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Abstract— Characterizing user pair relationships is important
for applications such as friend recommendation and interest
targeting in online social networks (OSNs). Due to the large scale
nature of such networks, it is infeasible to enumerate all user
pairs and so sampling is used. In this paper, we show that it is
a great challenge even for OSN service providers to characterize
user pair relationships even when they posses the complete graph
topology. The reason is that when sampling techniques (i.e.,
uniform vertex sampling (UVS) and random walk (RW)) are
naively applied, they can introduce large biases, in particular, for
estimating similarity distribution of user pairs with constraints
such as existence of mutual neighbors, which is important for
applications such as identifying network homophily. Estimating
statistics of user pairs is more challenging in the absence of
the complete topology information, since an unbiased sampling
technique such as UVS is usually not allowed, and exploring the
OSN graph topology is expensive. To address these challenges,
we present asymptotically unbiased sampling methods to char-
acterize user pair properties based on UVS and RW techniques
respectively. We carry out an evaluation of our methods to show
their accuracy and efficiency. Finally, we apply our methods to
two Chinese OSNs, Doudan and Xiami, and discover significant
homophily is present in these two networks.

I. Introduction

Online social networks (OSNs) such as Facebook and
Twitter have become extremely popular within the last few
years. Billions of network users currently spend 22% of all
their online time on OSNs on average, and this surpasses
the average time spent on email [39]. Meanwhile, OSNs have
greatly changed people’s network activities. OSNs help people
to keep in touch with old friends and meet new friends with
common interests. They provide individuals online private
spaces and multiple ways to interact using chat, messaging,
email, video, voice chat, file sharing, blogging, discussion
groups and so on. Characterizing user pair properties is
of fundamental importance and has the following important
applications

• Network homophily detection. Homophily refers to the
tendency of users to connect to others with common
interests. Singla et al. [34] show that significant ho-
mophily is present in the MSN Messenger network. That
is, users who chat with each other are more likely to share

interests in terms of their Web search topics, and personal
characteristics such as their ages and locations. Similar
findings hold for users who never talk to each other but
do have at least one friend in common. For a user in
these networks with significant homophily, we can infer
her unstated (private) personal characteristics and give the
user valuable recommendations based on her neighbors’
characteristics and interests.

• Distance distribution measurement. The distance between
two nodes A and B is measured by their shortest path
length in an OSN. Characterizing the distance distribution
measurement is necessary for calculating the average
distance among pairs and the effective diameter (the
90th percentile of all distances), which are fundamental
statistics for understanding the nature and evolution of
the network. For example, the famous six degree of
separation shows that any two people could be connected
on average within six hops from each other [24], which
indicates that human society is a small world type net-
work.

In this paper, we design efficient methods to characterize
node pairs in network. In particular, we not only characterize
all pairs (contained in set S) but also connected pairs (con-
tained in set S(1)), and pairs that share a neighbor (contained
in set S(2)), where set S consists of all node pairs in G,
subset S(1) consists of pairs of connected nodes, and subset
S(2) consists of pairs of nodes with at least one common
neighbor. Methods for characterizing node pairs in three sets
can be easily applied to problem such as measuring homophily
or distance distribution measurement. For example, we can
estimate the underlying distance distribution of G based on
sampling random node pairs uniformly from S. By comparing
the interest similarity of user pairs in sets S, S(1), and
S(2), we can infer whether users are connected and clustered
based on their common interests. Due to the large sizes of
these networks, exhaustive enumeration of all node pairs is
computational prohibitive. Existing sampling techniques such
as uniform vertex sampling (UVS) and random walk (RW)
cannot be directly applied. A naive application of sampling



techniques can generate large biases in estimated statistics.
For example, one might propose the following approach for
sampling a node pair [u, v] from S(2). It first samples a node x
from graph G using UVS. Then u and v are set to two random
neighbors of x. It is a simple way to sample two random nodes
u and v with at least one neighbor. However in what follows
we show this sampling method does not sample node pairs
uniformly, and removing sampling bias is costly. Given that
x is sampled, each pair of neighbors of x is selected with
the same probability 2

dx(dx−1) , where dx is the number of its
neighbors. Denote M(u, v) as the set of common neighbors
of u and v. Then we find that node pair [u, v] is sampled
with probability proportional to

∑
x∈M(u,v)

1
dx(dx−1) . which

is related not only with the number of common neighbor of
u and v, but also with the degree of each common neighbor
of u and v. We can easily find that it is costly to correct the
bias for sampling pair [u, v] since one needs to query nodes
u, v and all common neighbors of u and v.

When UVS is not feasible (either because we do not have
the full graph topology, or generation cost of random node
is too expensive) and exploring the OSN graph topology is
resource limited and expensive, it is much more challenging
to estimate node pair statistics. To address the above issues,
we systematically study the problem of sampling node pairs
in a large graph, and present sampling methods for estimating
characteristics of node pairs in sets S, S(1), and S(2) that can
be applied to settings where the graph topology may or may
not be known. To sample node pairs in S(2), we propose two
methods: weighted vertex sampling (WVS) and neighborhood
random walk (NRW), and develop corresponding unbiased
estimators for measuring node pairs’ statistics. Compared to
WVS, NRW does not require the use of UVS, and it can be
viewed as a regular RW over a new graph Ĝ, where a node in
Ĝ is an edge in original graph G, and an edge in Ĝ consists of
two edges in G with a common node. Simulation results show
that our methods are efficient. Finally we apply our methods to
OSNs Doudan and Xiami, and find that users tend to connect
to others with common interests.

