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Abstract—Product bundling is widely adopted for information
goods and online services because it can increase profit for
companies. For example, cable companies often bundle Internet
access and video streaming services together. However, it is
challenging to obtain an optimal bundling strategy, not only
because it is computationally expensive, but also that customers’
private information (e.g., valuations for products) is needed for
the decision, and we need to infer it from accessible datasets.
As customers’ purchasing data are getting richer due to the
popularity of online shopping, doors are open for us to infer
this information. This paper aims to address: (1) How to infer
customers’ valuations from the purchasing data? (2) How to deter-
mine the optimal product bundle to maximize the profit? We first
formulate a profit maximization framework to select the optimal
bundle set. We show that finding the optimal bundle set is NP-
hard. We then identify key factors that impact the profitability
of product bundling. These findings give us insights to develop a
computationally efficient algorithm to approximate the optimal
product bundle with a provable performance guarantee. To ob-
tain the input of the bundling algorithm, we infer the distribution
of customers’ valuations from their purchasing data, based on
which we run our bundling algorithm and conduct experiments
on an Amazon co-purchasing dataset. We extensively evaluate the
accuracy of our inference and the bundling algorithm. Our results
reveal conditions under which bundling is highly profitable and
provide insights to guide the deployment of product bundling.

I. INTRODUCTION

How to increase revenue is an everlasting question in
business. Developing new products requires significant efforts,
so companies seek to improve revenue by sales strategies. One
promising sales strategy is products bundling (a.k.a. bundling
sales). By using a bundling sale, a company groups a set of
products and set a single price for the whole group. It has been
widely adopted, especially for information goods and online
services. For example, Netflix offers all videos at a single
price. Amazon provides “Amazon Prime”1 where users pay a
single price to enjoy services including free shipping, access to
thousands of movies, etc. AT&T bundles phone calls, Internet
access and TV services2.

The profitability of bundling sales stems from the reduction
of variance of customers’ valuations of the products [1],
[2], [3], [4]. The valuation refers to the highest price that a
customer is willing to pay. It is also called the customer’s reser-
vation price of this product. To illustrate, consider a company
selling three products (A, B and C) to two customers, and the
customers’ valuations are depicted in Table 1. Assume that a

1www.amazon.com/prime
2www.attinternetservice.com/Bundles

customer’s valuation for a bundle is the sum of valuations of
all the products bundled. For example, customer 1’s valuation
for bundle (A,B) is the sum of $5 (product A) and $15 (product
B), which is $20. If products are sold separately, product A
could be priced at $5 to attract both customers, resulting a
maximum revenue of $10; or it could be priced at $10 to
attract only customer 2, also resulting a maximum revenue of
$10. Similarly, the maximum revenue of selling product B is
$20. The total maximum revenue for products A and B is $30
($10+$20). In contrast, if products A and B are bundled and
priced at $20, both customers will buy the bundle and the total
revenue from products A and B turns out to be $40, which is
higher than the revenue of separate sales. This example shows
that bundling reduces the variance of customers’ valuations of
products, and thus increases the revenue3.

Product A Product B Product C Bundle (A,B) Bundle (B,C)
Customer 1 $5 $15 $15 $20 $30
Customer 2 $10 $10 $5 $20 $15

Optimal Price $5 (or $10) $10 $15 $20 $15 (or $30)
Max Revenue $10 $20 $15 $40 $30

Table 1: An example of bundle sale and separate sale.
Bundling sales may lead to a revenue drop if the products

are not carefully selected. As shown in Table 1, the maximum
revenue from the bundle of products B and C is only $30.
Together with revenue $10 from the separate sale of product
A, the total maximum revenue for “bundling (B,C), and selling
A separately” is $40, which is less than selling all products
separately. Table 2 depicts that different bundling strategies
result in significantly different revenues, and some of them
could be lower than separate sales.

Sales strategy Sell A, B and C
separately

Bundle (A, B),
sell C separately

Bundle (B, C),
sell A separately

Max Total Revenue $45 $55 $40

Table 2: Revenue of different sales strategies
Motivated by this, we aim to address the question how to

select the optimal product bundle? It is non-trivial and there
are two key challenges. The first one is how to infer customers’
valuations. In previous examples, we assume the valuations
are known so that we can compare the profitability of product
bundles. However, in practice, they are customers’ private in-
formation and unknown to the company. The only information
companies can directly obtain is customers’ purchasing data,
indicating whether or not a customer has bought a product.

3For simplicity, we only discuss the revenue in the example. Later in our
formal model, we will consider the profit as the revenue minus the cost.
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Thus, we first need to develop method to infer customers’
valuations from such purchasing records. The second yet more
difficult challenge is that selecting the optimal product bundle
can be computationally expensive. This difficulty comes from
the combinatorial nature in selecting products to bundle, which
we will show is NP-hard with respect to the increase in the
number of products. Thus, when companies face a large num-
ber products, which is often the case for information goods and
online services, we need to develop efficient approximation
algorithms to find bundles that are close to optimal. This paper
addresses these two challenges. Our contributions are:

• We develop a probabilistic model to characterize cus-
tomers’ purchasing behaviors under bundling and sepa-
rate sales, and formulate a profit maximization framework
to select the optimal product bundle set.

• We show that finding the optimal bundle set is NP-
hard. We develop a computationally efficient algorithm to
approximate the optimal product bundle with a provable
performance guarantee under some mild assumptions.

• We design methodology to infer the distribution of cus-
tomer’s valuation from purchasing data.

• We conduct experiments on an Amazon co-purchasing
dataset. We show that our inference algorithm and our
bundling algorithm are accurate. We also reveal con-
ditions under which bundling is highly profitable, and
provide insights to guide the deployment of bundling.

This paper organizes as follows. Section II presents the
model and problem formulation. In Section III we analyze
the impact of various factors and reveal insights to design
efficient bundling algorithms. Section IV presents algorithms
to approximate the optimal product bundle. Section V presents
our method to infer model parameters. In Section VI we con-
duct experiments on Amazon co-purchasing data. Section VII
discusses related work and Section VIII concludes.

