
Walking with Perception: Efficient Random Walk
Sampling via Common Neighbor Awareness

Yongkun Li1, Zhiyong Wu1, Shuai Lin1, Hong Xie2, Min Lv1, Yinlong Xu1, John C.S. Lui3
1School of Computer Science and Technology, University of Science and Technology of China

2College of Computer Science, Chongqing University
3Department of Computer Science and Engineering, The Chinese University of Hong Kong

ykli@ustc.edu.cn, {wzylucky, shuailin}@mail.ustc.edu.cn,

hongx87@gmail.com, {lvmin05, ylxu}@ustc.edu.cn, cslui@cse.cuhk.edu.hk

Abstract—Random walk is widely applied to sample large-
scale graphs due to its simplicity of implementation and solid
theoretical foundations of bias analysis. However, its computa-
tional efficiency is heavily limited by the slow convergence rate
(a.k.a. long burn-in period). To address this issue, we propose
a common neighbor aware random walk framework called
CNARW, which leverages weighted walking by differentiating
the next-hop candidate nodes to speed up the convergence.
Specifically, CNARW takes into consideration the common neigh-
bors between previously visited nodes and next-hop candidate
nodes in each walking step. Based on CNARW, we further
develop two efficient “unbiased sampling” schemes. Experimental
results on real-world network datasets show that our approach
converges remarkably faster than the state-of-the-art random
walk sampling algorithms. Furthermore, to achieve the same
estimation accuracy, our approach reduces the query cost (a
measure of sampling budget) significantly. Lastly, we also use
two case studies to demonstrate the effectiveness of our sampling
framework in solving large-scale graph analysis tasks.

I. Introduction

In recent years, online social networks (OSNs) such as
Facebook, Twitter and Flickr have become more and more
popular, so how to take advantage of these platforms to
promote commercial businesses, like viral marketing, product
recommendation and advertisement promotion, has gain sig-
nificant attention. This task necessitates an accurate estimation
or even mining of various kinds of graph centralities. The
rationale is that different kinds of graph centralities imply
different attributes of users, which can be effectively used
for promoting commercial businesses. This can be further
validated by the following two examples.

• Investment on networking platforms. OSNs are proven
to be effective for viral marketing due to the “word-
of-mouth” effect [14], [31], [7]. That is, a user who
bought a product may influence her friends (neighboring
nodes in OSNs) to purchase the same product. Clearly,
different OSN platforms may have different potentials
to do viral marketing, as both the activeness of users
and the influence between users may differ significantly
across different OSNs. Therefore, one interesting problem

for a product owner is: Which OSN platform should be

targeted to do viral marketing so as to attract as many

buyers as possible with a given advertisement budget?

This problem may be heuristically solved by estimating

the average similarity of all user pairs in different OSNs,
because higher similarity may imply easier influence.

• Bundling strategy in viral marketing. Bundling sale
which bundles multiple products together to sale with
some discount can be witnessed everywhere in our dairy
life, and it is also widely studied in network economics.
In the situation of viral marketing in OSNs, we can also
expect that bundling can be used to promote the sale.
However, its efficiency may depend on which products to
bundle, e.g., bundling two products which target young
and elderly people respectively may even reduce the
sale. Thus, one interesting problem is: Which products

should be bundled together so as to trigger a larger

sale? This problem can be better solved by mining the
value of the OSN, e.g., we can estimate the interest
distribution of users on every product, and then bundle
the set of products which have similar distributions, as
similar distributions may imply that users have similar
interest in the set of products.

However, it is not an easy task to accurately estimate
graph centralities or efficiently solve graph mining problems.
The challenge mainly comes from two aspects. First, OSNs
are usually extremely large (e.g., the number of monthly
active users of Facebook has already reached two billions
[27]). Second, to protect user privacy, many OSNs only allow
the third-party agents to access the networking data through
fixed API interfaces with rate constraint. These challenges
raise a fundamental question: How to design computationally

efficient algorithms for large-scale OSNs? Graph sampling is a
promising paradigm to address the computational challenge of
graph analysis tasks, since it generates representative samples
of the OSNs without traversing the whole network and has
received extensive attentions [4], [16], [34], [33], [32].

Among various sampling approaches, random walk based
method is the mainstream one due to its scalability and
simplicity of implementation. The general idea of random
walk based sampling scheme is as follows. A walker starts
at an arbitrary node, then repeatedly jumps to another node
by choosing from the current node’s neighbors uniformly at
random. After many steps, the probability of a node being
visited tends to reach a stationary probability distribution,

���

�����*&&&���UI�*OUFSOBUJPOBM�$POGFSFODF�PO�%BUB�&OHJOFFSJOH�	*$%&

��������9�����������¥�����*&&&
%0*���������*$%&�����������

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:06:33 UTC from IEEE Xplore. Restrictions apply.

and one can start collecting samples after convergence [37],
[25], [9]. The time duration to reach the stationary distri-
bution is known as the burn-in period [25], [24]. Based on
the collected samples and the knowledge of the stationary
probability distribution, one can generate unbiased estima-
tions for interested graph measures. However, random walk
based sampling algorithms suffer from the long burn-in period
problem (i.e., slow convergence) in real-world OSNs [37],
[24]. This issue can lead to a large computation overhead.
As a consequence, given a sampling budget (this is usually
the case in real-world sampling tasks), we may only collect
a small number of representative samples. Without sufficient
samples, the accuracy of graph mining tasks may get severely
reduced. Thus, one important question is: How to speed up

the convergence of random walk over large-scale graphs?

Currently, there are two classes of methods to accelerate
the convergence of random walk. The first class of algorithms
aim to increase the conductance of graphs [26], [23], while
these schemes often need the global information of the graph,
which is usually infeasible in practical situations. The second
class of algorithms modify the transition probabilities in each
walking step [18], [36], these schemes usually utilize the
walking history and require only the partial information of
the graph. The key issues are what kind of partial information
is needed and how to utilize the information to speed up the
convergence of random walk sampling?

In this paper, we propose a new random walk CNARW in
which the walker optimizes the next-hop node selection by
looking back previously visited nodes and also looking one
step ahead with a small overhead. In particular, CNARW takes
into consideration the number of common neighbors between
the current node and the next-hop candidates so that it can
speed up the convergence significantly. We also study another
fundamental question: How many steps should the walker look

back? Intuitively, the larger the number of steps to look back,
the more historical information the walk can have, which will
lead to faster convergence speed. However, this also leads to
a larger computational cost. Our contributions are:

• We propose CNARW, a common neighbor aware random
walk approach, which selects the next node to visit
by taking into consideration the number of common
neighbors between the currently visiting node and its
neighbors. CNARW shrinks the burn-in period and speeds
up the convergence of random walks.

• We also develop efficient node and edge sampling al-
gorithms based on CNARW, and develop an efficient
scheme to provide “unbiased statistical estimation”. We
also provide theoretical proofs to guarantee the unbiased-
ness of graph measure estimation on sampled graphs.

• We conduct extensive experiments on real-world datasets
to evaluate the efficiency of CNARW. Results show that
with CNARW the number of steps needed to converge
can be reduced by up to 71.9% compared to existing
schemes like SRW [22], NBRW [18] and CNRW [36].
Furthermore, to achieve the same estimation accuracy,

CNARW can also reduce the query cost by up to 35.7%.

The rest of this paper is organized as follows. In Section II,
we provide necessary background on random walk and graph
sampling. In Section III, we present our common neighbor
aware random walk framework (CNARW) and related the-
oretical analysis. In Section IV, we introduce the unbiased
sampling scheme via CNARW. We evaluate the performance
of CNARW in Section V, and review related works in Sec-
tion VI. In Section VII, we conclude this paper.

II. Preliminaries

A. Random Walk on Graphs

We consider undirected and connected graphs which are
denoted by G(V,E), where V is the set of nodes and E is
the set of edges. We use |V | and |E| to denote the number
of nodes and edges in G, respectively. We denote N(v) for
v ∈ V as the set of neighbors of v and deg(v) as the degree
of v, i.e., deg(v) = |N(v)|.

