUs. The key idea is to keep the full graph
data in CPU memory and iteratively load only partial graph data
into GPU memory for computation. Specifically, as illustrated
in Figure 1, a graph is divided into multiple partitions, and
they are transmitted to GPU for computing iteratively. In each
iteration, only one graph partition is transmitted. Because we
have only partial graph data in GPU memory, we are not able
to continue updating a walk if it requires other parts of the
graph not residing in GPU memory.
GPU-specific features. Note that the performance of computing
on GPUs may be influenced by multiple GPU-specific features:
(1) Memory hierarchy [17]. As illustrated in Figure 2, a GPU
also has multi-layer caches. Each streaming multiprocessor
has a private L1 cache and a shared memory with a latency
of around 20 cycles, and these memory spaces are only
accessible by threads in this streaming multiprocessor. Besides,
all streaming multiprocessors share the L2 cache which has
a latency of around 200 cycles. Both the L1 and L2 caches
are controlled by the hardware, while the shared memory is
programmable. (2) Zero copy [37]. CUDA provides memory
access with zero copy, which allows the GPU programs to
directly access the host memory at a cacheline granularity. It
simplifies GPU programming and could be very helpful when
GPU programs cannot tell which data is referenced before
execution. However, random accesses through zero copy may
significantly reduce the effective communication bandwidth
between the host and GPU. (3) CUDA stream [42]. A stream

1 2 3 4 5 6 7 8 9 10
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pe
rc

en
ta

ge
 o

f a
ct

iv
e 

ve
rti

ce
s/

ed
ge

s

Vertex-FS
Edge-FS

Vertex-UK
Edge-UK

Fig. 3: Percentage of active vertices/edges in each iteration.

TABLE I: Time breakdown of running random walks on GPU.
Dataset Computation Transmission Subgraph Creation

UK 11.2% 40.4% 48.4%
FS 2.0% 43.7% 54.3%

is a sequence of operations performed in a given order, while
operations in different streams can be interleaved. This allows
to asynchronously overlap computation and transmission.

B. Limitations and Challenges

The above described partition-based approach enables pro-
cessing large graphs on GPUs, but it still has multiple limitations
to realize out-of-memory designs.
Inefficiency of graph data transmission. The partition-
based approach involves iterative graph loading, introducing
significant data transmission cost. Specifically, due to the
randomness nature of random walks, it is very common to
have only a small part of the loaded graph partition in GPU
memory being really useful for updating the random walks.
That is, many vertices and edges are unnecessarily transmitted
with the partition-based iterative approach, and this introduces
large transmission overhead. We point out that this limitation
still exists even with the optimization of loading only the active
subgraph [50], [74], which is generated by containing only the
active vertices and active edges. A vertex is active if there
is at least one walk currently staying at this vertex, and an
edge is active if the source vertex of this edge is an active
vertex. The reason is that when running massive walks, there
is a large portion of active vertices, introducing large overhead
if we dynamically generate active subgraph in each iteration.
Besides, a walk visits only one neighbour of an active vertex
in one step, so we still have many useless active edges. Thus,
this optimization is not beneficial for running massive walks.

We run experiments to further justify the limitation. We run
2|V | random walks using the out-of-memory system Subway
on FS and UK graph datasets (see §IV-A), and we enable the
optimization of loading active graph to reduce data transmission
overhead. As shown in Figure 3, we find that active vertices
often account for a very large portion, e.g., around 60% vertices
and 80% edges on UK are active in most iterations. In contrast,
only about 3% of the loaded edges is actually used during the
execution. As a result, it takes a very long time to generate the
active subgraph in each iteration, and the transmission of active
subgraph to GPU memory also incurs high overhead as shown



in Table I. This experiment demonstrates the inefficiency of
graph data transmission in existing partition-based designs for
supporting out-of-memory random walks on GPUs.
Inefficiency of pipelining. To avoid GPU cores being idle
and waiting for graph data transmission, many existing graph
systems support overlapping the communication with compu-
tation. However, as the data transmission time is usually much
higher than the computation time in an iteration when running
random walks on GPUs, the pipeline efficiency is still very
limited. To further demonstrate this limitation, we divide the
graph of UK dataset into 128 MB partitions and run 2|V | walks
with a length of 80, which is a common setting [68]. We find
that loading a graph partition into GPU memory requires 10.4
milliseconds, while the highest computation time in an iteration
is only 6.6 milliseconds using round-robin scheduling. Also,
we find that most walks are moving to other partitions, but
current partition-based method fails to continue the computation.
Besides, without careful design, the loaded partition may be
only useful for a few computation tasks. As a result, GPU
cores are often at idle to wait for the graph data.
Inefficiency of walk index management. We find that all
existing GPU-based random walk systems keep all the walks
in GPU memory, this design consumes large GPU memory
and thus limits the scale of random walks. For example, even
recording only the state of each walk with current_vertex
and walked_steps by using 8 bytes for each walk, it exceeds
the GPU memory capacity for running 2|V | walks for the
ClueWeb09 dataset [47]. Moreover, keeping all walks in GPU
memory reduces the available memory for keeping graph data
and thus increases the frequency of loading graph partitions. To
support massive random walks, the only way is to run multiple
rounds, and keep only a subset of walks in GPU memory in
each round. However, it still results in high overhead because
it requires more iterations to finish all random walks and thus
introduces more traffic for transmitting graph partitions.

An alternative is to follow the idea in GraphWalker [60],
which caches only a partial walk index in GPU memory for
computation and evicts walks if needed. However, how to
efficiently manage the cached walk index in GPU memory is
challenging. To avoid scanning all walks, which introduces
unnecessary transmission, we have to organize the walk index
in a partition-based manner. However, it is unable to predict
the memory space requirement for storing the walks belonging
to a partition, because the number of walks residing in a given
graph partition varies due to the dynamics of random walks. For
example, some algorithms like PPR may initially start all walks
at a single source vertex, so most walks are residing in one
single partition in this case. Also, in an iteration, as all walks in
the selected partition will be updated, the number of walks still
belonging to this partition at the end of iteration drops to zero.
Thus, the number of walks in a partition significantly varies.
However, CUDA kernel function does not support dynamic
memory reallocation during its execution like realloc() in
C-type languages [65]. Thus, if we use a single consecutive
memory space to manage walkers belonging to the same graph
partition, e.g., the method used in C-SAW [44], the only choice

Walk

Loading

Graph 

Loading

Engine

Partition 0

Partition 1

Partition N

···

Graph Partitions

···

Walk Batches

···

Explicit copy

Zero copy

Partition 0

Partition 1

···

P1

P0

Scheduler

Select

Walk 

Reshuffling

Walk 

Updating

P1

P0

PN

PCIe

CPU

GPU

Fig. 4: Overall architecture of LightTraffic.

is to reserve a large enough GPU memory space to keep the
possible maximum number of walks for each partition so as to
avoid memory overflow, but this reduces the memory utilization.

III. SYSTEM DESIGN

In this section, we present the design details of LightTraffic.
We first introduce the overall idea, and then illustrate the details
of each design component.

A. Overview

LightTraffic develops out-of-memory design as illustrated in
Figure 4. The graph is divided into fixed-size partitions. The
walks belonging to the same partition are grouped together
and stored in multiple fixed-size small batches. To run random
walks, LightTraffic adopts the partition-based approach, and in
each iteration, the scheduler selects a partition, say partition
i, to compute. First, we load graph partition i to GPU using
explicit copy or zero copy (abbr. graph loading), and we also
load the walk batches in partition i to GPU (abbr. walk loading).
We skip the loading if the required data are already in GPU
memory. Finally, the GPU starts multiple threads to compute
all random walk tasks in partition i (abbr. walk updating). Note
that after finishing the execution of all walks in a batch, these
updated walks need to be inserted into the corresponding write
frontier batches of other graph partitions (abbr. walk reshuffling).
After finishing the execution of all walks over a partition, it
enters into the next iteration if active walks still exist.