II. MATHEMATICAL MODEL

We formulate a mathematical model to characterize the
online market. In particular, we model how customers and
company make their purchase/sales decisions. For ease of
presentation, we focus on one seller who sells a set of
[N ] ! {1, . . . , N} products. In fact, for online markets like
Amazon, there is usually a dominating seller who sells most
products. This seller has two sales strategies, which are defined
as follows.

Definition 1 (Separate sale). A separate sale is a strategy to
individually sell each product i at price pi ∈ R+. Customers
could choose to purchase or not each product i ∈ [N ].

Definition 2 (Bundling sale). A bundling sale is a strategy to
offer a set of products as a whole at a single price pb ∈ R+.
Customers can purchase either all products in the bundle as
a whole, or none of them.

A. Model on Separate Sales
Each customer has a valuation towards a particular prod-

uct, or the maximal willingness-to-pay price. We consider a

continuous spectrum of customers, where the valuation of the
whole customer population to product i follows a continuous
probability distribution Di over R, i.e., Vi ∼ Di, where
the random variable Vi ∈ R denotes the valuation. Once a
customer buys a product i, we define her utility (a.k.a. surplus)
as the difference between her valuation of the product and the
price she pays to the seller:

Ui ! Vi − pi. (1)
Usually, a customer has a potential to buy a product i, if

her utility is non-negative. Let δi be the fraction of potential
buyers of product i, or

δi ! P(Ui ≥ 0) = P(Vi ≥ pi). (2)
However, in real world, not all potential buyers will eventually
purchase the product. A potential buyer decides not to buy a
product for many reasons, e.g., she was not informed of the
product, or she has a limited budget. We define a mapping
function to capture customers’ collective purchasing behaviors.

Definition 3. Let f(δi) : [0, 1] %→ [0, 1] denote a mapping
function, which prescribes the fraction of actual buyers given
the fraction of potential buyers of product i. It increases in δi.

Obviously, we have f(δi) ≤ δi. Given a fraction f(δi) of
customers who buy product i, we define the normalized profit
of the seller earned from selling product i as

Pi(pi) ! (pi −mi)f(δi),

where mi ∈ R+ denotes the marginal cost of product i.
Considering a normalized profit does not lose any generality
since the total number of customers is fixed. We impose the
following assumption since the profit reduces to zero when
the price is sufficiently high:

Assumption 1. The mapping function f is well-formed such
that limpi→∞ Pi(pi) = 0.

Let the total profit of separate sales be Ps(p), where p !
(p1, . . . , pN )T denotes the price vector. It is the summation
of the profit for each product, i.e., Ps(p)=

∑
i Pi(pi). Given

Assumption 1, there is at least one price vector p∗i to attain the
maximum profit P ∗s ! supp∈RN

+
Ps(p)=

∑
i∈[N ] P

∗
i , where

P ∗i ! suppi∈R+ Pi(pi)

defines the maximum profit for product i.

B. Model on Bundling Sales

Now let us model bundling sales. Formally, the seller
chooses a subset B ⊆ [N ] of products to form a bundle.
According to the definition of bundling sale, the bundle B
is priced as an indivisible unit. In other words, it is regarded
as a “single product” and we index it by b. A customer’s
valuation of the bundle B is defined as the summation of
her valuation for each individual product within the bundle,
i.e., Vb ! ∑

i∈B Vi. By extending Equation (1), we define
the utility for a customer buying the bundle B as: Ub !
Vb − pb. Also, by extending Equation (2), we can express
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the fraction of potential buyers of the bundle, denoted by δb,
as δb = P

(∑
i∈B Vi ≥ pb

)
. Since bundling does not affect

the mapping function f , a fraction f(δb) of customers will
eventually buy the bundle B. The normalized profit earned
from the bundle B is then

Pb(pb) ! (pb −mb)f(δb),

where mb ! ∑
i∈B mi denotes the marginal cost for the

bundle B. Given a bundle B, the seller can set an appropriate
price to maximize the profit. If Assumption 1 holds, there
exists at least one optimal bundle price p∗b to attain the
maximum profit for the bundle, which is defined as

P ∗b ! suppb∈R+
Pb(pb).

C. Instantiation on the Distribution of Valuations
In order to maximize the profit, a company needs to

understand the whole population of customers instead of an in-
dividual one. Thus, it is important to capture the distribution of
customers’ valuations. In particular, let us consider customers’
valuations V ! (V1, . . . , VN )T follows a multivariate normal
distribution N (µ,Σ) with the mean vector µ ! E[V] ∈ RN

and the covariance matrix Σ ! cov(V,V) ∈ RN×N . It was
shown in [5] that the Gaussian distribution family is a natural
way to characterize a population of customers’ valuations.
It has been commonly used in previous works on product
bundling [5], [6], [7]. Furthermore, the multivariate Gaussian
distribution inherently captures the correlation among products
by the covariance matrix.

As a simple consequence of the normal distribution
N (µ,Σ) for V, the distribution of the valuation for product
i is Vi ∼ N (µi,σ2

i ), where σ2
i ! Var[Vi], and the distribution

of the valuation for the bundle B is Vb ∼ N (µb,σ2
b ), where

µb ! ∑
i∈B µi and σ2

b ! ∑
i∈B

∑
j∈B ρijσiσj . Here, ρij

denotes the Pearson’s correlation coefficient between random
variable Vi and Vj . The fraction of potential buyers for product
i and that for the bundle B are:

δi = 1− Φ [(pi − µi)/σi] , δb = 1− Φ [(pb − µb)/σb] , (3)
where Φ(·) is the cumulative distribution of the standard
Gaussian distribution. Based on these closed-form expressions,
we have the following property for separate sales.

Lemma 1. Consider product i with µi > mi and the maximal
profit P ∗i . Suppose there is another product ĩ associated with
parameters m̃i = 0, µ̃i ! 1 and σ̃i ! σi/(µi−mi). Then the
maximal profit of the product ĩ is P̃ ∗i = P ∗i /(µi −mi).

