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Abstract—Graphs are commonly used in various applications
such as online social networks (OSNs), E-commerce systems
and social recommender systems. Random walk sampling is
often used to conduct statistical estimation over such graphs.
This paper develops an algorithmic framework to reduce the
mean square error of such statistical estimation. Our algorithmic
framework is inspired by that the mean square error can be
decomposed into a sum of the bias and variance of the estimator.
More specifically, we apply the bootstrapping technique to design
a bias reduction algorithm. A new feature of this bias reduction
algorithm is that it allows the variance to increase whenever the
bias can be further reduced. The increased variance may lead
to a large mean square error of the estimator. We use multiple
parallel random walks to reduce this variance such that it can
be reduced to arbitrarily small by deploying a sufficient number
of random walks. Our algorithmic framework enables one to
attain different trade-offs between the sample complexity (i.e.,
number of parallel random walks) and the mean square error
of the statistical estimation. Also, the proposed bias reduction
algorithm is generic and can be applied to optimize a large
class of random walk sampling algorithms. To demonstrate
the versatility of the framework, we apply it to optimize the
Metropolis random walk and simple random walk sampling.
Extensive experiments confirm the effectiveness and efficiency
of our proposed algorithmic framework.

Index Terms—Random walk; Bootstrapping; Graph; Statisti-
cal estimation;

I. Introduction
Statistical estimation over graphs is a fundamental task in

graph analytic problems [1]–[8]. A number of statistical esti-
mation problems over graphs have been studied ranging from
estimating simple statistics such as node degree distribution,
vertex label distribution, size estimation [3], [4], [9]–[11], etc.,
to sophisticated statistics such as classification, ranking and
regression [2], [12]–[14]. It is not an easy task to conduct
statistical estimation over graphs. First, graphs in applications
are usually large in scale. For example, the number of monthly
active users of Facebook has reached over two billion [15].
Second, the whole graph is usually not accessible to third-party
agents. In many OSNs, only APIs are available for third-party
agents to access the graph data. Random walk sampling is a
mainstream method to address this challenge [9], [15]–[19].
We use the following simplified example to illustrate random
walk based statistical estimation over graphs.

Example 1. A company needs to make decisions regarding
whether to do advertisements over a social network. The social

network is characterized by a graph G ! (V, E , x), where V
denotes the user set, E ⊆ V × V denotes the edge set and
the function x prescribes an attribute x(v) ∈ {1, . . . , 10} for
vertex v ∈ V . The attribute x(v) quantifies the degree of prone-
ness of user v on advertisements over social networks. The
company wants to know the mean α and standard deviation
σ of the degree of proneness over the whole user population:

α =
∑

v∈V

x(v)

|V| , σ =

√∑

v∈V

(x(v)− α)2

|V| .

Suppose we use the Metropolis random walk sampling algo-
rithm [9] to get samples from the graph G (details in Sec. IV).
Suppose we get L ∈ N+ samples U1, . . . , UL, where Ui ∈ V .
Then one can estimate the mean and standard deviation as:

α̂ =
L∑

i=1

x(Ui)

L
, σ̂ =

√√√√
L∑

i=1

(x(Ui)− α̂)2

L
.

Example 1 illustrates one typical characteristic of random
walk based statistical estimation over graphs, i.e., only a finite
number (usually small number) of samples are generated to
conduct the estimation [8], [20]. One central problem is how
to improve the estimation accuracy under this finite sample
setting. A number of random walk algorithms were proposed
to solve this problem [8]–[10], [15], [21]. In other words,
these works improve estimation accuracy via getting “better”
samples. This paper aims to improve estimation accuracy
from an orthogonal perspective, i.e., we apply bootstrapping
techniques to exploit the property of the statistic in estimation
to improve estimation accuracy.

Our framework is inspired by bootstrapping techniques and
recent graph analytic systems that enable one to run millions of
random walks in parallel on consumer-level personal comput-
ers [22]–[26]. The accuracy of the estimators in Example 1 can
be characterized by bias and variance. To illustrate, consider
the estimator σ̂. The mean square error of σ̂ is denoted by
MSE(σ̂):

MSE(σ̂) ! E[(σ̂ − σ)2] = Var[σ̂] + (Bias(σ̂))2,

where Var[σ̂] and Bias(σ̂) are defined as:

Var[σ̂] ! E[(σ̂ − Mean(σ̂))2], Bias(σ̂) ! Mean(σ̂)− σ,
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with Mean(σ̂) ! E[σ̂]. This implies that one can reduce the
estimation error by reducing the variance or bias. Note that
these observations hold for many statistics beyond the mean
and standard deviation and hence we consider general statis-
tics. We apply the bootstrapping technique to reduce the bias.
Unlike most previous bootstrapping techniques that reduce the
bias under the constraint of not changing the variance or only
allowing it to increase slightly [27], we allow the variance to
increase whenever the bias can be further reduced. Then we
use multiple parallel random walks to reduce the variance. One
may argue that this rises an issue of scalability. Fortunately, it
can be addressed by recent graph analytic systems [22]–[26],
which enable running millions of random walks in parallel on
consumer-level personal computers. In fact, the variance can
be reduced by averaging, i.e.,

Var [σ̂mr] =
Var[σ̂]

n
,

where σ̂mr = (σ̂(1) + . . . + σ̂(n))/n denotes the average
of n estimations of σ from n parallel random walks with
the same initial point. Note that the bias is unchanged, i.e.,
Bias(σ̂mr) = Bias(σ̂). Namely, one can reduce the variance
to arbitrarily small by deploying a sufficient number of random
walks. We develop an algorithmic framework to reduce both
bias and variance of the estimator. Our contributions are:

• We develop an algorithmic framework to reduce the mean
square error of random walk based statistical estimation
over graphs. Our algorithmic framework provides a novel
combination of random walk sampling and bootstrapping
technique, and it enables one to attain different trade-
offs between sample complexity (i.e., number of parallel
random walks) and mean square error of the statistical
estimation.