To optimize the random walk efficiency, LightTraffic devel-
ops multiple design optimizations. In particular, it designs a
memory-efficient data organization for both graph data and walk
index (see §III-B), and optimizes GPU memory management
with a caching design and two-level caching for walk index to
reduce the walk reshuffling overhead (see §III-C). LightTraffic
also proposes a pipelined design to overlap data loading and
computing, and develops preemptive scheduling and selective
scheduling to improve the pipeline efficiency (see §III-D). It
also leverages zero copy to deal with stragglers (see §III-E).

B. Data Organization

Memory pool reservation. To support out-of-memory process-
ing, both the graph partition and walk index are fully stored in
CPU memory, and only part of them are explicitly loaded by
cudaMemcpyAsync() into GPU memory for computation
in each iteration. We manage the memory spaces in GPU using



0 3

1 2

4

6

7

9

8
5

P0 P2

P1

24 28 32 3424 28 32 34

24                           28                            32

0 4 7 100 4 7 10

24 12 16 1924 12 16 190 4 6 90 4 6 9
0                              4                      7             9     10

0      1     2    3

7 9 7 87 9 7 824 12 5 624 12 5 62 6 8 92 6 8 9

Partition 

array

Vertex 

array

Edge 

array
...

Fig. 5: Organization of graph data.

the idea of caching. We reserve the memory in both pools
by allocating with cudaMalloc() in advance. Besides, the
reserved memory in both pools are organized in unit of memory
blocks, and the block size in the graph pool is the same as the
partition size, while the block size in the walk pool is the same
as the batch size. That is, the two pools operate independently
as two caches without dynamic memory allocation. Specifically,
we assume that the graph pool can cache at most mg graph
partitions, and the walk pool can cache at most mw walks.
Based on the cached design, if a walk batch is loaded into the
walk pool, and there are already mw walks being cached in
the GPU memory, then an eviction of a walk batch is triggered.
The graph pool operates in a similar way.
Graph data and partition. As illustrated in Figure 5,
LightTraffic adopts the widely used CSR format for graph
data storage, and it supports fast query of a given vertex’s
neighbors. Precisely, to find the neighbors of a vertex, we first
access the vertex array to obtain the range in the edge array,
and then access the edge array to get all neighbors.

LightTraffic adopts the partition-based approach to support
out-of-memory processing for both graph data and walk index,
and it uses static partitioning to avoid high overhead of
dynamically creating active subgraphs. Specifically, LightTraffic
adopts the range-based partition according to the order of
vertices as shown in Figure 5. Specifically, we assign each
vertex an identifier from 0 to (|V | − 1), and divide the vertices
into multiple disjoint intervals. We assign an edge to a partition
if its source vertex belongs to this partition. We create a
graph pool to store graph partitions, and we ensure that every
partition would not exceed the block size of the graph pool.
The benefits of the above partition method are as follows.
First, range partition makes the transmission of graph data
in a contiguous order. Second, it is easy to make the size of
partitions approximately fits any given size parameter. This
can be realized by greedily expanding the vertex intervals
until the size of graph partitions exceeds the pre-defined size.
Third, given a vertex, we can efficiently find its corresponding
partition using binary search.
Walk index. As illustrated in Figure 6, we use batches, which
are small fixed-size arrays, as the basis for storing walk index.
By default, the number of walks that are recorded in a batch is
set as 16× the number of GPU cores, such that the throughput
of computing or transferring a full batch is large enough. Each
batch must only contain walks belonging to the same partition
so that we can always update walks in this batch given the
corresponding graph partition. For ease of presentation, we say
that a batch belongs to a partition, if all walks in the batch are

P2P2

3 2 2 03 2 2 0

Full batch Frontier batch Free batch

1 31 3

5 45 4

9 8 8 79 8 8 7

P1P1

P0P0

P2P2

3 2 2 03 2 2 0 1 3 21 3 2

5 4 6 55 4 6 5 66P1P1

P0P0

Before

After

9 8 8 79 8 8 7

6 5 6 26 5 6 2

Walk Updating

Walk Reshuffling

Fig. 6: Organization of walk index.

currently staying in this partition.
As walks move among partitions, in order to efficiently insert

and delete walks belonging to each partition, we organize all
batches belonging to the same partition as a circular queue.
Specifically, during computation, the walks in the head are
fetched into GPU engine for processing in a batch basis. After
the computation, this loaded batch is simply freed and all the
updated walks are inserted into other batches according to their
states. To handle walk insertion, the batch in the tail of each
queue is called the write frontier batch, which receives the
insertion of all updated walks belonging to this partition with
append-only write. It is easy to load and evict walk batches
between CPU and GPU memory. For example, to evict a walk
batch from GPU memory to CPU memory, on the GPU side,
we can simply fetch a batch from the given partition in GPU
walk pool, then transfer the walk indexes in this batch, and
finally free this batch in GPU memory. On the CPU side, we
write the walk indexes evicted from GPU to a free batch and
finally insert this batch to a given partition in CPU walk pool.
Loading walk batches from CPU memory to GPU memory is
similar to the above process.
Memory usage. We now analyze the memory usage of the walk
pool in GPU memory. We keep only a frontier batch and a free
batch for each graph partition in the walk pool. Suppose that
we have P graph partitions in total, then the total number of
frontier batches and free batches in GPU memory is 2P . Thus,
if the batch size is B, then the maximum memory size being
wasted in the walk pool is just (2P + 1)B. Besides, in order
to to record the pointers to all batches, we maintain a circular
queue for each partition with the length of (⌈Swmw

B ⌉+2) where
Sw is the size of the walk index and we cache at most mw

walks. We also need a queue to store free batches for allocation.
Generally, we divide a large graph into hundreds of partitions
(See Figure 17) and B is about 1 MB in our default setting.
Thus, the space overhead is comparatively small and the size of
the data structures in memory pool is only several megabytes.

C. Two-level Walk Index Caching

Recall that walks in the same batch are in the same partition.
This invariant ensures that we can always update all walks
in a batch with the corresponding graph partition. However,
after these walks are updated, they may belong to different
partitions. To preserve this invariant, we need to insert the
updated walks into their corresponding frontier batches, and
we call this process walk reshuffling.

We optimize the reshuffling process with two-level caching.
The first-level cache uses the walk pool. Specifically, we cache



SM0

Updated walk batch in 

GPU global memory

Frontier batches in

GPU global memory

24 1224 12

Local indexes in 

shared memory

SM1

Partition 0 Partition 1

Fig. 7: Walk reshuffling with two-level caching.

all the write frontier batches in the walk pool, one for each
graph partition. By doing this, updated walks are written to
the frontier batches in the walk pool in GPU memory, so we
avoid small updates to the walk index in CPU memory. It is
possible that the remaining space of frontier batch is unable to
keep all the updated walks, e.g., the partition 1 in Figure 6. To
avoid memory overflow, we choose to reserve one free batch
in the walk pool for each graph partition. If the frontier batch
is full, then the reserved free batch becomes the frontier batch
to store updated walks.

The second-level cache is designed to use the shared
memory (see Figure 2 in §II). During walk reshuffling, each
multiprocessor handles only a part of walks in the updated
batch, i.e., the walk batch just being processed. To reduce
data contention and random access overhead, we maintain
a data structure called local index in the shared memory of
each multiprocessor. As Figure 7 shows, walks belonging to
the same partition are marked in the same color. To insert
the updated walks to their corresponding frontier batches, we
first insert the walks into the local index and sort them based
on partitions, and then merge the results of each local index.
Specifically, in each shared memory, we maintain an atomic
local counter for each partition, which represents the number
of walks in the local index belonging to the partition, and an
inverted map, which records the mapping from the thread IDs
to the current position in the updated walk batch, as well as
the pairs of partition ID and offset which denote the target
position in which each walk should be inserted.