Due to page limit, some proofs to lemmas and theorems are
in our technical report[8]. Lemma 1 states the scaling property
of a product with zero marginal cost. This implies that the
optimal profit for product i can be expressed as:

P ∗i = (µi −mi)× π∗ (σi/(µi −mi)) , (4)
where π∗(σ) ! maxδ∈(0,1)

(
Φ−1(1− δ)σ + 1

)
f(δ) is the

maximum profit for the product with cost 0, mean of valuations
1 and variance of valuations σ. This product form of P ∗i will
uncover important insights on the bundling strategy.

D. The Seller’s Decision Model
If a seller decides to bundle products in set B and leave

other ones for separate sales, the total profit consists of: (1)
the profit from the bundle B; and (2) the profit from separate
sales of other products. Formally, the total profit is:

P (B) ! P ∗b +
∑

i∈[N ]\B
P ∗i .

Note that we use P (B) to denote the total profit of all products
(given that those in B are bundled), but not the profit from the
bundle only. Let us define the optimal bundling problem to
maximize the total profit.

Problem 1. Profit maximization for bundling where k ≥ 2:

maximize
B

P (B),

subject to | B | = k.

One may note that the size of the bundle is fixed under this
formulation. On the one hand, this formulation can lead to
an exact bundle size which a company may have a business
decision a priori. This can be due to various considerations
like budget, business scale, etc. For example, though updated
periodically, Amazon Prime always bundles several thousand
movies. On the other hand, if a company has the flexibility
to vary the bundle size, one can simply add dummy services
(with zero mean and variance of valuations, and zero marginal
costs), so that the optimal solution is allowed to include
multiple dummy products in the bundle. This is in fact a simple
way to extend the condition | B | = k to be | B | ≤ k.

E. NP-hardness
It is worthwhile to note that it is NP-hard to compute the

exact solution for Problem 1. To reach this conclusion, our
approach is to show that under some mild assumption on the
mapping function f(·), some special cases of Problem 1 is
already NP-hard. In particular, the assumption is based on the
elasticity of the mapping function, which is defined as follows.

Definition 4. The elasticity of the mapping function f(δi) with
respect to δi is defined as

Ef(δi) !
df(δi)

f(δi)
/
dδi
δi

=
δif ′(δi)

f(δi)
.

The elasticity Ef(δi) characterizes the ratio of the relative
change in the fraction of actual buyers (i.e., df(δi)/f(δi)) with
respect to the relative change in the fraction of potential buyers
(i.e., dδi/δi). Note that the elasticity is a standard concept in
the economic literature. Using the concept of elasticity, we
now present our main result on the NP-hardness of Problem 1.

Theorem 1. Suppose the elasticity Ef(δi) is lower bounded,
i.e., there exists a constant c > 0 such that Ef(δi) > c, ∀δi ∈
[0, 1]. Problem 1 is NP-hard when k ≥ 2.

Theorem 1 states that Problem 1 is NP-hard if the elasticity
Ef(δi) is lower bounded. Thus, computing the exact solution
to Problem 1 is computationally expensive especially when
the bundle size is large. The elasticity Ef(δi) being lower
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bounded means that increasing or reducing the fraction of
potential buyers can significantly increase or reduce the profit.
In fact, a broad family of functions satisfy this assumption. For
example, f(δi)=δai , (a≥0) satisfies this condition with c=a.

III. FACTORS INFLUENCING BUNDLING PROFITABILITY

Given the NP-hardness of the profit maximization problem,
it is important to develop accurate yet efficient approximation
algorithms to determine the bundle set. To achieve this goal,
we will first analyze some important properties of the problem,
from which we can reveal fundamental principles to form
bundles, and we will later use them to design our algorithms.
In particular, we will investigate the impacts of (1) the intrinsic
characteristics of an individual product to determine whether it
is suitable to be bundled; (2) the interdependency of products
to determine whether multiple products are suitable to be
placed in a bundle simultaneously. We will unify the impacts
of these two factors and show the tradeoff between them.

A. Impact of Individual Product

Note that some products are intrinsically suitable to bundle,
while others are not. For example, we often see bundling
electronic books/movies, but it is rare to bundle two cars. In
other words, there are some intrinsic factors that determine
whether a product itself is suitable to bundle, regardless of its
correlation with others. Now let us reveal such factors.

Given a particular product, suppose we can duplicate it
into many virtual products, each of them are independent and
identical, i.e., for any virtual product i, we have µi = µ,σi =
σ,mi = m(m > µ), and the covariance matrix Σ is diagonal.
If we bundle k of them, we have µb = kµ,σ2

b = kσ2,mb =
km. From Equation (4), the optimal profit for the bundle is
P ∗b = k(µ−m)×π∗

(
σ√

k(µ−m)

)
. This implies that a bundle of

sufficiently large number of independent and identical products
can be viewed as a single product whose variance of valuations
is 0, i.e., limk→∞

σ√
k(µ−m)

= 0. In other words, bundling can
reduce the variance of customers’ valuations. We thus define
the potential profit gain of a product as the profit gain of
bundling sufficiently large number of its duplicates averagely:

γ(µ,σ,m) ! lim
k→+∞

(P ∗b −
∑

i∈B
P ∗i )/k

= (µ−m) [π∗(0)− π∗ (σ/(µ−m))] . (5)
Note that the concept of potential profit gain is based on a
particular product, and it is an important indicator to determine
whether the product is suitable to be bundled with others, in
particular, similar products. Equation (5) reveals that the scale
of the potential profit gain of a product is determined by the
mean of valuations, i.e. µ−m. If the scaling factor µ−m is
fixed, the potential profit gain is determined by the standard
deviation of valuations, i.e. σ.

To illustrate, we let f(δ) = δ, δ ∈ [0, 1] and plot the
normalized potential profit gain γ(µ,σ,m)/(µ − m) w.r.t.
the normalized standard deviation σ/(µ − m) in Figure 1.
From Figure 1, we observe that the potential profit gains vary
significantly when products have different normalized standard

Fig. 1: Normalize potential profit gain v.s. normalized
standard deviation.

deviations. The potential profit gain reaches the highest value
when the normalized standard deviation is small but non-
zero. When the variance of valuations is large, potential profit
gain of bundling can even be negative. This is because when
the variance is large, the seller wants to set a high price
and make profit only from customers with high valuations,
but under bundling, high valuation customers becomes even
fewer compared with separate sale. We then have the following
principle for the bundling decision.
Bundling Principle 1. A product is suitable to be bundled if
it has a large potential profit gain, i.e., the mean of valuations
is high, and the variance is relatively small but non-zero.