• We apply the bootstrapping technique to design a bias
reduction algorithm. A new feature of our bias reduc-
tion algorithm is that it allows the variance to increase
whenever the bias can be further reduced. The increased
variance may lead to large mean square error of the esti-
mator. To overcome this problem, we use multiple parallel
random walks to reduce this variance, and show that it can
be reduced to arbitrarily small by deploying a sufficient
number of random walks. Our bias reduction algorithm is
generic and can be applied to a large class of random walk
sampling algorithms and statistical estimation problems.

• To demonstrate the versatility of our framework, we apply
it to optimize the Metropolis random walk sampling and
simple random walk sampling. Experiment results on
four public datasets show that our algorithmic framework
can reduce the bias of both random walks without bias
reduction (or with a classical bias reduction method) by
as high as around 80% (or 60%). We also achieve similar
reduction on mean square error using only 1000 parallel
random walks and a larger number of random walks can
lead to a larger reduction.

This paper is organized as follows. Section II presents the
graph model and the problem formulation. Section III presents

a general algorithmic framework, which uses a random walk
sampling oracle and a bias reduction oracle to optimize the
random walk based statistical estimation over graphs. Section
IV present algorithms to implement the random walk sampling
oracle. Section V presents an algorithm to implement the bias
reduction oracle via bootstrapping. Section VI and VII presents
the experimental evaluation of our methods on four real-world
datasets in terms of bias and mean square error respectively.
Section VIII presents the related work and Section IX con-
cludes.

II. Model & Problem Formulation

We first present the graph model and statistical estimation
model. Then we present the problem formulation.

A. The Graph Model

We consider an undirected graph with a finite set

V ! {1, . . . , V }

of vertices, where V ∈ N+. Each vertex v can be a user in
an OSN, or an item in a social recommender system, etc. Let
E ⊆ V ×V denote the edge set. As the graph G is undirected,
then (u, v) ∈ E implies that (v, u) ∈ E . For example, an
edge (u, v) ∈ E can indicate the friendship between u and v
in a social network. We focus on the case that the graph G
is connected. Let d(v) ∈ N+ denote the degree of vertex v,
formally

d(v) ! |{u|(v, u) ∈ E}|.

Let N (v) ⊆ V denote the neighbor set of vertex v, formally

N (v) ! {u|(v, u) ∈ E}.

One can observe that d(v) = |N (v)|.
We consider a real value attribute. In particular, each

vertex v is associated with a value x(v) ∈ X indicating
the attribute, where X ∈ R denotes the value set. For
example, the value x(v) can denote the gender of vertex v,
then X = {−1(male), 1(female)}. The value x(v) can also
denote the degree of vertex v, then X = {1, . . . , dmax}, where
dmax = maxv∈V d(v). Let µ denote a distribution over the
attribute value set X , which summarizes the collective attribute
value over the whole vertex set. Formally, we define µ as:

µ(y) =
∑

v∈V

{x(v)=y}

|V| , ∀y ∈ X .

Namely, µ(y) is the fraction of vertices with value y ∈ X .
To simplify notations, we denote the undirected graph as G =
(V, E , x).

B. The Estimator Model

We consider a class of statistics θ ∈ R over the graph G
such that it can be expressed as a function of the distribution
µ, i.e., θ = T (µ), where T denotes a mapping function:

T : µ &→ R.
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For example, the mean of value can be modeled as

T (µ) =
∑

y∈X
µ(y)y. (1)

The standard deviation of value can be modeled by T as

T (µ) =

√∑

y∈X
µ(y)(y − ȳ)2, (2)

where ȳ =
∑

y∈X µ(y)y. The standard deviation can be
generalized to

T (µ) =




∑

y∈X
µ(y)|y − ȳ|c




1/c

,

where c ∈ R+. We like to remark that many statistical estima-
tion problems over the graph G produce an estimator being
a function of the distribution µ, e.g., maximum likelihood
estimation, regression, etc. Namely, the statistic θ = T (µ)
can model a large class of statistical estimation problems over
the graph.

C. Problem Formulation
We consider a large scale graph G and one has to use

random walk sampling to estimate the statistic θ. This setting
is adopted in many previous works [8], [15], [28]. We aim to
design an algorithm denoted by A to estimate the statistic θ
via samples generated by a random walk sampling algorithm
running on the graph G. We consider two metrics in the design
of A. The first one is the sample complexity defined as:

SC(A) ! # of samples required by the algorithm

The second one is the estimation error. We consider the mean
square error defined as MSE(Θ̂) ! E[(Θ̂ − θ)2], where Θ̂
denotes an estimator of θ produced by the algorithm A. The
objective is to design an algorithm A to estimate the statistic
θ attaining different trade-offs between the above two metrics.

III. Algorithmic Framework
We present a general algorithmic framework to estimate the

statistic θ based on a sampling oracle and a bootstrapping ora-
cle for bias estimation. We also derive the analytical expression
for the estimation error of our algorithmic framework as well
as its sample complexity. These analytical expressions enable
one to trade sample complexity for reducing the estimation
error. The detail of the sampling oracle and bootstrapping
oracle is deferred to Section IV and V respectively.

A. Design of the Algorithmic Framework
We first define a random walk sampling oracle, which

supports sampling query and estimating query.

Definition 1. A random walk oracle denoted by RWOracle
is defined as a function such that:

• for each query with initial point U0 ∈ V and sample
length L ∈ N+, it returns L samples denoted by U !
(U1, . . . , UL):

U = RWOracle.Sampling(U0, L);

• for each query with a sequence of L samples U , it returns
an estimation of the statistic θ:

Θ̂rw(U) = RWOracle.Statistics(U).

We defer details of the random walk oracle RWOracle to
Section IV. Here we focus on applying it to design our
algorithmic framework. Note that for the linear statistic, we
usually have Θ̂rw(U) being asymptotically unbiased, i.e., the
bias (E[Θ̂rw(U)] − θ) goes to zero when L goes to infinity
(more details in Section IV). Unfortunately, in practice, we can
only collect a finite number of samples, under which the bias
is not negligible. To reduce the bias, let us define an oracle to
bootstrap the bias of the estimator Θ̂rw(U) first.