Algorithm 1 presents the detailed workflow of walk updating
and reshuffling. At Line 4, we assign a walk to a thread for walk
updating. Note that writing to the frontier batches in global
memory needs synchronization across multiprocessors, which
must go through L2 cache and incur a relatively high latency.
By using atomic local counters localLen in shared memory,
synchronization is only needed at Line 12 of Algorithm 1,
thus reducing the data contention overhead. Besides, by using
inverted maps in shared memory, we coalesce the walks that are
written to the same frontier batches to reduce random access
overhead by assigning adjacent written addresses (denoted as
(part, pos)) to adjacent threads. The inverted map sorts the
written addresses, and it is built efficiently with the counting
sort algorithm using the prefix sum of local counters [52].

D. Pipeline Design

To support out-of-memory processing for both graph data
and walk index, loading graph partitions and walk batches still
dominates the total execution time, due to the limited bandwidth

Algorithm 1 Kernel function of walk updating and reshuffling

1: tid = blockDim * blockIdx + threadIdx ▷ global thread id
2: i = threadIdx ▷ local thread id in SM
3: if tid < batch.length() then
4: batch[tid].update() ▷ walk updating
5: if batch[tid].isActive() then ▷ insert to local index
6: part = batch[tid].findPartition()
7: pos = atomicAdd(&localLen[part], 1)
8: invertedMap.add(part, pos, tid)
9: invertedMap.sort()

10: if i < numPartition then ▷ get offset in walk pool to write
11: offset[i] = atomicAdd(&globalLen[i], localLen[i])
12: if i < invertedMap.length() then ▷ write to walk pool
13: part, pos, j = invertedMap.get(i)
14: globalIndex.add(part, pos + offset[part], batch[j])

Graph Loading

Computing

1 2

1 1 11 1 1Walk Loading

Time

Stage

2 2 22 2 2

P P 2 2 2previous iteration

···

···

···

1
Processing on partition 1

1 1 1 1 1 11 1 1 1 1 1

One iteration
1 1 1 1···1

Preemptive scheduling with cached 

batches from other partitions

Batch cachedBatch loaded

Fig. 8: Pipeline design.

between CPU and GPU memory. To improve the performance,
LightTraffic leverages an efficient pipeline to reduce the data
transmission overhead.

To realize an efficient pipeline, as shown in Figure 8, we
develop a 3-phase interleaving scheme by splitting one iteration
into three phases: (1) graph loading, in which a graph partition is
loaded from CPU memory to the graph pool, (2) walk loading, in
which the corresponding batches belonging the loaded partition
are loaded into the walk pool one by one; and (3) computing,
in which the walks are processed based on the loaded graph
partition. The intuitive way to realize pipeline is to interleave
the three phases. Specifically, we start computation as long as
one walk batch is loaded, and we enter into the next iteration to
start loading new graph partitions as long as the loading phase
finishes. Note that in the interleaved execution, when loading a
walk batch, we may need to evict a cached walk batch from the
walk pool to CPU memory. Eviction is fully integrated into our
pipeline design because PCIe is full-duplex so that loading and
eviction can be executed simultaneously without interference.
We omit the eviction procedure in Figure 4, Figure 8 and
Algorithm 2 for simplicity.

However, we find that simply interleaving the three phases
is still inefficient to hide the transmission overhead. The main
reason is that the loading phase takes much longer time than
the computing phase. We further develop two optimizations:
preemptive scheduling and selective scheduling.
Preemptive scheduling. One of the reasons why data trans-
mission time dominates the total execution time is that the



traditional partition-based method only computes tasks in a
specific partition in an iteration for the consideration of data
dependency. For example, as shown in Figure 8, when we
finish computing random walks in partition 1, we are supposed
to compute random walks in partition 2, but we have to wait
for the transmission of graph partition 2 and thus the GPU
cores are idle. However, we still have previously loaded graph
partitions in GPU memory, and may also have some walks
being reshuffled into these partitions, so these partitions have
random walk tasks which can be immediately computed. We
consider that tasks are in the sleeping state if they are supposed
to run but currently waiting for data transmission, and define
that tasks are in the ready state if their corresponding graph
partition and walk index are both cached in GPU memory.

The key idea of preemptive scheduling is that instead of
waiting for the random walk tasks in the current partition
being loaded, we take advantage of the tasks with required
data already being cached in GPU memory. Thus, we can
immediately run these computable tasks belonging to other
partitions in a preemptive way, that is, the tasks in the ready state
preempt the tasks in the sleeping state. Specifically, in the phase
of loading graph partition and walk batches, we find out the walk
batches that can be immediately computed, e.g., the batches
marked as P in Figure 8, then we dispatch these computable
walk batches if we find GPU cores are idle. With preemptive
scheduling, we can improve the GPU core utilization and thus
improve the pipeline efficiency by leveraging the cached data
already in GPU memory in the loading phase.
Selective scheduling. We also propose a selective scheduling
policy by differentiating different graph partitions, and our
goal is to maximize the computing load for each loaded graph
partition so as to reduce the gap between the loading time and
the computing time in each iteration, and this could further
improve the pipeline efficiency. Specifically, in the first phase
of loading a graph partition, we load the partition which has
the largest number of walks. By doing this, the loaded graph
partition can be used for executing more walks in the third
phase. Besides, if there is no free space to cache the loaded
graph partition in the graph pool, we overwrite the partition
with the smallest number of walks. The rationale is that such
a graph partition should have the lowest chance to be reused.

We also optimize the selection of walk batches. Specifically,
when we need to compute a walk batch for preemptive
scheduling, if there are some full batches whose corresponding
graph partitions are already being kept in GPU memory, then we
choose the batch whose corresponding graph partition contains
the least walks. The rationale is that such a graph partition
will be overwritten with high chance in the near future, so we
try to finish all the walks belonging to this partition to avoid
reloading the graph partition in the future. If no such a batch
exists, then we select the batch containing the largest number
of walks to amortize the cost of CUDA function call. We use
the same way to evict walk batches.

In summary, our 3-phase interleaving scheme overlaps the
computation with data transmission using the fine-grained walk
batches. Furthermore, we develop preemptive scheduling and

selective scheduling to help reduce the gap between the loading
time and computing time by leveraging the cached data on
GPUs. Preemptive scheduling allows some random walk tasks
which are supposed to be processed in later iterations to be
processed earlier, so it eliminates some iterations. Selective
scheduling improves the utilization of the loaded partitions.
They both help reduce the data transmission time and thus
make the computation and transmission be well pipelined.

Algorithm 2 presents the detailed implementation. Note that
existing systems [19], [44], [51] usually use the same CUDA
stream to process both the loading and computing tasks of a
partition to guarantee the ordering. However, this approach is
hard to support preemptive scheduling and selective scheduling,
because we require the information of the memory pool and
need to dispatch walk batches from different partitions in a just-
in-time manner. To address it, we create three CUDA streams
to process the operations of computing, loading and eviction,
respectively. We also add explicit synchronization between
streams if data dependency exists.

E. Adaptive Scheduling

With the pipeline design, we dispatch random walk tasks as
many as possible while data are transmitted, so as to prevent
GPU cores from being idle. However, we observe that in
later iterations, only a few random walks, which we call the
stragglers, are executed. In this case, we cannot find enough
computation to hide the time of loading a whole graph partition.