B. Impact of Correlation Among Products

Besides the intrinsic features of a product, the decision on
whether we bundle the product also depends on what other
products are in the bundle. Now we investigate the impact of
correlation. We extend the setting in the last subsection (i.e.,
Section III-A), i.e., the covariance for any two products can be
non-zero Σij ̸=0, ∀i ̸=j. We are only interested when bundling
could be more profitable than separate sales; otherwise, there
is no need to bundle. If this is satisfied, we have the following
theorem:

Theorem 2. Suppose the bundle B is more profitable than
separate sales, i.e., P (B) >

∑
i∈[N ] P

∗
i . If there exists another

bundle B̃ with the same size and a smaller variance of
valuations, i.e., | B | = |B̃| and σ̃b < σb, then B̃ is more
profitable than B, i.e., P (B̃) > P (B).

Note that we still assume the same mean of valuations.
Theorem 2 shows that when the variance of valuations for
the bundle is smaller, the profit of bundling is higher. This
is not surprising because bundling is regarded as a way to
reduce the variance of customers’ valuations. Note that the
variance for the bundle is σ2

b =
∑

i∈B
∑

j∈B ρijσiσj . If the
negative correlation among products in the bundle (i.e. smaller
ρij , ∀i, j ∈ B) is stronger, the variance σb of the valuations for
the bundle is lower, therefore the profit of bundling is higher.
This observation motivates us to select products with stronger
negative correlation to form the bundle. We summarize it in
the following principle:
Bundling Principle 2. One should bundle products that
are negatively correlated, so as to minimize the variance of
customers’ valuations of the bundle.
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C. Unifying Impacts of Individual Product and Correlation
Our results thus far reveal two important factors that affect

the bundling strategy. Now we aim to unify these observa-
tions for the general case. We first extend the settings in
Section III-B for the general cases that products may have
different costs, or different means or variances of valuations.
In the following theorem we decompose the profit of a bundle.

Theorem 3. The profit P (B) can be decomposed as

P (B) =
∑

i∈B
γ(µi,σi,mi)− γ(µb,σb,mb) + P ∗s . (6)

Proof: LHS=
∑

i∈[N ]\B

P ∗
i +P ∗

b (B)=
[
P ∗
b (B)−

∑

i∈B

π∗(0)(µi−mi)

]

+

[
∑

i∈B

(π∗(0)(µi−mi)−P ∗
i )

]
+

N∑

i=1

P ∗
i = RHS.

Theorem 3 unifies our observations in the previous two
subsections. The impact of the intrinsic characteristic of prod-
ucts is captured by the first term

∑
i∈B γ(µi,σi,mi). The

impact of the bundle as a unit is captured by the second
term γ(µb,σb,mb)4. The last term P ∗s can be treated as a
constant and thus ignored. In order to improve the profit gain
of bundling, we should maximize the first term and minimize
the second term. These two sub-objectives may not lead to the
same bundling strategy: the set of products with the highest
potential profit gains may not minimize the potential profit
gain of the bundle. Hence one needs to balance these two sub-
objectives, which is non-trivial as shown in the next section.

IV. BUNDLING ALGORITHMS

We have already shown that it is computationally expensive
to locate the optimal bundle set. In this section, we aim to
design approximation algorithms to determine the bundle set.
We begin with a homogeneous case where products have
the same cost, the same mean and variance of valuations,
but valuations are correlated. We design an approximation
algorithm for this special case and illustrate the key idea in
approximating the optimal bundle set. Later, we extend this
algorithm to appropriate the optimal bundle in the general case.

A. Algorithm for Homogeneous & Correlated Products
We consider that products have the same cost m, the same

mean µ (greater than the cost) of valuations, and the same
variance of valuations σ2, where the valuations are correlated.
This special case simplifies the problem in that the optimal
bundle set minimizes the variance of valuations of the bundle,
i.e. σ2

b (as stated by Theorem 2). Thus, Problem 1 is equivalent
to the following integer programming.

minimize
b∈{0,1}N

bTΣb,

subject to
∑

i∈[N ]
bi = k,

4This can be viewed as the intrinsic characteristic of this bundle, to
determine whether it is suitable to be bundled with other products. For a
good bundling strategy, this bundle is not supposed to be further bundled
with other products, otherwise a different bundle should have been formed.

where bi = 1 if i ∈ B and bi = 0 otherwise. The objective
function for this integer programming is convex and quadratic,
and the constraint is an affine function. This implies that
this integer programming becomes the well-known quadratic
programming if we relax the domain of the decision variable
to a continuous set, i.e., b ∈ [0, 1]N . Convex quadratic
programming can be efficiently solved in polynomial time
[9] by some standard convex programming algorithms (e.g.,
interior-point method). We utilize the randomized dependent
rounding technique [10] to map the optimal solution for the
relaxed problem to be integers {0, 1} added up to k with a
time complexity of O(N) [10]. After this rounding, we obtain
an approximate bundle set. We formally describe the above
idea in Algorithm 1.

Algorithm 1: Select a Size-k Bundle (Homogeneous Case)
1 function VarianceMinimization(Σ, k):
2 Solve the continuous relaxation problem to obtain b̃∗:

minimize
b̃∈[0,1]N

b̃TΣb̃,

subject to
∑

i∈[N ]
b̃i = k.

3 b̂ = DepRound(b̃∗, k), B̂ = {i|b̂i = 1}
4 return B̂

Algorithm 2: Randomized Dependent Rounding

1 function DepRound(b̃∗, k):
2 θ = a random permutation of N elements
3 while ∃i, b̃∗i ∈ (0, 1) do
4 i=min{i′|b̃∗θ(i′)∈(0, 1)}
5 j=min{j′|b̃∗θ(j′)∈(0, 1), j′ ̸=i}
6 p=min{1− b̃∗θ(i), b̃

∗
θ(j)}, q=min{b̃∗θ(i), 1− b̃∗θ(j)}

7 (b̃∗θ(i), b̃
∗
θ(j)) =

{
(b̃∗θ(i) + p, b̃∗θ(j) − p),w.p. q

p+q

(b̃∗θ(i) − q, b̃∗θ(j) + q),w.p. p
p+q

8 return b̃∗

To show the accuracy Algorithm 1, we provide the approx-
imation ratio of Algorithm 1 in the following theorem.

