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Abstract
The combinatorial multi-armed bandit (CMAB) is
a fundamental sequential decision-making frame-
work, extensively studied over the past decade.
However, existing work primarily focuses on the
online setting, overlooking the substantial costs
of online interactions and the readily available
offline datasets. To overcome these limitations,
we introduce Off-CMAB, the first offline learn-
ing framework for CMAB. Central to our frame-
work is the combinatorial lower confidence bound
(CLCB) algorithm, which combines pessimistic
reward estimations with combinatorial solvers.
To characterize the quality of offline datasets,
we propose two novel data coverage conditions
and prove that, under these conditions, CLCB
achieves a near-optimal suboptimality gap, match-
ing the theoretical lower bound up to a logarithmic
factor. We validate Off-CMAB through practi-
cal applications, including learning to rank, large
language model (LLM) caching, and social in-
fluence maximization, showing its ability to han-
dle nonlinear reward functions, general feedback
models, and out-of-distribution action samples
that exclude optimal or even feasible actions. Ex-
tensive experiments on synthetic and real-world
datasets for these applications further highlight
the superior performance of CLCB.

1. Introduction
Combinatorial multi-armed bandit (CMAB) is a funda-
mental sequential decision-making framework, designed
to tackle challenges in combinatorial action spaces. Over
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the past decade, CMAB has been extensively studied (Cesa-
Bianchi & Lugosi, 2012; Bubeck et al., 2012; Audibert et al.,
2014; Neu, 2015; Gai et al., 2012; Kveton et al., 2015c;
Combes et al., 2015; Chen et al., 2016; Wang & Chen, 2017;
Merlis & Mannor, 2019; Saha & Gopalan, 2019; Zimmert
et al., 2019; Liu et al., 2024b; Qin et al., 2014; Liu et al.,
2023a; Choi et al., 2024; Hwang et al., 2023), driving ad-
vancements in real-world applications like recommendation
systems (Kveton et al., 2015a; Li et al., 2016; Lattimore
et al., 2018; Agrawal et al., 2019), healthcare (Lin & Boun-
effouf, 2022; Verma et al., 2023; Bouneffouf et al., 2020),
and cyber-physical systems (György et al., 2007; Kveton
et al., 2015b; Li et al., 2019; Liu et al., 2023b).

Most success stories of CMAB have emerged within the
realm of online CMAB1, which relies on active data collec-
tion through online exploration. While effective in certain
scenarios, this framework faces two major limitations. On
one hand, online exploration becomes impractical when it
incurs prohibitive costs or raises ethical and safety concerns.
On the other hand, they neglect offline datasets that are often
readily available at little or no cost.

For instance, in healthcare systems (Liu et al., 2020),
recommending optimal combinations of medical treat-
ments—such as drugs, surgical procedures, and radiation
therapy—requires extreme caution. Experimenting directly
on patients is ethically and practically infeasible. Instead,
leveraging pre-collected datasets of prior treatments can
help to make informed decisions while ensuring patient
safety. Similar happens for recommendation systems (Chen
et al., 2023) and autonomous driving (Kiran et al., 2020),
offline datasets such as user click histories and human driv-
ing logs are ubiquitous. Leveraging these offline datasets
can guide learning agents to identify optimal policies while
avoiding the significant costs associated with online explo-
ration—such as degrading user experience or risking car
accidents. For more examples, see Appendix B for details.

To address the limitations of online CMAB, we propose the
first offline learning framework for CMAB (Off-CMAB),
where we leverage a pre-collected dataset consisting of n
samples of combinatorial actions and their corresponding
feedback data. Our framework handles rewards that are

1See Appendix A for a comprehensive discussion on the related
works.
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nonlinear functions of the chosen super arms and considers
probabilistic feedback models that generalize the standard
semi-bandit feedback model (Gai et al., 2010; Chen et al.,
2013; Kveton et al., 2015c), supporting a wide range of
applications such as learning to rank (Liu et al., 2009), large
language model (LLM) caching (Zhu et al., 2023), and in-
fluence maximization (Kempe et al., 2003a). The objective
is to identify a combinatorial action that minimizes the sub-
optimal gap, defined as the reward difference between the
optimal action and the identified action.

The key challenge of Off-CMAB lies in the absence of ac-
cess to an online environment, which inherently limits the
number of data samples available for each action. Further-
more, this problem becomes even more challenging with
the combinatorially large action space, which complicates
the search for optimal solutions, and the potential presence
of out-of-distribution (OOD) samples, where the dataset
may exclude optimal or even feasible actions. To tackle
these challenges, this work makes progress in answering the
following two open questions:

(1) Can we design a sample-efficient algorithm for Off-
CMAB when the action space is combinatorially large? (2)
How much data is necessary to find a near-optimal action,
given varying levels of dataset quality?