This paper is organized as follows. The problem is for-
mulated in Section II. Section III and Section IV present
node pair sampling methods for ones with or without the
complete graph topology respectively. Performance evaluation
and testing results are presented in Section V. Section VI
presents real applications on Xiami and Douban websites.
Section VII summarizes related work. Section VIII concludes.

II. Problem Formulation

Let G = (V,E) be an undirected graph, where V is the set
of nodes and E the set of edges. G contains no self-loops. In
what follows, (u, v) denotes an edge in G, and [u, v] a node
pair in G. Note that (u, v) ̸= (v, u) and [u, v] ̸= [v, u]. We
present sampling methods to measure characteristics of node
pairs in the following sets:

• whole set S = {[u, v] : u, v ∈ V and u ̸= v}
• one-hop subset S(1) = {[u, v] : (u, v) ∈ E}

• two-hop subset S(2) = {[u, v] : u ̸= v, u, v ∈ V, ∃x ∈
V, (u, x) ∈ E and (v, x) ∈ E}

• one to two-hop subset S(2+) = S(2) ∪ S(1).
We easily find that the intersection of S(1) and S(2) to be
non-empty, and S(2) may not contain each edge (u, v) ∈ E
since u and v need not have any mutual neighbors. S(1)

consists of all pairs of nodes whose distance is exactly one,
and S(2+) consists of all pairs of nodes with distance no
greater than two. Define function F : V × V → R. For node
pair [u, v], F (u, v) defines the value of the pair’s property
under study, e.g., the number of mutual neighbors of u and v.
Note that F (u, v) needs not equal to F (v, u), e.g., F (u, v)
is defined as the number of neighbors of u excluding the
common neighbors of u and v. Let {a1, . . . , aK} be the range
of F (u, v). We propose sampling methods to estimate the node
pair distributions ω = (ω1, . . . , ωK), ω(1) = (ω

(1)
1 , . . . , ω

(1)
K ),

ω(2) = (ω
(2)
1 , . . . , ω

(2)
K ), and ω(2+) = (ω

(2+)
1 , . . . , ω

(2+)
K ),

where ωk, ω
(1)
k , ω

(2)
k , and ω

(2+)
k (1 ≤ k ≤ K) are the

fractions of pairs [u, v] in sets S, S(1), S(2), and S(2+)

respectively with F (u, v) = ak. Define S(1−) = S(1)\S(2).
For each element [u, v] ∈ S(1−), u and v are connected but
do not have any mutual neighbor. Similarly define ω(1−) =

(ω
(1−)
1 , . . . , ω

(1−)
K ), where ω

(1−)
k (1 ≤ k ≤ K) is the fraction

of pairs [u, v] with F (u, v) = ak in set S(1−). Let α = |S(1−)|
|S(1)|

and β = |S(1)|
|S(2)| . Then we have

ω
(2+)
k =

|S(1−)|ω(1−)
k + |S(2)|ω(2)

k

|S(1−)|+ |S(2)|
=

αβω
(1−)
k + ω

(2)
k

αβ + 1
. (1)

This ω(2+) can be obtained from α, β, ω(1−)
k , and ω

(2)
k , where

α and ω
(1−)
k can be calculated based on node pairs in set S(1),

and β and ω
(2)
k can be calculated based on node pairs in set

S(2). Since ω
(2+)
k is very close to ω

(2)
k for most OSN graphs

with very small α and β, therefore we focus on designing
methods for estimating characteristics of node pairs in S, S(1),
and S(2) in the following sections.

Since |S(1)| = 2|E|, |S| = |V |(|V | − 1) and |S(2)| is
usually much larger than |V |, sampling is unavoidable for
estimating ω and ω(2+) even for a moderate size graph with
several hundred thousands of nodes. In the following two
sections, we propose sampling methods based on two common
sampling techniques: Uniform Vertex Sampling (UVS) and
Random Walk (RW) respectively.

III. Node Pair Sampling Methods Based on UVS
In this section, we present sampling methods based on UVS

to estimate node pair characteristics for S, S(1), and S(2).

A. Basic Sampling Operations and Their Cost

Suppose that we can sample nodes from graph G using UVS
with replacement. For example, for the Xiami OSN, there is
a numeric ID associated with each node. The ID values of
nodes are sequentially assigned. Then one can perform UVS
by sample IDs randomly from the ID space with replacement.
We assume this computation complexity is O(1).
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In what follows, we present methods for sampling
nodes from V with any desired stationary distribution
π=(πv :v∈V ), which is important for sampling node pairs as
we will show later. First, we present an independent weighted
vertex sampling (IWVS) method. Denote Iv as the ID of node
v. Then we assign a weight to each node v as follows

W [Iv] =
∑

u∈V and Iu≤Iv

πu.

Let vi be the node with ID i ∈ {1, . . . , |V |}. At each step,
we generate a random number τ drawn uniformly from range
(0,1). Then sample node vi whose ID i satisfies W [i]≤ τ <
W [i+ 1]. vi can be efficiently identified using binary search,
and its computational complexity is O(log |V |).