Theorem 4. The bundle set B̂ computed by Algorithm 1 has
the following approximation ratio on the optimal profit, pro-
vided that

∑N
i=1 min{b̃∗i , 1− b̃∗i } > 2 and P (B∗) >

∑
i P

∗
i :

E[P (B̂)]
P (B∗) ≥ min

σ′≥0,∆∈[0,∆0]

π∗(
√
σ′2 +∆)

π∗(σ′)
! ξ,

where ∆0=
max{σ,|minΣ|}

(µ−m)2k max{2N/(
√
N−2)+1,2

√
N+N/k},

and B∗ is the optimal bundle. If k!Ω(N0.5+ϵ), ϵ>0, then
Algorithm 1 is asymptotically accurate, i.e., limN→∞ ξ=1.

Theorem 4 states an approximation ratio of Algorithm 1.
It reveals that Algorithm 1 is asymptotically accurate when
the bundle size is not too small as compared to the number
of products. Table 3 presents the approximation ratio when
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f(δi) = δi, max{σ, |minΣ|}/(µ−m)2 = 1. From Table 3
we observe that the approximation ratio is high, when the
number of products is large.

N 1, 000 10, 000 100, 000 1, 000, 000
k 250 2, 500 25, 000 250, 000
ξ 0.522 0.608 0.716 0.810

Table 3: Approximation ratio for different (N, k).

B. Generalizations to Heterogeneous Products
Now we extend Algorithm 1 to approximate the optimal

bundle set for general cases where products are correlated
and may have different costs, or different means or variances
of valuations. Recall that in Equation (6), we decompose the
profit gain of the bundle B into two parts: (1) the summation
of the potential profit gains of each product within the bundle,
i.e.,

∑
i∈B γ(µi,σi,mi); minus (2) the potential profit gain

of the bundle, i.e., γ(µb,σb,mb). The homogeneous case
simplifies the problem in that the potential profit gain for
each product is the same, i.e., γ(µi,σi,mi) is a constant, so
one only needs to minimize γ(µb,σb,mb), which is done by
minimizing the variance of bundle σb. However, for the general
case, the potential profit gain of different products may be
different. In this case, to maximize the profit of bundling, we
need to maximize

∑
i∈B γ(µi,σi,mi) and at the same time,

minimize γ(µb,σb,mb). We need to balance these two terms
as they mutually affect each other in general.

Our idea is to balance them by a two-layer selection. First,
we select a subset of n (k ≤ n ≤ N ) products with the
highest potential profit gains. Then, from these n products
selected, we apply Algorithm 1 to further select a subset of
k products (denoted by Bn) with the minimum variance of
valuations. One can vary n to balance the potential profit
gain

∑
i∈B γ(µi,σi,mi) and variance of the valuations of the

bundle σ2
b . More concretely, the case n = k corresponds to

maximizing the potential profit gain only (the variance σ2
b

is not considered). In other words, we put zero weights on
minimizing the variance σ2

b . As n increases, we weigh more
on minimizing the variance σ2

b , because the variance for the
bundle Bn decreases in n. Eventually, we hit the case n = N ,
which corresponds to minimizing the variance σb only (the
potential profit is not considered).

To achieve a good balance, one can exhaustively try all
possible values of n from k to N . However, this method
is computationally expensive especially when the number of
products N is large, which is often in online markets like
Amzaon. To make our algorithm scalable to a large number
of products, we try different configurations of n in a subset
Ck ⊂ {k, . . . , N} (with a step size larger than one) to obtain
the optimal configuration. Intuitively, when the set Ck is larger,
the approximation accuracy is higher, while the running time
is also longer. One can vary Ck to attain a balance between
a high approximation accuracy and a short running time. We
formally describe the above idea in Algorithm 3.

Algorithm 3 is a generalization of Algorithm 1. The com-
putational complexity of Algorithm 3 is |Ck| times that of Al-

Algorithm 3: Select a Size-k Bundle (General Case)
1 function BundleHeterogeous(Σ, k):
2 Sort {γ(µi,σi,mi)}Ni=1 to get {γ(µji ,σji ,mji)}Ni=1

3 for n ∈ Ck do
4 I = {j1, . . . , jn}
5 Bn = VarianceMinimization(ΣI , k)

6 B∗ = argmaxBn,n∈Ck P (Bn), B̂ = {ji|i ∈ B∗}
7 return B̂

gorithm 1. We will show via experiments that it approximates
the optimal product bundle with high accuracy in Section VI,
although we lack a proof for the approximation ratio.

V. LEARNING THE DISTRIBUTION OF VALUATIONS

We have designed algorithms to determine how to form a
bundle. Note that we need to know the joint distribution of
valuations of products, i.e., N (µ,Σ), as input for the algo-
rithm. In practice, companies do not know this information,
but only have customer’s historical purchasing records. In this
section, we present our method to infer N (µ,Σ) based on
historical purchasing data.

A. Model on Purchasing Data
We infer the parameters of our model from publicly acces-

sible data, which are available in online market websites like
Amazon and eBay. This shows the applicability of our model
and method. Formally, we use the following data model to
summarize the features for parameter inference. In an online
market, there are a set of [M ] ! {1, . . . ,M} customers
and [N ] ! {1, . . . , N} products. We have the transaction
history for all customers, which is denoted by the matrix
A ! (Aij) ∈ {0, 1}N×M where Aij = 1 indicates that
customer j adopts product i, or Aij = 0 otherwise. In an
online market like Amazon, prices are publicly accessible by
all buyers. Thus, for each product i, its price pi is known.