A random walk on graph G(V,E) can essentially be viewed
as a finite Markov chain, in which the walker starts from a
given node, say v0 ∈ V , then randomly chooses a neighbor
of v0 and jumps to it according to some transition probability
distribution defined by the random walk algorithm, the walker
continues this process by repeating the above step. The tran-
sition probability distribution in one step can be represented
as a |V | × |V | matrix P = (Puv), u, v ∈ V , where Puv

denotes the probability of moving from u to v in one step. For
different algorithms, they can be mathematically represented
by their transition probability matrices. Here, we introduce
simple random walk (SRW), which is classical and widely used
as the baseline of various optimized random walks.

Simple Random Walk (SRW) [22]. Suppose that the walker
is currently at node u, SRW chooses the next node v from
N(u) uniformly at random according to deg(u), i.e., Puv is

Puv =

{

1/deg(u), if v ∈ N(u),

0, otherwise.

For SRW, the stationary distribution π = {π(u)}u∈V , where
π(u) denotes the probability of node u being visited when the
random walk converges, can be derived as

π(u) = deg(u)(2|E|)−1.

B. Unbiased Graph Sampling

To perform unbiased graph sampling via random walks, the
whole process can be divided into two steps: (1) collect enough
number of samples, and (2) perform an unbiased estimation.

In the first step, there are two ways of collecting samples:
continuous sampling [21], [9], [18] and independent sam-
pling [25], [37]. Continuous sampling initiates one walk only
and keeps walking after convergence until collecting enough
samples, while independent sampling initiates many random
walks and collects only one sample from each walk after
convergence. Note that samples can only be collected after
convergence for both approaches so as to provide predictable

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:06:33 UTC from IEEE Xplore. Restrictions apply.

or unbiased estimations. Thus, reducing the burn-in period
is crucial to reduce the computation cost in random walk
sampling, no matter which approach is used to collect samples.

In the second step of unbiased graph sampling, that is,
to perform estimation on collected samples. Suppose that
the graph measure to be analyzed is defined by a function
f : V → R, then applying f on enough number of samples
for a random walk with stationary distribution π produces an
estimation of Eπ [f] !

∑

u∈V f(u)π(u). The accuracy of this
estimation is guaranteed by the Strong Law of Large Numbers

(SLLN) [18], [13], which can be stated as follows.

Theorem 1: Strong Law of Large Numbers (SLLN). Suppose

that {Xt}t≥0 is a finite, irreducible Markov chain with station-

ary distribution π, where Xt denotes the state of the Markov

chain at time t. As t→∞, we have

µt(f)→ Eπ [f], almost surely (a.s.),

for any function f : V → R with Eπ [|f |] <∞, where

µt(f) !
1
t

∑t

s=0
f(Xs), Eπ [f] !

∑

u∈V
f(u)π(u).

Note that in the above formula, Xs " π, µt(f) denotes
the average of f over the samples, and Eπ [f] denotes the
mathematical expectation of f respect to π.

As random walks may not always produce uniformly dis-
tributed samples, e.g., SRW, to achieve unbiased estimation,
which can be represented as EU [f] where U denotes the uni-
form distribution, we can correct the bias by using Important

Sampling Framework [11], [18]. That is, by setting the weight
ω(Xs) = U(Xs)/π(Xs), we have

∑t
s=1 ω(Xs)f(Xs)
∑t

s=1 ω(Xs)
→ EU [f], as t→∞.

III. CNARW: Common Neighbor Aware Random Walk

In this section, we present the details of our common
neighbor aware random walk (CNARW). Specifically, we
first introduce the main idea of CNARW by using a simple
example, then we present its algorithm design in details and
provide theoretical analysis of its stationary distribution.

A. Main Idea of CNARW

The main idea of CNARW is to utilize the common
neighbor information. To illustrate, suppose that the walker
is currently at node u, so u’s neighbors, i.e., nodes in N(u),
present as the candidates of next-hop nodes (see Figure 1).
Instead of choosing the next-hop node uniformly at random
from all candidates as in SRW, which we call uniform walking

(see Figure 1(a)), CNARW differentiates the candidates by
taking into consideration their degrees and the number of
common neighbors between them and node u, which we call
weighted walking (see Figure 1(b)). Specifically, if a candidate
node, say v ∈ N(u), has a higher degree or less common
neighbors with u, then the walker moves to v with a higher
probability. That is, the weight of the transition probability
from u to v is larger, e.g., in Figure 1(b), Puv = 12/37 is

the largest as v has higher degree but less common neighbors
with u than other nodes in N(u). In fact, we can easily verify
from Figure 1(b) that v should be a better choice as it is easier
to explore more unvisited nodes though v.

The rationale of the above weighted walking strategy used
by CNARW can be justified as follows. We observe that one
key reason why simple random walk converges slowly is that
it is easy to fall into local loops due to the high clustering
feature, which is very common for OSNs. In other words, by
moving to neighbors uniformly at random, it is very likely
to walk back to previously visited nodes, and this kind of
revisits clearly slow down the convergence. To avoid frequent
revisits to preciously visited nodes so as to speed up the
convergence, one way is to give higher priority to nodes which
provide higher chance of exploring unvisited nodes in each
walking step. Therefore, if a candidate node has a higher
degree, then it may provide a higher chance of connecting
to more unvisited nodes. However, if it has more common
neighbors with previously visited nodes, then the walker may
also have a high probability of walking back to those visited
nodes through common neighbors. Thus, walking to a node
which has higher degree but fewer common neighbors with
previously visited nodes (or simply the current node) not only
provides higher chance of walking to unvisited nodes, but also
reduces the probability of walking back to visited nodes in
the future walking steps. With the above weighted walking
strategy, CNARW should converge faster.

H

J

[

G

I

K

L

M

N

ϭͬϱ

ϭͬϱ

ϭͬϱ

ϭͬϱ
ϭͬϱ

\

(a) SRW (uniform walking)

\

H

J

[

G

I

ϲͬϯϳ

ϭϮͬϯϳ

ϰͬϯϳ
ϵͬϯϳ

ϲͬϯϳ

K

L

M

N

(b) CNARW (weighted walking)

Figure 1. Comparison of CNARW with SRW: SRW chooses next node
uniformly at random from the current node’s neighbors, while CNARW walks
with higher probability to a neighbor which has larger degree and less common
neighbors with the current node.

B. Algorithm Design of CNARW

To realize CNARW described above by using the weighted
walking strategy, the key issue is to formulate the selection of
the next-hop node with a mathematical model. Based on the
formulation, the transition probability matrix can be formu-
lated, and the random walk algorithm can also be developed
accordingly. In the following, we first formulate next node
selection by leveraging the concept of “set conductance”, then
present the design of a transition matrix and show the random
walk algorithm in details.

Formulation of next node selection. To formulate next node
selection, we leverage the concept of “set conductance” [26].
Its definition is given below.

Definition 1: (Set Conductance) [26]. Let G = (V,E) be an

undirected graph and C ⊂ V be a set of nodes, Let φ(C) be

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:06:33 UTC from IEEE Xplore. Restrictions apply.

the conductance of set C and it is defined as

φ(C) = φ(C, C̄) = |EC,C̄ |/Vol(C),

where C̄ = V − C, EC,C̄ = {(u, v) ∈ E|u ∈ C, v ∈ C̄}, and

Vol(C) =
∑

u∈C deg(u).

Remark: Note that the conductance φ(C) can be considered
as the ratio of the number of connections between C and C̄
to the number of connections inside C. More importantly, the
conductance of set C can be taken as an efficient indicator to
reflect the difficulty of being trapped into the local community
C if a walker is currently at a node in C. In particular, larger
conductance φ(C) may imply a higher chance of not being
trapped into the local subgraph, because larger φ(C) means
more connections to nodes outside C, i.e., it provides higher
chance of walking outside C.

Now we formulate the selection of the next-hop node by
using the concept of set conductance described above. Suppose
that the walker is currently at node u, we define a set of frontier
nodes, which contains the current node and its neighbors,
and call it frontier set denoted as S, i.e., S = {u} ∪ N(u).
For example, as shown in Figure 1(a), S = {u, a, b, v, c, d}.
According to previous discussions, φ(S) can be used as an
indicator to characterize the difficulty of being trapped in S.
Let deg(S) =

∑

i∈S deg(i). We can derive φ(S) as

φ(S) = |ESS̄ |/deg(S).

Note that all candidates of the next-hop nodes are now in S,
to evaluate the goodness of being selected as the next hop for
each candidate, say node v, we characterize the contribution
of v to the conductance of set S, which can be mathematically
expressed as ∆φv = φ(S)−φ(S−v) where S−v = S\{v}. For
example, as in Figure 1(a), S−v = {u, a, b, c, d}. The physical
meaning is that if v contributes more to the conductance of set
S, then walking through v may provide higher opportunities of
exploring unvisited nodes outside S. We give the mathematical
expression of ∆φv in Theorem 2.