Note that when πv depends on the graph topology, say the
degree of v, we need the complete graph toplogy in advance
to build the vector W . Often, the complete graph topology
is not be available. Therefore, we propose a way to modify
UVS using the Metropolis-Hasting technique [4], [9], [23].
This method does not require the complete graph topology,
and reduces the memory space used for storing array W and
extra computation for looking up the ID of a sampled node
at each step. UVS can be modeled as a Markov chain with
transition matrix P = [Pu,v], u, v ∈ V , where Pu,v = 1

|V |
is defined as the probability that node v is selected as the
next sampled node given that the current node sampled is u.
To generate a sequence of random samples from a desired
stationary distribution π, the Metropolis-Hastings technique
is a Markov chain Monte Carlo method based on modifying
the transition matrix of UVS as

P ⋆
u,v =

{
Pu,v min

(
πvPv,u

πuPu,v
, 1
)

if v ̸= u,

1−
∑

w ̸=u P
⋆
u,w if v = u.

(2)

It provides a way to alter the next node selection to produce
any desired stationary distribution π. Metropolis-Hastings
based weighted vertex sampling (MHWVS) with target dis-
tribution π works as follows: at each step, MHWVS selects
a node v using UVS and then accepts the move with prob-
ability min

(
πv

πu
, 1
)

. Otherwise, MHWVS remains at u. The
computational complexity of sampling a node by MHWVS is
O(1).

B. Sampling Node Pairs From S and S(1)

To sample a node pair [u, v] randomly from S, we can
use UVS to select two different nodes u and v randomly.
1(P) defines the indicator function that equals one when
predicate P is true, and zero otherwise. Based on sampled pairs
{[ui, vi]}i=1,...,n, the fraction ωk (1 ≤ k ≤ K) is estimated as
follows

ω̂k =
1

n

n∑
i=1

1(F (ui, vi) = ak). (3)

Each node pair [ui, vi] is sampled with the same probability
1

|V |(|V |−1) , the expectation of 1(F (ui, vi) = ak) is

E [1(F (ui, vi) = ak)] =
∑

[u,v]∈S

1(F (u, v) = ak)

|V |(|V | − 1)
= ωk,

and the variance is

V ar [1(F (ui, vi) = ak)]

=
∑

[u,v]∈S

12(F (u, v) = ak)

|V |(|V | − 1)
− ω2

k = ωk − ω2
k.

Then we have

E[ω̂k] = ωk, and V ar[ω̂k] =
ωk − ω2

k

n
.

Denote by dx the degree of node x ∈ V . To sample node
pairs from S(1), we randomly select a node u according to
probability distribution (π

(1)
x : x ∈ V ) using vertex sampling

method IWVS or MHWVS, where π
(1)
x is defined as

π(1)
x =

dx
2|E|

.

Then select a neighbor v at random. It is easy to see that node
pair [u, v] in S(1) is sampled uniformly. Based on sampled
pairs {[ui, vi]}i=1,...,n, we estimate ω

(1)
k (1 ≤ k ≤ K) as

follows

ω̂
(1)
k =

1

n

n∑
i=1

1(F (ui, vi) = ak). (4)

When IWVS is used to sample nodes, we can show that
each (ui, vi) i = 1, . . . , n is an edge sampled uniformly and
independently from graph G. Similar to the derivation of ω̂k,
we have

E[ω̂
(1)
k ] = ω

(1)
k , and V ar[ω̂

(1)
k ] =

ω
(1)
k − (ω

(1)
k )2

n
.

C. Sampling Node Pairs From S(2)

To sample node pair randomly from S(2), we first randomly
select a node x ∈ V with degree greater than two according
to probability distribution (π

(2)
x :x ∈ V), where π

(2)
x is defined

as
π(2)
x =

dx(dx − 1)

M
,

where M =
∑

y∈V dy(dy − 1). Then we generate a node pair
[u, v] by sampling two different neighbors u and v of x at
random. There are dx(dx − 1) node pairs consisting of two
different neighbors of x, therefore each one of these node
pairs is sampled with the same probability 1

M . Define m(u, v)
to be the number of mutual neighbors of u and v. Then a node
pair [u, v] in S(2) is sampled with probability

π
(2)
[u,v] =

m(u, v)

M
. (5)

Based on sampled pairs {[ui, vi]}i=1,...,n, we estimate ω
(2)
k

(1 ≤ k ≤ K) as follows

ω̂
(2)
k =

1

H

n∑
i=1

1(F (ui, vi) = ak)

m(ui, vi)
, (6)

where H =
∑n

i=1
1

m(ui,vi)
. Let m̄ = M

|S(2)| denote the
average number of mutual neighbors of node pairs in S(2).
The accuracy of ω̂(2)

k can be stated by the following theorem.