Definition 2. The bootstrapping oracle denoted by
BootBiasOracle is defined as an algorithm such
that for each query with a sample sequence U and the
corresponding random walk oracle RWOracle, it returns an
estimation for the bias of Θ̂rw(U):

∆(Θ̂rw(U)) = BootBiasOracle(U ,RWOracle),

where ∆(Θ̂rw(U)) denotes the estimated bias of Θ̂rw(U).

We defer details of BootBiasOracle to Sec. V. Here, let
us focus on applying it to design our algorithmic framework.

To present our algorithmic framework, we need the follow-
ing notations. Denote M ∈ N+ initial points as:

U0 ! (U0,1, . . . , U0,M ),

where U0,M ∈ V . Denote Nm ∈ N+ as the number of
parallel random walks associated with initial point U0,m. For
simplicity, denote

N ! (N1, . . . , NM ).

Denote Lm ∈ N+ as the length of each parallel random walk
associated with initial point U0,m. For simplicity, denote

L ! (L1, . . . , LM ).

Algorithm 1 outlines a parallel algorithmic framework to
estimate the statistic θ over the graph G. In step 2 of Algorithm
1, we run

∑M
m=1 Nm random walks in parallel via the random

walk oracle RWOracle.Sampling. These random walks
are organized into M groups. Group m has Nm parallel
random walks and each random walk within this group has
the same initial point U0,m. After we obtain samples from
these

∑M
m=1 Nm random walks, in step 3 we apply the

bootstrapping oracle BootBiasOracle to estimate the bias
of each random walk sequence. We then use the estimated bias
to debias the random walk estimator by deducting it from the
estimator. Finally, return the average of debiased estimators as
an estimator of the statistic θ.

B. Analysis of the Algorithmic Framework
To analyze the performance of Algorithm 1, we first de-

compose the mean square error into follows:

MSE(Θ̂) = Var[Θ̂] + [Bias(Θ̂)]2,

���
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Algorithm 1 Algorithmic Framework
1: Input: U0,N ,L, Random walk oracle RWOracle, Boot-

strapping oracle BootBiasOracle
2: Parallel random walk sampling: run

∑M
m=1 Nm ran-

dom walks in parallel to get samples:

Um,n ←RWOracle.Sampling(U0,m, Lm),

∀m = 1, . . . ,M, n = 1, . . . , Nm

3: Estimate the bias via bootstrapping:

∆m,n ← BootBiasOracle(Um,n,RWOracle),

∀m = 1, . . . ,M, n = 1, . . . , Nm

4: Compute the debiased estimators:

Θ̂m,n ← RWOracle.Statistics(Um,n)−∆m,n,

∀m = 1, . . . ,M, n = 1, . . . , Nm

5: Return: Θ̂← 1
M

∑M
m=1

∑Nm

n=1
Θ̂m,n

Nm

where Var[Θ̂] and Bias(Θ̂) are defined as the variance and
bias of the estimator Θ̂:

Var[Θ̂] ! E[(Θ̂− Mean(Θ̂))2], Bias(Θ̂) ! Mean(Θ̂)− θ,

with Mean(Θ̂) ! E[Θ̂] denoting the mean of the estimator Θ̂.
Note that for a given group of random walks with the

same initial point U0,m, the Θ̂m,n across n = 1, . . . , Nm are
independent and identically distributed. Thus, we denote the
variance and bias of Θ̂m,n as

σ2
m ! Var[Θ̂m,n], δm ! Bias(Θ̂m,n), ∀n = 1, . . . , Nm.

Lemma 1. The variance and bias of Θ̂ produced by Algorithm
1 can be derived as

Var[Θ̂] =
1

M2

M∑

m=1

σ2
m

Nm
, Bias(Θ̂) =

M∑

m=1

δm
M

.

Furthermore, lim∀m,Nm→∞ MSE(Θ̂) = [Bias(Θ̂)]2.

Due to page limit, all proofs are in our technical report [29].
Lemma 1 states closed-form expressions for the variance and
bias of the estimator Θ̂ outputted by Algorithm 1. One can
reduce the variance of Θ̂ to zero by increasing the number of
parallel random walks Nm at each initial point m to infinity.
The bias of Θ̂ is the average of the bias of multiple random
walks associated with M initial points. The following lemma
derives analytical expression for the sample complexity of
Algorithm 1.

Lemma 2. The sample complexity of Algo. 1 is

SC(AAlgo1) =
M∑

m=1

NmLm,

where AAlgo1 denotes Algo. 1.

Lemma 2 states the sample complexity for Algorithm 1. The
sample complexity increases linearly with the sample length
Lm associated with each initial point U0,m, and also increases
linearly with the number of parallel random walks in each
initial point. In real-world applications, one usually does not
want to have a long sample sequence Lm as it is time-
consuming. However, one may want to use a larger number of
parallel random walks to decrease the estimation error. Hence,
the analytical expressions derived in Lemma 1 and 2 enable
one to select the appropriate sample complexity to trade it for
improving estimation accuracy.

IV. The Sampling Oracle

Due to page limit, we only demonstrate how to apply the
Metropolis random walk [30] to implement a random walk
sampling oracle. Note that one can easily extend this random
walk sampling oracle to other random walk algorithms, such
as simple random walk [31], or its sophisticated variants [15].

The Metropolis random walk is an application of the
Metropolis-Hastings algorithm [30] to graph sampling. Under
the Metropolis random walk algorithm, in each step, the
walker moves to a neighbor of the current vertex with certain
probability derived as follows:

P[U!+1|U!]

=






1

d(U!)
min

(
1,

d(U!)

d(U!+1)

)
, if U!+1∈N (U!),

1−
∑

v∈N (U!)

1

d(U!)
min

(
1,
d(U!)

d(v)

)
, if U!+1=U!,

0, otherwise.

(3)

Note that the graph G is connected. Thus, the Metropolis
random walk has a stationary distribution. Let π denote the
stationary distribution of the Metropolis random walk. It can
be derived as π(v) = 1/|V|, ∀v ∈ V. Furthermore, for any
function f : V → R, it holds

lim
L→∞

L∑

!=0

f(U!)

