
Continuously Tracking Core Items in Data Streams
with Probabilistic Decays

Junzhou Zhao∗ Pinghui Wang†∗ Jing Tao∗ Shuo Zhang∗ John C.S. Lui‡
∗MOEKLINNS Lab, School of Cyber Science and Engineering, Xi’an Jiaotong University, Xi’an, P. R. China

†Shenzhen Research Institute of Xi’an Jiaotong University, Shenzhen, P. R. China
‡Department of Computer Science & Engineering, The Chinese University of Hong Kong, Hong Kong

{junzhou.zhao, phwang, jtao}@xjtu.edu.cn zs412082986@stu.xjtu.edu.cn cslui@cse.cuhk.edu.hk

Abstract—The sheer scale of big data causes the information
overload issue and there is an urgent need for tools that can
draw valuable insights from massive data. This paper investigates
the core items tracking (CIT) problem where the goal is to
continuously track representative items, called core items, in a
data stream so to best represent/summarize the stream. In order
to simultaneously satisfy the recency and continuity requirements,
we consider CIT over probabilistic-decaying streams where items
in the stream are forgotten gradually in a probabilistic manner.
We first introduce an algorithm, called PNDCIT, to find core
items in a special kind of probabilistic non-decaying streams.
Furthermore, using PNDCIT as a building block, we design
two novel algorithms, namely PDCIT and PDCIT+, to maintain
core items over probabilistic-decaying streams with constant
approximation ratios. Finally, extensive experiments on real data
demonstrate that PDCIT+ achieves a speedup of up to one order
of magnitude over a batch algorithm while providing solutions
with comparable quality.

I. INTRODUCTION

In recent years, we have witnessed the rise of big data with
an unprecedented scale of data being continuously generated
from various sources such as social media, mobile devices,
and sensor networks. Data streams such as tweet stream and
news stream have become ubiquitous. However, their large
volume and high velocity pose burdens for people to derive
valuable information. For example, out of fear of missing
out on important information, people tend to subscribe many
information sources (e.g., follow many users on online social
networks, subscribe many news outlets, etc), and consequently,
they receive a lot of data containing redundant and noisy
information, become overloaded, and effectively miss the
information they are actually interested in. It is therefore
imperative to develop tools to help people reduce data overload
and draw valuable insights from massive data streams.

To solve this issue, one approach is to selectively maintain
just a few representative items, called core items, to best
represent/summarize the stream. The motivation can be illus-
trated by following examples. In a tweet stream, it is usually
unnecessary to read all tweets, but selectively reading a few of
them is enough to know the events happening recently [1,2].
Similarly, in a news stream, a few news articles may be
enough to cover majority of the topics in the stream [3,4]. In

Pinghui Wang is the corresponding author.

(a) insertion-only stream

(b) sliding-window stream
(c) probabilistic-decaying

stream (this work)

Fig. 1. Core items tracking over different stream models. A red dot represents
a selected core item.

a data point stream (e.g., check-in records) where points are
distributed in an Euclidean space, a few centers are usually
enough to characterize their distributions [5,6]. In these sce-
narios, we say that a few core items can represent/summarize
the original massive data. The challenge is how to efficiently
maintain core items in a streaming fashion where new items
keep arriving, and the maintained core items should be updated
accordingly to make sure that they are always (near-)optimal.
We refer to this task as the core items tracking (CIT) task.

Specifically, CIT aims to maintain a set of core items
that jointly maximize a prespecified utility function at any
query time. For example, the utility function may measure
the representativeness [2,7]–[9], informativeness [10]–[12],
diversity [13], influence [14], or coverage [15,16], of a set
of items. In many real world applications, utility functions are
often found to have the diminishing return property, which can
be captured by submodular functions [17]. Hence, CIT essen-
tially requires solving the streaming submodular optimization
(SSO) problem, which is NP-hard. Recently, several SSO
techniques have been designed for insertion-only streams [3,7]
and sliding-window streams [9,18,19], respectively. These SSO
techniques can efficiently find core items with constant ap-
proximation ratios. However, the insertion-only stream and
sliding-window stream that many existing SSO techniques are
built upon, actually represent two extremes, and have their
limitations.

In an insertion-only stream, core items are selected from all
historical data items, which are treated with equal importance,
regardless of how outdated they are. This is often undesirable
because the stale historical data is usually less important than
the fresh and recent data. In some scenarios, a large fraction of
core items may be outdated items, as illustrated in Fig. 1(a).
As a result, SSO techniques built on insertion-only streams
may find core items that do not guarantee recency.

In a sliding-window stream, core items are selected from the

���

�����*&&&���UI�*OUFSOBUJPOBM�$POGFSFODF�PO�%BUB�&OHJOFFSJOH�	*$%&

��������9�����������¥�����*&&&
%0*���������*$%&����������������

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2020 at 07:52:39 UTC from IEEE Xplore. Restrictions apply.

most recent data only, and historical data outside the window
is completely discarded, as illustrated in Fig. 1(b). This may
also be undesirable because one may not wish to completely
lose the entire history of past data, for some historical data
may be still important. Moreover, there is no golden rule on
choosing a proper window size: a long window tends to find
subsets containing many outdated items; a short window may
find subsets containing many valueless/noisy items due to lack
of data and hence result in rather unstable solutions. As a
result, SSO techniques built on sliding-window streams may
find core items that do not guarantee continuity.

In this work, we suggest that a better approach is to incorpo-
rate temporal decaying into core items selection. Specifically,
we introduce a probabilistic-decaying stream (PDS) model
that allows data items from the past to the present all have
a chance to participate in analysis (hence satisfies continuity),
but outdated data is less likely to participate in the analysis
than recent data (hence satisfies recency). As time advances,
an item will become increasingly less important, less likely to
be selected as a core item, and hence the item will be gradually
forgotten, as illustrated in Fig. 1(c).

Built on the PDS model, we design novel SSO techniques
to solve the CIT problem with provable approximation guaran-
tees and efficiency. We first consider CIT over a special kind of
probabilistic non-decaying streams, and design an algorithm,
called PNDCIT, to find core items over probabilistic non-
decaying streams; PNDCIT guarantees an (1/2− ε) approxi-
mation ratio. Then, we show how to reduce the probabilistic-
decaying case to the probabilistic non-decaying case, and
leverage PNDCIT as a building block to design an algorithm,
called PDCIT, to maintain core items in probabilistic-decaying
streams; PDCIT also guarantees an (1/2 − ε) approximation
ratio. To improve the efficiency of PDCIT, we design an
algorithm, called PDCIT+, which is fast and guarantees a
(1/4−ε) approximation ratio. In summary, we make following
contributions in this work.

• We propose the core items tracking problem over a more
general probabilistic-decaying stream model. (Section II)

• We design a set of algorithms, from basic to advanced,
to address the CIT problem with both update time and
space efficiency. Importantly, our algorithms have prov-
able constant approximation ratios. (Sections III–VI)

• We conduct extensive experiments on real data, and the
results demonstrate that our method can find solutions
with quality comparable with baseline methods, and could
improve the computational efficiency to one order of
magnitude faster. (Section VII)

II. PRELIMINARIES

We first introduce some notations, and then formulate the
core items tracking problem.

A. Notations
Data Stream. A data stream is an unbounded sequence of
items arriving in chronological order. Each item e is from a set
V , and e is associated with a discrete timestamp te. Multiple

items may arrive at the same time, and there may be other
attributes (e.g., age, gender, etc) associated with an item.
Utility Function. The utility function f : 2V "→ R≥0 assigns
each subset of V a nonnegative utility value, which could
measure the representativeness, informativeness, diversity, in-
fluence, or coverage, of the subset. We shall focus on a special
class of monotone submodular functions that are found to be
ubiquitous in a wide range of applications [2,4,8,10,13,14,20].

Definition 1 (Monotone Submodular Function [17]). For all
S ⊆ T ⊆ V , a set function f : 2V "→ R≥0 is monotone
(non-decreasing) if f(S) ≤ f(T), and f is submodular if
f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T), ∀e ∈ V \T .

Let δ(e|S) ! f(S∪{e})−f(S) denote the marginal gain of
adding an item e to set S. Monotonicity implies that, adding
an item to a set never decreases the set’s utility, i.e., marginal
gains are nonnegative δ(e|S) ≥ 0. Submodularity implies that,
fixing item e, the item’s marginal gain δ(e|S) never increases
as set S grows larger, aka the diminishing return property. We
also assume that f is normalized, i.e., f(∅) = 0.

Our goal is to select a few items from the stream such that
they jointly have the maximum utility. To clearly formulate
this optimization problem, we still need a streaming model.
We first review two existing streaming models, point out their
limitations, and then propose a better model.

B. Limitations of Existing Data Stream Models
In the literature, two widely used data stream models are

insertion-only streams [3,7] and sliding-window streams [9,18,
19].