To address the straggler issue, we develop an adaptive
scheduling policy by leveraging zero copy to reduce the graph
loading overhead. Specifically, when the computing load is
light for a graph partition, instead of explicitly loading the
entire graph partition to GPU memory, we provide the address
of the graph partition allocated by cudaHostAlloc() in
host memory to the computation engine on GPU. During the

Algorithm 2 Scheduler of LightTraffic

1: while active walks exist do
2: i = scheduler.iteration() ▷ select a partition
3: if !Ggpu.exists(i) then ▷ graph loading
4: if scheduler.shouldZerocopy(i) then
5: Ggpu[i] = Gcpu[i]
6: else
7: Ggpu[i] = copyAsync(Gcpu[i], loadStream)
8: while busy(loadStream) do ▷ preemptive scheduling
9: j = scheduler.preemptive()

10: kernelAsync(Ggpu[j], Wgpu[j].poll(), compStream)
11: cudaStreamSynchronize(compStream)
12: for all batch in Wcpu[i] do ▷ walk loading
13: batch = copyAsync(batch, loadStream)
14: cudaStreamSynchronize(loadStream)
15: kernelAsync(Ggpu[i], batch, compStream)
16: for all batch in Wgpu[i] do ▷ computing
17: kernelAsync(Ggpu[i], batch, compStream)



FS UK YH CW0

2

4
Th

ro
ug

hp
ut

 (G
st

ep
/s

) ThunderRW
FlashMob
LT (PCIe 3.0 3090)

LT (PCIe 3.0 A100)
LT (PCIe 4.0 A100)

(a) Uniform Sampling

FS UK YH CW0

2

4

Th
ro

ug
hp

ut
 (G

st
ep

/s
) ThunderRW

FlashMob
LT (PCIe 3.0 3090)

LT (PCIe 3.0 A100)
LT (PCIe 4.0 A100)

(b) PageRank

FS UK YH CW0

2

4

Th
ro

ug
hp

ut
 (G

st
ep

/s
) ThunderRW

FlashMob
LT (PCIe 3.0 3090)

LT (PCIe 3.0 A100)
LT (PCIe 4.0 A100)

(c) Personalized PageRank

Fig. 9: Comparison with CPU-based random walk systems.

computation, the GPU device finds that the data are located in
host memory, then it issues PCIe requests data in a cacheline.

One key issue of the adaptive scheduling is to decide when
to use zero copy, and we use a simple analysis to decide the
threshold. Note that when we decide to use zero copy, then
the computation load should be very light, for ease of analysis,
we assume that the computation time is negligible or can be
fully overlapped by communication. With this approximation,
we only have to consider the communication time, which is
proportional to the transferred data size. For explicit copy, we
explicitly transfer the whole graph partition, and we denote its
size as Sp. For zero copy, we approximate the required data
size by using an empirical formula αw, where w is the number
of walks in the partition, and α denotes the average data size
transferred using zero copy to finish the computation of one
walk. Note that it is hard to accurately calculate α as we can
not know how many steps each walk can move in one iteration,
but we can empirically estimate it. We find that α is not a
sensitive parameter, and it can be set as 256 bytes based on our
experiments. Finally, based on the above empirical estimation,
if the number of walks in a partition is small enough to satisfy
αw < Sp, then we use zero copy instead of explicit copy.

IV. PERFORMANCE EVALUATION

A. Setup

Testbed. By default, we conduct experiments on a single server
equipped with two Intel(R) Xeon(R) Gold 5218R processors,
208 GB DRAM, and a single Nvidia GeForce RTX 3090 GPU
with 24 GB memory, connected with PCIe 3.0. The programs
run on Ubuntu 20.04 LTS and are compiled by nvcc 11.5 or
g++ 9.4.0 with the -O3 flag.
Workload. Table II lists the graph datasets we considered
where dmax is the largest vertex degree of a graph. It shows
the statistics after preprocessing, which converts graphs into
undirected ones, and removes self loops, duplicate edges and
zero-degree vertices. We emphasize that UK, YH and CW
are large graphs which cannot be entirely put into the GPU
memory in our testbed. All the graphs can fit into DRAM. We
define system throughput as the average number of processed
steps per second. We run each experiment 5 times and report
the average results. Except for the results of ThunderRW, the
relative standard deviation is at most 5%.

TABLE II: Statistics of the graph datasets
Datasets |V | |E| CSR Size dmax

LiveJournal(LJ) [24] 4.85 M 85.70 M 364 MB 20.33 K
Orkut(OR) [24] 3.07 M 234.4 M 917 MB 33.31 K

Twitter(TW) [24] 41.7 M 1.468 B 5.78 GB 3.00 M
FriendSter(FS) [63] 68.35 M 3.62 B 14.0 GB 5.21 K
UK-Union(UK) [4] 131.57 M 9.33 B 35.7 GB 6.37 M

Yahoo(YH) [66] 653.91 M 12.95 B 53.1 GB 653.91 M
ClueWeb09(CW) [47] 1.68 B 15.62 B 70.8 GB 6.44 M

Algorithms. We use three random walk based algorithms: Uni-
form sampling, PageRank [2], [43] and Personalized PageRank
(PPR) [9], [43]. For PageRank and uniform sampling, walks
are started uniformly at all vertices, and terminated when the
number of walked steps reaches l. Note that PageRank adopts
random walk with restart. That is, at each step, a walk has a
probability p to restart at a random vertex, instead of uniformly
selecting one of the neighbors of the current vertex. PPR starts
all walks at the same source vertex. In our experiments, we
select the source vertex that has the highest degree, and each
walk terminates with probability p in each step. Besides the
graph pool and walk pool, PageRank and PPR also store the
visit frequency of each vertex in GPU memory. For uniform
sampling, the walk index also records an application-specific
state walk_id to specify the sampling path, and we do not
store sampling paths in the GPU which executes random walks,
and assume that paths are transferred to other GPUs like existing
systems [67], [68]. For comparison with the state-of-the-art
systems, we set l = 80 and p = 0.15, and set the number
of walks as 2|V |, which is a common setting [15], [25], [68].
Note that it is common to require a large number of samples,
e.g., DeepWalk [45] samples 30|V | walks for convergence
and metapath2vec [7] even requires to sample 1000|V | in
their evaluations. Besides, Das Sarma et al. [6] infer that it
needs O( 1δ |V | log |V |) steps in total to make the relative error
bounded by δ with high probability for PageRank.

B. Overall Performance

To evaluate the efficiency of LightTraffic, we first compare
it with the state-of-the-art CPU-based systems ThunderRW
[55] and FlashMob [68], as they are both highly optimized for
random walks. We also compare LightTraffic with the GPU-
based system Subway [50] which supports out-of-memory
processing for graph data, as well as the GPU-accelerated
random walk system NextDoor [15]. All experiments include



the data transmission time. We do not compare with the recently
proposed GPU-based graph system C-SAW [44], because C-
SAW is not designed for running massive random walks and
it runs out of GPU memory even when we try to run 100,000
walks. The reason is that C-SAW creates a large queue to store
all walks for every step and every partition.
Comparison with ThunderRW and FlashMob. Figure 9
compares the performance of different random walk algorithms,
and we also show the error bars of 95% confidence interval.
FlashMob supports only fixed-length random walks, so the
result of PPR algorithm using FlashMob is not available. For
LightTraffic (abbr. LT), we consider both PCIe 3.0 and PCIe
4.0 by also using another platform equipped with a Nvidia
Tesla A100 GPU connected with PCIe 4.0. To study the impact
of PCIe bandwidth, we use the same A100 GPU to simulate
different bandwidths so as to make sure other settings are
the same. Precisely, we limit the bandwidth of PCIe 4.0 by
transmitting data twice to simulate the same bandwidth as PCIe
3.0. We also limit to use the same amount of memory, i.e.,
24 GB for the Tesla A100 GPU for fair comparison.

The results show that the time for loading graph may become
the bottleneck due to the limited bandwidth of PCIe 3.0.
However, LightTraffic still achieves up to 6.7× speedup when
running fixed-length random walks on large graphs that cannot
fit into GPU memory. For the small FS graph which can
fit in the GPU memory, LightTraffic achieves at least 6.1×
speedup because we only load graph partitions once. PPR is a
variable-length random walk algorithm where the number of
steps follows the geometric distribution. For PPR, LightTraffic
achieves an average speedup of 2.0×. We note that the benefit
of our system decreases in this case, because there are fewer
walks in each graph partition due to the variable walk length,
while we still have to continuously load the graph partitions
for computation, incurring larger transmission overhead.