3



Theorem 1: ω̂
(2)
k (k = 1, . . . ,K) is an asymptotically un-

biased estimator of ω(2)
k . When {[ui, vi]}i=1,...,n are sampled

independently using IWVS, we have

P

(
|ω̂(2)

k − ω
(2)
k | ≤

2ϵω
(2)
k

1− ϵ

)
> 1− 1

nϵ2

(
m̄

ω
(2)
k

+ m̄− 2

)

where 0 < ϵ < 1.
Proof. We have the following equation for each i = 1, . . . , n,
and k = 1, . . . ,K

E

[
1(F (ui, vi) = ak)

m(ui, vi)

]
=

∑
[u,v]∈S(2)

π
(2)
[u,v] ×

1(F (u, v) = ak)

m(u, v)

=
∑

[u,v]∈S(2)

1(F (u, v) = ak)

M

=
ω
(2)
k

m̄
. (7)

The second equation holds because (5), and the last equation
holds because

∑
[u,v]∈S(2)1(F (u, v) = ak) = |S(2)|ω(2)

k , and
m̄ = M

|S(2)| . Meanwhile,

V ar

[
1(F (ui, vi) = ak)

m(ui, vi)

]
=

∑
[u,v]∈S(2)

π(2)
u,v ×

1(F (u, v) = ak)

m2(u, v)
−

(ω
(2)
k )2

m̄2

=
∑

[u,v]∈S(2)

1(F (u, v) = ak)

Mm(u, v)
−

(ω
(2)
k )2

m̄2
. (8)

Similar to (7) and (8), we have

E

[
1

m(ui, vi)

]
=

1

m̄
, (9)

and

V ar

[
1

m(ui, vi)

]
=

∑
[u,v]∈S(2)

1

Mm(u, v)
− 1

m̄2
. (10)

Denote

ξk,1 =
m̄

n

n∑
i=1

1(F (ui, vi) = ak)

m(ui, vi)
, and ξk,2 =

m̄H

n
.

Then, from (7) and (9) we have

E[ξk,1] = ω
(2)
k , and E[ξk,2] = 1.

Application of the law of large numbers yields
limn→∞ ξk,1

a.s.−−→ ω
(2)
k and limn→∞ ξk,2

a.s.−−→ 1, where
“a.s.” denotes “almost sure” converge, i.e., the event happens
with probability one. Therefore ω̂

(2)
k is asymptotically

unbiased because limn→∞ ω̂
(2)
k = limn→∞

ξk,1

ξk,2

a.s.−−→ ω
(2)
k .

Since IWVS samples node pairs independently, we have the
following equation from (8)

V ar[ξk,1] =
m̄2

n

∑
[u,v]∈S(2)

1(F (u, v) = ak)

Mm(u, v)
−

(ω
(2)
k )2

m̄2

=
1

n

 m̄

|S(2)|
∑

[u,v]∈S(2)

1(F (u, v) = ak)

m(u, v)
− (ω

(2)
k )2


≤ 1

n

(
m̄ω

(2)
k − (ω

(2)
k )2

)
.

The last inequality holds because of
∑

[u,v]∈S(2)1(F (u, v) =

ak) = |S(2)|ω(2)
k and m(u, v) ≥ 1. Similarly, from (10) we

have

V ar[ξk,2] =
m̄2

n

∑
[u,v]∈S(2)

1

Mm(u, v)
− 1

m̄2

=
1

n

 m̄

|S(2)|
∑

[u,v]∈S(2)

1

m(u, v)
− 1


≤ 1

n
(m̄− 1).

Using Chebyshev’s inequality, we obtain

P
(
|ξk,1 − ω

(2)
k | < ϵω

(2)
k

)
≥ 1− 1

nϵ2

(
m̄

ω
(2)
k

− 1

)
,

and

P (|ξk,2 − 1| < ϵ) ≥ 1− 1

nϵ2
(m̄− 1).

Therefore, we have the following inequalities

1− ϵ

1 + ϵ
ω
(2)
k ≤ ω̂

(2)
k ≤ 1 + ϵ

1− ϵ
ω
(2)
k

with probability at least 1− 1
nϵ2

(
m̄

ω
(2)
k

+ m̄− 2

)
. �

In summary, the complexities of all methods presented in
this Section are shown in Table I. We see that MHWVS is
more computation and memory efficient than IWVS.

TABLE I
COMPUTATIONAL AND SPACE COMPLEXITIES OF THE NODE PAIR

SAMPLING METHODS BASED VERTEX SAMPLING TECHNIQUES.

each sampling step: weighted sampling method:
operations (operations, memory)

S O(1) not required
S(1), IWVS O(log |V |) (O(|V |), O(|V |))

S(1), MHWVS O(1) (O(1), O(1))
S(2), IWVS O(log |V |) (O(|V |), O(|V |))

S(2), MHWVS O(1) (O(1), O(1))
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IV. Node Pair Sampling Methods Based on RW
In what follows, we assume that UVS is not feasible (either

because we do not have the full graph topology, or generation
cost of random ID is too expensive), and that graph G is
connected. Instead, we study the use of a random walk as
a node pair sampling technique. Random walks (RWs) have
been extensively studied in the graph theory literature [21].
From an initial node, a RW selects a neighbor of the current
node at random as the next-hop node. The walker moves to this
neighbor and samples its information. Denote by π = (πv :
v ∈ V ) the stationary distribution of RW, where πv = dv

2|E| .
For a connected and non-bipartite graph G, the probability of
being at node v ∈ V converges to πv [21]. Therefore, one can
view this as a non-uniform vertex sampling algorithm: at each
step, a node is selected from V according to the probability
distribution π. Note that RW is biased towards large degree
nodes. However its bias is known and can be corrected [10],
[32]. Compared to UVS, RW exhibits smaller estimation errors
for characteristics associated with high degree nodes.