An insertion-only stream simply accumulates all the items
in history and treats them with equal importance. A subset
is then selected from a multiset Dt ! {e ∈ V : te ≤ t}.
Let S(Dt) denote the selected subset. As time advances to t′,
S(Dt) will be updated to S(Dt′), either by computing it from
scratch on Dt′ , or by incrementally updating the result from
S(Dt) to S(Dt′).

A sliding-window stream only keeps items in the most
recent W time units and discards the others. A subset is
selected from multiset Dt−W,t ! {e ∈ V : te ∈ [t − W, t]}
where W is the window size. Let S(Dt−W,t) denote the
selected subset at t. Similarly, as time advances to t′, the output
subset will be updated to S(Dt′−W,t′) accordingly.

Note that both models actually take a binary view of an item,
i.e., an item is either included for analysis (i.e., participates in
subset selection) or not. An included item has the same level
of importance as any other item, regardless of how outdated it
is. As mentioned previously, this simplistic binary view makes
it impossible to satisfy recency and continuity simultaneously.
To address this limitation, we propose a better stream model
that can ensure both recency and continuity.

C. Probabilistic-Decaying Stream Model
We propose a probabilistic-decaying stream (PDS) model

to address the limitations of existing stream models. The
PDS model enjoys a feature that, items from the past to the

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2020 at 07:52:39 UTC from IEEE Xplore. Restrictions apply.

present all have an opportunity to participate in analysis (hence
satisfies continuity), however outdated items are less likely
than recent items (hence satisfies recency). Therefore, PDS
model can ensure recency and continuity simultaneously.

Formally, in the PDS model, at time t, each item e ∈ Dt

independently participates in the analysis with probability
p(e, t) = he(t − te). Here, he : Z≥0 "→ [0, 1] is an item-
specific decaying function that assigns an item of a certain age
with a probability of participating in the analysis, and he(x)
is a monotone non-increasing function. In practice, we require
he(x) be strictly decreasing, so an item in the distant history
will have a less chance to participate in the analysis than a
recent item, while outdated items are gradually forgotten.

The insertion-only and sliding-window stream models turn
out to be two special cases of our PDS model: if he(x) ≡ 1
for all e with any age x, then a PDS becomes an insertion-
only stream; if he(x) = 1 for x ≤W and 0 otherwise for all
e, then a PDS becomes a sliding-window stream.

D. Core Items Tracking over PDS
The PDS model allows each item in the stream to participate

in the analysis with a decaying probability. The core items
tracking problem then aims to choose a subset of items
in the stream such that they jointly achieve the maximum
utility on average. Formally, we have the following problem
formulation.

Problem 1 (Core Items Tracking, CIT). Given a monotone
submodular utility function f , a PDS with item-specific de-
caying function he, and a budget k > 0, we want to find a
subset S∗t ⊆ V at any query time t such that

S∗t ∈ argmax
S⊆V ∧|S|≤k

Ehe [f(S)|Dt] . (1)

The expectation is taken upon the randomness that each item
participates in the analysis with a probability. We will omit
subscript he if no confusion arises.

Note that CIT aims to maximize the expected utility on a
PDS rather than the utility on a deterministic stream as is the
case in previous work [7,9,18,19]. In the follows, we use a
concrete example to explain how to evaluate E [f(S)|Dt].

Example 1 (Online Maximum Coverage). Consider a PDS
where each item e represents a set, e.g., topics in a news
article, tags in a tweet, etc. Let f(S) ! | ∪e∈S e| be the
coverage of the set S. f is monotone and submodular. We
want to choose at most k = 2 items to maximize the expected
coverage in the PDS. For example, we may want to choose k
news articles to cover the majority of topics in a probabilistic-
decaying news stream. Fig. 2 gives a stream with 4 items
arriving at t = 1, 2, 3, and 4. The last two columns give
p(e, t) at t = 3 and 4, respectively. The expected utility of
subset {x, y} at time t can be calculated by

Ehe [f({x, y})|Dt] = p(x, t)p(y, t)f({x, y}) (2)
+ p(x, t)(1− p(y, t))f({x}) (3)
+ (1− p(x, t))p(y, t)f({y}). (4)

Here, (2) corresponds to the case that both x and y participate
in analysis; (3) and (4) correspond to the cases that x or y
participates in analysis. Observe that calculating E [f(S)|Dt]
requires 2|S| − 1 utility function evaluations.

We enumerate all the possible subsets with at most k items,
calculate their expected utility, and find an optimal set at time
t = 3 and 4, respectively, as shown in Fig. 2. Observe that
as time advances from t = 3 to 4, item e1’s contribution is
reduced as it becomes older.

t item p(e, 3) p(e, 4)
1 e1={a, b} 0.5 0.1
2 e2={b} 0.8 0.5
3 e3={c, d} 1.0 0.8
4 e4={d, e} - 1.0

At time t = 3:
S∗
3 = {e1, e3}

expected utility: 3.0

At time t = 4:
S∗
4 = {e3, e4}

expected utility: 2.8

Fig. 2. Probabilistic-decaying maximum coverage

In the follows, we will focus on a special class of expo-
nential decaying functions, i.e., he(x) = pxe where pe ∈ [0, 1]
relates to the item-specific decaying rate. The memoryless of
exponential function can simplify our algorithm design (even
though our framework can be extended to general decaying
functions, see the full version of this paper).

Finally, it is worth noting that, in an insertion-only stream,
budget k can be as large as the stream length |Dt|, while in
the PDS model, budget k is upper bounded by

∑
e∈Dt

p(e, t).
For example, in the exponential decaying case, if pe = p ∈
(0, 1), ∀e, and one item arrives at a time, then k ≤ 1/(1−p).

III. A MONTE-CARLO FRAMEWORK

As stated in Example 1, accurately calculating E [f(S)|Dt]
requires O(2|S|) utility function evaluations, or we say O(2|S|)
oracle calls. For example, choosing |S|=100 items needs 2100
oracle calls, which is too expensive. This section proposes a
Monte-Carlo simulation framework to estimate E [f(S)|Dt].

Given data stream Dt and decaying function he, we define
a realization of the PDS as a multiset of active items that
indeed participated in analysis, and there are 2|Dt| possible
realizations, denoted by Dt ! {D : D ⊆ Dt}. Each realization
D ∈ Dt is observed with probability

P (D ∈ Dt) =
∏

e∈Dt

p(e, t)1(e∈D)(1− p(e, t))1(e/∈D) (5)

where 1(·) denotes the indicator function. The Monte-Carlo
method [21] states that, a collection of samples {D(i)

t }ni=1

independently drawn from distribution {P (D) : D ∈ Dt}
can provide an unbiased estimate of expectation E [f(S)|Dt].
Specifically, we have the following lemma.

Lemma 1. Let {D(i)
t }ni=1 be a set of n samples independently

drawn from distribution {P (D) : D ∈ Dt}. Then,

F (S) ! 1

n

n∑

i=1

f(S ∩D(i)
t)

a.s.−→ E [f(S)|Dt] , n→∞ (6)

where a.s.−→ denotes almost sure convergence.

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2020 at 07:52:39 UTC from IEEE Xplore. Restrictions apply.

Intuitively, a subset S will have large expected utility if S
contains many active items, i.e., |S ∩ D(i)

t | is large, and they
have large utilities on average. Fig. 3 shows some data stream
samples.

p(e, t)

Dt
e

⇒
D(1)

t...

D(n)
t

flip a biased coin n times

Fig. 3. Data stream samples. Solid dots denote active items that participate in
analysis. Grayed dots denote inactive items that do not participate in analysis.

The main advantage of Monte-Carlo framework is that the
number of oracle calls for evaluating expected utility decreases
from O(2|S|) to O(n). Sample size n can be determined by
applying the Hoeffding’s inequality, and usually n. 2|S|.

Lemma 2. Let {D(i)
t }ni=1 be a collection of n samples

independently drawn from distribution {P (D) : D ∈ Dt}. If
n ≥ ln (2/δ)

2ε2ρ2 where ε, δ ∈ (0, 1) and ρ ! E[f(S)|Dt]
f(S) , then

∣∣F (S)− E [f(S)|Dt]
∣∣ < εE [f(S)|Dt]

holds with probability at least 1− δ.

In the follows, we will assume that n is sufficiently large
so that F (S) ≈ E [f(S)|Dt] , ∀S ⊆ V .

In Eq. (6), given D(i)
t , f(S∩D(i)

t) is a monotone submodular
function of S, so F (S) is monotone and submodular because
monotonicity and submodularity are closed under positive
linear combinations. A straightforward way to solve CIT is
to run a GREEDY algorithm [17] on those active items to
maximize F . However, GREEDY is not a streaming algorithm,
and it is not fast (more will be discussed in Section VII).

The CIT problem boils down to two sub-problems: (1) how
to efficiently maintain data stream samples {D(i)

t }ni=1, and
(2) how to design a streaming algorithm to maximize F . We
address these two sub-problems in the remainder of this paper.