Theorem 2: Given the current node u and it’s frontier set S,

the contribution of node v to the conductance of set S, say

∆φv , can be derived as

∆φv =
(1−φ(S))− 2(Cuv+1)/deg(v)

(
∑

i∈S deg(i))/deg(v)−1
, (1)

where deg(v) and Cuv denote the degree of v and the number

of common neighbors between v and u, respectively.

Proof: We derive ∆φv as follows.

∆φv = φ(S)− φ(S−v)

=
|ESS̄ |

∑

i∈S deg(i)
−
|ESS̄ |−[deg(v)−(Cuv+1)]+(Cuv+1)

∑

i∈S deg(i)− deg(v)

=
deg(v)[

∑

i∈S deg(i)−|ESS̄ |]−2(Cuv+1)
∑

i∈S deg(v)
∑

i∈S deg(i)[
∑

i∈S deg(i)−deg(v)]

=

[

(1−φ(S))−
2(Cuv+1)
deg(v)

]

/

[

∑

i∈S deg(i)

deg(v)
−1

]

.

Remark: From Theorem 2, we can see that ∆φv is only
dependent on deg(v) and Cuv . In particular, for fixed deg(v),

if v has fewer common neighbors with u, then it contributes
more to the conductance (the higher ∆φv). On the other hand,
if Cuv is fixed, then larger degree implies higher contribution
to the conductance. Thus, the change of ∆φv with respect
to the degree and the number of common neighbors of a
candidate node is consistent with the intuition behind the
weighted walking strategy described in Section III-A. In sum-
mary, for each v ⊂ N(u), its contribution to the conductance
of the frontier set can be taken as an effective indicator to
evaluate the goodness of choosing it as the next node in each
step. Precisely, CNARW gives higher weights to nodes which

contribute more to the conductance of the frontier set.

Design of the walker’s transition matrix. To develop a
weighted walking strategy according to Theorem (2), the
intuitive strategy is to make the transition probability from
u to v (i.e., Puv) be proportional to ∆φv . For example, to
avoid computing φ(S), we can let Puv be proportional to
1 − Cuv

deg(v) . The rationale is that if v has a larger degree

and less common neighbors with u, i.e., 1 − Cuv

deg(v) is larger,

then the contribution of v to φ(S) is bigger, so the walk
should select it as the next node with a higher probability.
To design a reversible random walk so as to easily derive
the stationary distribution, we also guarantee the symmetric
property in designing Puv . Mathematically, we make Puv be
proportional to 1− Cuv

min{deg(u),deg(v)} as follows.

Puv ∝ 1− Cuv/min{deg(u), deg(v)}. (2)

We point out that one can also adopt other functions in
Equation (2) to develop a new transition matrix, for example,
using deg(u) + deg(v) or max{deg(u), deg(v)} can also
satisfy the symmetric property. However, the function min is
able to eliminate the dominating effect of deg(u) when it is
very large so that different neighbors of u can be differentiated.
Thus, using min usually leads to better performance, which is
also validated in Section V-F via experiments.

To realize the proportional strategy in Equation (2) and
limit the computation overhead, CNARW adopts a walking-
with-rejection policy to determine the next-hop node in each
walking step. In particular, in each step, CNARW first selects a
candidate node from N(u) uniformly at random, say v ∈ N(u)
is selected, but it only accepts v as the next node with probabil-
ity quv , which is defined as quv = 1− Cuv

min{deg(u),deg(v)} , where
Cuv is the number of common neighbors between u and v.
Note that if v is rejected, which will happen with probability
1 − quv , the walker repeats the selection again by checking
another randomly selected node from N(u). Note that with
the walking-with-rejection policy, we access only node v if it
is accepted, but not have to access all nodes in N(u), and thus
reduce the computation overhead in each step.

Note that it has a chance of walking back to the cur-
rently visiting node as p̃uu = 1 −

∑

v∈N(u)
1

deg(u) × (1 −
Cuv

min{deg(u),deg(v)}) > 0. Since returning back to the currently
visiting node also introduces overhead and slows down the
convergence, to avoid backtracking, we do a normalization on

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:06:33 UTC from IEEE Xplore. Restrictions apply.

the transition probabilities. In summary, the transition matrix,
P = [Puv]u,v∈V , can be written as

Puv =

{

p̃uv/(1− p̃uu), if v ∈ N(u),

0, otherwise,
(3)

where p̃uv is defined as

p̃uv=

1
deg(u)×(1− Cuv

min{deg(u),deg(v)}), if v∈N(u),

1−
∑

k∈N(u) p̃uk, if v = u,

0, otherwise.

(4)

We also take Figure 1 as an example to illustrate the walking
process in one step. Note that N(u) = {a, b, v, c, d} as shown
in Figure 1, the acceptance probabilities are qua = 1/2,
quv = 1, qub = 1/2, quc = 3/4, qud = 1/3, and the transition
probabilities are Pua = 6/37, Puv = 12/37, Pub = 6/37,
Puc = 9/37, Pud = 4/37. We can see that node v has a
higher acceptance probability than other candidate nodes, and
this implies that v will be selected as the next-hop node by
CNARW with higher probability, which is consistent with the
intuition that v possesses as a better choice of the next node
so as to explore more unvisited nodes. The complete random
walk algorithm via CNARW is stated in Algorithm 1.

Algorithm 1: One walking step of CNARW

Input: current node u
Output: next-hop node v

1 do
2 Select v uniformly at random from u’s neighbors;
3 Generate a random number q ∈ [0, 1];
4 Compute quv = 1− Cuv

min{deg(u),deg(v)} ;

5 while (q > quv);
6 Return v;

Remark: We point out that our CNARW stated in Algorithm 1
only utilizes the information of the current node. Clearly, we
can extend CNARW to utilize more historical information
by taking into consideration more previously visited nodes.
Specifically, we extend the algorithm in Section III-D and
evaluate its performance via experiments in Section V-E

C. Analysis of Stationary Distribution

To guarantee the effectiveness of CNARW, we provide the-
oretical analysis to show that CNARW has a unique stationary
distribution in Theorem 3, and we also derive the probability
distribution of each node and each edge being visited in
Theorem 4 and Theorem 5.

Theorem 3: Given an undirected and connected graph

G(V,E), CNARW on G has a unique stationary distribution.

Proof: Note that for any node u ∈ V and any v ∈ N(u),
the acceptance probability quv = 1 − Cuv

min{deg(u),deg(v)} is
larger than 0 and the transition probability Puv is also larger
than 0. Thus, for any two nodes u and v in G, u and v
are reachable from each other in finite steps for CNARW
as G is an undirected and connected graph. Based on this,
we conclude that the Markov chain constructed by CNARW

is irreducible. Since any irreducible Markov chain on an
undirected and connected graph has a unique stationary
distribution [10], we can conclude that CNARW has a unique
stationary distribution.

Theorem 4: The stationary distribution π of CNARW satisfies

the following condition: for any u, v ∈ V , π(u)/π(v) =
[deg(u)(1 − p̃uu)]/[deg(v)(1 − p̃vv)], so we have π(u) =
Z × deg(u)(1− p̃uu), where Z is a normalization constant.

Proof: To derive the stationary distribution π, we first show
the time reversibility of the Markov chain constructed by
CNARW. According to Proposition 1.1 in [30], we only need
to show that the following equation has a unique solution.

π(u)× Puv = π(v)× Pvu. (5)

Based on Equation (3)-(4), we have

π(u)

π(v)
=

Pvu

Puv
=

deg(u)(1− p̃uu)

deg(v)(1− p̃vv)
. (6)

Note that 1 − p̃vv and 1 − p̃uu are fixed for a given graph,
so Equation (6) has a unique solution as

∑

u∈V π(u) = 1. So
the stationary probability for any u can be derived as

π(u) = Z × deg(u)× (1− p̃uu), (7)

where Z is the normalization constant.

Theorem 5: After CNARW converges, for any edge euv ∈ E,

the stationary probability of euv being visited π(euv) is Z−1×
(1−Cuv/min{du, dv}), and it satisfies π(euv) = π(u)×Puv .