A. Sampling Node Pairs From S and S(1)

We use two independent RWs to sample node pairs
{[ui, vi]}i=1,...,n randomly from S, where ui and vi are nodes
sampled from graph G by these two RW at each step i
separately. This sampling method can be viewed as a regular
RW over G(2) = (V (2), E(2)), where V (2) = {[u, v] : u, v ∈
V } and E(2) = {([u, v], [x, y]) : (u, x), (v, y) ∈ E}. It is
clear that a node (node pair) [u, v] in graph G(2) has dudv
neighbors. When G is a connected and non-bipartite graph,
we can easily show that graph G(2) is also connected and
non-bipartite. Then an RW over G(2) exhibits a stationary
distribution πS = (π[u,v] : u, v ∈ V ), with

π[u,v] =
dudv
4|E|2

, u, v ∈ V.

Note that this RW may sample [u, u] with stationary prob-
ability

∑
u∈V π[u,u] =

∑
u∈V d2

u

4|E|2 . Finally we estimate ωk

(1 ≤ k ≤ K) as follows

ω̂⋆
k =

1

J

n∑
i=1

1(F (ui, vi) = ak)1(ui ̸= vi)

duidvi
,

where J =
∑n

i=1
1(ui ̸=vi)
dui

dvi
.

Theorem 2: When graph G is connected and non-bipartite,
ω̂
(⋆)
k (k = 1, . . . ,K) is an asymptotically unbiased estimator

of ωk.
The proof can be found in [37].

To estimate characteristics of node pairs in S(1), we sample
node pars {[ui, vi]}i=1,...,n based on a RW on G, where ui and
vi are nodes sampled by RW at steps i and i+1 separately. We
can easily show that (ui, vi) is an edge in G. The probabilities
of a RW sampling edges are equal when the RW reaches steady
state [28], we estimate ω

(1)
k (1 ≤ k ≤ K) as follows

ω̂
(1⋆)
k =

1

n

n∑
i=1

1(F (ui, vi) = ak).

Theorem 3: When graph G is connected and non-bipartite,
ω̂
(1⋆)
k (k = 1, . . . ,K) is an asymptotically unbiased estimator

of ω(1)
k .

The proof can be found [37].

B. Sampling Node Pairs From S(2)

We present a new method named neighborhood random
walk (NRW) to sample node pairs randomly from S(2). It
can be viewed as a regular RW over graph Ĝ = (V̂ , Ê),
with node set V̂ = {(u, v) : (u, v) ∈ E}, edge set Ê =
{((u, v), (u, v′)) : (u, v) ∈ E, (u, v′) ∈ E, v ̸= v′}. Let
(u, v) be the initial edge for a NRW. Denote by N(u,v) the set
of edges connected to u or v excluding edge (u, v). Clearly
|N(u,v)| = du + dv − 2. Then NRW selects a random edge
from N(u,v) as the next sampled edge. Formally, the NRW
can be modeled as a Markov chain with transition matrix
PNRW = [PNRW

e,e′ ], where e = (u, v) and e′ = (u′, v′) are
edges in E, and PNRW

e,e′ is defined as the probability that edge
e′ is selected as the next-hop edge given that its current edge
e. PNRW

e,e′ is computed as

PNRW
(u,v),(u′,v′) =

{
1

du+dv−2 if (u′, v′) ∈ N(u,v), (u, v) ∈ E

0 otherwise.

We can easily show that a node (u, v) (an edge in G) in graph
Ĝ connects to du + dv − 1 nodes in Ĝ, its degree in Ĝ is
du + dv − 1. Meanwhile Ĝ has |Ê| = M/2 edges, where
M =

∑
y∈V dy(dy − 1). Then we have

Theorem 4: When graph G is connected and non-bipartite,
the NRW exhibits a stationary distribution πE = (π(u,v) :
(u, v) ∈ E), where π(u,v) is

π(u,v) =
du + dv − 2

M
, (u, v) ∈ E.

Proof. Suppose that the NRW is currently at edge (u, v)
with probability distribution π(u,v), then edge (u′, v′) ∈ E
is selected with probability p(u′,v′) computed as

p(u′,v′) =
∑

(u,v)∈N(u′,v′)

π(u,v)P
NRW
(u,v),(u′,v′)

=
|N(u′,v′)|

M
= π(u′,v′)

Therefore πE is the stationary distribution of a Markov chain
with transition matrix PNRW. When G is connected and non-
bipartite, Ĝ is also connected and non-bipartite. node (u, v)
(an edge in G) in graph Ĝ connects to du + dv − 1 nodes in
Ĝ, its degree in Ĝ is du+dv−1, and NRW can be viewed as
a regular RW on graph Ĝ, therefore the probability of NRW
being at an edge (u, v) ∈ E converges to πE from [21]. �

The pseudo-code for the NRW based node pair sampling
algorithm is depicted in Algorithm 1. Let (xi, yi) and si
be i-th (i ≥ 0) visited edge and node. For each step i,
the next visited edge (xi+1, yi+1) is randomly selected from
N(xi,yi), which has exactly one common node with current
edge (xi, yi). By excluding this common node, we obtain
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two distinct nodes u and v in these two edges and output
node pair [u, v] or [v, u] with equal probability. Each edge
((w, u), (w, v)) in graph Ĝ can generate a node pair consisting
of two distinct nodes u and v by excluding the common node
w, therefore node pair [u, v] can be generated by m(u, v)
different edges in Ĝ, where m(u, v) is the number of common
neighbors of nodes u and v in original graph G. NRW can be
viewed as a regular RW over graph Ĝ, and it samples edges
randomly from Ĝ with the same probability [21], therefore
a node pair (u, v) is sampled by NRW with a stationary
probability m(u,v)

M . Based on sampled pairs {[ui, vi]}i=1,...,n,
we estimate ω

(2)
k (1 ≤ k ≤ K) as follows

ω̂
(2∗)
k =

1

H

n∑
i=1

1(F (ui, vi) = ak)

m(ui, vi)
,

where H =
∑n

i=1
1

m(ui,vi)
.