IV. MAINTAINING DATA STREAM SAMPLES

In this section, we address the sub-problem of maintaining
data stream samples {D(i)

t }ni=1.

A. Sampling Methods
Naive Sampling. A straightforward way to obtain data stream
samples {D(i)

t }ni=1 is to conduct Bernoulli sampling on Dt

from scratch at each time t. That is, for each item e ∈ Dt, we
flip a biased coin (with probability p(e, t) of heads) n times.
If the i-th trial succeeds (say, the outcome is a head), then
e is included in D(i)

t ; otherwise e is not included in D(i)
t , as

illustrated in Fig. 3. Obviously, this approach is inefficient.
Incremental Sampling. Given he(x) = pxe , we can construct
D(i)

t from D(i)
t−1 incrementally. In more detail, each new item

arrived at time t is always included in D(i)
t ; each existing item

e ∈ D(i)
t−1 is included in D(i)

t with probability pe. It is easy
to see that the resulting D(i)

t follows the desired distribution.

Incremental sampling should be more efficient than naive
sampling. However, conducting Bernoulli sampling for each
existing item at each time step is still time consuming.
Lifetime Sampling. Incremental sampling exhibits a feature
that, an item is always included when it arrives, then it survives
for an amount of time, and finally it is discarded. This observa-
tion allows us to think that each item e has a lifetime le, which
is the time span from its arrival till being discarded. Given
he(x) = pxe , we find that le actually follows the geometric dis-
tribution Geo(pe), i.e., P (le = l) = pl−1

e (1−pe), l = 1, 2,
Leveraging this observation, for item e arrived at time te, we
only need to sample n lifetimes {l(i)e }ni=1 from Geo(pe). Let
lifetimes decrease over time: for item e, as time advances to t,
its lifetime decreases to l(i)e (t) = l(i)e − (t− te), i = 1, . . . , n.
If l(i)e (t) becomes zero, e is discarded from D(i)

t . At time t,
D(i)

t simply consists of all items with non-zero lifetimes, i.e.,
D(i)

t = {e ∈ Dt : l
(i)
e (t) > 0}. Lifetime sampling only needs

to perform n sampling for each item at its arrival time. Hence,
it is faster than incremental sampling.

In essence, above three sampling methods are equivalent to
each other, and they help us understand data stream sampling
from different perspectives.

B. Bernoulli Set and the Shrinking Property
Before moving to solve the second sub-problem, we intro-

duce the notation of Bernoulli set, which will be useful in later
discussions. An item participates in analysis if it is included in
at least one of these n data stream samples. In other words, an
item participates in analysis if at least one of its n Bernoulli
trials succeeded (recall the naive sampling). Let

I(e) ! {i : i-th Bernoulli trial of e succeeds} (7)

denote the succeeded Bernoulli trials of item e. We refer to
I(e) as item e’s Bernoulli set. As time advances, an item has
less chance to participate in analysis. This is reflected by the
fact that an item’s Bernoulli set is shrinking over time. If an
item’s Bernoulli set becomes empty at some time, the item no
longer participates in analysis. Therefore, shrinking Bernoulli
set is another way to understand the decaying nature in PDS.

From the perspective of lifetime sampling, we can conve-
niently write item e’s Bernoulli set at time t = te + l (i.e., l
time units after its arrival) by

Il(e) ! {i : l(i)e (t) > 0} = {i : l(i)e > l}, l = 0, 1, . . . (8)

and Il(e) = ∅ when l ≥ maxi l
(i)
e , as illustrated in Fig. 4.

Dt
e

i

1
2
3
4

l
(i)
e

lifetime
samples
(n=4)

2
4
6
5

I0
(e)

={1,
2,

3,
4}

I1
(e)

={1,
2,

3,
4}

I2
(e)

={2,
3,

4}

I3
(e)

={2,
3,

4}

I4
(e)

={3,
4}

I5
(e)

={3}

I6
(e)

=∅

timet=te t+1 t+2 t+3 t+4 t+5 t+6

Fig. 4. Shrinking Bernoulli sets

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2020 at 07:52:39 UTC from IEEE Xplore. Restrictions apply.

V. A BASIC STREAMING ALGORITHM

In this section, we design a basic streaming algorithm, called
PDCIT, to solve the CIT problem. We will first consider a
special probabilistic non-decaying case, and design PNDCIT
to solve CIT over this special case. PNDCIT is used as a
building block to design PDCIT to solve the CIT problem.

A. The Probabilistic Non-Decaying Case
Consider a special case where each item’s decaying function

is a constant, i.e., he(x) ≡ pe ∈ [0, 1], ∀e. So p(e, t) ≡ pe. In
other words, each item participates in analysis with a constant
probability, referred to as the probabilistic non-decaying case
(see Fig. 5). Solving CIT over this special case is perhaps not
interesting per se, but the algorithm to solve it will be a key
ingredient for solving the general CIT problem.

p(e, t) ≡ pe

Dt

e1 e2 e3

⇒
D(1)

t

I(e1) I(e2) I(e3)

...

D(n)
t

Bernoulli sampling

Fig. 5. The probabilistic non-decaying case

Since p(e, t) is time-invariant, e’s Bernoulli set is a constant,
denoted by I(e). In other words, I(e) does not shrink in the
probabilistic non-decaying case, see Fig. 5. It turns out that
the PDS in this special case can be viewed as an insertion-
only stream where each item is a non-shrinking Bernoulli set,
i.e., PDS {e1, e2, . . .} is viewed as an insertion-only stream
{I(e1), I(e2), . . .}. SSO over insertion-only streams has been
extensively studied [3,7], and these algorithms can be easily
adapted to our case. The main operation in these algorithms
is to compute the marginal gain of a new item with respect
to currently chosen items; if the gain is sufficiently large, the
new item is chosen; otherwise, it is dropped. In our case, the
marginal gain can be calculated by

∆(e|S) ! F (S ∪ {e})− F (S) =
1

n

∑

i∈I(e)

δ(e|S ∩D(i)
t). (9)

We have adapted the state-of-the-art SIEVESTREAMING
algorithm [7] to our case, denoted by PNDCIT, with pseudo-
code given in Alg. 1. Similar to SIEVESTREAMING, PNDCIT
ensures the following properties.

Alg. 1: PNDCIT (adapted from SIEVESTREAMING [7])
Input: A stream of Bernoulli sets {I(e) : e ∈ Dt}
Output: Core items St ⊆ V at time t

1 ∆m←0,Θ←∅, {Sθ}θ∈Θ is a family of candidate sets;
2 foreach Bernoulli set I(e) in the stream do
3 ∆m ← max{∆m, |I(e)|

n f({e})};
4 Θ′ ← {(1 + ε)i : ∆m

2k ≤ (1 + ε)i ≤ ∆m, i ∈ Z};
5 Delete Sθ for θ∈Θ\Θ′ and let Sθ←∅ for θ∈Θ′\Θ;
6 Θ← Θ′;
7 foreach threshold θ ∈ Θ do
8 if |Sθ|<k and ∆(e|Sθ)≥θ then Sθ ← Sθ ∪ {e};
9 St ← Sθ∗ , θ∗ = argmaxθ∈Θ F (Sθ);

Theorem 1. PNDCIT achieves an (1/2 − ε) approximation
ratio.

Theorem 2. PNDCIT requires O(nε−1 log k) oracle calls
to process each item and O(nkε−1 log k) space to store
intermedia results.

Remark. PNDCIT will be served as a blackbox: when fed
with a stream of constant Bernoulli sets, PNDCIT outputs
an (1/2 − ε)-approximate solution of the CIT problem in
the probabilistic non-decaying case. This viewpoint will be
important in following discussions.

B. The PDCIT Algorithm

Now consider the case he(x) = pxe . In this case, the prob-
ability that each item participates in analysis decreases over
time. In other words, each item’s Bernoulli set is shrinking (see
Fig. 4). We show that the probabilistic decaying case can be
reduced to probabilistic non-decaying case. So we can leverage
PNDCIT as a building block to address the CIT problem.

Recall that item e’s Bernoulli set is I0(e) at time te, then
shrinks to I1(e) at time te + 1, and to Il(e) at time te + l.
Assume lifetime is upper bounded by L. Then e’s Bernoulli
set must become empty before te+L, i.e., Il(e) = ∅ for l ≥ L.
At time t, each active item in the stream corresponds to a
nonempty Bernoulli set. Let Bt ! {Il(e) 1= ∅ : e ∈ Dt∧te+l =
t} be a family of nonempty Bernoulli sets at t (cf. Fig. 6(a)).

Ideally, if we can feed Bt to a PNDCIT instance, then the
instance’s output will be an (1/2− ε)-approximate solution at
t. The challenge is that, Bt keeps changing: each active item’s
Bernoulli set in Bt is shrinking, removed when becoming
empty, and meanwhile, Bernoulli sets of newly arrived items
at t are added into Bt. How should one process Bt using
PNDCIT in a streaming fashion?