Proof: Let Xt ∈ V (t = 0, 1, 2, ...) denote the location
of an CNARW. We construct an expanded Markov chain
{Zt = (Xt−1, Xt)}t≥1 with its transition matrix EP =
{EPeij ,elk}eij ,elk∈E given by

EPeij ,elk =

{

Plk, j = l,

0, j)= l.
(8)

One can easily find that the static probability of edge (u, v)
being visited by CNARW is equal to the static probability of
state euv being visited by the expanded Markov chain. Then,
we can use the definition of static distribution [15] to prove
that the static probability of the expanded Markov chain for
edge (i, j) is 1

Z × (1− Cij

min{di,dj}
) through two steps.

Step 1. Prove
∑

i∈V

∑

j∈N(i) π(eij) = 1.

∑

i∈V

∑

j∈N(i)

π(eij) =
∑

i∈V

∑

j∈N(i)

1

Z
×

(

1−
Cij

min{di, dj}

)

=
∑

i∈V

∑

j∈N(i)

di(1− Pii)

Z
×

1
di
(1− Cij

min{di,dj}
)

1− pii

=
∑

i∈V

∑

j∈N(i)

π(i)Pij =
∑

i∈V

π(i)
∑

j∈N(i)

Pij =
∑

i∈V

π(i) = 1.

Step 2. Prove π(eij) =
∑

k⊂V π(eki)P
′

(eki, eij).

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:06:33 UTC from IEEE Xplore. Restrictions apply.

∑

k∈V

π(eki)P
′

(eki, eij)

=
∑

k∈N(i)

1

Z

(

1−
Cki

min{dk, di}

)

×
1
di
× (1− Cij

min{di,dj}
)

1− Pii

=
1

Z

(

1−
Cij

min{di, dj}

)

1

1−Pii

∑

k∈N(i)

1

di
(1−

Cki

min{dk, di}
)

=
1

Z

(

1−
Cij

min{di, dj}

)

= π(eij)

Summarize the above two steps, we finish the proof.

D. Extension of CNARW to Utilize More Visited Nodes

Note that the algorithm CNARW in Algorithm 1 only uses
the information of current node, that is, it only looks back one
step. Considering that the larger the number of steps to look
back, the more historical information the walk can have, which
will lead to faster convergence speed. Thus, it is interesting to
study how much gain can be further obtained by considering
more visited nodes. To answer this problem, we consider an
extension of CNARW by utilizing multiple previously visited
nodes. We first extend the definition of frontier set, and denote
H as the number of previously visited nodes being utilized, In
particular, H = 0 corresponds to SRW and H = 1 corresponds
to CNARW. For H ≥ 2, we redefine the frontier set S =
N(xH) ∪ N(xH−1) ∪ · · · ∪ N(x2) ∪ N(u), where u is the
current node. For a candidate node v ⊂ N(u), we characterize
the contribution of v to the conductance of S, which can be
mathematically expressed as ∆φH

v = φ(S) − φ(S−v) where
S−v = S \{v}. Through similar derivation as in Equation (1),
we can get the following result:

∆φH
v =

[

(1−φ(S))−
2(CSv+1)

deg(v)

]

/

[
∑

i∈S deg(i)

deg(v)
−1

]

.

One can easily see that the ∆φH
v is only dependent on

deg(v) and CSv , which denote the degree of v and the number
of neighbors of v in the frontier set S respectively. Following
the design of CNARW, we can define the transition probability
from node u to node v as follows:

PH
uv =

{

p̃H
uv

1−p̃H
uu

, if v ∈ N(u),

0, otherwise,
(9)

where p̃Huv is defined as

p̃Huv=

1
deg(u)×(1− CSv

min{|S|,deg(v)}), if v∈N(u),

1−
∑

k∈N(u) p̃
H
uk, if v = u,

0, otherwise.

(10)

Now the complete random walk algorithm by taking use of
H previously visited nodes is stated in Algorithm 2.

To answer how much history information is good enough
(i.e., to determine the best value of H), we study the impact

Algorithm 2: One step of the extended CNARW

Input: current node u, a queue QH

1 /* QH stores the H most recently visited nodes*/
Output: next-hop node v

2 do
3 Select v uniformly at random from u’s neighbors;
4 Compute CSv and |S| by using the queue QH ;
5 Generate a random number q ∈ [0, 1];
6 Compute qSv = 1− CSv

min{|S|,deg(v)} ;

7 while (q > qSv);
8 Pop the tail node of QH and push node v into QH ;
9 Return v;

of H on the convergence rate through experiments in Sec-
tion V-E. In fact, our experiments show that using only the
current node is adequate and the benefit is twofold. First, it
is much easier and more efficient to implement the algorithm
when using only the current node compared to using multiple
previously visited nodes, and this is usually one of the key
factors when considering to deploy an algorithm in practical
applications. Second, as shown by our experiment results in
Section V-E, leveraging only the current node already takes
most of the benefit of speeding up the convergence. That is,
the marginal benefit of considering more historical information
becomes very small.

IV. Unbiased Graph Sampling

In this section, we introduce how to use CNARW to develop
an asymptotically unbiased graph sampling. We focus on two
sampling schemes, unbiased node sampling and unbiased edge
sampling, which can be used to sample a sequence of nodes
and a sequence of edges, respectively.

Unbiased Node Sampling. Since the stationary probability
distribution of a node being visited via CNARW is not
uniform, bias correction is necessary to achieve asymptotically
unbiased estimation. Based on important sampling framework

(see Section II-B), we set the weight w(u) as follows:

w(u) = γ(u)/deg(u), where γ(u) = 1/(1− p̃uu). (11)

With the above weight factors, unbiased estimation can be
derived based on the follow theorem.

Theorem 6: For a function of interest f , which is related to

node properties, and a set of samples R collected by CNARW,

when |R|→∞, the unbiased estimation of f over the samples,

which we denote as µ(f), can be derived as follows:

µ(f)=

∑

u∈R
γ(u)

deg(u)f(u)
∑

u∈R
γ(u)

deg(u)

=

∑

u∈R
U(u)
π(u) f(u)

∑

u∈R
U(u)
π(u)

→ EU (f), a.s.

Proof: Based on SLLN theorem and U(i) = 1/n, we have
∑

u∈R
γ(u)

deg(u)f(u)
∑

u∈R
γ(u)

deg(u)

=

∑

u∈R
1/|V |

Z×deg(u)×(1−p̃uu)
f(u)

∑

u∈R
1/|V |

Z×deg(u)×(1−p̃uu)

=

∑

u∈R
U(u)
π(u) f(u)

∑

u∈R
U(u)
π(u)

→
Eπ(

U(X)
π(X) f(X))

Eπ(
U(X)
π(X))

=EU (f), a.s.

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:06:33 UTC from IEEE Xplore. Restrictions apply.

Remark: From Theorem 6, we can see that given a set of
samples R, if we know the weight functions w(u) (u ∈ R),
we can achieve an asymptotically unbiased estimation for
EU (f). However, computing w(u) requires us to compute
γ(u), which needs the information of u’s neighbors (see
Equation (4)). That is, directly computing w(u) not only
requires the degree of sampled nodes, but also requires the
information of the neighbors of the sampled nodes. This may
introduce a high query cost. To address this efficiency issue,
we propose an optimization technique to approximate γ(u) as
follows. Observe that 1 − p̃uu is the probability of jumping
out of node u, since the number of self-loop transitions to
node u is geometrically distributed, then γ(u) corresponds
to the average number of attempts required to jump out of
node u. Based on this understanding, we can simply take the
number of self-loops in node u as an approximation of γ(u).
We formally present the unbiased node sampling algorithm
with this optimization in Algorithm 3.

Algorithm 3: Unbiased node sampling via CNARW

Input: Graph G(V,E), initial node x, sample size k
Output: estimated result µ(f)

1 Run CNARW until converges; /* Burn-in Period */
2 Let u denote the first node being visited after convergence;
3 sumf ← 0; sum← 0;
4 for i = 1 to k do
5 /* Sampling Phase after Convergence*/
6 Sample node v based on node u via random walk

defined by Algorithm 1, and get the value of γ(v);
7 w = γ(v) / deg(v);
8 sumf + = w × f(v); /* Aggregate Function f */
9 sum + = w; u← v;

10 end
11 Return µ(f) = sumf / sum;

Unbiased Edge Sampling. With CNARW, we can also
perform an unbiased edge sampling. The whole sampling
framework is similar to that of unbiased node sampling except
for two things. First, the function f should be an aggregate
function of an attribute defined on edges, and not an attribute
defined on nodes as in node sampling. In particulary, f has a
form of f(euv) where euv ∈ E. Second, the weight function
ω should also be defined on edges, and we set the weight
function ω(euv) on edge euv as follows.

w(euv) = 1/[1− Cuv/min{du, dv}]. (12)

Based on w(euv), we can also achieve an asymptotical
unbiased edge sampling, which can be derived as follows.