The results under PCIe 4.0 show that the increased bandwidth
significantly improves the performance of LightTraffic. In
this case, LightTraffic achieves 1.7 − 5.0× and 1.4 − 12.8×
performance speedup over FlashMob and ThunderRW. We point
out that as the size of the graph dataset keeps increasing, the data
transmission traffic between the host and GPU also becomes
larger, so using higher transmission bandwidth with PCIe 4.0 is
effective to reduce the overall running time. However, as PCIe
4.0 is still much slower than memory, the data transmission
cost is still critical. Note that new technology such as NVLink
2.0 can connect the GPU to CPU memory at a high bandwidth
of 64 GB/s [32], [33], so it provides an opportunity to achieve
better performance when using fast interconnects.
Comparison with Subway. We now compare with the state-
of-the-art GPU-based system Subway, which supports out-of-
memory processing. Figure 10 shows the speedup results when
running PageRank and PPR on FS and UK. We omit the results
of Uniform Sampling because the conclusion is similar. Besides,
the results on large datasets of YH and CW are unavailable
because Subway runs out of the host memory because of
dynamically generating active subgraphs. Note that the total
time of Subway includes the cost of dynamically generating

FS UK0

20

40

60

80

100

Sp
ee
du
p

Computing
Transmission

Total

(a) PageRank

FS UK0

20

40

60

80

100

Sp
ee
du
p

Computing
Transmission

Total

(b) Personalized PageRank

Fig. 10: Comparison with out-of-memory GPU-based system.

LJ OR TW0

2

4

Th
ro

ug
hp

ut
 (G

st
ep

/s
) NextDoor LightTraffic

(a) Uniform Sampling

LJ OR TW0

2

Th
ro

ug
hp

ut
 (G

st
ep

/s
) NextDoor LightTraffic

(b) Personalized PageRank

Fig. 11: Comparison with out-of-memory GPU-based system.

active subgraphs.
LightTraffic significantly outperforms Subway. Specifically,

for PageRank, LightTraffic achieves 39.1× and 26.9× speedup
in total time, 1.04× and 5.72× speedup in computing, 71.7×
and 12.2× speedup in data transmission, on the datasets of FS
and UK, respectively. For PPR, LightTraffic achieves 22.3×
and 54.7× speedup in total time, 1.58× and 33.4× speedup in
computing, 13.0× and 12.9× speedup in data transmission.
The reason why LightTraffic speeds up the computation
compared with Subway is as follows. Subway adopts the
vertex-centric computation framework, i.e., it assigns all walks
residing at the same vertex to a single thread, so it causes
load imbalance among vertices due to the variable number
of walks. LightTraffic achieves load balance by adopting the
walk-centric computation model used by most random walk
systems. Besides, benefited from the scheduling techniques,
LightTraffic also significantly reduces the transmission cost.
Comparison with NextDoor. To demonstrate that LightTraffic
has comparable performance with in-GPU-memory systems,
we compare with the state-of-the-art GPU-accelerated random
walk system NextDoor, and consider the same graph dataset
as NextDoor so as to make all data fit into the GPU memory.
As shown in Figure 11, LightTraffic still slightly outperforms
NextDoor [15]. The performance gain comes from two op-
timizations. First, LightTraffic leverages an efficient pipeline
to hide data transmission. Second, the two-level walk index
caching also prevents the partition-based walk management
from becoming a major overhead.

C. Effectiveness of the Design Techniques

Walk reshuffling. We first study the effectiveness of walk
reshuffling in LightTraffic. Recall that walk reshuffling is to
write the walks in the finished batch to the corresponding
frontiers. We compare the design of two-level caching in
LightTraffic with a basic method, which directly accesses the
global memory in GPU to write the updated walks. We denote
this baseline method as direct write. As shown in Figure 12, the



32 64 128 256 512 1024
Partition size (MB)

0

1

2

3

4

5

R
es

hu
ffl

in
g 

tim
e 

(s
)

Direct Write Two-level Caching

Fig. 12: Efficiency of walk reshuffling with two-level caching.

25 50 100 150
Number of partitions cached in GPU memory

0

20

40

60

To
ta

l r
un

ni
ng

 ti
m

e 
(s

) Basic PS SS PS+SS

Fig. 13: Efficiency of pipeline design.

TABLE III: Impact of scheduling on data transmission.
Baseline PS SS PS+SS

Number of iterations 10670.8 6673.8 10513.6 6103.8
Number of explicit copies 8365.6 4222.2 4176.6 2380.4

Cache hit rate of graph pool 21.6% 36.7% 60.3% 61.0%

reshuffling time can be reduced by 73% at most. Besides, for
large partition sizes, the reshuffling time is smaller, as there are
fewer random writes in this case due to the reduced number of
partitions. Note that without this optimization, the reshuffling
time may even exceeds the walk updating time, and we will
show it later (see Figure 17).
Pipeline design. We now study the effectiveness of the
pipeline design. Recall that we develop two optimizations
in LightTraffic: preemptive scheduling (abbr. PS) and selective
scheduling (abbr. SS) (see §III-D). To show the effectiveness of
the two optimizations, we consider a basic design, which uses
round robin for loading graph partition and FIFO for eviction,
and also allows to overlap the communication with computation
between two successive iterations. Figure 13 shows the total
running time by varying the number of graph partitions in
GPU memory. The basic pipeline method does not leverage
the cached data at all, because it considers only two successive
iterations. With the two techniques PS and SS, the running time
decreases when more partitions are cached in GPU memory.

Table III further shows the number of iterations and explicit
copies when we cache 100 graph partitions in GPU. We find that
both preemptive scheduling and selective scheduling optimize
the data transmission. By dispatching random walks belonging
to the partitions loaded in later iterations, preemptive schedul-
ing reduces the number of iterations and thus reduces data
transmission traffic. For selective scheduling, although it does

UK YH CW0

1

2

3

4

Sp
ee

du
p

All Zero Copy
All Explicit Copy
Adaptive Scheduling

(a) PageRank

UK YH CW0

5

10

15

20

Sp
ee

du
p

All Zero Copy
All Explicit Copy
Adaptive Scheduling

(b) Personalized PageRank

Fig. 14: Efficiency of adaptive scheduling.

not significantly reduce the number of iterations, it increases
the cache hit ratio, and thus also reduces the data transmission
traffic. As the two methods are orthogonal, combining them
together in LightTraffic achieves higher speedup.
Adaptive scheduling with zero copy. We now study the
efficiency of the adaptive scheduling scheme, which leverages
zero copy to handle the stragglers. For comparison, we consider
three cases: (1) All Zero Copy: which always access graph
data through zero copy during the computation and never loads
full graph partitions to the GPU graph pool; (2) All Explicit
Copy, which uses cudaMemcpyAsync() to load the whole
graph partition from host memory if needed; (3) Adaptive
Scheduling, which is the design used in LightTraffic (see §III-E).
We consider two different algorithms PageRank and PPR.
Note that PPR has variable walk lengths following geometric
distribution, so it is more likely to encounter stragglers which
are not finished after running many iterations. PageRank uses
fixed walk length, and there still exists stragglers due to the
asynchronous computation. We focus on the graphs which
cannot fit into GPU memory. Figure 14 shows the speedup
over the All Explicit Copy method. By balancing the trade-
off between zero copy and explicit copy, adaptive scheduling
achieves significant speedup compared with the simple scheme
using only explicit copy or zero copy. Besides, we find that
the speedup is more significant for PPR as the straggler issue
becomes more critical due to the variable walk lengths.
Comparison with the approach using multiple rounds. To
support running massive random walks on GPUs, another
intuitive choice is to divide all walks into multiple sets, each
of which contains a smaller number of walks that can fit into
GPU memory, and then sequentially execute all sets of random
walks in multiple rounds (see §II-B). To show the effectiveness
of the out-of-memory walk index design in LightTraffic, we
compare it with the multi-round baseline. Specifically, we aim
to run 800 million random walks in total, and we consider three
cases in which the GPU memory can only store 100 million,
200 million, and 400 million walks, so using the baseline
approach needs to run 8, 4, and 2 rounds, respectively. For
each case, we assume that LightTraffic caches the same number
of walks in GPU memory for fair comparison, so walk eviction
may be triggered in LightTraffic. We show the slowdown
of the multi-round baseline, i.e., the ratio of the time using
the baseline approach to that of using LightTraffic with the