L
=
∑

v∈V

f(v)

|V| .

Namely, one can use the samples from the Metropolis random
walk to construct asymptotic unbiased estimators (when the
sample length goes to infinity). It is important to remember
that when the sample length is finite, the bias is non-zero.

Based on the Metropolis random walk, Algorithm
2 outlines a random walk oracle. Consider the
RWOracle.Sampling(U0, L) function, the algorithm
first simulates the Metropolis random walk by L̃ ∈ N+ steps,
for the purpose of making the random mix. This period is
also called the burn-in period. Then the algorithm simulates
another L steps and returns them as the samples. The function
RWOracle.Estimate(U ) first estimates the distribution µ
using the samples U . Then, it uses the estimated distribution
to produce an estimator of the statistic θ.

���
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Algorithm 2 RWOracle based on Metropolis random walk
1: function RWORACLE.SAMPLING(U0, L)
2: for & = 1, . . . , L̃ do ' Burn-in period
3: U! ← v with prob. P[v|U!−1] derived in Eq. (3)
4: for & = L̃+ 1, . . . , L̃+ L do ' sampling period
5: U! ← v with prob. P[v|U!−1] derived in Eq. (3)
6: return (UL̃+1, . . . , UL̃+L)

7: function RWORACLE.ESTIMATE(U )
8: Estimate the probability mass:

µ̂(y)←
∑length(U)

i=1 {x(Ui)=y}

length(U)
, ∀y ∈ X

9: return T (µ̂)

V. Bootstrapping Bias

We first design an oracle to bootstrap the bias via Jackknife.
More importantly, we derive sufficient conditions, under which
this oracle can reduce the bias of estimator. These conditions
reveal a restriction that this oracle may perform poorly when
the graph is incomplete. Then we design another oracle to
relieve this restriction, and theoretically show that it works
even over incomplete graphs. This new oracle is achieved at
the cost of increasing the variance, which can be reduced by
increasing the number of parallel random walks as shown in
Section III.

A. Bootstrapping Bias via Jackknife

We apply the Jackknife [32] to estimate the bias of Algo-
rithm 1, i.e.,

Bias(Θ̂) = Mean(Θ̂)− θ.

Recall the closed-form expression for estimator Θ̂ in line 5 of
Algo. 1, i.e.,

Θ̂ =
1

M

M∑

m=1

Nm∑

n=1

Θ̂m,n

Nm
.

By the linearity of expectation, it boils down to estimate
the bias for Θ̂m,n. The Θ̂m,n is evaluated from the samples
denoted by

Um,n !
{
U (1)
m,n, . . . , U

(Lm)
m,n

}
.

For simplicity of notation, let U (−i)
m,n denote a vector of samples

excluding the i-th sample U (i)
m,n:

U (−i)
m,n !

[
U (1)
m,n, . . . , U

(i−1)
m,n , U (i+1)

m,n , . . . , U (Lm)
m,n

]
.

Namely, U (−i)
m,n is a (Lm − 1)-sized sub-sample from Um,n.

In total, we have Lm such sub-samples: U (−1)
m,n , . . . ,U (−Lm)

m,n .
From the (Lm − 1)-sized sub-sample U (−i)

m,n , we apply the
random walk oracle to generate one estimator as:

Θ̂(−i)
m,n = RWOracle.Estimate

(
U (−i)

m,n

)
.

Applying the Jackknife, the estimate of the bias of Θ̂m,n is

B̂ias(Θ̂m,n) = (Lm − 1)

(∑Lm

i=1 Θ̂
(−i)
m,n

Lm
− Θ̂m,n

)
. (4)

Note that B̂ias(Θ̂m,n) estimates the bias fully relying on the
samples Um,n itself. Based on B̂ias(Θ̂m,n), we outline a
bootstrapping oracle to estimate the bias in Algorithm 3.

Algorithm 3 BootBiasOracle(Um,n,RWOracle) via
Jackknife

1: for i = 1, . . . , L do
2: U (−i)

m,n ← [U (1)
m,n, . . . , U

(i−1)
m,n , U (i+1)

m,n , . . . , U (Lm)
m,n ]

3: Θ̂(−i)
m,n ← RWOracle.Estimate

(
U (−i)

m,n

)

4: Θ̂m,n ← RWOracle.Estimate (Um,n)
5: Estimate the bias

B̂ias(Θ̂m,n)← (Lm − 1)

(∑Lm

i=1 Θ̂
(−i)
m,n

Lm
− Θ̂m,n

)

6: return B̂ias(Θ̂m,n)

To analyze the theoretical guarantee of Algorithm 3, we
next define a class of expandable T .

Definition 3. Let X1, . . . , Xn denote n independent and
identically distributed samples from the distribution µ. Let
T (µn) denote an estimator of the statistic θ, where µn(y) =∑n

i=1 {Xi=y}/n. The T is expandable if it satisfies

E[T (µn)] = θ +
∞∑

j=1

aj(µ)

nj
,

where aj(µ) ∈ R,∀j = 1, . . . ,∞ is independent of n.

Most statistics are expandable [32], i.e., mean, variance, most
maximum likelihood estimators, etc. For example, when the T
is the mean, i.e., derived in Equation 1, we have E[T (µn)] = θ.
When T is the variance, i.e., derived in Equation (2), we have

E[T (µn)] = θ − θ

n
.

The following theorem states theoretical guarantee for Algo-
rithm 3 under expandable statistic.

Theorem 1. Suppose G is complete and the T is expandable
with a1(µ) > 0. Algo. 3 corrects the bias from Bias(Θ̂m,n) =
O(1/Lm) to Bias(Θ̂JK

m,n) = O(1/L2
m), where

Θ̂JK
m,n ! Θ̂m,n − B̂ias(Θ̂m,n)

denotes the corrected estimator.