Theorem 7: For a function of interest f , which is related to

edge properties, and a set of samples R collected by CNARW,

when |R|→∞, the unbiased estimation of f over the samples,

which we denote as µ(f), can be derived as follows:

µ(f)=

∑

euv∈R
w(euv)f(euv)

∑

euv∈R
w(euv)

→ EU (f), a.s.

Proof: Based on SLLN theorem and U(euv) =
1

2|E| , we have
∑

euv∈R
w(euv)f(euv)

∑

euv∈R
w(euv)

=

∑

euv∈R
1/(1− Cuv/min{du, dv})× f(euv)

∑

euv∈R
1/(1− Cuv/min{du, dv})

=

∑

euv∈R
(2|E|)−1/[Z−1 × (1− Cuv

min{du,dv}
)]× f(euv)

∑

euv∈R
(2|E|)−1/[Z−1 × (1− Cuv

min{du,dv}
)]

=

∑

euv∈R
U(euv)/π(euv)× f(euv)

∑

euv∈R
U(euv)/π(euv)

→
Eπ(

U(X)
π(X) f(X))

Eπ(
U(X)
π(X))

=EU (f), a.s.

In the following, we formally present the unbiased edge
sampling algorithm in Algorithm 4.

Algorithm 4: Unbiased edge sampling via CNARW

Input: Graph G(V,E), initial node x, sample size k
Output: estimated result µ(f)

1 Run CNARW until converges; /* Burn-in Period */
2 Let u denote the first node being visited after convergence;
3 sumf ← 0; sum← 0;
4 for i = 1 to k do
5 /* Sampling Phase after Convergence*/
6 Sampling an edge euv via random walk defined by

Algorithm 1;
7 w = 1 /(1− Cuv/min{du, dv});
8 sumf + = w × f(u); /* Aggregate Function f */
9 sum + = w;

10 u← v;
11 end
12 Return µ(f) = sumf / sum;

V. Evaluation

In this section, we conduct extensive experiments on real-
world network datasets to evaluate the effectiveness and ef-
ficiency of CNARW. Experiment results show that CNARW
reduces the query cost significantly over the state-of-the-art
sampling algorithms with the same estimation accuracy. We
also reveal fundamental understandings on why CNARW has
such a significant improvement.

A. Datasets & Experiment Setup

We conduct experiments on the datasets released by
Leskovec et al. [20] and Rossi et al. [29]. We present some
simple statistics of these datasets in Table I. For datasets that
are directed graphs, we convert them into undirected graphs
by selecting the largest connected component after removing
edges which appear in one direction only. This method has
been used in prior works [3], [24], [25], [37], [36]. We
categorize the datasets into two groups: (1) large-scale graphs,
i.e., Google Plus, Flickr, DBLP and LiveJournal, which are
used to study the performance measures like convergence rate
and query cost; and (2) small-scale graphs, i.e., Facebook, Ca-
GaQc, and Phy1, which are used to study mixing rate which
is computationally expensive for large-scale datasets.

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:06:33 UTC from IEEE Xplore. Restrictions apply.

Name # of Nodes # of Edges Avg. Clustering
Coefficient

Facebook 775 28012 0.4714
Ca-GaQc 2879 18474 0.4416

Phy1 4158 26844 0.5486
Google Plus 64517 2867802 0.3428

Flickr 80513 11799764 0.1652
DBLP 226413 1432920 0.6353

LiveJournal 1500000 29425194 0.2552

Table I
SUMMARY OF DATASETS

We compare our algorithm with three typical random walk
sampling algorithms: (1) simple (or naive) random walk
(SRW) [19], which serves as our comparison baseline; (2)
non-backtracking random walk (NBRW) [18], which was the
first one to utilize the walking history to speed up sampling;
(3) circulated neighbors random walk (CNRW) [36], which is
the state-of-the-art walking history aware sampling algorithm.
All algorithms are implemented in C++, and we conducted
experiments on a computer with two Intel Xeon E5-2650
2.60GHz CPUs and 64GB RAM.

B. Performance Metrics

Estimation error and query cost. A fundamental tradeoff
of sampling algorithms is: estimation error v.s. query cost.
The estimation error of a sampling algorithm decreases as the
query budget (or query cost) increases. In this paper, we adopt
relative error to quantify the estimation accuracy:

relative error ! |X̂ −X|/X,

where X̂ and X denote the estimated value and the ground
truth of a specific measure, e.g., average degree.

We define the query cost as the total number of unique
queries in a sampling task, including the queries in both burn-
in period and sampling phase:

query cost ! #{unique queries in an sampling task}.

For example, suppose that a sampling task visits a sequence
of nodes (a, b, c, d, a, c, d), then the query cost is 4. This is a
reasonable cost metric, and it is also widely used to evaluate
the efficiency of sampling algorithms [36], [37], [25]. The
reason why we consider only unique queries is that once a
node is visited, we can store its associated local information,
and thus when it is visited again, we do not need to query
the graph again. Note that in CNARW, each step may incur
additional queries to find a better next hop, we also include
this part when evaluating the query cost of CNARW.

Mixing time. Note that query cost or estimation error is
heavily dependent on the convergence speed of the random
walk. In particular, if a random walk sampling algorithm
(RWSA) converges fast, then with the same query budget, it
can generate more representative samples, which leads to a
smaller estimation error. We measure how fast a random walk
sampling algorithm converges to its stationary distribution by
using the concept of mixing rate [22]. One key indicator is the
second largest eigenvalue modulus (SLEM) of the transition

matrix [22]. The smaller the SLEM is, the faster the random
walk converges. Computing the SLEM is computational ex-
pensive and not scalable to large-scale graphs. Thus, we study
SLEM on small-scale datasets so as to gain some fundamental
understandings on the convergence speed of our algorithm.

Convergence to mean. Besides, we further evaluate the
convergence speed on large-scale graphs. We adopt another
concept called converge to mean, which characterizes the
convergence to the mean of a graphs statistics, e.g., average
node degree, instead of using the convergence to the stationary
distribution. Note that the notion of convergence to mean
only applies to sampling tasks that estimate the mean of
some functions defined on the sampled variables, e.g., average
node degree and average local clustering coefficient, and this
metric depends on the sampling task. To quantify the speed
of convergence to mean, we define

Tcm ! E[min. # of steps needed to converge to the mean].

It is also computationally expensive to compute the exact
value of Tcm. Thus, we estimate Tcm by simulating the RWSA,
and use the Geweke convergence monitor to detect whether
a RWSA converges to the mean. Note that this method is
computationally efficient and scalable to large scale networks.
The Geweke convergence monitor has been widely used in
prior works[6], [8], and we set its key parameter, i.e., the
threshold Z ≤ 0.1 by default.

To evaluate the rate of convergence to mean, i.e., Tcm,
we repeat the simulation for n times to obtain n samples
T 1

cm, . . . , T
n
cm, and study both the mean and standard deviation.

Mathematically, we evaluate the average convergence rate by
the following metric:

T̄cm !
∑n

i=1
T i

cm/n.

We apply standard deviation (SD) to quantify the variation of
convergence rate, and we use the following estimator of SD:

σ(Tcm) !

√

∑n

i=1
(T i

cm − T̄cm)2/(n− 1).

To summarize, we will evaluate the sampling algorithms in
five aspects, i.e., relative error, query cost, average and stan-
dard deviation of convergence to mean (i.e., T̄cm and σ(Tcm)),
and convergence to stationary distribution (i.e., SLEM).

C. Convergence Speed

We first evaluate the convergence speed for general sam-
pling tasks by studying the convergence to stationary distribu-
tion, which is characterized by the second largest eigenvalue
modulus (SLEM) of the transition matrix. Since it is very
expensive to compute SLEM, we consider three small-scale
social networks listed in Table I. Besides, since the closed-
form transition matrices of NBRW and CNRW are hard to
derive, we only compare our CNARW with SRW. Table II
shows the results of SLEM for SRW and CNARW. We see
that our CNARW indeed has a smaller SLEM than SRW. This
means that CNARW should converge faster to the stationary
distribution than SRW.