Theorem 5: When graph G is connected and non-bipartite,
ω̂
(2⋆)
k (k = 1, . . . ,K) is an asymptotically unbiased estimator

of ω(2)
k .

The proof can be found [37].

V. Data Evaluation
Our simulation experiments are performed over a variety

of real world graphs, which are summarized in Table II.
Wikipedia is a free encyclopedia written collaboratively by
volunteers. Each registered user has a talk page, which the user
and other users can edit in order to communicate and discuss
updates to various articles on Wikipedia. Nodes in the network
represent Wikipedia users and a directed edge from node u to
node v represents that user u voted on user v. Gnutella is a
peer-to-peer file sharing network. Nodes represent hosts in the
Gnutella network topology and edges represent connections
between the Gnutella hosts. Another network is Epinions, a
general consumer review website. Users build a who-trust-
whom online social network, where a directed edge from nodes
u to v represents that u trusts v. Slashdot is a technology-
related news website where a node represents a user and a
directed edge from nodes u to v represents that u tags v
as a friend or foe. We test our sampling methods on their
corresponding undirected graphs which were generated by
ignoring the directions of edges.

Define the normalized mean square error as

NMSE(ω̂k) =

√
E[(ω̂k − ωk)2]

ωk
, k = 1, 2, . . .

We use this metric to measure the relative error of the estimate
ω̂k with respect to its true value ωk. Because we use relative
error, when ω̂k is small, we consider values as large as
NMSE(ω̂k) = 1 to be acceptable.

A. Distance distribution

We evaluate the performance of UVS for estimating ω =
(ω1, . . . , ωK), the distance distribution of node pairs in S,
where K is the graph diameter, and graphs used are the largest
connected component (LCC) of Wiki-vote and the LCC of

Algorithm 1: NRW pseudo-code.

/* n is the sampling budget, (x0, y0) is the

initial edge, and (xi, yi) and si are visited

edge and node at step i. */

input : n and (x0, y0) ∈ E
output: node pairs [u1, v1], [u2, v2], . . . , [un, vn]

i← 0;
while i <= n do

/* U(0, 1) is a uniform (0, 1) random sample */

Generate p← U(0, 1);
/* dx is the degree of node x in G */

if p <
dxi

−1

dxi
+dyi

−2 then
/* randomNeighbor(x, y) returns a node

selected randomly from neighbors of

node x excluding node y */

si ← randomNeighbor(xi, yi);
xi+1 ← xi and yi+1 ← si;
/* u and v are nodes in sequentially

visited edges (xi, yi) and (xi+1, yi+1)

excluding their common node */

u← yi and v ← si;
else

si ← randomNeighbor(yi, xi);
xi+1 ← si and yi+1 ← yi;
u← xi and v ← si;

end
Generate q ← U(0, 1);
if q < 0.5 then

ui+1 ← u and vi+1 ← v;
else

ui+1 ← v and vi+1 ← u;
end
i← i+ 1;

end

P2P-Gnutella. Fig. 1 presents NMSE(ω̂k) (1 ≤ k ≤ K) for
sampling budgets B = {0.001|S|, 0.005|S|, 0.01|S|}. When
B ≥ 0.05|S|, the NMSE(ωk) is always smaller than one. We
observe that the error of sampling B pairs from S is roughly
proportional to 1/

√
B. For instance, in Fig. 1 we see that an

order of magnitude increase in B roughly decreases the error
by 1/

√
10.

B. Mutual neighbor count distribution

The number of mutual neighbors for a pair of nodes is
usually used as a metric to indicate the strength of their
relationship [33]. Define ω

(1)
k and ω

(2)
k as the fraction of

node pairs with k ≥ 1 mutual neighbors in S(1) and S(2)

respectively. Fig. 2 shows the complementary cumulative
distribution function (CCDF) of ω(1) and ω(2) for graphs soc-
Epinions and soc-Slashdot. The size of S(2) is 7.34×107 and
9.49×107 for soc-Epinions and soc-Slashdot respectively. The
statistics for LCC of soc-Epinions and LCC of soc-Slashdot

6



0 2 4 6 8 10
10

−6

10
−4

10
−2

10
0

distance  k

E
[ω̂

k
]

 

 real value
B=0.001|S|
B=0.005|S|
B=0.01|S|

(a) average, LLC of P2P-Gnutella

1 2 3 4 5 6 7
10

−6

10
−4

10
−2

10
0

distance  k

E
[ω̂

k
]

 

 
real value
B=0.001|S|
B=0.005|S|
B=0.01|S|

(b) average, LLC of Wiki-vote

0 2 4 6 8 10
10

−3

10
−2

10
−1

10
0

10
1

distance  k

N
M

S
E

(ω̂
k
)

 

 
B=0.001|S|
B=0.005|S|
B=0.01|S|

(c) NMSE, LLC of P2P-Gnutella

1 2 3 4 5 6 7
10

−3

10
−2

10
−1

10
0

10
1

distance  k

N
M

S
E

(ω̂
k
)

 

 

B=0.001|S|
B=0.005|S|
B=0.01|S|

(d) NMSE, LLC of Wiki-vote

Fig. 1. Average and NMSE of distance distribution estimates.