1, 1 2, 1 4, 1 8, 1 1, 2 2, 2 4, 2 8, 2 1, 4 2, 4 4, 4 8, 4 1, 8 2, 8 4, 8 8, 8
Number of walks (in 100 million), number of graph partitions (× 25) cached in GPU memory

0

5

10

15

20
Ti

m
e 

(s
)

Graph Loading
Zero Copy
Walk Loading

Walk Eviction
Walk Computing

Total Time
Time hidden by pipeline

Fig. 15: Running time under different memory pool sizes.

25 50 100
Number of graph partitions cached in GPU memory

0

1

2

3

4

5

Sl
ow

do
w

n 
us

in
g 

m
ul

tip
le

 ro
un

ds

400M × 2 runs
200M × 4 runs
100M × 8 runs

Fig. 16: Comparison with the baseline of using multiple rounds.

same memory capacity constraint. Figure 16 shows that using
multiple rounds to support massive random walks incurs larger
time cost, especially when the GPU can only store a small
number of graph partitions. For example, it needs 3.5× time
in the case where the GPU memory can only cache 25 graph
partitions. This is because the multi-round approach incurs
more times of graph partition loading. Moreover, the benefit
of LightTraffic due to the out-of-memory walk index support
is larger when the limit on GPU memory is more severe.

D. Sensitivity Analysis

Impact of GPU memory size. Figure 15 shows the impact
of GPU memory size, and we vary the number of walks (in
millions) and the number of graph partitions that can be cached
in GPU memory. Under each setting, we show the time cost
of each operation, including graph loading, walk loading, zero
copy, walk eviction, walk computing on GPU cores, and the
total running time. Note that the total running time is smaller
than the sum of the time costed by each operation due to the
pipeline design. The total running time is measured at the CPU
side. The breakdown results are measured at the GPU side,
and we set the walk length as 10 in this experiment so that
each part of the breakdown results is visible in the figure. We
show only the results of PageRank due to space limit.

The results show that graph loading and walk loading cost
a significant amount of time in many cases, which may be
even larger than the walk computing time. The results also
demonstrate the effectiveness of the pipeline design because
the total time is close to the maximum time of two stages:

32 64 128 256 512 1024
Partition size (MB)

0
1
2
3
4
5
6
7
8
9

10

C
om

pu
ta

tio
n 

Ti
m

e 
(s

) Walk Updating Walk Reshuffling Other

Fig. 17: Walk computing time under different partition sizes.

the walk computing stage and the data loading stage which
includes graph loading, walk loading and zero copy. We can
also find that given the same number of graph partitions being
cached, caching more walks in GPU memory significantly
reduces the running time. For example, in the case where
25 partitions are cached, the running time reduces from 12.8
seconds to 7.1 seconds when the cached number of walks
increases from 100 million to 800 million. This justifies the
necessity of efficient walk index management when designing
out-of-memory systems. Also, by increasing the memory pool
size, it is more likely to find a partition which has both the graph
and full batch cached in GPU when we apply the preemptive
scheduling, thus it improves the throughput of walk computing.
Impact of partition size. Figure 17 shows the walk computing
time under different partition sizes. To be specific, for the walk
computing time, we show the time breakdown, including the
walk updating time, walk reshuffling time, and others. We see
that the time spent on GPU cores for updating walks increases
as the partition size increases, because using large partitions
has poor locality of memory references [31], while the time of
walk reshuffling decreases, as it reduces the time to search the
corresponding partition. In addition, we find that the partition
size is not a very sensitive parameter.
Scalability analysis. To demonstrate the scalability of
LightTraffic, we first present a theoretical analysis on the
throughput lower bound by considering an extreme case with
very limited GPU memory. Suppose that none of the required
data is saved in GPU memory and all w walks in the same
partition move only one step, so in each iteration, the total
transferred data size is Sp + wSw, where Sp is the graph



0.0 0.5 1.0 1.5 2.0
Walk density

0.0

0.5

1.0

1.5

Th
ro

ug
hp

ut
 (G

st
ep

/s
)

Theory
FS

CW
UK

Fig. 18: Scalability analysis regarding walk density.

partition size and Sw is the walk index size of each walk. We
assume that computing a walk is faster than transmitting a
walk, so the computation time is hidden by pipeline. Thus, the
total running time of one iteration is Sp+wSw

B where B is the
transmission bandwidth, and the throughput is wB

Sp+wSw
. We

define walk density D = wSw

Sp
, then the throughput is B/Sw

1+1/D .
Also, when D < Sw

α , zero copy is enabled to improve the
throughput by avoiding the load of the whole graph partition.
The above analysis implies that the throughout depends only on
the walk density D regardless of the graph size, so LightTraffic
can scale well for large graphs even with limited GPU memory.

To further demonstrate, we also run experiment by varying
the walk density with a very restricted memory constraint where
only 1 GB graph data and 1 GB walk index are allowed to be
stored in GPU memory. In this case, less than 2% of graph is
available for random walks for the large dataset CW. Figure 18
shows the theoretical estimation and the experimental results on
both small and large datasets. The results of YH is not available
because it has a high-degree vertex so storing its neighbors
costs more than 1 GB memory. However, we could use smaller
partitions by splitting the vertex [41]. The results conform with
our theoretical analysis. That is, even with restricted memory,
the throughput depends on the walk density rather than the
graph size, so LightTraffic is scalable to process large graphs.

V. RELATED WORK

CPU-based graph systems. Graph computing has received
a lot of attentions. To address the scalability for processing
large graphs, multiple disk-resident graph systems [1], [20],
[22], [28], [35], [48], [49], [56], [73], [77] and distributed graph
systems are also proposed [5], [12], [13], [30], [36], [76], and
they mainly adopt the partition-based computation framework.
Different from them, LightTraffic focuses on GPUs.
GPU-based graph processing. Many systems [18], [27], [29],
[41], [61], [75] leverage the resourceful computing power of
GPUs for accelerating graph computation. The key challenges
for efficient graph computing on GPUs are the limited memory
capacity and limited bandwidth between CPU and GPU. Prior
works address the challenges by following the partition-based
approach [11], [19], [34], [39], [50], [51], [74] and propose
various optimizations, such as hybrid CPU-GPU co-processing
[11], [34], loading only active subgraphs to optimize data
transfer [50], [74], and designing with pipeline [19], [34], [39],

[51], [74]. Recent works also optimize the memory access with
zero copy [37], [38] and unified virtual memory [10], [59] to
support out-of-GPU-memory graph processing. FaimGraph [64]
uses efficient queuing structures to realize dynamic reallocation
for in-memory dynamic graph analytics under the constraint
of GPU memory capacity. Different from them, LightTraffic
focuses on running massive random walks on GPUs with out-
of-memory support.
Random walk systems. There have been increasing interests
in random walks in recent years. Traditional graph systems
mainly adopt the vertex-centric computation model which
is not suitable for random walks. Because random walk is
an embarrassingly parallel application, most random walk
systems use walk-centric computation model. KnightKing [69]
develops a distributed system for running massive random
walks. DrunkardMob [21] and GraphWalker [60] adopt a single
machine and propose disk-based random walk systems for
handling large graphs that cannot fit into DRAM. Recent
works [25], [53] also study the trade-off between time and
space overheads of different sampling algorithms and improve
the I/O utilization to support second-order random walks on
large graphs. FlashMob [68] and ThunderRW [55] address the
irregular memory access patterns, in particular, FlashMob [68]
improves random walk at cache efficiency and ThunderRW
[55] hides memory access latency via step-centric programming
model and step interleaving. Recent efforts also try to enhance
the parallelism using GPUs. C-SAW [44] and Skywalker [58]
optimize inverse transform sampling and alias sampling on
GPUs. NextDoor [15] leverages both caching and scheduling to
improve random walk efficiency on GPUs. These random walk
systems either use CPUs for computing or focus on optimizing
the computation on GPUs, while LightTraffic focuses on
optimizing the data transmission traffic when enabling out-
of-memory processing on GPUs.