Dt

e1 e2 e3

I0(e3) I1(e3) I2(e3) · · ·

I0(e2) I1(e2) I2(e2) · · ·

I0(e1) I1(e1) I2(e1) · · ·

Bt futurepast

(a) Bernoulli sets at t

Dt
e

I0(e) I1(e) · · · IL−1(e)

A(t)
0 A(t)

1
· · · A(t)

L−1

St
reset A(t)

0 , t← t+1

(b) PDCIT

Fig. 6. Bernoulli sets at t and PDCIT

We propose PDCIT to address this challenge. PDCIT runs
L PNDCIT instances in parallel at any time t, denoted by
{A(t)

l }L−1
l=0 . PDCIT processes items in the stream as follows.

• Processing. When a new item e arrives, we use lifetime
sampling to obtain its (at most) L Bernoulli sets {Il(e)}L−1

l=0 .
PDCIT then proactively processes these L Bernoulli sets by
L PNDCIT instances in parallel (cf. Fig. 6(b)). After items at
t all have been processed, A(t)

0 outputs the solution at t.
• Shifting. Before processing the upcoming items at t + 1,
PDCIT first resets A(t)

0 , and circularly shifts these L instances
one unit to the left. (Each instance’s subscript is also modified
so the first instance always starts from 0, see Fig. 6(b)). Then,

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2020 at 07:52:39 UTC from IEEE Xplore. Restrictions apply.

it keeps on processing new items arrived at t+ 1 similarly as
at t. The output of the first instance is the solution at t+ 1.

PDCIT repeats the above procedure, and continuously pro-
cesses items in the data stream. Readers may find the following
example helpful in understanding the execution of PDCIT.

Example 2. PDCIT processes the stream {e1, e2, e3} in
Fig. 6(a) as follows. Assume items’ lifetimes are upper
bounded by L = 3. Then PDCIT maintains three PNDCIT
instances, denoted by A, Ȧ and Ä.

When e1 arrives, its Bernoulli sets {Il(e1)}2l=0 are gener-
ated and fed to A, Ȧ and Ä, respectively, see Fig. 7(a).

Before processing e2, we reset A, circularly shift A, Ȧ and
Ä one unit to the left. Then e2’s Bernoulli sets {Il(e2)}2l=0 are
generated and fed to Ȧ, Ä and A, respectively, see Fig. 7(b).

Item e3 is processed similarly, see Fig. 7(c). Note that, at
any time, the first instance always correctly processed all the
Bernoulli sets in the stream, i.e., Bt.

e1

I0(e1) I1(e1) I2(e1)

A Ȧ Ä

A : {I0(e1)}
Ȧ : {I1(e1)}
Ä : {I2(e1)}

(a) process e1

e2

I0(e2) I1(e2) I2(e2)

Ȧ Ä A

Ȧ : {I0(e2), I1(e1)}
Ä : {I1(e2), I2(e1)}
A : {I2(e2)}

(b) process e2

e3

I0(e3) I1(e3) I2(e3)

Ä A Ȧ

Ä : {I0(e3), I1(e2), I2(e1)}
A : {I1(e3), I2(e2)}
Ȧ : {I2(e3)}

(c) process e3

Fig. 7. PDCIT example. Bottom shows the processed Bernoulli sets of each
instance. After processing e3, the first instance Ä processed all the Bernoulli
sets, i.e., Bt in Fig. 6(a).

PDCIT ensures that the first PNDCIT instance A(t)
0 always

processed all the Bernoulli sets in family Bt at any time t.
Hence A(t)

0 ’s output is the solution at t, and guarantees an
(1/2− ε) approximation ratio. The pseudo-code of PDCIT is
given in Alg. 2. PDCIT has following properties.

Alg. 2: PDCIT

1 Initialize L PNDCIT instances {A(1)
l }L−1

l=0 ;
2 foreach item e arrived at time t = 1, 2, . . . do
3 Obtain e’s Bernoulli sets {Il(e)}L−1

l=0 ; // Processing
4 for l ∈ [0, L− 1] do Feed A(t)

l with Il(e);
5 St ← output of A(t)

0 ;
6 for l = 1, . . . , L− 1 do A(t+1)

l−1 ← A(t)
l ; // Shifting

7 Reset A(t)
0 and A(t+1)

L−1 ← A(t)
0 ;

Theorem 3. PDCIT achieves an (1/2−ε) approximation ratio.

Theorem 4. PDCIT requires O(Lnε−1 log k) oracle calls
to process each item and O(Lnkε−1 log k) space to store
intermedia results.

As PNDCIT instances in PDCIT are independent with each
other, they can be executed in parallel. Hence, the scalability
of PDCIT can be further improved.

PDCIT is suitable for the case that lifetime upper bound L
is small. This occurs when items’ participation probabilities
decrease quickly, i.e., pe’s are small. However, if items’
participation probabilities decrease slowly, i.e., pe’s are large,
L will be large. Maintaining a large number of PNDCIT
instances will incur high CPU and RAM overloads, and make
PDCIT inefficient. Therefore, processing items with slowly
decaying rates is the main bottleneck of PDCIT. We address
this limitation in next section.

VI. A FASTER STREAMING ALGORITHM

In this section, we address the bottleneck of PDCIT by
designing a faster streaming algorithm, called PDCIT+, which
allows lifetime upper bound L to be infinitely large.

A. Basic Idea
Instead of maintaining L PNDCIT instances in PDCIT,

our idea is to selectively maintain just a few of them, and
hope these selected instances can well approximate the rest.
Because only a few instances are maintained, efficiency should
be improved a lot. This idea can be thought of as using a
histogram to approximate a curve.

More precisely, let gt(l) denote the utility value of instance
A(t)

l ’s output at time t, i.e., gt(l) ! F (St,l) where St,l ⊆ V is
A(t)

l ’s output. We want to selectively maintain a few indices
xt ! {x1, x2, . . .} ⊆ Z≥0 so that histogram {gt(l)}l∈xt can
well approximate “curve” {gt(l)}l≥0 at any time t (cf. Fig. 8).
If the size of xt is indeed small, then PDCIT+ will be much
faster than PDCIT. Similar to PDCIT, in PDCIT+, the output
of the first instance, i.e., A(t)

x1 , will be the solution at t.

0 ∞x1 x2 x3 x4 x5 x6

{gt(l)}l≥0

{gt(l)}l∈xt

Dt
e

{41, 301, 27, 128, 10}

(1) I0(e)= . . .=I9(e)={1, 2, 3, 4, 5}
(2) I10(e)= . . .=I26(e)={1, 2, 3, 4}
(3) I27(e)= . . .=I40(e)={1, 2, 4}
(4) I41(e)= . . .=I127(e)={2, 4}
(5) I128(e)= . . .=I300(e)={2}

sample n lifetimes (n=5)

obtain Bernoulli sets

(1) (2) (3) (4) (5)

Fig. 8. Approximating “curve” {gt(l)}l≥0 by histogram {gt(l)}l∈xt . Note
that curve {gt(l)}l≥0 does not have to be monotone.

The challenge is how to update index set xt when new
items arrive so that A(t)

x1 ’s output is always close to the optimal
solution at any time t.

B. Updating the Index Set
Before elaborating PDCIT+, we first give a useful observa-

tion about an item’s Bernoulli sets. Recall that in PDCIT, when
an item e arrives, we obtain its L Bernoulli sets {Il(e)}L−1

l=0 ,
and then feed them to L PNDCIT instances, respectively.
When Bernoulli sets are generated using n lifetime samples,
there are actually at most n distinct Bernoulli sets. Consecutive
Bernoulli sets are often the same, and they can be grouped into
one segment. There will be at most n segments for each item,
and each segment corresponds to a unique Bernoulli set.

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2020 at 07:52:39 UTC from IEEE Xplore. Restrictions apply.

For example, in Fig. 8, after sampling n = 5 lifetimes for
item e, we find that I0(e) to I9(e) are the same, and they form
the first segment; I10(e) to I26(e) form the second segment,
and so on. There are totally five segments for item e.

With above observation, there is an equivalent way to
execute PDCIT. Let 〈li, ri〉 be the i-th segment of e’s Bernoulli
sets, and Ili(e) = Ili+1(e) = . . . = Iri(e).

If e is the first item in the stream, then after processing
e by PDCIT, we only need to maintain PNDCIT instances
indexed by xt = {ri : 1 ≤ i ≤ n} as instances indexed by
{li, li + 1, . . . , ri} all have the same outputs.