We next design algorithms to infer the joint distribution of
valuation N (µ,Σ) from the above data. It is computationally
expensive to estimate the parameters µ and Σ using maximum
likelihood methods when we only have the “0-1” choices of
customers indicating whether a product is bought or not [11].
Thus, we use a two-step method to tackle this computational
challenge: (1) we first infer the marginal distributions of
valuations for individual products; and (2) we then infer the
covariance matrix with respect to all products.

B. Inferring the Marginal Distribution of Valuations
The marginal distribution N (µi,σ2

i ) of customers’ valua-
tions of product i is parameterized by the mean and variance.
The mean of valuations reflects the intrinsic quality of a
product, and the variance reflects the collective preferences or
biases of the whole customer population. Since the customer
population is fixed, one can assume that the variance of
valuations is the same for all the products, i.e., σi = σ for
all i ∈ [N ]. Inferring the variance σ2 is a challenging task in
general [11], as customers’ valuations are subjective and serve
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as hidden variables that affect the product adoption decisions.
We will choose typical values of variance systematically to
study the profitability of bundling in Section VI. Now, let us
regard σ as a fixed value and set the variance of valuations
for product i as σ̂i = σ, ∀i ∈ [N ].

The fraction of actual buyers of product i can be inferred
from the adoption matrix A as ||Ai||1/M , where Ai denotes
the i-th row of the adoption matrix A. Thus, the fraction
of potential buyers of product i can be estimated as δ̂i =
f−1 (||Ai||1/M) . By applying Equation (3), we infer the
mean of valuations as µ̂i = Φ−1(δ̂i)σ̂i + pi. We will show
how to infer f(·) in Section VI. Let us assume it is known.

C. Inferring the Covariance of Valuations
• Emperial covariance matrix. In the last subsection we have
inferred the diagonal entries of the covariance matrix. Now we
infer the other entries of it, namely the pairwise covariance
among each pair of products Σij , ∀i ̸= j. Notice that the joint
distribution of Vi and Vj is

(Vi, Vj) ∼ N
(
(µ̂i, µ̂j),

[
σ̂2
i ρij σ̂iσ̂j

ρij σ̂iσ̂j σ̂2
j

])
.

The fraction of potential buyers for both products i and
j, which is defined as δij , can be derived as δij !
1 − FVi,Vj (pi, pj ; ρij) . Then, the fraction of actual buyers
that buy both products i and j is f(δij). From the adop-
tion matrix A, we can infer f(δij) as [AAT ]ij/M , where
[AAT ]ij =

∑M
u=1 AiuAju is the number of customers buy-

ing both products i and j. Thus, the fraction of potential
buyers of both products i and j can be estimated as δ̂ij =
f−1

(
[AAT ]ij/M

)
. The estimated correlation coefficient is

ρ̂ij = F−1
Vi,Vj

(
pi, pj ; 1− δ̂ij

)
,where F−1

Vi,Vj
denotes the in-

verse function of FVi,Vj with respect to ρij . It is well defined
since the function FVi,Vj is monotone with respect to ρij [12].
Finally, we estimate the empirical covariance of Vi and Vj as
Σ̃ij = σ̂iσ̂j ρ̂ij .

• Refined estimation via symmetric matrix factorization.
The empirical covariance matrix has two drawbacks: (1) it may
not be positive semidefinite; and (2) the pairwise covariance
estimation is based on limited and local data, so it may not
be accurate enough. To address these two issues, we apply a
symmetric matrix factorization approach [13]. The basic idea
is that we believe the covariance matrix Σ is of low rank.
In particular, it has the following low rank decomposition:
Σ = XTX, where X = [X1, . . . ,XN ] with Xi ∈ Rr, r ≪ N .
We denote Xi ! σ̂ixi and ||xi||2 = 1. Our objective is to infer
X such that XTX is as close to the empirical covariance Σ̃
as possible:

min
||xi||2=1,∀i∈[N ]

ψ(X)=
∑

i∈[N ]

∑

j∈[N ]

wij(σ̂iσ̂jx
T
i xi−Σ̃ij)

2, (7)

where wij ∈ R+ is a weight representing our confidence
of the empirical correlation coefficient ρ̂ij . For those product
pairs with a larger number of co-purchasing occurrences (i.e.,
[AAT ]ij is large), we are more confident on the empirical
covariance. Hence, if the value of [AAT ]ij is larger, the

weight wij is larger. We will choose specific weights based on
this rule in Section VI. We apply the projected gradient method
[14] to solve the optimization problem stated in Equation (7).
We first derive the gradient as

∇xkψ(X) = 2
∑

i̸=k
wik(σ̂kσ̂ix

T
k xi − Σ̃ik)xi.

Then we outline the projected gradient method in Algorithm 4.
Through Algorithm 4, we obtain X̂. The final estimation of
the covariance matrix is Σ̂ = X̂T X̂.

Algorithm 4: Projected Gradient Descent
1 Initialize X0.
2 for τ = 0 to t− 1 do
3 for k = 1 to N do
4 yτ

k = xτ
k − ητ∇xkψ(X

τ ) // ητ is the step size
5 xτ+1

k = yτ
k/||yτ

k ||2 // project onto the unit sphere

6 Xτ+1 = [σ̂1x
τ+1
1 , . . . , σ̂Nxτ+1

N ]

7 X̂ = Xt

8 return X̂

VI. EXPERIMENTS

In the previous section, we have inferred parameters as
inputs to our bundling algorithm. In this section, we perform
experiments using our inference method and bundling algo-
rithms on the Amazon co-purchasing data set to investigate
the profitability of bundling sales. We show that under general
settings, our inference results are accurate in estimating the
model parameters, and our bundling algorithm approximates
the optimal bundle with high accuracy. Experimental results
show that bundling sale is highly profitable when the bundle
size is relatively large. As we increase (or reduce) the bundle
size, the optimal bundle set expands (or shrinks) incrementally.
For reproducibility, we release the code and data in [15].