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:06:33 UTC from IEEE Xplore. Restrictions apply.

*RRJOH3OXV)OLFNU '%/3 /LYH-RXUQDO
�

���

�

���

�

���

�

���

��
RI
�6
WH
SV
�WR

�&
RQ

YH
UJ
H�
WR
�0
HD
Q ���

65:
1%5:
&15:
&1$5:

(a) T̄cm (Degree as Indicator)

*RROJH3OXV)OLFNU '%/3 /LYH-RXUQDO
�

���

�

���

�

���

�

���

6W
DQ
GD
UG
�'
HY
LD
WLR

Q

���

65:
1%5:
&15:
&1$5:

(b) σ(Tcm) (Degree as Indicator)

*RRJOH3OXV)OLFNU '%/3 /LYH-RXUQDO
�

�

�

�

�

�

�

��
RI
�6
WH
SV
�WR

�&
RQ

YH
UJ
H�
WR
�0
HD
Q ���

65:
1%5:
&15:
&1$5:

(c) T̄cm (Similarity as Indicator)

*RRJOH3OXV)OLFNU '%/3 /LYH-RXUQDO
�

�

�

�

�

�

�

6W
DQ
GD
UG
�'
HY
LD
WLR

Q

���

65:
1%5:
&15:
&1$5:

(d) σ(Tcm) (Similarity as Indicator)

Figure 2. Comparison of convergence speed, which is measured by the average and standard deviation (SD) of the convergence to mean (i.e., T̄cm and
σ(Tcm)) when using node degree and node pair similarity as the indicator.

�����������������������
5HODWLYH�(UURU

����

����

����

����

����

����

�����

�����

4
XH
U\
�&
RV
W

65:
1%5:
&1$5:
&15:

(a) Flickr

�����������������������
5HODWLYH�(UURU

����

����

����

����

����

����

����

�����

4
XH
U\
�&
RV
W

65:
1%5:
&15:
&1$5:

(b) Google Plus

�����������������������
5HODWLYH�(UURU

����

�����

�����

�����

�����

�����

�����

4
XH
U\
�&
RV
W

65:
1%5:
&15:
&1$5:

(c) DBLP

�����������������������
5HODWLYH�(UURU

�����

�����

�����

�����

�����

�����

4
XH
U\
�&
RV
W

65:
1%5:
&15:
&1$5:

(d) LiveJournal

Figure 3. Tradeoff between estimation error and query cost.

Algorithms Facebook Ca-GaQc Phy1
SRW 0.9923 0.9981 0.9981

CNARW 0.9852 0.9820 0.9847

Table II
THE SLEM FOR SRW AND CNARW: SMALLER SLEM MEANS FASTER

CONVERGENCE SPEED.

To further evaluate how much improvement CNARW can
achieve on large graphs, and also study its performance com-
pared to NBRW and CNRW, we show the convergence speed
by evaluating the convergence to mean, which is related to a
specific estimation task. In particular, we take the average node
degree and average node pair similarity as indicators. Figure
5(a) and 5(b) presents the minimum number of steps needed to
converge to mean T̄cm and its corresponding standard deviation
σ(Tcm) respectively by taking node degree as the indicator of
convergence. Figure 5(c) and 5(d) show the results by taking
similarity of node pairs which is computed by using Jaccard
index [5] as the indicator of convergence. Each value of T̄cm

and σ(Tcm) is estimated by using 300 runs of an algorithm.
From Figure 2 we observe that our algorithm CNARW has
a smaller T̄cm than SRW, NBRW and CNRW, which means
that CNARW converges faster. In particular, CNARW requires
fewer steps to converge to mean, e.g., the reduction is up
to 71.9%. We also observe that T̄cm varies across datasets,
and this means that graph structure has an significant impact
on convergence speed. For example, the number of steps
required to converge to mean increases significantly from
Flickr to LiveJournal. Thus, we need more steps to converge
to mean when we sample a graph with larger number of nodes,
and this also implies that speeding up the convergence of a
sampling process is really meaningful, especially for large
graphs. Besides, Figure 2 also shows that our CNARW has

a smaller standard deviation on T̄cm than SRW, NBRW and
CNRW. This means that the variation of the convergence speed
when using our CNARW is smaller. This property is also very
important in practical systems, e.g., it can make our CNARW
more suitable for parallel sampling.

D. Estimation Error v.s. Query Cost

We now study the tradeoff between estimation error and
query cost. We only show the results of one typical sampling
task, i.e., average degree estimation. We observe similar results
for other sampling tasks like average clustering coefficient
estimation. We run four sampling algorithms (i.e., SRW,
NBRW, CNRW, and our algorithm CNARW) on four large-
scale datasets. Each algorithm is repeated for 200 times to
estimate the average node degree and we also take an average
to measure query cost.

Figure 3 shows the tradeoff between estimation error and
query cost, where the horizontal axis represents the estimation
error and the vertical axis represents the corresponding query
cost. From Figure 3, we observe that the query cost increases
as the relative error decreases, which implies that we need
more queries to increase the estimation accuracy. We also ob-
serve that CNARW requires a smaller query cost to achieve the
same estimation accuracy. Furthermore, the reduction in query
cost (or improvement in estimation accuracy) is significant for
CNARW (e.g., by up to 35.7%).

E. Tradeoff of Using More History Information

Our experimental results thus far consider one historical
neighbor for our CNARW. We also run experiments to further
show the impact of H on the convergence speed. Figure 4
presents the speed of convergence to mean (i.e., T̄cm) and the
rejection rate when H varies from 0 to 5. We observe that T̄cm

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:06:33 UTC from IEEE Xplore. Restrictions apply.

� � � � � �
+

����

����

����

����

����

����

����

����
��
RI
�6
WH
SV
�WR

�&
RQ

YH
UJ
H�
WR
�0
HD
Q

&1$5:

� � � � �
���
����
���
����
���

5
HM
HF
W�5

DW
H

(a) Flickr

� � � � � �
+

����

����

����

����

�����

�����

�����

�����

��
RI
�6
WH
SV
�WR

�&
RQ

YH
UJ
H�
WR
�0
HD
Q

&1$5:

� � � � �
����

���

����

���

5
HM
HF
W�5

DW
H

(b) Google Plus

� � � � � �
+

�

����

�����

�����

�����

�����

�����

�����

�����

��
RI
�6
WH
SV
�WR

�&
RQ

YH
UJ
H�
WR
�0
HD
Q

&1$5:

� � � � �
����

����

����

����

5
HM
HF
W�5

DW
H

(c) DBLP

� � � � � �
+

�����

�����

�����

�����

�����

�����

�����

�����

�����

��
RI
�6
WH
SV
�WR

�&
RQ

YH
UJ
H�
WR
�0
HD
Q

&1$5:

� � � � �
���
����
����
����
����
���

5
HM
HF
W�5

DW
H

(d) LiveJournal

Figure 4. Impact of utilizing H previously visited nodes.

Googleplus Flickr DBLPLiveJournal
0

1

2

3
x 10

4

#
 o

f
S

te
p

s
 t

o
 C

o
n

v
e

rg
e

 t
o

 M
e

a
n

sum
max
min

(a) T̄cm (Degree as Indicator)

Googleplus Flickr DBLPLiveJournal
0

1

2

3
x 10

4

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

sum
max
min

(b) σ(Tcm) (Degree as Indicator)

Googleplus Flickr DBLP LiveJournal
0

1

2

3

4
x 10

4

#
 o

f
S

te
p

s
 t

o
 C

o
n

v
e

rg
e

 t
o

 M
e

a
n

sum
max
min

(c) T̄cm (Similarity as Indicator)

Googleplus Flickr DBLPLiveJournal
0

1

2

3

4
x 10

4

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n

sum
max
min

(d) σ(Tcm) (Similarity as Indicator)

Figure 5. Convergence speed under various design choices of the transition matrix. Note that sum, max, and min denote the cases of using deg(u)+deg(v),
max{deg(u), deg(v)}, and min{deg(u), deg(v)} in Equation (2), respectively, and CNARW uses min which has the best performance.

decreases significantly when H increases from 0 to 1. This
implies that we can speed up the convergence with CNARW
by exploiting the current node. However, when utilizing more
history information by further increasing H , i.e., considering
more previously visited nodes, we can only have a diminish
return. In particular, the reduction of the number of steps
required to converge (or the acceleration of the convergence)
is not significant any more when we consider more than one
visited node. Besides, the rejection rate in each walking step
may also increase for large H , which may introduce larger
query cost as each walking step may access more nodes.
Therefore, we conclude that it is good enough to consider
one visited node only, just like CNARW.