TABLE II
OVERVIEW OF DIRECTED GRAPH DATASETS USED IN OUR SIMULATIONS.

Graph Entire Graph LCC
nodes edges nodes edges

Wiki-vote [17], [18] 7,115 103,689 7,066 103,663
P2P-Gnutella [31] 10,876 39,994 10,876 39,994
soc-Epinions [30] 75,879 508,837 75,877 508,836
soc-Slashdot [20] 77,360 905,468 77,360 90,5468

”LCC” refers to the largest connected component in the undirected graph
generated by ignoring the directions of edges.

are similar.
For set S(1), we evaluate the performance of sampling

methods: IWVS and MHWVS presented in Section III-B,
and RW presented in Section IV-A using graph soc-Epinions.
Fig. 3 presents NMSE(ω̂

(1)
k ) for sampling budgets B =

{0.001|S(1)|, 0.005|S(1)|, 0.01|S(1)|}. We find that the error of
sampling B pairs from S(1) is roughly proportional to 1/

√
B

for each method. Fig. 4 compares the NMSE of the three
sampling methods with the same sampling budget. It shows
that RW and IWVS are slightly more accurate than MHWVS,
and RW almost has the same accuracy of IWVS. The results
for graph soc-Slashdot are similar and can be found in [37].

For set S(2), we evaluate the performance of the following
methods: IWVS and MHWVS presented in Section III-C, and
NRW presented in Section IV-B using graph soc-Slashdot.
Fig. 5 presents NMSE(ω̂

(2)
k ) for sampling budgets B =

{0.001|S(2)|, 0.005|S(2)|, 0.01|S(2)|}. When B > 0.05|S(2)|,

all NMSE(ω
(2)
k ) are smaller than one for each sampling

methods. Fig. 6 compares the NMSE of three sampling meth-
ods under the same sampling budget. It shows that NRW and
IWVS have much smaller errors than MHWVS, and NRW
almost exhibit the same accuracy as IWVS. The results for
graph soc-Epinions are similar and can be found in [37].

C. Similarity distribution

It is hard to obtain all users’ interests in a real large OSN due
to resource limits. Using publicly available graph topologies,
we manually generate interests and distribute them over these
graphs, and use them as benchmark datasets for our simulation
experiments. We use the following interest distribution scheme
(IDS) to distribute interests over a graph: To distribute an
interest possessed by k different nodes, it first selects a random
node v that can reach at least k−1 different nodes, where two
nodes are reachable if there is at least one path between them
in the undirected graph. Then we distribute this interest to
node v and the closest k − 1 nodes connected to v.

Define the truncated Pareto distribution as θk = α
γkα+1 , k =

1, . . . ,W , where α > 0 and γ =
∑W

k=1
α

kα+1 . In the following
experiments we generate 105 distinct interests, and for each
interest the number of nodes possessed it is random variable
selected from set {1, . . . ,W} according to the truncated Pareto
distribution with parameter α = 1 and W = 103. The graphs
used are the LCC of P2P-Gnutella and LCC of Wiki-vote,
where the size of S(2) is 2.69×105 and 3.46×106 separately.
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Fig. 2. (soc-Epinions and soc-Slashdot) CCDF of the distributions of node pairs by the mutual neighbor count.
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Fig. 3. NMSE of distribution estimates of pairs in S(1) by the mutual neighbor count for different sampling budget B.
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(b) B = 0.005|S(1)|
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Fig. 4. (LCC of soc-Epinions) Compared NMSE of distribution estimates of pairs in S(1) by the mutual neighbor count for different methods.

Define ωk, ω(1)
k and ω

(2)
k as the fraction of node pairs with

k ≥ 1 common interests in S, S(1), and S(2) separately. Fig. 7
shows the CCDF of ω, ω(1), and ω(2) finally generated.

Fig. 8 shows the NMSE of sampling methods for set S,
S(1), and S(2) under the same number of sampled pairs. For
set S, results show that UVS is more accurate for estimating
ωk with small k, and RW is more accurate for estimating
ωk with large k. This is because of RW is biased to sample
high degree nodes, and IDS generates more interests for high
degree nodes than nodes with small degrees. It is similar to the
observation for estimating degree distribution using RW and
UVS [28]. For set S(1), we find that IWVS, MHWVS, and RW

almost have the same accuracy. For set S(2), the results show
that IWVS has the smallest errors for estimating ω

(2)
k with

small k, and MHWVS performs worst. In [37], we also show
simulation results for other IDS distribution schemes such as
independent cascade model [8].