Theorem 1 states sufficient conditions under which Algorithm
3 corrects the bias of estimator Θ̂m,n from O(1/Lm) to
O(1/L2

m). One sufficient condition is that G has to be a com-
plete graph. However, in real-world applications, graphs are
usually incomplete. In this case, we may not have theoretical
guarantee for Algorithm 3. The following section explores how
to relieve this restriction.
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B. Improve Accuracy via Sub-sample Selection

One restriction of Algorithm 3 is that some of the (Lm−1)-
sized sub-samples of Um,n are not valid random walk se-
quences when the graph is incomplete. When the graph is
incomplete, it may happen that U (−i)

m,n is not a sample sequence
generated by the random walk sampling algorithm. In particu-
lar, according to the transition probability in Equation (3), the
walker can not move from vertex U (i−1)

m,n to U (i+1)
m,n . Formally,

we define valid and invalid sub-sample in the following
definition.

Definition 4. A sub-sample U (−i)
m,n is valid under the Metropo-

lis random walk if P[U (i+1)
m,n |U (i−1)

m,n ] > 0 for i ≥ 2 and
U (i+1)
m,n = U (i−1)

m,n for i = 1, otherwise it is invalid.

Invalid sub-samples may lead to the bias estimation (i.e.,
Equation (4) ) being inaccurate. To relieve this problem, we
use a greedy approach, i.e., we filter out all invalid sub-
samples. Let Im,n denote the index of all the valid sub-
samples of Um,n. Then we estimate the bias as

B̂iasVS(Θ̂m,n)=(Lm − 1)




∑

i∈Im,n
Θ̂(−i)

m,n

|Im,n|
− Θ̂m,n



 . (5)

One can observe that we take the average over |Im,n| samples
in (5), i.e.,

∑
i∈Im,n

Θ̂(−i)
m,n/|Im,n|, while we take the average

of Lm sub-samples in Equation (4), i.e.,
∑Lm

i=1 Θ̂
(−i)
m,n/Lm.

Taking the average over fewer sub-samples leads to a larger
variance of the bias estimation B̂iasVS(Θ̂m,n) than that of
B̂ias(Θ̂m,n) with all the sub-samples. Namely, our approach
of filtering out all invalid sub-samples is at the cost of
increasing the variance. As we have shown in Section III, one
can increase the number of parallel random walks to reduce
the variance. Based on the new bias estimator B̂iasVS(Θ̂m,n),
we implement an oracle to bootstrap bias in Algorithm 4.

Algorithm 4 BootBiasOracle(Um,n,RWOracle) with
valid sub-sample selection

1: Compute the index set Im,n for valid sub-samples of
Um,n

2: for i ∈ Im,n do
3: U (−i)

m,n ← [U (1)
m,n, . . . , U

(i−1)
m,n , U (i+1)

m,n , . . . , U (Lm)
m,n ]

4: Θ̂(−i)
m,n ← RWOracle.Estimate

(
U (−i)

m,n

)

5: Θ̂m,n ← RWOracle.Estimate (Um,n)
6: Estimate the bias

B̂iasVS(Θ̂m,n)← (Lm−1)




∑

i∈Im,n
Θ̂(−i)

m,n

|Im,n|
− Θ̂m,n





7: return B̂iasVS(Θ̂m,n)

Due to page limit, we present theoretical guarantees for
Algorithm 4 in our technical report [29].

VI. Experiment I: the Bias
We conduct experiments on four real-world datasets pub-

lished on SNAP1 to evaluate our algorithmic framework on
bias reduction. Experiment results further confirm the superior
performance of our algorithm in reducing the bias.

A. Experiment Setting
Dataset. Table I summarizes four datasets published on
SNAP. We have two reasons in selecting them: (1) each node is
associated with an attribute, i.e., community; (2) they are from
four diverse applications. For each dataset, if it is a directed
graph, we add reciprocal edges to make it an undirected one.
In each dataset we consider two types of attributes: (1) the
community associated with a node; (2) the degree of a node.

TABLE I
OVERALL STATISTICS OF FOUR DATASETS

# of nodes # of edges # of communities
com-Amazon 334,863 925,872 75,149
wiki-topcats 1,791,489 28,511,807 17,364
com-Orkut 3,072,441 117,185,083 6,288,363

com-LiveJournal 3,997,962 34,681,189 287,512

Statistical estimation model. Consider the degree as the
attribute of nodes. We have X = {1, . . . , dmax} and x(v)
denotes the degree of node v. Furthermore, µ(y) denotes the
fraction of nodes with degree y ∈ X . We aim to estimate the
standard deviation of degree:

T (µ) =

√∑

y∈X
µ(y)(y − ȳ)2, (6)

where ȳ =
∑

y∈X µ(y)y denotes the average degree. Consider
the community as the attribute of nodes. We first rank the
community ID, then based on the ranked list we divide the
community ID into K ∈ N+ groups such that each group
contains the same number of community ID. A node has
attribute k = 1, . . . ,K, if it belongs to a community with ID
in group k. Thus, we have X = {1, . . . ,K}. We further set
µ(k) as the fraction of nodes with community ID belonging
to group k. Note that

∑K
k=1 µ(k) += 1, as a node may belong

to multiple communities or a node may not belong to any
communities. Note that our framework applies to the case that∑K

k=1 µ(k) += 1. We estimate the variation of µ(k) as:

T (µ)=

(
K∑

k=1

1

K

∣∣∣∣µ(k)−
µ(1) + . . .+ µ(K)

K

∣∣∣∣
c
)1/c

, (7)

where c ∈ R+. When c > 2, the above statistic corresponds
to generalized standard deviation.
Baseline & Parameter setting. To demonstrate the versatility
of our framework, we apply it to reduce the bias of Metropolis
random walk and simple random walk. When Metropolis
random walk [30] serves as the baseline, we compare: (1) MR,
which is a variant of Algorithm 2 without bias reduction, i.e., it
is the Metropolis random walk; (2) JKM, which is a variant

1http://snap.stanford.edu/data/index.html
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of Algorithm 2 and it uses Jackknife, i.e., Algorithm 3, to
reduce the bias of Metropolis random walk; (3) VSM, which
uses our bootstrapping oracle with valid sub-sample selection,
i.e., Algorithm 4, to reduce bias of Metropolis random walk.
When simple random walk serves as the baseline, we compare:
(1) SRW, which extends Algorithm 2 to simple random walk,
i.e., it is the simple random walk algorithm; (2) JKS, which
extends Algorithm 3 to simple random walk, i.e., it uses
Jackknife to reduce the bias of simple random walk; (3) VSS,
which extends Algorithm 4 to simple random walk, i.e., it
uses our bootstrapping oracle with valid sub-sample selection
to reduce the bias of simple random walk.