When new items keep arriving, we can create new PNDCIT
instances (when needed) just based on currently maintained
instances, and ensure that the results are always the same as
PDCIT. For each segment 〈l, r〉 of a newly arrived item at t,
we check whether instance A(t)

r exists. If not exists, we create
A(t)

r as follows: if r has a successor i ∈ xt, then A(t)
r is a

clone of A(t)
i ; otherwise A(t)

r is newly created. We save r in
xt, and feed the segment’s Bernoulli set to each A(t)

j , j ∈ [l, r].
For example, in Fig. 8, consider processing the second

segment 〈10, 26〉 of e. We need to create a new instance
A(t)

26 by cloning A(t)
x4 , and feed the segment’s Bernoulli set

{1, 2, 3, 4} to A(t)
x2 , A(t)

x3 and A(t)
26 , respectively.

Above procedure continues, and we are actually running
PDCIT in another equivalent way. However, as new items keep
arriving, index set xt will grow increasingly large, and we have
to maintain a large number of PNDCIT instances, resulting in
poor efficiency. To address this issue, we propose to reduce
the number of running instances by removing redundant ones.

C. Reducing Redundancy
Intuitively, if several PNDCIT instances have very close

outputs, it is not necessary to maintain all of them, as some
of them may be redundant, and can be killed. We formally
define redundancy as follows.

Definition 2 (ε-redundancy). Consider two instances A(t)
i and

A(t)
l with i < l. We say A(t)

l is ε-redundant if there exists j > l
such that gt(j) ≥ (1− ε)gt(i).

That said, since A(t)
i and A(t)

j are already close with each
other, then instances between them are redundant. In PDCIT+,
we regularly check the output of each PNDCIT instance, and
kill those redundant ones. PDCIT+ is described in Alg. 3.

The only issue of PDCIT+ is that, when we create A(t)
r

by cloning its successor A(t)
i , if some instances with indices

between r and i were killed before, then A(t)
i is actually not

the “true” successor of A(t)
r . As a result, A(t)

r may not process
all the Bernoulli sets that it should process, and results in poor
solution quality. Here, we postpone describing the solution to
this issue, and assume there is an “oracle” that can correctly
restore A(t)

r , as described in Line 14 of Alg. 3. We later discuss
how to implement this oracle.

D. Theoretical Analysis
We show that PDCIT+ guarantees a constant approximation

ratio. Proofs are in the extended version of this paper.

Alg. 3: PDCIT+
1 Initialize index set x1 ← ∅;
2 foreach item e arrived at time t = 1, 2, . . . do
3 Obtain e’s segments of Bernoulli sets;
4 foreach segment 〈l, r〉 do Process(〈l, r〉);
5 St ← output of A(t)

x1 ;
6 if x1 = 0 then
7 Kill the outdated instance A(t)

x1 ;
8 xt ← xt\{x1};
9 for i = 1, . . . , |xt| do

10 A(t+1)
xi−1 ← A(t)

xi , x(t+1)
i ← x

(t)
i − 1;

11 Procedure Process(〈l, r〉)
12 if r /∈ xt then
13 if r has no successor then Create a new A(t)

r ;
14 else Restore A(t)

r via an oracle;
15 xt ← xt ∪ {r};

16 Feed the segment’s Bernoulli set to A(t)
i , i ∈ [l, r];

17 ReduceRedundancy();
18 Procedure ReduceRedundancy()
19 foreach i ∈ xt do
20 Find the largest j > i s.t. gt(j) ≥ (1− ε)gt(i);
21 Delete each l ∈ (i, j) from xt and kill A(t)

l ;

Due to the shift operation in PDCIT+, indices x ∈ xt and
x+ 1 ∈ xt−1 actually index the same PNDCIT instance. We
say x′ ∈ xt′ is an ancestor of x ∈ xt if t′ ≤ t and x′ =
x + t − t′. In the follows, we will always use symbol x′ to
denote the ancestor of x at time t′ ≤ t.

Let A be a PNDCIT instance. Let A(B) be A’s output
utility after processing Bernoulli set stream B. Let B||B1 be
the concatenation of two Bernoulli set streams B and B1.

Lemma 3. PNDCIT is suffix monotone, i.e., A(B||B1) ≥
A(B), ∀B1.

Lemma 4. Let B1,B2,B3 be three Bernoulli set streams. The
j-th Bernoulli set of Bi is Iij(ej), ej ∈ V , and I1j(ej) ⊇
I2j(ej) ⊇ I3j(ej). Let OPT(B) be the value of an optimal
solution in B. If A(B3) ≥ (1 − ε)A(B1), then A(B3||B) ≥
(1/4− ε)OPT(B2||B), ∀B.

Lemma 4 states a scene that, once PNDCIT on B3 and B1

have close outputs, then PNDCIT on B3||B will find a near
optimal solution in B2||B, as long as the input Bernoulli sets
meet the condition in the lemma.

Lemma 5. For two consecutive indices xi, xi+1 ∈ xt, one of
the following two cases must hold:
Case 1 No index is created between these two indices (and

their ancestors) ever since they were created. In other
words, no item has a segment 〈l, r〉 with x′i < r < x′i+1

since the two indices were created.
Case 2 At some time t′ ≤ t, it holds that gt′(x′i+1) ≥

(1− ε)gt′(x′i), and from t′ to t, no index is ever created
between these two indices.

Lemma 5 is actually straightforward and it states the only
two possible reasons why two indices in xt are consecutive:
either because they are consecutive since they were created
(Case 1), or they become consecutive after redundant instances

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2020 at 07:52:39 UTC from IEEE Xplore. Restrictions apply.

between them were removed (Case 2). Leveraging Lemmas 4
and 5, we now obtain the main result of PDCIT+.

Theorem 5. PDCIT+ achieves a (1/4 − ε) approximation
ratio.

Theorem 6. PDCIT+ requires O(nε−2 log2 k) oracle calls
to process each item and O(nkε−2 log2 k) space to store
intermedia results.

PDCIT+ uses a histogram to approximate a curve, hence it
has a weaker approximation ratio than PDCIT. In experiments,
we find that PDCIT+ actually finds solutions with quality very
close to PDCIT, and it is much faster.

E. PDCIT+ Implementation

PDCIT+ relies on an oracle that can restore A(t)
r when a

new item with segment 〈l, r〉 arrives and r /∈ xt (Line 14 in
Alg. 3). A naive way to implement this oracle is that: when
an instance is killed, we swap it out of RAM; then we store
the unprocessed Bernoulli sets corresponding to each killed
instance (in RAM or on disk); when A(t)

r needs to be restored,
we swap it in RAM again and feed it with the corresponding
unprocessed Bernoulli sets. However, frequently swapping
in/out of RAM and storing unprocessed Bernoulli sets will
harm the efficiency a lot. Instead, we propose another more
efficient way to implement PDCIT+.

The key idea is as follows. We do not wish to accurately
restore A(t)

r , but allow restoring with some tolerable error. As
compensation, we delete redundant instances more conserva-
tively, and slightly more instances will be kept.

A redundant instance is killed because the instance has
similar outputs with its successor. We still restore A(t)

r from
its successor A(t)

j (i.e., A(t)
r is a clone of A(t)

j). If we do
not feed A(t)

r with the unprocessed historical Bernoulli sets,
there will be a gap between its actual output ĝt(r) and
expected output gt(r). We only need to worry about the case
ĝt(r) < gt(r), as the other case ĝt(r) ≥ gt(r) means that
without processing historical Bernoulli sets, A(t)

r finds even
better solutions (which may rarely happen in practice but
indeed possible).

Because gt(r) is unknown, to avoid removing instances that
are actually not redundant, we give each instance A(t)

r an
amount of uncertainty, denoted by δr, as compensation for
not processing all Bernoulli sets (gt(r) may be as large as
ĝt(r) + δr). This allows us to represent gt(r) by an interval
[g

t
(r), gt(r)] where g

t
(r) ! ĝt(r) and gt(r) ! ĝt(r) + δr.

As g
t
(j) ≥ (1 − ε)gt(i) implies gt(j) ≥ (1 − ε)gt(i), the

redundancy condition is thus relaxed to g
t
(j) ≥ (1− ε)gt(i).

We want uncertainty δr to be related to the amount of
historical Bernoulli sets that A(t)

r does not process. Notice
that if a redundant instance indexed by r is removed in
interval (i, j) at time t, we can approximate this uncertainty
by gt(i)− gt(j) ≤ εgt(i). That is, we set δr = εgt(i).

The final implementation of PDCIT+ is given in Alg. 4. We
will verify its performance in experiments.

Alg. 4: PDCIT+ (final implementation)
1 Procedure Process(〈l, r〉)
2 if r /∈ xt then

// ...
3 if r has a successor then
4 Let i and j denote r’s predecessor (or i = 0 if not

exists) and successor, respectively;
5 A(t)

r ← a copy of A(t)
j ;

6 Find a, b ∈ xt s.t. (a, b) ⊇ (i, j) and δab is recorded,
let δr ← δab;

// ...
7 Procedure ReduceRedundancy()
8 foreach i ∈ xt do
9 Find the largest j > i s.t. g

t
(j) ≥ (1− ε)gt(i);

10 Delete index l ∈ (i, j) from xt and kill A(t)
l ;

11 δij ← εgt(i);

VII. EXPERIMENTS

In this section, we use public available real data sets to
validate our algorithms. We will study two special cases of
the CIT problem: the representative item selection problem
and the Gaussian process active learning problem.