VI. Applications

In this section, we conduct real experiments on two popular
Chinese OSNs: Douban and Xiami. Douban mainly provides
an exchange platform for reviews and recommendations on
movies, books, and music albums. It has approximately 6
million registered users as of 2009 [40]. Each user of Douban
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Fig. 5. NMSE of distribution estimates of pairs in S(2) by the mutual neighbor count for different sampling budget B.
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Fig. 6. (LCC of soc-Slashdot) Compared NMSE of distribution estimates of pairs in S(2) by the mutual neighbor count for different methods.
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Fig. 7. Distribution of pairs in S, S(1), and S(2) by the common interest count separately.

maintains three lists for books, movies and music albums
respectively. Xiami is a popular website devoted for music
streaming service and music recommendation, and has approx-
imately 1.7 million users as of 2011 [36]. Each user of Xiami
maintains a list of his/her favorite artists. Fig. 9 shows statistics
of users’ interests in Xiami and Douban, which is measured
based on 101,401 unique Douban users and 524,283 unique
Xiami users sampled by a RW. On average, a Xiami user is
interested in 8.76 artists, and a Douban user in 96.03 items
consisting of 46.26 movies, 29.43 books, and 20.34 music
albums. To measure interest similarities of users in Xiami and
Douban, we collected 171,860 Xiami user pairs and 50,700

Douban user pairs from set S, 105,736 Xiami user pairs and
85,631 Douban user pairs from set S(1) using the UVS based
methods presented in Section IV, and 359,522 Xiami user pairs
and 96,361 Douban user pairs from set S(2) by our new RW
based method NRW. As shown in Fig. 10, we observe that user
pairs in S(1) and S(2) have much more common interests than
user pairs in S, and user pairs in S(2) have a fewer common
interests than user pairs in S(1). This is also true for three
different kinds of interests, movies, books, music albums in
Douban, which is shown in Fig. 11. This indicates that users
in Xiami and Douban tend to connect to ones with the similar
interests.

9



0 1 10 100 1,000 10,000
10

−4

10
−2

10
0

10
2

number of common interests  k

N
M

S
E

(ω̂
k
)

 

 

UVS
RW

(a) S, B = 0.01|S|, LCC of Wiki-vote

1 10 100 1,000 10,0000
10

−2

10
−1

10
0

10
1

number of common interests  k

N
M

S
E

(ω̂
(1

)
k

)

 

 
IWVS
MHWVS
RW

(b) S(1), B = 0.05|S(1)|, LCC of Wiki-vote

1 10 100 1,000 10,0000
10

−3

10
−2

10
−1

10
0

10
1

number of common interests  k

N
M

S
E

(ω̂
(2

)
k

)

 

 
IWVS
MHWVS
NRW

(c) S(2), B = 0.01|S(2)|, LCC of Wiki-vote
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(e) S(1), B = 0.05|S(1)|, LCC of P2P-Gnutella
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Fig. 8. Compared NMSE of distribution estimates of pairs in S, S(1), and S(2) by the common interest count for different methods.
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Fig. 9. (Douban and Xiami) Statistics of users’ interests

VII. Related Work

Let us provide a brief summary on related work. Singla
et al. [34] reveal that significant homophily is present in the
MSN Messenger network based on the study of user pairs’
similarities in terms of their Web search topics, and personal
characteristics such as their ages and locations. Similar results
also are found in [16]. There are also works on measuring
the distance statistics of user pairs in OSNs [15], [16], [19].
Leskovec et al. [19] show that the effective diameter for a
range of real networks gradually decreases as the network
grows, which contradicts the basic assumption of existing net-
work evolution models. Previous graph sampling work focuses
on designing accurate and efficient methods for measuring

graph characteristics, such as node degree distribution [6],
[27]–[29], [35] and the topology of nodes’ groups [12]. These
sampling methods have been widely applied to characterize
complex networks, such as P2P networks [7], [22], [27], [35],
and OSNs [5], [6], [11], [25], [38]. We summarize previous
graph sampling work as follows: Breadth-First-Search (BFS)
introduces bias towards high-degree nodes that is unknown
and difficult to remove in general graphs [1], [13], [14].
Random walk (RW) is biased to sample high degree nodes,
however its bias is known and can be corrected for [10],
[32]. Compared to uniform vertex sampling (UVS), a random
walk has smaller estimation errors for the characteristics of
high degree nodes, especially for networks where UVS is
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Fig. 10. (Xiami and Douban) Statistics of users’ common interests
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Fig. 11. Statistics of users’ common interested movies, books, and music albums in Douban

costly (e.g., Flickr, Facebook, and MySpace) [28]. Compared
to RW that reweights sampled values to obtain an unbiased
estimate of graph characterizes, The Metropolis-Hasting RW
(MHRW) [6], [35], [41] modifies the random walk procedure
using the Metropolis-Hasting technique, which aims to sample
each node uniformly. The accuracy of RW and MHRW is
compared in [6], [27], and in a variety of experiments estimates
obtained by RW are shown to be consistently more accurate
than or equal to that of MHRW. The mixing time of RW
determines the efficiency of the sampling, and it is found

practically much larger than commonly believed [26] for many
OSNs. There are a lots of work to decrease mixing time [2],
[3], [5], [11], [28]. To the best of our knowledge, this paper
is the first to study and provide a sound theoretical analysis
of the problem of sampling node pairs with constraints in the
graph.

VIII. Conclusions

In this work we systemically study the problem of estimat-
ing characteristics of node pairs in sets S, S(1), and S(2) for
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ones with/witout the complete graph topology. We propose
two kinds of sampling methods based on uniform vertex
sampling and random walk techniques, and prove that they are
asymptotical unbiased estimators. Our simulation results show
that random walk based methods and uniform vertex based
methods almost have the similar accuracy, especially for the
sampling methods for S(1). Finally we apply our methods to
Doudan and Xiami OSNs, and discover that there is a strong
tendency for users to connect to others with common interests.
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