F. Impact of Transition Matrix Design

As analyzed in Section III-B, the rationale behind the
design of the transition matrix in CNARW is trying to
maximize the conductance of the frontier set, so we design
the transition probability Puv by making it proportional to
1 − Cuv

min{deg(u),deg(v)} as stated in Equation (2). Clearly,
it is also flexible to consider other function forms in the
transition matrix design. In this subsection, we evaluate the
performance of using other two function forms to demonstrate
the efficiency of CNARW. Specifically, we study the cases
of using deg(u) + deg(v) and max{deg(u), deg(v)} instead
of min{deg(u), deg(v)} as in CNARW. Note that all these
function forms satisfy the symmetric property, so they can
be adapted to the same analysis framework. Figure 5 shows
the convergence speed with different transition matrix designs.
The convergence speed is measured by the average and stan-
dard deviation (SD) of the convergence to mean (i.e., T̄cm and
σ(Tcm)). We also consider to use both node degree and node
pair similarity as the indicator. From the results, we can see

that using the function min as in CNARW always has the best
performance. For example, using the sum function needs 50%-
2.8× more steps to converge on average when using node pair
similarity as indicator. The reason why min performs better is
that it can eliminate the dominating effect of deg(u) when it
is very large. That is, when deg(u) is very large, using min
can still differentiate different neighbors of u very well, so
CNARW can always choose a better node to walk.

G. Applications of CNARW

In this subsection, we investigate two applications, which
we mentioned in Section I, to further study the accuracy and
efficiency of CNARW.

Application 1: Investment on networking platforms. As
discussed in Section I, a fundamental problem for this ap-
plication is to estimate the average similarity of node pairs.
We use the Jaccard index [5] to calculate the similarity of
a node pair, and focus on the average similarity over all
node pairs. We apply CNARW to sample edges and make
unbiased estimation based on Algorithm 4. According to the
convergence rate of CNARW in Figure 5(c), we run CNARW
until the total number of sampling edges reach 105 for each
sampling process. Then we use the sampled edges to estimate
the average similarity. To verify the accuracy of CNARW,
we repeat the sampling process three times (each time with a
random start), and the corresponding experimental results are
shown in Figure 6(a) and Figure 6(b). One can observe that,
as the number of samples increases, the relative error drops
fast and it is close to zero when the number of samples is
more than 104. This implies CNARW can accurately estimate
the average edge similarity with a small number of samples.
Note that we only show the experiment results of Flickr and
Google Plus, and similar results can also be found for other

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:06:33 UTC from IEEE Xplore. Restrictions apply.

two datasets. We further show the efficiency of CNARW
in Figure 6(c) and Figure 6(d), where the horizontal axis
represents the estimation error and the vertical axis represents
the corresponding query cost. Note that CNRW is not included
here, because CNRW is not suitable for edge sampling. From
Figure 6(c) and Figure 6(d), we observe that CNARW requires
a smaller query cost to achieve the same estimation accuracy,
which implies a higher efficiency.

��� ��� ��� ���
1XPEHU�RI�6DPSOHV

�
���
���
���
���
���
���
���
���
���
�

5
HO
DW
LY
H�
(U
UR
U

6DPSOLQJ� 6DPSOLQJ� 6DPSOLQJ�

(a) Flickr

��� ��� ��� ���
1XPEHU�RI�6DPSOHV

�
���
���
���
���
���
���
���
���
���
�

5
HO
DW
LY
H�
(U
UR
U

6DPSOLQJ� 6DPSOLQJ� 6DPSOLQJ�

(b) Google Plus

�����������������������
5HODWLYH�(UURU

�����

�����

�����

�����

�����

�����

4
XH
U\
�&
RV
W

65:
1%5:
&1$5:

(c) Flickr

�����������������������
5HODWLYH�(UURU

����

����

����

����

����

����

����

����

4
XH
U\
�&
RV
W

65:
1%5:
&1$5:

(d) Google Plus

Figure 6. Performance of CNARW in Application 1.

Application 2: Bundling strategy in viral marketing. As
discussed in section I, a fundamental problem for this appli-
cation is to estimate the distribution of user interests for each
product. In particular, we aim to estimate the distribution of
user interests in different age groups. Note that our datasets
only contain the topology of OSNs, we thus synthesize the
distribution of user interests, which are shown in Table III.
Specifically, we consider four different age groups and three
products. The percentage of populations of each age group
is shown in the first column, and the percentage of users in
each age group being interested in each product are shown in
the right three columns. Based on this dataset, we assign to
each user with her interested products, and Figure 7(a) shows
the ground truth for the ratio of populations in different age
groups who are interested in each product. From Figure 7(a),
one can observe that, product A and B should be sold as a
bundle, since they have similar distribution of user interests. To
estimate the distribution of user interests, we apply CNARW
to collect 105 node samples and make an unbiased estimation
based on Algorithm 3. Figure 7(b) shows that the estimated
distribution of user interests using our CNARW’s is very close
to the ground truth, implying high accuracy. Figure 7(c) and
Figure 7(d) further show that our CNARW is more efficient
than the stat-of-the-art sampling algorithms.

Lessons learned. Our CNARW is highly accurate and effi-
cient in estimating graph measures defined on both nodes and
edges. For example, a product owner can apply our CNARW
to estimate the average similarity of node pairs with edge
samples, and can also accurately estimate the distribution
of user interests with node samples. More importantly, our

Age groups Product A Product B Product C
10∼25 (30%) 0.8 0.9 0.2
26∼40 (40%) 0.5 0.6 0.2
41∼35 (20%) 0.5 0.6 0.6
56∼70 (10%) 0.2 0.3 0.8

Table III
SUMMARY OF DATASETS. THIS TABLE SHOWS THE PERCENTAGE OF

USERS IN EACH AGE GROUP BEING INTERESTED IN EACH PRODUCT. NOTE

THAT A USER MAY BE INTERESTED IN MULTIPLE PRODUCTS.

��a�� ��a�� ��a�� ��a��
8VHU�$JH

�

���

���

���

���

���

���

3H
UF
HQ
WD
JH
�R
I�S

RS
XO
DW
LR
QV

3URGXFW�$
3URGXFW�%
3URGXFW�&

(a) Ratio of populations

��a�� ��a�� ��a�� ��a��
8VHU�$JH

�

���

���

���

���

���

���

3H
UF
HQ
WD
JH
�R
I�S

RS
XO
DW
LR
QV

*URXQG�WUXWK
(VWLPDWLRQ

�����
�����

�����

�����

(b) Estimation error for Product A

�����������������������
5HODWLYH�(UURU

����

����

����

����

����

����

����

����

����

4
XH
U\
�&
RV
W

65:
1%5:
&15:
&1$5:

(c) % of users who are interested
in A for the 10∼25 age group

�����������������������
5HODWLYH�(UURU

����

����

����

����

����

����

����

����

����

����

4
XH
U\
�&
RV
W

65:
1%5:
&15:
&1$5:

(d) % of users who are interested
in A for the 26∼40 age group

Figure 7. Performance of CNARW in Application 2.

CNARW requires much less query cost than the stat-of-the-
art sampling algorithms.

VI. Related Works

Traditional sampling methods, e.g., random node sampling,
random edge sampling and random subgraph sampling all need
the knowledge of global graph topology [19]. To relax this
constraint, graph sampling schemes via crawling techniques
have become popular. These approaches include breadth-first
search (BFS) and depth-first search (DFS), as well as random
walk based approach. Even though BFS and DFS are simple,
they are hard to derive the sampling probability [17]. Thus,
random walk sampling has become the mainstream and also
been widely used, e.g., [9], [21], [37], [18], [36].