A. Datasets
DBLP [22]. The dataset records the meta information of about
3 million papers, including about 1.8 million authors and
5 thousand conferences, from 1936 to 2018. We filter out
authors that published less than 5 papers and sort the remaining
371, 690 authors by their first publication date to form an
author stream. We use this dataset to study the representative
author selection problem: an author represents a conference
if the author published papers in the conference, and our goal
is to maintain k authors that jointly represent the maximum
number of distinct conferences at any time.
MemeTracker [23]. The dataset contains 714, 072 news and
blog articles published in Jan 2009. Each article is represented
as a set of memes (such as quotes, phrases, and links). We
use this dataset to study the representative article selection
problem, and the goal is to maintain k articles that jointly
cover the maximum number of distinct memes at any time.
math.StackExchange [24]. The dataset records about one
million questions posted from July 2010 to June 2018. Each
question is represented as a set of tags. We use this dataset to
study the representative question selection problem, and the
goal is to maintain k questions that jointly cover the maximum
number of distinct tags at any time.
StackOverflow [24]. We use a larger StackOverflow data to
study the same representative question selection problem. The
dataset records about 3 million questions posted from Jan
2015 to March 2016. Each question is represented as a set
of tags. Our goal is to maintain k questions that jointly cover
the maximum number of distinct tags at any time.
Yahoo!-clicks [25]. This dataset records about 4.7 million
clicks on web pages on May 1, 2009. Each click is represented
as a 5-dimensional feature vector. We use this dataset to study
the Gaussian process active learning problem (which will be

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2020 at 07:52:39 UTC from IEEE Xplore. Restrictions apply.

explained in detail later), and our goal is to maintain k most
informative clicks for Gaussian process regression.
NYC-taxi [26]. We also use the New York city yellow taxi
trip data to study the same Gaussian process active learning
problem. The dataset records about 8.8 million trip records in
Jan 2018. Each trip record is represented as a 6-dimensional
feature vector. Our goal is to maintain k most informative trips
for Gaussian process regression.

The first four problems will be commonly referred to as the
representative item selection problem. Each input data will be
treated as a probabilistic-decaying stream, and we require that
the selected core items are biased towards recent data items
(cf. Fig. 1(c)). A brief summary of the data is given in Table I.

Table I
STATISTICS OF DATA STREAMS

data stream item length time period
DBLP author 371, 690 1936 - 2018

MemeTracker article 714, 072 1/2009 (one month)
math.StackEx. question 955, 284 7/2010 - 6/2018
StackOverflow question 2, 904, 450 1/2015 - 3/2016
Yahoo!-clicks click features 4, 681, 992 5/1/2009 (one day)

NYC-taxi trip features 8, 759, 874 1/2018 (one month)

B. Settings
Benchmarks. We will consider the following two baseline
algorithms.

• GREEDY. A straightforward non-streaming approach to
solve CIT over a PDS is to re-run the GREEDY algorithm
on Bt at each time t. GREEDY starts with an empty set
S = ∅, and iteratively, in each step, adds an item s which
maximizes the marginal gain, i.e., s∗ ∈ argmaxs ∆(s|S).
GREEDY stops once it has selected k items, or the gain
becomes zero. To further improve its efficiency, we apply
the lazy evaluation trick [27]. GREEDY achieves the best
1 − 1/e approximation ratio, and will serve as an upper
bound of solution quality.

• Unbiased Reservoir Sampling (Unbiased RS). Reser-
voir sampling (RS) [28] is a single pass streaming algo-
rithm that chooses k samples uniformly at random from
a stream. These k samples can be used to estimate the
statistical properties of the stream, and thus can be treated
as the representative items of the stream. We implemented
the reservoir sampling algorithm in [28], referred to as the
unbiased RS.

• Biased Reservoir Sampling (Biased RS). Unbiased
RS treats past and present items in the stream equally.
Aggarwal [29] proposed a temporal biased RS algorithm
that tends to choose recent items in the stream as samples.
We implemented this RS algorithm and referred to as the
biased RS.

Efficiency Measure. We follow the previous work [7] and
record the number of utility function evaluations, i.e., number
of oracle calls, as a measure of an algorithm’s efficiency. The
advantage of this measure is that it is independent of the
concrete algorithm implementation and platform.

C. Representative Item Selection
Comparing PDS with Sliding-Window Streams. Before
evaluating the performance of algorithms for solving the
CIT problem, we perform some experiments to compare the
PDS with the sliding-window streams with the purpose of
answering the question: are core items found on sliding-
window streams still good on PDS streams? We vary the
window size of a sliding-window stream, and run GREEDY
to obtain core items. Then we evaluate the quality of these
core items on a PDS, and compare the quality with core items
by running GREEDY on the PDS. Let pe = p, k = 10, and
n = 50. The ratios of solution quality are shown in Fig. 9.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000

1-p=.001

1-p=.003

1-p=.005ra
tio

 o
f

so
lu

tio
n

qu
al

ity

window size

(a) DBLP

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

1-p=.001

1-p=.003

1-p=.005

ra
tio

 o
f

so
lu

tio
n

qu
al

ity

window size

(b) MemeTracker

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

1-p=.001

1-p=.003

1-p=.005

ra
tio

 o
f

so
lu

tio
n

qu
al

ity

window size

(c) math.StackExchange

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

1-p=.001

1-p=.003

1-p=.005

ra
tio

 o
f

so
lu

tio
n

qu
al

ity

window size

(d) StackOverflow

Fig. 9. Comparing PDS with sliding-window streams

In general, we observe that core items found in a small
window have higher quality than core items found in a large
window, and this trend is significant when the PDS decays fast
(i.e., small p). This observation actually shows the different
features of PDS and sliding-window streams, i.e., fast decaying
PDS emphases recent data items in the stream, and hence core
items found in a small window tend to have high quality. But
we also observe that when window size is too small, the found
core items may have rather poor quality on PDS (see Figs. 9(a)
and 9(b)). This shows that sliding-window streams abruptly
discard data outside of the window and may result in unstable
solution quality because recent but noise data may be chosen
as core items.
PDCIT vs. PDCIT+. In this experiment, we compare PDCIT
with PDCIT+. The purpose is to study how close their solution
quality is, and how significant PDCIT+ can improve the
efficiency upon PDCIT. Let pe = p ∈ {.95, .96, .97, .98, .99},
ε = 0.2, k = 10, n = 20, and we truncate lifetimes at
L = 100. We compute two ratios: (1) solution quality ratio,
i.e., the quality of solution obtained by PDCIT+ over the
quality of solution obtained by PDCIT, and (2) number of
oracle calls ratio, i.e., the number of oracles of PDCIT+ over
the number of oracle calls of PDCIT. Both results are averaged
after running 1000 time steps, as shown in Fig. 10.

We observe that the solutions found by PDCIT+ are slightly
worse than the solutions found by PDCIT, but they are indeed
very close: the ratio of solution quality is larger than 0.9.

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2020 at 07:52:39 UTC from IEEE Xplore. Restrictions apply.

 0.2

 0.4

 0.6

 0.8

 1

 0.95 0.96 0.97 0.98 0.99

ra
tio

p

solution quality
of oracle calls

(a) DBLP

 0.2

 0.4

 0.6

 0.8

 1

 0.95 0.96 0.97 0.98 0.99

ra
tio

p

solution quality
of oracle calls

(b) MemeTracker

 0.2

 0.4

 0.6

 0.8

 1

 0.95 0.96 0.97 0.98 0.99

ra
tio

p

solution quality
of oracle calls

(c) math.StackExchange

 0.2

 0.4

 0.6

 0.8

 1

 0.95 0.96 0.97 0.98 0.99

ra
tio

p

solution quality
of oracle calls

(d) StackOverflow

Fig. 10. PDCIT vs. PDCIT+

PDCIT+ is much more efficient than PDCIT, and it can reduce
more than a half of the number of oracle calls of PDCIT. This
experiment thus demonstrates that PDCIT+ finds solutions
with quality close to PDCIT, and PDCIT+ is much more
efficient than PDCIT.
Solution Quality. Next, we validate the quality of solutions
found by PDCIT+. Let pe = 0.999, n = 20, and k = 10. We
run GREEDY, unbiased RS, biased RS, and PDCIT+ for 2, 000
time steps, respectively, and show the results in Fig. 11.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000

x103

Greedy

PDCIT+

biased RS unbiased RS

va
lu

e

time step

ε=0.15
ε=0.20
ε=0.25

(a) DBLP

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 0 500 1000 1500 2000

x102

Greedy

PDCIT+

biased RS

unbiased RS

va
lu

e

time step

ε=0.15
ε=0.20
ε=0.25

(b) MemeTracker

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000

x102

Greedy

PDCIT+
biased RS

unbiased RS

va
lu

e

time step

ε=0.15
ε=0.20
ε=0.25

(c) math.StackExchange

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000

x102 Greedy

PDCIT+

biased RS

unbiased RS

va
lu

e

time step

ε=0.15
ε=0.20
ε=0.25

(d) StackOverflow

Fig. 11. Solution quality comparison (higher is better)