Note that we need to select M initial point for each of
the above six algorithms. We rank nodes based on the ID
and then select ranked (|V| 1

M )-th, . . ., (|V|MM )-th nodes as
M initial points. Random walks in each group have the
same length, i.e., L1= . . .=LM=L. We also run the same
number of parallel random walks on each initial point, i.e.,
N1= . . . = NM = N . We set the burn-in period to L̃=0. The
reason is to give stronger confidence on the performance of
our algorithm, because if our algorithm performs well when
L̃=0, then it will perform better when L̃>0 as implied by
our technical report [29]. Due to similar reasons, we select
only one valid sub-sample, i.e., U (−Lm)

m,n . Unless we state
explicitly, we consider the following default parameters, i.e.,
M=10, L=50, N=105, c=2 and K=5 to compute the bias.
Note that running this large number of random walks on each
initial point is to ensure an accurate estimation of the bias via
the Monter Carlo method.

B. Impact of Sample Length

We vary the sample length L from 10 to 60, while set the
other parameters as their default values. Consider the case that
community serves as node attribute. Figure 1 shows the bias of
six algorithms (i.e., MR, JKM, VSM, SRW, JKS and VSS)
evaluated on four datasets in Table I, where the statistic under
estimation is derived in Equation (7). One can observe that
the bias of all these six algorithms decrease when the sample
length L varies from 10 to 60. Namely, the bias decrease in
sample length. Among MR, JKM and VSM, our VSM has
the smallest bias followed by the JKM. Using a sample length
of L = 50, our VSM reduces the bias of MR (or JKM) by as
high as 40% (30%). Our bootstrapping method VSS reduces
the bias of SRW (or JKS) by as high as 50% (30%).

Consider the case that node degree serves as node attribute.
Figure 2 shows the bias of estimating the statistic stated in
Equation (6). One can observe that among MR, JKM and
VSM, our VSM has the smallest bias. Using a sample length
of L=50, VSM reduces the bias of MR (or JKM) by as high
as 80% (50%). Furthermore, our bootstrapping method VSS
reduces the bias of SRW (or JKS) by as high as 70% (60%).
Lessons learned: Under different sample lengths, our boot-
strapping method reduces the bias of both Metropolis random
walk and simple random walk significantly and it can also
reduce the bias of the Jackknife method.
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Fig. 1. Impact of sample length L on bias with Metropolis random walk (MR)
and simple random walk (SRW) as baselines. [community as attribute]
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Fig. 2. Impact of sample length L on bias with Metropolis random walk
(MR) and simple random walk (SRW) as baselines. [degree as attribute]

C. Impact of Initial Points

We vary the number of initial points M from 4 to 18. We fix
the total number of random walks to be MN = 106. Consider
the case that community servers as node attribute. Figure 3
shows the bias of estimating the statistic derived in Equation
(7). One can observe that our bootstrapping algorithm VSM
can reduce the bias of Metropolis random walk MR by
as high as 40%. This reduction ratio varies slightly as the
number of initial points varies from M = 4 to M = 18.
Furthermore, our bootstrapping method VSM reduces the bias
of Jackknife method JKM by as high as 30%. Furthermore,
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our bootstrapping method VSS can reduce the bias of simple
random walk SRW by as high as 50%. This reduction ratio
varies slightly when the number of initial points varies from
M = 4 to M = 18. When simple random walk serves as the
baseline, our bootstrapping method VSS reduces the bias of
Jackknife method JKS by as high as 30%.

Consider the case that node degree serves as node attribute.
Figure 4 shows the bias of estimating the statistic derived in
Equation (6). One can observe that our bootstrapping method
still reduces the bias of both Metropolis random walk and
simple random walk significantly (as high as 80%) when the
number of initial points varies from M = 4 to M = 18.
Furthermore, our bootstrapping method reduces more bias than
the Jackknife method in most cases when the number of initial
points varies from M = 4 to M = 18.
Lessons learned. Under different number of initial points,
our bootstrapping method reduces the bias of both Metropolis
random walk and simple random walk significantly (i.e., as
high as 80%). It can also reduce the bias of the Jackknife
method significantly in most cases , i.e., as high as 60%.
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Fig. 3. Impact of M on bias with Metropolis random walk (MR) and simple
random walk (SRW) as baselines. [community as attribute].

D. Impact of Statistical Estimation Model

To study the impact of statistical estimation model on bias
reduction, we vary the parameter c in the statistical estimation
model derived in Equation (7) from 1 to 3. Figure 5 shows the
bias of estimating the statistic derived in Equation (7). One can
observe that our bootstrapping algorithm VSM can reduce the
bias of Metropolis random walk MR by as high as 30%. This
reduction ratio varies slightly as the parameter of the statistical
estimation model varies from c = 1 to c = 3. When Metropolis
random walk serves as the baseline, our bootstrapping method
VSM reduces the bias of Jackknife method JKM by as high as
30%. Furthermore, our bootstrapping method VSS can reduce
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Fig. 4. Impact of M on bias with Metropolis random walk (MR) and simple
random walk (SRW) as baselines. [degree as attribute].

the bias of simple random walk SRW by as high as 50%
and this reduction ratio varies slightly when c varies from 1
to 3. When simple random walk serves as the baseline, our
bootstrapping method VSS can reduce the bias of the Jackknife
method JKS by as high as 40%.
Lessons learned. Under different statistical estimation mod-
els, our bootstrapping method reduces the bias of both
Metropolis random walk and simple random walk significantly
(by as high as 50%). It can also reduce the bias of Jackknife
method by as high as 40%.
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Fig. 5. Impact of statistical estimation model c on bias with Metropolis
random walk (MR) and simple random walk (SRW) as baselines. [community
as attribute]
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VII. Experiment II: the Mean Square Error

In this section, we conduct experiments to show how to
use our bootstrapping algorithm to attain different trade-
offs between the sample complexity and mean square error
of an estimator. Experiment results further show that our
bootstrapping method can reduce the mean square error of
an estimator significantly by 1000 random walks.