To improve the efficiency and effectiveness of random walk
sampling, a variety of methods have been proposed. Jin et

al. [12] and Xu et al. [33] considered random jumping to
increase the estimation accuracy. Lee et al. [18] proposed non-
backtracking and delayed acceptance to reduce the asymptotic
variance of estimators. Li et al. [21] combined the idea of
delayed acceptance with Metropolis-Hastings algorithm to
further reduce the asymptotic variance. Ribeiro et al. [28]
proposed a multidimensional random walk and Zhao et al. [35]
proposed a multi-graph random walk to address the limitation
that a walk can easily get trapped by local communities.

In the aspect of speeding up random walk sampling, Boyd et

al. [2] applied optimization techniques to optimize the mixing

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:06:33 UTC from IEEE Xplore. Restrictions apply.

rate, but requiring full information of the graph. Avrachenkov
et al. [1] combined uniform sampling with random walk
sampling to speed up the convergence. However, uniform
samples are computationally expensive to obtain in OSNs.
Recently, Zhou et al. [37], [36] proposed to speed up the
convergence by utilizing the walking history, which was first
utilized in non-backtracking random walk (NBRW) [18]. In
particular, they constructed a “virtual” overlay network from
the walking history to guide the walker in [37], and later, they
proposed the Circulated Neighbors random walk (CNRW) by
constructing a higher-ordered Markov chain [36].

The difference of CNARW from existing approaches is that
CNARW speeds up the convergence by utilizing the walking
history and next-hop candidates, i.e., the number of common
neighbors between visited nodes and next-hop candidates.
Querying the neighbors of a next-hop candidate only incurs
a small overhead. Besides, the unbiased sampling scheme via
CNARW only requires the information of visited nodes only,
but not requires the information about their neighbors, so
CNARW provides fast and efficient unbiased graph sampling.

VII. Conclusion

In this paper, we propose a fast and efficient random
walk based sampling approach. Specifically, we first design a
common neighbor aware random walk to speed up the conver-
gence, which takes into account both measures of degree and
the number of common neighbors between next-hop candidate
nodes and the current node, and then develop an efficient
unbiased sampling scheme with theoretical guarantee on the
unbiasedness by using the tailored random walk. We also
conduct extensive experiments with real-world graph datasets,
and results show that our sampling approach not only speeds
up the convergence, but also reduces the query cost with the
same estimation accuracy.

ACKNOWLEDGMENTS

The work is supported in part by National Key R&D
Program of China under Grant No. 2018YFB1003204, and
National Nature Science Foundation of China under Grant No.
61772484, 61772486, 61672486. The work by John C.S. Lui
is supported in part by GRF 14208816.

REFERENCES

[1] K. Avrachenkov, B. Ribeiro, and D. Towsley. Improving random walk
estimation accuracy with uniform restarts. In WAW, pages 98–109, 2010.

[2] S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing markov chain on a
graph. SIAM review, 46(4):667–689, 2004.

[3] X. Chen, Y. Li, P. Wang, and J. Lui. A general framework for estimating
graphlet statistics via random walk. VLDB, 10(3):253–264, 2016.

[4] F. Chiericetti, A. Dasgupta, R. Kumar, S. Lattanzi, and T. Sarlós. On
sampling nodes in a network. In WWW, 2016.

[5] G. G. Chowdhury. Introduction to modern information retrieval. Facet
publishing, 2010.

[6] M. K. Cowles and B. P. Carlin. Markov chain monte carlo convergence
diagnostics: a comparative review. JASA, 91(434):883–904, 1996.

[7] A. De Bruyn and G. L. Lilien. A multi-stage model of word-of-mouth
influence through viral marketing. International Journal of Research in
Marketing, 25(3):151–163, 2008.

[8] J. Geweke et al. Evaluating the accuracy of sampling-based approaches
to the calculation of posterior moments, volume 196. Federal Reserve
Bank of Minneapolis, Research Department Minneapolis, 1991.

[9] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. Walking in
facebook: A case study of unbiased sampling of osns. In Infocom, 2010.

[10] O. Häggström. Finite Markov chains and algorithmic applications,
volume 52. Cambridge University Press, 2002.

[11] M. H. Hansen and W. N. Hurwitz. On the theory of sampling from
finite populations. The Ann. of Math. Stat., 14(4):333–362, 1943.

[12] L. Jin, Y. Chen, P. Hui, C. Ding, T. Wang, A. V. Vasilakos, B. Deng, and
X. Li. Albatross sampling: robust and effective hybrid vertex sampling
for social graphs. In MobiArch, 2011, 2011.

[13] G. L. Jones et al. On the markov chain central limit theorem. Probability
surveys, 1(299-320):5–1, 2004.

[14] R. A. King, P. Racherla, and V. D. Bush. What we know and don’t know
about online word-of-mouth: A review and synthesis of the literature.
Journal of Interactive Marketing, 28(3):167–183, 2014.

[15] T. Konstantopoulos. Introductory lecture notes on markov chains and
random walks. Department of Mathematics, Uppsala University, 200(9),
2009.

[16] M. Kurant, M. Gjoka, C. T. Butts, and A. Markopoulou. Walking on a
graph with a magnifying glass: stratified sampling via weighted random
walks. In SIGMETRICS, 2011.

[17] M. Kurant, A. Markopoulou, and P. Thiran. Towards unbiased bfs
sampling. J-SAC, 29(9):1799–1809, 2011.

[18] C.-H. Lee, X. Xu, and D. Y. Eun. Beyond random walk and metropolis-
hastings samplers: why you should not backtrack for unbiased graph
sampling. In SIGMETRICS, volume 40, pages 319–330, 2012.

[19] J. Leskovec and C. Faloutsos. Sampling from large graphs. In SIGKDD,
2006, 2006.

[20] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[21] R.-H. Li, J. X. Yu, L. Qin, R. Mao, and T. Jin. On random walk based
graph sampling. In ICDE, 2015, 2015.

[22] L. Lovász. Random Walks on Graphs: A Survey, 1993.
[23] A. Mohaisen and S. Hollenbeck. Improving social network-based sybil

defenses by rewiring and augmenting social graphs. In WISA, 2013,
2013.

[24] A. Mohaisen, P. Luo, Y. Li, Y. Kim, and Z.-L. Zhang. Measuring bias in
the mixing time of social graphs due to graph sampling. In MILCOM,
2012, 2012.

[25] A. Nazi, Z. Zhou, S. Thirumuruganathan, N. Zhang, and G. Das. Walk,
not wait: Faster sampling over online social networks. VLDB, 2015.

[26] M. Papagelis. Refining social graph connectivity via shortcut edge
addition. TKDD, 10(2):12, 2015.

[27] Recode. Facebook now has two billion monthly users.
https://www.recode.net/2017/6/27/15880734/facebook-mark-zuckerberg-
two-billion-monthly-users. 2017.

[28] B. Ribeiro and D. Towsley. Estimating and sampling graphs with
multidimensional random walks. In IMC, 2010, 2010.

[29] R. A. Rossi and N. K. Ahmed. The network data repository with
interactive graph analytics and visualization. In AAAI, 2015.

[30] K. Sigman. Time-reversible Markov Chains. http://www.columbia.edu/
∼ks20/stochastic-I/stochastic-I-Time-Reversibility.pdf, 2009.

[31] M. Trusov, R. E. Bucklin, and K. Pauwels. Effects of word-of-mouth
versus traditional marketing: findings from an internet social networking
site. Journal of marketing, 73(5):90–102, 2009.

[32] X. Wang, R. T. Ma, Y. Xu, and Z. Li. Sampling online social networks
via heterogeneous statistics. In IEEE INFOCOM, 2015.

[33] X. Xu, C. H. Lee, and D. Y. Eun. A general framework of hybrid graph
sampling for complex network analysis. In IEEE INFOCOM, 2014.

[34] X. Xu, C.-H. Lee, and Y. Eun. Challenging the limits: Sampling online
social networks with cost constraints. 2017.

[35] J. Zhao, J. Lui, D. Towsley, P. Wang, and X. Guan. A tale of three
graphs: Sampling design on hybrid social-affiliation networks. In ICDE,
2015, 2015.

[36] Z. Zhou, N. Zhang, and G. Das. Leveraging history for faster sampling
of online social networks. VLDB, 8(10):1034–1045, 2015.

[37] Z. Zhou, N. Zhang, Z. Gong, and G. Das. Faster random walks by
rewiring online social networks on-the-fly. In ICDE, 2013, 2013.

���

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:06:33 UTC from IEEE Xplore. Restrictions apply.