We observe that GREEDY finds the best solutions among the
four. RS methods perform poorly, and biased RS is slightly
better than unbiased RS. These results are expected. PDCIT+
can find solutions with quality close to GREEDY, and performs
much better than RS methods. In general, small ε can further
improve the solution quality, as shown in Fig. 13(a).
Scalability. We validate the scalability of PDCIT+. Param-
eter settings in this experiment are the same as in previous
experiment. To evaluate efficiency, we record the cumulative
number of oracle calls of each algorithm over time, and show
the results in Fig. 12.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 500 1000 1500 2000

x107

of

 o
ra

cl
e

ca
lls

time step

Greedy
PDCIT+ (ε=0.15)
PDCIT+ (ε=0.20)
PDCIT+ (ε=0.25)

(a) DBLP

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000

x107

of

 o
ra

cl
e

ca
lls

time step

Greedy
PDCIT+ (ε=0.15)
PDCIT+ (ε=0.20)
PDCIT+ (ε=0.25)

(b) MemeTracker

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000

x107

of

 o
ra

cl
e

ca
lls

time step

Greedy
PDCIT+ (ε=0.15)
PDCIT+ (ε=0.20)
PDCIT+ (ε=0.25)

(c) math.StackExchange

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000

x107

of

 o
ra

cl
e

ca
lls

time step

Greedy
PDCIT+ (ε=0.15)
PDCIT+ (ε=0.20)
PDCIT+ (ε=0.25)

(d) StackOverflow

Fig. 12. Efficiency comparison (lower is better)

We observe that GREEDY is only efficient at the very
beginning of the stream (when the number of items is small),
but the number of cumulative oracle calls increases very
quickly over time. In contrast, the number of oracle calls
of PDCIT+ grows relatively slow. This observation indicates
that PDCIT+ is indeed much more efficient than GREEDY.
In general, large ε can further improve the efficiency. This
is because the number of running MC-SIEVESTREAMING
instances in PDCIT+ decreases, as shown in Fig. 13(b).

0.78

0.80

0.82

0.84

0.86

0.88

0.90

DBLP MemeTracker math.SE StackOverflow

ut
ili

ty
 v

al
ue

 ra
tio

ε=0.15
ε=0.20
ε=0.25

(a) average utility value ratio w.r.t.
GREEDY

 40

 50

 60

 70

 80

 90

DBLP MemeTracker math.SE StackOverflow

of

 ru
nn

in
g

in
st

an
ce

s ε=0.15
ε=0.20
ε=0.25

(b) average number of running in-
stances, i.e., |xt|

Fig. 13. Trade-off effect of parameter ε

D. Gaussian Process Active Learning
Our technique can also be used to improve the efficiency

of some machine learning tasks such as Gaussian process
regression [30,31]. Gaussian process regression is a non-
parametric Bayesian approach towards regression problems,
and the goal is to learn a function mapping inputs (e.g.,
predictor variables) to outputs (e.g., target variables). Gaussian
process is an expressive method to model unknown functions.
It uses a kernel function K to transform points in a non-
linear space to a typically high-dimensional linear space, for
which good algorithms are available. One of the frequently
used kernel functions is the radial basis kernel, i.e.,

K(ei, ej) ! σ2 exp(−‖ei − ej‖2

2λ2
) (10)

for two input points ei and ej . Here, σ2 (the signal variance)
and λ (the length scale) are two hyper-parameters.

In Gaussian process active learning, we want to actively
choose the input points for which to observe the outputs in

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2020 at 07:52:39 UTC from IEEE Xplore. Restrictions apply.

order to learn the unknown function as quickly and accurately
as possible. Under the information gain criteria (i.e., maximize
the reduction in uncertainty), the objective becomes to choose
observation points S to maximize the utility function

f(S) =
1

2
log det

(
I + σ−2K(S, S)

)
(11)

where K(S, S) is a |S|× |S| kernel matrix with each element
defined by Eq. (10). f(S) is proved to be monotone and
submodular [31].

Gaussian process active learning on large scale dataset is
notoriously inefficient. Our technique can be used to choose
informative training points in a streaming fashion efficiently.
Importantly, our technique allows to smoothly forget outdated
training points, which is important in keeping the model fresh.

We apply our technique to Yahoo!-clicks and NYC-taxi
datasets to choose k most informative training points, respec-
tively. Let σ = 1,λ = 0.5, k = 10, n = 20, pe = 0.999. We
run different algorithms for 2, 000 time steps as before. The
results are shown in Figs. 14 and 15.

 2

 3

 4

 5

 6

 7

 0 500 1000 1500 2000

Greedy PDCIT+

biased RS

unbiased RS

va
lu

e

time step

ε=0.15
ε=0.20
ε=0.25

(a) Yahoo!-clicks

 2

 3

 4

 5

 6

 7

 8

 0 500 1000 1500 2000

Greedy

PDCIT+

biased RS

unbiased RS

va
lu

e

time step

ε=0.15
ε=0.20
ε=0.25

(b) NYC-taxi

Fig. 14. Solution quality comparison (higher is better)

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0 500 1000 1500 2000

x107

of

 o
ra

cl
e

ca
lls

time step

Greedy
PDCIT+ (ε=0.15)
PDCIT+ (ε=0.20)
PDCIT+ (ε=0.25)

(a) Yahoo!-clicks

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 500 1000 1500 2000

x107

of

 o
ra

cl
e

ca
lls

time step

Greedy
PDCIT+ (ε=0.15)
PDCIT+ (ε=0.20)
PDCIT+ (ε=0.25)

(b) NYC-taxi

Fig. 15. Efficiency comparison (lower is better)

These observations all consist with our previous results.
PDCIT+ can find solutions with quality comparable with
GREEDY (within 80%), and PDCIT+ performs much better
than RS methods. PDCIT+ also uses much less oracle calls
than GREEDY. The efficiency is improved to about one order
of magnitude faster.

VIII. RELATED WORK

We briefly review some related literature in this section.
Stream Sampling. Another widely used technique to reduce
the scale of large data streams is stream sampling such as
reservoir sampling [28,29] and distinct sampling [32,33]. Note
that the goal of stream sampling is to select a few data items
as samples to approximate the statistical properties of original
data stream. While in CIT, our goal is to find an optimal set of
data items as core items to maximize a utility function, which

can measure the informativeness or representativeness of a set
of data items. If the data stream contains too many redundant
or noise items, stream sampling may result in many useless
samples [32].
Submodular Optimization. Submodular function maximiza-
tion [34] has been extensively studied in the past few years
due to its wide applications in influence maximization [14],
sensor placement [4,35], search result diversification [13],
feature selection [10], data summarization [36]–[38], and so
on. For cardinality constrained monotone submodular function
maximization, the classic GREEDY algorithm guarantees a
(1 − 1/e) approximation ratio [17]. To further improve the
efficiency of GREEDY, many techniques have been proposed,
e.g., lazy evaluation [4,27], distributed computation [39]–[41],
sampling [42], etc. Different from these existing approaches,
our work belongs to a category of streaming algorithms where
each incoming data item can only be accessed once.
Streaming Submodular Optimization (SSO). Our approach
belongs to a kind of SSO techniques, which are efficient
methods to handle massive streaming data using sublin-
ear memory and update time. Existing SSO techniques can
only handle insertion-only streams [3,7] and sliding-window
streams [9,18,19]. For insertion-only streams, the state-of-
the-art streaming algorithm is SIEVESTREAMING [7], which
guarantees an (1/2 − ε) approximation ratio. For sliding-
window streams, the state-of-the-art streaming algorithm is
proposed by Epasto [19], which guarantees a (1/3−ε) approx-
imation ration. (Note that approximation ratio (1/2−ε) is also
achievable but requires higher computational complexity.) As
we pointed out in introduction, these two existing data stream
modes represent two extremes: the insertion-only streams
cannot satisfy the recency requirement; while the sliding-
window streams cannot satisfy the continuity requirement.
Hence, the SSO techniques built on them will also suffer some
weaknesses. Recently, [43] designed a new SSO technique
for streams with inhomogeneous decays. That is, each item
in the stream can participate in analysis for an arbitrary
amount of time. Such a model slightly generalizes these two
extreme stream models, however, it is still not clear how to
determine each item’s participation time in practice. Instead,
our proposed PDS model is more elegant to continuously
handle evolving data streams.
Maintaining Time-Decaying Stream Aggregates. Cohen et
al. [44] first extend the sliding-window model in [45] to the
general time-decaying model for the purpose of approximating
summation aggregates in data streams (e.g., estimating the
number of 1’s in a 0-1 stream). Cormode et al. [46] consider
the similar problem by designing time-decaying sketches.
These studies have inspired us to consider the more general
probabilistic-decaying streams.