VI. CONCLUSION

In this paper, we developed an out-of-memory GPU-based
system LightTraffic. LightTraffic supports out-of-memory
management for both graph data and walk index, so it is able to
run massive random walks over large graphs on a single GPU,
LightTraffic mainly optimizes the data transmission traffic
with multiple design optimizations to support fully out-of-
memory processing. Experiments on our prototype demonstrate
that LightTraffic outperforms existing CPU-based and GPU-
based systems for running massive random walks. Despite that
random walk has a very irregular memory access pattern, our
results reveal that we can still improve the performance by
exploiting the opportunities of intelligent pipeline and GPU-
specific features such as zero copy and shared memory.

ACKNOWLEDGMENT

The work was supported in part by NSFC (62172382) and
Youth Innovation Promotion Association CAS. The work of
John C.S. Lui was supported in part by the RGC’s GRF-
14200321. Yongkun Li is USTC Tang Scholar, and he is the
corresponding author.



REFERENCES

[1] Z. Ai, M. Zhang, Y. Wu, X. Qian, K. Chen, and W. Zheng. Squeezing
out all the value of loaded data: An out-of-core graph processing system
with reduced disk I/O. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17), 2017.

[2] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte
carlo methods in pagerank computation: When one iteration is sufficient.
SIAM J. Numer. Anal., 2007.

[3] L. Backstrom and J. Leskovec. Supervised random walks: Predicting and
recommending links in social networks. In Proceedings of the Fourth
ACM International Conference on Web Search and Data Mining, 2011.

[4] P. Boldi, M. Santini, and S. Vigna. A large time-aware graph. SIGIR
Forum, 2008.

[5] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra: differentiated graph
computation and partitioning on skewed graphs. In Proceedings of the
Tenth European Conference on Computer Systems, 2015.

[6] A. Das Sarma, A. R. Molla, G. Pandurangan, and E. Upfal. Fast distributed
pagerank computation. Theoretical Computer Science, 2015.

[7] Y. Dong, N. V. Chawla, and A. Swami. Metapath2vec: Scalable
representation learning for heterogeneous networks. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2017.

[8] C. Eksombatchai, P. Jindal, J. Z. Liu, Y. Liu, R. Sharma, C. Sugnet,
M. Ulrich, and J. Leskovec. Pixie: A system for recommending 3+
billion items to 200+ million users in real-time. In Proceedings of the
2018 World Wide Web Conference, 2018.

[9] D. Fogaras, B. Rácz, T. Sarlós, and K. Csalogány. Towards scaling
fully personalized pagerank: Algorithms, lower bounds, and experiments.
Internet Mathematics, 2005.

[10] P. Gera, H. Kim, P. Sao, H. Kim, and D. Bader. Traversing large graphs
on gpus with unified memory. Proc. VLDB Endow., 2020.

[11] A. Gharaibeh, L. Beltrão Costa, E. Santos-Neto, and M. Ripeanu. A yoke
of oxen and a thousand chickens for heavy lifting graph processing. In
Proceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques, 2012.

[12] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. PowerGraph:
Distributed Graph-Parallel computation on natural graphs. In 10th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 12), 2012.

[13] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica. GraphX: Graph processing in a distributed dataflow
framework. In 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), 2014.

[14] A. Grover and J. Leskovec. Node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016.

[15] A. Jangda, S. Polisetty, A. Guha, and M. Serafini. Accelerating graph
sampling for graph machine learning using gpus. In Proceedings of the
Sixteenth European Conference on Computer Systems, 2021.

[16] J. Jia, B. Wang, and N. Z. Gong. Random walk based fake account
detection in online social networks. In 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2017.

[17] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza. Dissecting the
nvidia volta gpu architecture via microbenchmarking. https://arxiv.org/
abs/1804.06826, 2018.

[18] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan. Cusha: Vertex-
centric graph processing on gpus. In Proceedings of the 23rd International
Symposium on High-Performance Parallel and Distributed Computing,
2014.

[19] M.-S. Kim, K. An, H. Park, H. Seo, and J. Kim. Gts: A fast and
scalable graph processing method based on streaming topology to gpus.
In Proceedings of the 2016 International Conference on Management of
Data, 2016.

[20] P. Kumar and H. H. Huang. G-store: High-performance graph store for
trillion-edge processing. In SC ’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2016.

[21] A. Kyrola. Drunkardmob: Billions of random walks on just a pc. In
Proceedings of the 7th ACM Conference on Recommender Systems, 2013.

[22] A. Kyrola, G. Blelloch, and C. Guestrin. GraphChi: Large-Scale graph
computation on just a PC. In 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), 2012.

[23] S. Lee, S.-i. Song, M. Kahng, D. Lee, and S.-g. Lee. Random walk
based entity ranking on graph for multidimensional recommendation. In
Proceedings of the Fifth ACM Conference on Recommender Systems,
2011.

[24] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, 2014.

[25] H. Li, Y. Shao, J. Du, B. Cui, and L. Chen. An i/o-efficient disk-based
graph system for scalable second-order random walk of large graphs.
Proc. VLDB Endow., 2022.

[26] R.-H. Li, J. X. Yu, X. Huang, and H. Cheng. Random-walk domination
in large graphs. In 2014 IEEE 30th International Conference on Data
Engineering, 2014.

[27] H. Liu and H. H. Huang. Enterprise: breadth-first graph traversal on
gpus. In SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, 2015.

[28] H. Liu and H. H. Huang. Graphene: Fine-Grained IO management for
graph computing. In 15th USENIX Conference on File and Storage
Technologies (FAST 17), 2017.

[29] H. Liu and H. H. Huang. SIMD-X: Programming and processing of graph
algorithms on GPUs. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), 2019.

[30] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed graphlab: A framework for machine learning
and data mining in the cloud. Proc. VLDB Endow., 2012.

[31] S. Lu, S. Sun, J. Paul, Y. Li, and B. He. Cache-efficient fork-processing
patterns on large graphs. In Proceedings of the 2021 International
Conference on Management of Data, 2021.

[32] C. Lutz, S. Breß, S. Zeuch, T. Rabl, and V. Markl. Pump up the volume:
Processing large data on gpus with fast interconnects. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data, 2020.

[33] C. Lutz, S. Breß, S. Zeuch, T. Rabl, and V. Markl. Triton join: Efficiently
scaling to a large join state on gpus with fast interconnects. In Proceedings
of the 2022 International Conference on Management of Data, 2022.

[34] L. Ma, Z. Yang, H. Chen, J. Xue, and Y. Dai. Garaph: Efficient
GPU-accelerated graph processing on a single machine with balanced
replication. In 2017 USENIX Annual Technical Conference (USENIX
ATC 17), 2017.

[35] S. Maass, C. Min, S. Kashyap, W. Kang, M. Kumar, and T. Kim. Mosaic:
Processing a trillion-edge graph on a single machine. In Proceedings of
the Twelfth European Conference on Computer Systems, 2017.