A. Amazon Co-purchasing Dataset
We conduct experiments on the Amazon product co-

purchasing data5. This dataset contains product metadata and
reviews for 548, 552 products, consisting of music CDs, DVDs
and VHS video tapes, which are all information goods. Each
product review corresponds to one purchase, and it contains
the buyer’s ID and the product’s ID. If customer j wrote a
review to product i, then Aij = 1. The price for each product
is missing for the co-purchasing dataset, and we crawled the
price from The tracktor6 website, which tracks the prices of
products on Amazon. We select all the products in the “music”
category with no less than 5 reviews and available price
information. In total we select N = 7, 783 products. These
products have a total number of 515, 129 reviews assigned by
228, 195 customers, i.e., M = 228, 195. The marginal cost mi

is not accessible in general. The marginal cost of reproducing
an information good (e.g., music) is usually minimal, and thus

5https://snap.stanford.edu/data/amazon-meta.html
6https://thetracktor.com/
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Fig. 2: Similarity matrix.
Fig. 3: Dist. of logrithmic
sales volume of products. Fig. 4: Impact of a on f(δi).

Fig. 5: Dist. of inferred
mean of valuations (σ=15).

is usually considered to be zero [2]. We also set the marginal
cost as zero, i.e., mi = 0, ∀i ∈ [N ].

Let us show some statistics on customers’ co-purchasing
behaviors in order to gain some insights on the covariance of
valuations. Intuitively, two products i and j will have similar
adoption vectors (i.e., the i-th row Ai and j-th row Aj of
adoption matrix A), if customers’ valuations of these two
products are positively correlated. Thus, the similarity between
Ai and Aj reflects the correlation of valuations. Formally, we
use the cosine similarity to quantify it:

cos(i, j) ! ⟨Ai,Aj⟩
||Ai||2||Aj ||2

.

When the cosine similarity is higher, the valuations of these
two products are more likely to be positively correlated. To
visualize the similarity matrix, we apply the spectral clustering
[16] on it and obtain 15 clusters. We plot the similarity
matrix in Figure 2, where we rearrange the indices of the
products so that those in a cluster have consecutive indices.
From Figure 2, we observe that a small number of products
have high similarity. It implies that customers’ valuations are
positively correlated only for a small number of products,
while most of the others are negatively correlated. As we have
revealed in Section III, this implies a significant potential to
improve the profit of Amazon using the bundling sale strategy.

B. Inferring Model Parameters

• Inferring the mapping function. We infer the mapping
function f(δi) from the sales volume distribution across prod-
ucts. We count the number of reviews of a product as its
sales volume, which refers to the total number of times this
product is sold. We plot the distribution of sales volume in
Figure 3. From Figure 3 we observe that the distribution of
the number of actual buyers across products follows a log-
normal distribution. Naturally, the distribution of the number
of potential buyers across products is a normal distribution.
Thus, the mapping function f(δi) has an exponential form.
Since f(0) = 0, the mapping function is in the form of
f(δi) = ca

δi−1
a−1 , where a and c are constants. The remaining

task is to determine the parameters a and c.
In real life, some products are attractive to all customers,

i.e., maxi∈[N ] δi = 1. In the dataset, the maximum number
of actual buyers for a product is 3,815. Since the mapping
function f(δ) is increasing in δ, the fraction of potential buyers
for the product with the maximum sales volume should be

1, and we have c = f(1) = 3815/228195 = 0.0167. Due
to the variance of valuations, some products may attract a
large fraction of potential buyers, while others attract a small
fraction. Thus, we assume on average, the fraction of potential
buyers for all products is 0.5, i.e., δ̄ ! (

∑N
i=1 δi)/N = 0.5.

This holds when the price equals the mean of valuations
of the product. Then it follows that δ̄ ! (

∑N
i=1 δi)/N =∑N

i=1 f
−1(||Ai||1/M) = 0.5, which yields a = 16674.27.

One may note that our setting on the value of δ̄ is quite
artificial, which impacts the value of a. However, fortunately,
the value of the mapping function f(·) is not very sensitive
to the value of a, as we show in Figure 4. This implies our
selection of parameters is reasonable.
• Inferring the distribution of valuations. Now we apply the
algorithms in Section V to infer the distribution of valuations
N (µ,Σ). In Algorithm 4, we set the weight wij = 0.1 +
[AAT ]ij , the number of iterations t = 100, and the updating
step size ητ = 0.00005/

√
τ + 1. Figure 5 shows the histogram

of the inferred mean value µ̂i. It is observed that the histogram
is well represented by a truncated normal distribution.
• Measuring the accuracy of inference. Now we show the
accuracy of the inferred parameters µ̂ and Σ̂. To measure the
accuracy, we adopt the recall-based approach [17]. We com-
pare the co-purchasing of products predicted by the inferred
distribution of valuation N (µ̂, Σ̂), with the co-purchasing of
products observed from the dataset (i.e., the adoption matrix
A). If they coincide, then µ̂ and Σ̂ are accurate. Formally, the
prediction accuracy is measured by [17]:

rank !
∑N

i=1

∑N
j=1[AAT ]ijrankj|i

∑N
i=1

∑N
j=1[AAT ]ij

,

where rankj|i denotes the percentile rank of the co-purchasing
probability P(j|i) among the sequence P(1|i), . . . ,P(N |i),

P(j|i) ! P(A customer buys j | A customer buys i)

= f
(
1− FVi,Vj (pi, pj ; Σ̂ij/(σ̂iσ̂j))

)
/f(δ̂i),

where δ̂i and FVi,Vj (pi, pj) is achieved based on the inferred
distribution N (µ̂, Σ̂). If the average rank is lower, the predic-
tion accuracy is higher. Figure 6 plots the average rank rank,
where we vary the number of factors r from 5 to 80 in the
matrix factorization. From Figure 6 we observe that when r
increases, the average rank rank decreases, or the prediction
accuracy increases. When r is larger than 20, increasing r will
only reduce the average rank slightly. We want to emphasize
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Fig. 6: Accuracy of the pre-
dictions.

Fig. 7: Approximation ratio and running time for our
bundling algorithm (N = 20, k varied).

Fig. 8: Running time of our
algorithm (k=⌈N4 ⌉, N varied).

that when r = 20, the average rank is rank = 10.1%,
indicating our prediction is accurate, or the inferred parameters
µ̂ and Σ̂ are accurate. Thus, we set r = 20.