A. Experiment Setting

We consider the same experiment setting as Section VI,
except that we study the mean square error of each algorithm
when the total number of parallel random walks is small. We
use Monte method to estimate the mean square error of each
algorithm. In particular, we repeat each algorithm for 1000
times, and use the average of the outputs in these 1000 times
to estimate the mean square error. Following previous works
[9], [10], [33], [34], we consider the relative mean square error
(RMSE), i.e.,

RMSE(Θ̂) =
MSE(Θ̂)

θ2
,

to eliminate the scale bias. Due to page limit, we only consider
the case that community serves as attribute. For the case of
node degree serving as attribute, one can expect similar results,
because the trade-off between the sample complexity and mean
square error is governed by the bias reduction and these two
cases have similar bias reduction.

B. Impact of Number of Random Walkers

Note that the number of random walks equals MN . We set
all the parameters except N as their default values stated in
Section VI. We vary N from 1 to 100 such that the number of
random walks MN varies from 10 to 1000. Figure 6 shows the
RMSE of six algorithms described in Section VI-A evaluated
on four datasets in Table I, where the statistic in estimation
is derived in Equation (7). One can observe that when the
number of random walks is small, i.e., MN = 10, our VSM
may have a larger RMSE than MR and JKM in some cases.
This is because our VSM has a larger variance than MR and
JKM and when the total number of random walks is small,
the variance dominates. When the number of random walks
is large, i.e., MN = 1000, our VSM reduces the RMSE of
MR (JKM) by as high as 50% (40%). This is because when
the total number of random walks is large, the bias dominates.
Furthermore, when the number of random walks is small, i.e.,
MN = 10, our VSS may have a larger RMSE than SRW
and JKS in some cases. When the number of random walks
is large, i.e., MN = 1000, our VSS reduces the RMSE of
SRW (JKS) by as high as 70% (50%).
Lessons learned. Our bootstrapping method reduces the
RMSE of Metropolis random walk and simple random walk
significantly (i.e., as high as 70%) by no more than one
thousand random walks and it can also reduce the bias of
Jackknife method by as high as 50%.
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Fig. 6. Impact of number of random walks on the RMSE with Metropolis
random walk (MR) and simple random walk (SRW) as baselines. [community
as attribute]

C. Impact of Sample Length

We vary the sample length L from 10 to 60. We set the
number of random walks to be 1000. All the other parameters
are set as default values. Figure 7 shows the RMSE of
six algorithms described in Section VI-A under the statistic
derived in Equation (7). One can observe that the RMSE
of these six algorithms decreases as the sample length L
increases. Furthermore, our VSM reduces the RMSE of MR
and JKM by as high as 50%. Lastly, our VSS reduces the
RMSE of SRW (JKS) by as high as 60% (40%).
Lessons learned. Under different sample lengths and one
thousand random walks, our bootstrapping method reduces the
RMSE of Metropolis random walk and simple random walk
significantly (i.e., as high as 60%), and it can also reduce the
RMSE of Jackknife method by as high as 50%.

D. Impact of Initial Points

We consider the same setting as Section VII-C, except we
set the sample length L to be 50 and vary the number of
initial points M from 4 to 18. Figure 8 shows the RMSE of
six algorithms described in Section VI-A under the statistic
derived in Equation (7). One can observe that our bootstrap-
ping algorithm VSM can reduce the RMSE of Metropolis
random walk MR by as high as 50%. This reduction ratio
varies slightly as we vary the number of initial points from
M = 4 to M = 18. Our bootstrapping method VSM reduces
the RMSE of Jackknife method JKM by as high as 40%.
Furthermore, our bootstrapping method VSS can reduce the
RMSE of simple random walk SRW by as high as 70% and
this reduction ratio varies slightly when the number of initial
points varies from M = 4 to M = 18. Lastly, when simple
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Fig. 7. Impact of walk length L on the RMSE with Metropolis random walk
(MR) and simple random walk (SRW) as baselines. [community as attribute]

random walk serves as the baseline, our VSS reduces the
RMSE of Jackknife method JKS by as high as 50%.

Lessons learned. Under different number of initial points and
one thousand random walks, our bootstrapping method reduces
the RMSE of both Metropolis random walk and simple random
walk significantly (i.e., as high as 70%) and it can also reduce
the RMSE of Jackknife by as high as 50%.
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Fig. 8. Impact of number of initial points M on the RMSE with Metropolis
random walk (MR) and simple random walk (SRW) as baselines. [community
as attribute]

E. Impact of Statistical Estimation Model

We vary the parameter c of Equation (7) from 1 to 3. All the
other parameters are set the same as Section VII-C, except the
sample length L is set to be 50. Figure 9 shows the RMSE
of six algorithms under the statistic derived in Equation (7).
One can observe that our bootstrapping algorithm VSM can
reduce the RMSE of Metropolis random walk MR by as high
as 50%. This reduction ratio varies slightly as we vary the
parameter of the statistical estimation model from c = 1 to
c = 3. Our bootstrapping method VSM reduces the RMSE of
Jackknife method JKM by as high as 50%. Furthermore, our
bootstrapping method VSS can reduce the RMSE of simple
random walk SRW by as high as 70% and this reduction ratio
varies slightly when c varies from 1 to 3. Lastly, when simple
random walk serves as the baseline, our bootstrapping method
VSS reduces the RMSE of the Jackknife method JKS by as
high as 40%.
Lessons learned. Under different statistical estimation models
and one thousand random walks, our bootstrapping method
reduces the RMSE of both Metropolis random walk and simple
random walk significantly (by as high as 70%) and it can also
reduce the RMSE of Jackknife method by as high as 40%.
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Fig. 9. Impact of statistical estimation model c on the RMSE with Metropolis
random walk (MR) and simple random walk (SRW) as baselines. [community
as attribute]