[36] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: a system for large-scale graph processing.
In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, 2010.

[37] S. W. Min, V. S. Mailthody, Z. Qureshi, J. Xiong, E. Ebrahimi, and W.-m.
Hwu. Emogi: Efficient memory-access for out-of-memory graph-traversal
in gpus. Proc. VLDB Endow., 2020.

[38] S. W. Min, K. Wu, S. Huang, M. Hidayetoğlu, J. Xiong, E. Ebrahimi,
D. Chen, and W.-m. Hwu. Large graph convolutional network training
with gpu-oriented data communication architecture. Proc. VLDB Endow.,
2021.

[39] J. Mohoney, R. Waleffe, H. Xu, T. Rekatsinas, and S. Venkataraman.
Marius: Learning massive graph embeddings on a single machine. In 15th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 21), 2021.

[40] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur,
G. R. Ganger, P. B. Gibbons, and M. Zaharia. Pipedream: Generalized
pipeline parallelism for dnn training. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, 2019.

[41] A. H. Nodehi Sabet, J. Qiu, and Z. Zhao. Tigr: Transforming irregular
graphs for gpu-friendly graph processing. In Proceedings of the Twenty-
Third International Conference on Architectural Support for Programming
Languages and Operating Systems, 2018.

[42] Nvidia. Cuda c++ programming guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html, 2022.

[43] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web, 1998.

[44] S. Pandey, L. Li, A. Hoisie, X. S. Li, and H. Liu. C-saw: A framework
for graph sampling and random walk on gpus. In SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2020.

[45] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD

https://arxiv.org/abs/1804.06826
https://arxiv.org/abs/1804.06826
http://snap.stanford.edu/data
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html


International Conference on Knowledge Discovery and Data Mining,
2014.

[46] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: Memory
optimizations toward training trillion parameter models. In SC20:
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2020.

[47] R. Rossi and N. Ahmed. Network repository. https://networkrepository.
com, 2013.

[48] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel. Chaos:
Scale-out graph processing from secondary storage. In Proceedings of
the 25th Symposium on Operating Systems Principles, 2015.

[49] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: Edge-centric
graph processing using streaming partitions. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles, 2013.

[50] A. H. N. Sabet, Z. Zhao, and R. Gupta. Subway: Minimizing data
transfer during out-of-gpu-memory graph processing. In Proceedings of
the Fifteenth European Conference on Computer Systems, 2020.

[51] D. Sengupta, S. L. Song, K. Agarwal, and K. Schwan. Graphreduce:
Processing large-scale graphs on accelerator-based systems. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2015.

[52] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan primitives for
gpu computing. In Proceedings of the 22nd ACM SIGGRAPH/EURO-
GRAPHICS Symposium on Graphics Hardware, 2007.

[53] Y. Shao, S. Huang, X. Miao, B. Cui, and L. Chen. Memory-aware
framework for efficient second-order random walk on large graphs. In
Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, 2020.

[54] A. Sharma, J. Jiang, P. Bommannavar, B. Larson, and J. Lin. Graphjet:
Real-time content recommendations at twitter. Proc. VLDB Endow.,
2016.

[55] S. Sun, Y. Chen, S. Lu, B. He, and Y. Li. Thunderrw: An in-memory
graph random walk engine. Proc. VLDB Endow., 2021.

[56] K. Vora. LUMOS: Dependency-Driven disk-based graph processing. In
2019 USENIX Annual Technical Conference (USENIX ATC 19), 2019.

[57] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and D. L. Lee. Billion-
scale commodity embedding for e-commerce recommendation in alibaba.
In Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2018.

[58] P. Wang, C. Li, J. Wang, T. Wang, L. Zhang, J. Leng, Q. Chen, and
M. Guo. Skywalker: Efficient alias-method-based graph sampling and
random walk on gpus. In 2021 30th International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2021.

[59] P. Wang, J. Wang, C. Li, J. Wang, H. Zhu, and M. Guo. Grus: Toward
unified-memory-efficient high-performance graph processing on gpu.
ACM Trans. Archit. Code Optim., 2021.

[60] R. Wang, Y. Li, H. Xie, Y. Xu, and J. C. Lui. GraphWalker: An I/O-
Efficient and Resource-Friendly graph analytic system for fast and scalable
random walks. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20), 2020.

[61] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens.
Gunrock: A high-performance graph processing library on the gpu. In
Proceedings of the 21st ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2016.

[62] W. Wei, Y. Wang, P. Gao, S. Sun, and D. Yu. A distributed multi-gpu
system for large-scale node embedding at tencent. https://arxiv.org/abs/
2005.13789, 2021.

[63] WeST. Friendster dataset. https://west.uni-koblenz.de/konect/networks/
friendster, 2012.

[64] M. Winter, D. Mlakar, R. Zayer, H.-P. Seidel, and M. Steinberger.
faimgraph: High performance management of fully-dynamic graphs under
tight memory constraints on the gpu. In SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis,
2018.

[65] M. Winter, M. Parger, D. Mlakar, and M. Steinberger. Are dynamic
memory managers on gpus slow? a survey and benchmarks. In
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2021.

[66] yahoo. Yahoo webscope program. http://webscope.sandbox.yahoo.com,
2002.

[67] J. Yang, D. Tang, X. Song, L. Wang, Q. Yin, R. Chen, W. Yu, and
J. Zhou. Gnnlab: A factored system for sample-based gnn training
over gpus. In Proceedings of the Seventeenth European Conference on
Computer Systems, 2022.

[68] K. Yang, X. Ma, S. Thirumuruganathan, K. Chen, and Y. Wu. Random
walks on huge graphs at cache efficiency. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, 2021.

[69] K. Yang, M. Zhang, K. Chen, X. Ma, Y. Bai, and Y. Jiang. Knightking:
A fast distributed graph random walk engine. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, 2019.

[70] P. Yi, H. Xie, Y. Li, and J. C. Lui. A bootstrapping approach to optimize
random walk based statistical estimation over graphs. In 2021 IEEE
37th International Conference on Data Engineering (ICDE), 2021.

[71] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2018.

[72] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna. Graphsaint:
Graph sampling based inductive learning method. In International
Conference on Learning Representations, 2020.

[73] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and A. S.
Szalay. FlashGraph: Processing Billion-Node graphs on an array of
commodity SSDs. In 13th USENIX Conference on File and Storage
Technologies (FAST 15), 2015.

[74] L. Zheng, X. Li, Y. Zheng, Y. Huang, X. Liao, H. Jin, J. Xue, Z. Shao,
and Q.-S. Hua. Scaph: Scalable GPU-Accelerated graph processing with
Value-Driven differential scheduling. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20), 2020.

[75] J. Zhong and B. He. Medusa: Simplified graph processing on gpus.
IEEE Transactions on Parallel and Distributed Systems, 2014.

[76] X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A Computation-Centric
distributed graph processing system. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), 2016.

[77] X. Zhu, W. Han, and W. Chen. GridGraph: Large-Scale graph processing
on a single machine using 2-level hierarchical partitioning. In 2015
USENIX Annual Technical Conference (USENIX ATC 15), 2015.

https://networkrepository.com
https://networkrepository.com
https://arxiv.org/abs/2005.13789
https://arxiv.org/abs/2005.13789
https://west.uni-koblenz.de/konect/networks/friendster
https://west.uni-koblenz.de/konect/networks/friendster
http://webscope.sandbox.yahoo.com

	Introduction
	Background and Motivation
	Random Walk on GPUs
	Limitations and Challenges

	System Design
	Overview
	Data Organization
	Two-level Walk Index Caching
	Pipeline Design
	Adaptive Scheduling

	Performance Evaluation
	Setup
	Overall Performance
	Effectiveness of the Design Techniques
	Sensitivity Analysis

	Related Work
	Conclusion
	References