C. Evaluating the Bundling Algorithms
Now we evaluate our bundling algorithm, i.e., Algorithm 3,

in terms of the running time and approximation ratio where
we set Ck = {⌊{k(1+ i/10)⌋}20i=0. The baseline algorithm for
comparison is exhaustive search, which locates the optimal
bundle set via enumerating all possible bundles. We run both
algorithms based on our inferred parameters. We randomly
select 20 products from the data, i.e., N=20, because ex-
haustive search is computationally inhibitive when N is large.
For each bundle size from 2 to 9 we compare the profit and
the running time of these two algorithms, where take the
average of 24 runs. From Figure 7 we observe that the average
approximation ratio is above 95%, or, our algorithm achieves
at least 95% of the maximal profit and is thus highly accurate.
Also, our approximation reduces the running time dramatically
to 0.017% of that of exhaustive search when k = 9. We
also plot the running time of our algorithm for different N
in Figure 8, where we select 1/4 of the products to bundle.
We can see the running time increases almost linearly with N .
This enables us to apply our algorithm to large-scale datasets.

D. Case Studies on the Amazon Co-purchasing Dataset
We first study the profit improvement of bundling sale as

compared to separate sales. Formally, we define the relative
profit improvement ratio as

PftImp ! (P (B̂)− P ∗s )/P
∗
s .

Figure 9 plots the profit improvement as the bundle size varies.
From Figure 9 we observe that when the bundle size is small,
the profit improvement is marginal. When it becomes large, the
profit improvement is significant, i.e. 145% for k = 2000 and
σ = 15. Figure 10 shows the intersection of bundle sets when
the value of σ are different. We can see that a large number
of products are always in the bundle when σ takes different
values. The profit improvement curve has a single peak, or
the profit improvement first increases and then decreases as
we increase the bundle size. In summary, the seller should
consider a bundle size that is relatively (but not extremely)
large to improve the profit. If we bundle products randomly,
the profit improvement is minimal or even negative, as shown
in Figure 11. Thus, a carefully-designed bundling strategy is
essential to the success of bundling.

Second, we investigate the evolution of the bundle set when
the bundle size increases. Let us denote B̂k as the bundle set
selected by Algorithm 3 given a bundle size of k. Figure 12
depicts B̂k as k varies. As illustrated in Figure 12, the optimal
bundle set expands incrementally as we increase the bundle
size, i.e., B̂1000 ⊂ . . . ⊂ B̂6000 holds roughly. This implies
that when a seller wants to reduce (or increase) the bundle
size, he only needs to detach (or include) a small subset of
products from (into) the current bundle.

Last but not least, let us investigate which products should
be selected to the bundle, in particular, what are the sales vol-
umes of such products in the bundle when they are separately
sold, which reflect their popularity to customers. Figure 13
plots the distribution of the separate-sales volume for products
in the bundle. From Figure 13 we observe that most products
in the bundle have a separate-sales volume close to the average
, i.e. 66.2, while a small fraction of them have a particularly
large sales volume. In other words, most of the products in
the bundle are with average popularity, while a few others
are really popular. An important indication is that a good
bundle could consist of a large number of products with
average popularity, and a few very popular products. Such
a composition is optimal because on one hand, the bundle is
attractive due to the inclusion of some star products, and on
the other, having many mediocre products increases the bundle
size so that the total sales volume of all products increases.

VII. RELATED WORK

Bundling strategies have been extensively studied from
economic perspectives. Adams and Yellen [18] showed that a
bundling sale can be more profitable than separate sales, but it
also can lead to oversupply or undersupply of some products.
Schmalensee [5] extended Adams-Yellen framework [18] to
consider Gaussian distributed reservation prices. They showed
that pure bundling can be more profitable if the average reser-
vation price is high enough. Hanson and Martin [19] designed
algorithms to find the optimal bundle prices. Different from
these works on bundling physical goods, several works [1], [2],
[3] studied bundling information goods. The main difference
is that the marginal cost of information goods is negligible
while not for physical goods. Besides studying bundling from
a theoretical perspective, Kamel et al. [11] and Chu et al.
[6] collected survey data to validate theoretical assumptions
of bundling strategies and further explored bundling strategies
based on parameters inferred from data.

563



Fig. 9: Profit of bundles selected
by our algorithm.

Fig. 10: Bundle sets of
different σ (k = 2000).

Fig. 11: Profit of bundles selected
randomly (average of 50 runs).

Fig. 12: Bundle sets of
different size (σ=15).

Fig. 13: Distribution of the sales volume of bundled
products (σ = 15, k = 2000).

Although bundling has been extensively studied, most of
these works considered a small number of (usually two)
products. Among the few works on bundling a large number
of products, Bakos and Brynjolfsson [2] studied strategies
for bundling infinite number of products which have limited
correlation of reservation prices. Benisch and Sandholm [7]
proposed a framework for automated bundling by mining
shopping cart data. They developed a novel methodology to
utilize customers’ purchasing data to set the optimal bundle
price via heuristic algorithms, but their maximum likelihood
algorithm to estimate parameters does not scale for a large
number of products. Our paper differs from these works in
that (1) we design an approximation algorithm to find the
optimal bundling strategy for a large number of products, and
(2) we propose a computationally efficient algorithm to learn
customers’ purchasing behaviors from accessible dataset.

VIII. CONCLUSION

This paper develops a statistical framework to infer cus-
tomers’ valuations and find the optimal product bundle from
customers’ purchasing data. We first formulate a profit max-
imization framework to select the optimal bundle set, which
we show is NP-hard. We identify key factors that influence
the profitability of bundling sale. They give us insights to de-
velop a computationally efficient algorithm to approximate the
optimal bundle set with provable performance guarantee. We
design algorithms to infer model parameters from customers’
purchasing data, and carry out experiments on an Amazon
co-purchasing dataset. We show that our inference algorithm
is accurate in estimating the model parameters, and that our
bundling algorithms approximate the optimal bundle set with
high accuracy. Our analysis and experimental results show that

the bundling sale is highly profitable when the bundle size is
relatively large and the valuation of customers to products are
negatively correlated. As we increase (or decrease) the bundle
size, the optimal bundle set expands (or shrinks) incrementally.
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