F. Scalability Analysis

Note that the above reduction of RMSE is achieved by 1000
parallel random walks. To study the scalability of our frame-
work, we vary the total number of parallel random walks MN
from 1000 to 3000 (fix M = 10). All the other parameters are
set as their default values stated in Section VI. We first study
the worst case running time of our algorithm on a workstation
(two Inter Xeon Platinum 8275 processors, each processor has
24 cores, and 192GB memory). In particular, we run all these
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random walks serially and study the running time. Figure 10
shows the running time of six algorithms, i.e., MR, JKM,
VSM, SRW, JKS and VSS, evaluated on four datasets in
Table I. One can observe that the running time of our VSM
(VSS) is almost the same as that of MR (SRW). The running
time of JKM (JKS) is at least two times of that of our VSM
(VSS). This implies that our bootstrapping method only adds
a negligible burden on the running time of baseline random
walk algorithms, i.e., MR and SRW. Furthermore, even when
MN = 3000 the running time of our VSM (VSS) is around
0.5 seconds.

If we apply parallel tricks to optimize our algorithm, the
running time of our algorithm will be much shorter. In fact,
a number of graph analytic systems were developed recently,
which enable one to run millions of random walks in parallel
on consumer-level personal computers [22]–[26]. Namely,
these systems support the scalability of our work. Our work
is orthogonal to them, so we do not go into details on them.
Lessons learned. Our framework adds a negligible burden on
the running time of baseline random walk algorithms and it
only require one thousand random walks. A number of recent
graph analytic systems enable one to run millions of random
walks in parallel on consumer-level personal computers. Thus,
our framework has good foundation of scalability.
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Fig. 10. Impact of number of random walks on the time consumption with
Metropolis random walk (MR) and simple random walk (SRW) as baselines.
[community as attribute]

VIII. Related Work

To the best of our knowledge, this is the first paper applying
bootstrapping techniques to optimize random walk based sta-
tistical estimation over attribute graphs. We discuss previous
with respect to random walk and bootstrapping technique.
Random walk. Random walk sampling is a mainstream
method to generate representation samples from large scale

graphs [16]. Two fundamental random walk sampling algo-
rithms are (1) the simple random walk [31], and (2) the
Metropolis random walk [30]. A number of variants of random
walk sampling algorithms were proposed to improve the
estimation accuracy. Rasti et. al. [35] proposed an algorithm
which incorporate respondent-driven sampling into Metropolis
random walk. Ribeiro et. al. [33] developed a coordinated
multidimensional random walk sampling algorithm. Kurant et.
al. [9] proposed a stratified weighted random walk algorithm.
Jin et. al. [21] and Xu et. al. [34] proposed random walk
sampling algorithms with jumps. Lu et. al. [3] developed an
algorithm to approximate the bias of estimating the popula-
tion size via random walk. Lee et. al. [10] proposed two
algorithms to reduce the asymptotic variance of estimators:
(1) non-backtracking random walk and (2) random walk with
delayed acceptance. Li et. al. [20] further extended the delayed
acceptance method to Metropolis random walk, which is
shown to further reduce the asymptotic variance. Lu et. al.
[36] showed that the harmonic mean estimator for average
degree can reduce the estimation variance significantly. Zhou
et. al. [8], [28], [37] proposed history dependent random
walk sampling algorithms, which are shown to have a fast
convergence speed. Li et. al. [15] further improved them
by considering the walking history and next-hop candidates.
Essentially, all these algorithms improve estimation accuracy
via designing random walk strategies, i.e., they focus on
generating samples. These algorithms only use simple average
to do the estimation. Our framework is orthogonal to their
works and complements them. First, we focus on how to
utilize samples to produce accurate estimation. In particular,
we achieve this by applying bootstrapping techniques to design
a bias reduction algorithm. Second, our framework utilizes
recent graph processing systems which can run millions of
random walks on a consumer-level personal computer. Third,
our framework is generic and it can be applied to improve the
estimation accuracy of any random walk strategies.

Our work is orthogonal to works on parallel random walk
algorithms and systems [22]–[26] in the sense that it is
independent of the design of parallel random walk algorithms,
i.e., it can be applied to a broad class of parallel random walk
algorithms.
Bootstrapping. Bootstrapping is a technique for statistical
estimation. There are a variety of bootstrapping techniques
such as Efron bootstrap and Jackknife for different applications
or settings [27], [32], [38]–[40]. Model-based bootstrapping
techniques require a large number of samples to accurately
reconstruct the model. Thus it is not suitable for random walk
sampling applications because the sample size is usually small.
Model-free bootstrapping techniques such as Jackknife have
the issue of invalid sub-samples in random walk sampling
applications. Our work proposes a new variant of the Jackknife
method with sub-sample selection which is fine tuned for the
random walk sampling algorithms. In our framework we allow
the variance to increase whenever the bias can be further
reduced. We overcome the increased variance by applying
multiple parallel random walks.
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IX. Conclusion

This paper develops an algorithmic framework to improve
the accuracy of random walk based statistical estimation over
graphs. We apply the bootstrapping technique to design a
bias reduction algorithm. Our bias reduction algorithm has a
new feature that it allows the variance to increase whenever
the bias can be further reduced. The increased variance may
lead to large error of the estimator. We use multiple parallel
random walks to reduce this variance, and it can be reduced
to be arbitrarily small by a sufficiently large number of
random walks. Our algorithmic framework enables one to
attain different trade-offs between the sample complexity and
the error of statistical estimation. Also, our bias reduction
algorithm is generic and can be applied to optimize a large
class of random walk sampling algorithms. To demonstrate
the versatility of our framework, we apply it to optimize
the Metropolis and simple random walk sampling. Extensive
experiments on four public datasets confirm the effectiveness
and efficiency of our algorithmic framework.
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