IX. CONCLUSION

This work provides a tool to help people reduce data over-
load and draw valuable insights from evolving data streams.
We formulate our problem as a core items tracking (CIT)

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2020 at 07:52:39 UTC from IEEE Xplore. Restrictions apply.

task over probabilistic-decaying streams. This setting allows
us to gradually forget outdated data, and it is more ele-
gant and general than the insertion-only and sliding-window
streams, which represent two extremes. We address the CIT
task by designing new SSO techniques: PNDCIT solves CIT
over a special kind of probabilistic non-decaying streams,
and guarantees an (1/2 − ε) approximation ratio; PDCIT
leverages PNDCIT as a building block to solve CIT over
general probabilistic-decaying streams, and also guarantees an
(1/2−ε) approximation ratio; PDCIT+ improves the efficiency
of PDCIT a lot, and guarantees a (1/4 − ε) approximation
ratio. Our proposed techniques can find solutions with quality
comparable with GREEDY but improve the computational
efficiency to about one order of magnitude faster.

ACKNOWLEDGMENT

The research presented in this paper is supported in
part by National Natural Science Foundation of China
(61902305, 61922067, U1736205), Shenzhen Basic Research
Grant (JCYJ20170816100819428), MoE-CMCC “Artifical In-
telligence” Project (MCM20190701), Natural Science Basic
Research Plan in Shaanxi Province of China (2019JM-159),
Natural Science Basic Research Plan in ZheJiang Province of
China (LGG18F020016).

REFERENCES

[1] D. Chakrabarti and K. Punera, “Event summarization using tweets,” in
ICWSM, 2011.

[2] H. Zhuang, R. Rahman, X. Hu, T. Guo, P. Hui, and K. Aberer, “Data
summarization with social contexts,” in CIKM, 2016.

[3] B. Saha and L. Getoor, “On maximum coverage in the streaming model
and application to multi-topic blog-watch,” in SDM, 2008.

[4] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in SIGKDD,
2007.

[5] G. Cormode, S. Muthukrishnan, and W. Zhuang, “Conquering the divide:
Continuous clustering of distributed data streams,” in IEEE ICDE, 2007.

[6] C. Patil and I. Baidari, “Estimating the optimal number of clusters k in
a dataset using data depth,” Data Science and Engineering, vol. 4, no. 2,
pp. 132–140, 2019.

[7] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause,
“Streaming submodular maximization: Massive data summarization on
the fly,” in SIGKDD, 2014.

[8] J. Xu, D. V. Kalashnikov, and S. Mehrotra, “Efficient summarization
framework for multi-attribute uncertain data,” in SIGMOD, 2014.

[9] Y. Wang, Y. Li, and K.-L. Tan, “A sliding-window framework for
representative subset selection,” in IEEE ICDE, 2018.

[10] G. Brown, A. Pocock, M.-J. Zhao, and M. Luján, “Conditional likelihood
maximisation: A unifying framework for information theoretic feature
selection,” Journal of Machine Learning Research, vol. 13, pp. 27–66,
2012.

[11] R. Mehrotra and E. Yilmaz, “Representative & informative query
selection for learning to rank using submodular functions,” in SIGIR,
2015.

[12] M. Babaei, P. Grabowicz, I. Valera, K. P. Gummadi, and M. Gomez-
Rodriguez, “On the efficiency of the information networks in social
media,” in WSDM, 2016.

[13] R. Agrawal, S. Gollapudi, A. Halverson, and S. Ieong, “Diversifying
search results,” in WSDM, 2009.

[14] D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in SIGKDD, 2003.

[15] P. Indyk, S. Mahabadi, M. Mahdian, and V. S. Mirrokni, “Composable
core-sets for diversity and coverage maximization,” in PODS, 2014.

[16] S. Stergiou and K. Tsioutsiouliklis, “Set cover at web scale,” in
SIGKDD, 2015.

[17] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approximations
for maximizing submodular set functions - I,” Mathematical Program-
ming, vol. 14, pp. 265–294, 1978.

[18] J. Chen, H. L. Nguyen, and Q. Zhang, “Submodular maximization over
sliding windows,” in arXiv:1611.00129, 2016.

[19] A. Epasto, S. Lattanzi, S. Vassilvitskii, and M. Zadimoghaddam, “Sub-
modular optimization over sliding windows,” in WWW, 2017.

[20] K. U. Khan, W. Nawaz, and Y.-K. Lee, “Set-based unified approach for
summarization of a multi-attributed graph,” World Wide Web, vol. 20,
pp. 543–570, 2017.

[21] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, 2nd ed.
Springer, 2004.

[22] “DBLP computer science bibliography,” http://dblp.dagstuhl.de, 2019.
[23] “MemeTracker data,” http://www.memetracker.org/data.html, 2019.
[24] “StackExchange data,” https://archive.org/details/stackexchange, 2019.
[25] “Yahoo! front page today module user click log dataset, version 1.0,”

https://webscope.sandbox.yahoo.com, 2019.
[26] “TLC trip record data,” https://www1.nyc.gov/site/tlc/about/

tlc-trip-record-data.page, 2019.
[27] M. Minoux, “Accelerated greedy algorithms for maximizing submodular

set functions,” Optimization Techniques, vol. 7, pp. 234–243, 1978.
[28] J. S. Vitter, “Random sampling with a reservoir,” ACM Transaction on

Mathematical Software, vol. 11, no. 1, pp. 37–57, 1985.
[29] C. C. Aggarwal, “On biased reservoir sampling in the presence of stream

evolution,” in VLDB, 2006.
[30] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine

Learning, 1st ed. The MIT Press, 2006.
[31] E. Schulz, M. Speekenbrink, and A. Krause, “A tutorial on Gaussian

process regression: Modelling, exploring, and exploiting functions,”
Journal of Mathematical Psychology, vol. 85, pp. 1–16, 2018.

[32] J. Chen and Q. Zhang, “Distinct sampling on streaming data with near-
duplicates,” in PODS, 2018.

[33] P. Wang, X. Wang, J. Tao, P. Zhang, and X. Guan, “Continuously distinct
sampling over centralized and distributed high speed data streams,” IEEE
Transactions on Parallel and Distributed Systems, vol. 30, pp. 300–314,
2019.

[34] A. Krause and D. Golovin, Submodular Function Maximization. Cam-
bridge University Press, 2014, pp. 71–104.

[35] A. Krause, C. Guestrin, A. Gupta, and J. M. Kleinberg, “Robust sen-
sor placements at informative and communication-efficient locations,”
Journal ACM Transactions on Sensor Networks, vol. 7, no. 4, 2011.

[36] B. Mirzasoleiman, S. Jegelka, and A. Krause, “Streaming non-monotone
submodular maximization: Personalized video summarization on the
fly,” in AAAI, 2018.

[37] M. Mitrovic, E. Kazemi, M. Zadimoghaddam, and A. Karbasi, “Data
summarization at scale: A two-stage submodular approach,” in ICML,
2018.

[38] B. Mirzasoleiman, A. Karbasi, and A. Krause, “Deletion-robust submod-
ular maximization: Data summarization with the right to be forgotten,”
in ICML, 2017.

[39] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause, “Distributed
submodular maximization,” Journal of Machine Learning Research,
vol. 16, pp. 1–41, 2015.

[40] A. Epasto, V. Mirrokni, and M. Zadimoghaddam, “Bicriteria distributed
submodular maximization in a few rounds,” in SPAA, 2017.

[41] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani, “Fast greedy
algorithms in MapReduce and streaming,” in SPAA, 2013.

[42] B. Mirzasoleiman, A. Badanidiyuru, A. Karbasi, J. Vondrak, and
A. Krause, “Lazier than lazy greedy,” in AAAI, 2015.

[43] J. Zhao, S. Shang, P. Wang, J. C. Lui, and X. Zhang, “Submodular
optimization over streams with inhomogeneous decays,” in AAAI, 2019.

[44] E. Cohen and M. J. Strauss, “Maintaining time-decaying stream aggre-
gates,” Journal of Algorithms, vol. 59, pp. 19–36, 2006.

[45] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining stream
statistics over sliding windows,” SIAM Journal on Computing, vol. 31,
no. 6, pp. 1794–1813, 2002.

[46] G. Cormode, S. Tirthapura, and B. Xu, “Time-decaying sketches for
robust aggregation of sensor data,” SIAM Journal on Computing, vol. 39,
no. 4, pp. 1309–1339, 2009.

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2020 at 07:52:39 UTC from IEEE Xplore. Restrictions apply.