We answer these questions from the following perspectives:

Algorithm Design: To address the first question, we pro-
pose a novel combinatorial lower confidence bound (CLCB)
algorithm that addresses the uncertainty inherent in pas-
sively collected datasets by leveraging the pessimism princi-
ple. At the base arm level, CLCB constructs high-probability
lower confidence bounds (LCBs), penalizing arms with in-
sufficient observations. At the combinatorial action level,
CLCB utilizes an approximate combinatorial solver to han-
dle nonlinear reward functions, effectively translating base-
arm pessimism to action-level pessimism. This design pre-
vents the selection of actions with high-fluctuation base
arms, ensuring robust decision-making.

Theoretical Analysis: For the second question, we intro-
duce two novel data coverage conditions: (1) the infinity-
norm and (2) 1-norm triggering probability modulated
(TPM) data coverage conditions, which characterize the
dataset quality. These conditions quantify the amount of
data required to accurately estimate each action by decom-
posing the data needs of each base arm and reweighting
them based on their importance. Under these conditions,
we prove that CLCB achieves a near-optimal suboptimality
gap upper bound of Õ(K∗

√
C∗

∞/n), where K∗ is the size
of the optimal action, C∗

∞ is the data coverage coefficient,
and n is the number of samples in the offline dataset. This
result matches the lower bound Ω(K∗

√
C∗

∞/n) derived
in this work up to a logarithmic factor. Our analysis care-

fully addresses key challenges, including handling nonlinear
reward functions, confining uncertainties to base arms rele-
vant to the optimal action, and accounting for arm triggering
probabilities, enabling CLCB to achieve state-of-the-art per-
formance with tighter bounds and relaxed assumptions for
the real-world applications as discussed below.

Practical Applications: We show the practicality of Off-
CMAB by fitting real-world problems into our framework
and applying CLCB to solve them, including (1) learning
to rank, (2) LLM caching, and (3) social influence max-
imization (IM). For the LLM cache problem, beyond di-
rectly fitting it into our framework, we improve existing
results by addressing full-feedback arms, extending our ap-
proach to the online LLM setting with similar improvements.
For social IM, our framework handles nuanced node-level
feedback by constructing base-arm LCBs via intermediate
UCB/LCBs, with additional refinements using variance-
adaptive confidence intervals for improved performance.

Empirical Validation: Finally, extensive experiments
on both synthetic and real-world datasets for learning to
rank and LLM caching validate the superior performance of
CLCB compared to baseline algorithms.

2. Problem Setting
In this section, we introduce our model for combinatorial
multi-armed bandits with probabilistically triggering arms
(CMAB-T) and the offline learning problem for CMAB-T.

2.1. Combinatorial Multi-armed Bandits with
Probabilistically Triggered Arms

The original combinatorial multi-armed bandits problem
with probabilistically triggered arms (CMAB-T) is an on-
line learning game between a learner and the environment
in n rounds. We can specify a CMAB-T problem by a tuple
I := ([m],D,S,Dtrig, R), where [m] are base arms, S is the
set of feasible combinatorial actions, D is the set of feasible
distributions for the base arm outcomes, Dtrig is the prob-
abilistic triggering function, and R is the reward function.
The details of each component are described below:

Base arms. The environment has a set of [m] =
{1, 2, ...,m} base arms. Before the game starts, the en-
vironment chooses an unknown distribution Darm ∈ D over
the bounded support [0, 1]m. At each round t ∈ [n], the envi-
ronment draws random outcomes Xt = (Xt,1, ...Xt,m) ∼
Darm. Note that for a fixed arm i, we assume outcomes
Xt,i, Xt′,i are independent across different rounds t ̸= t′.
However, outcomes for different arms Xt,i and Xt,j for
i ̸= j can be dependent within the same round t. We
use µ = (µ1, ..., µm) to denote the unknown mean vector,
where µi := EXt∼Darm [Xt,i] for each base arm i.
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Combinatorial actions. At each round t ∈ [n], the learner
selects a combinatorial action St ∈ S, where S is the set
of feasible actions. Typically, St is a set of individual base
arms S ⊆ [m], which we refer to as a super arm. However,
St can be more general than the super arm, e.g., continuous
arms are useful for applying CMAB to resource allocation
(Zuo & Joe-Wong, 2021), which we emphasize as needed.

Probabilistic arm triggering feedback. Motivated by the
properties of real-world applications that will be introduced
in detail in Section 4, we consider a feedback process that
involves scenarios where each base arm in a super arm St

does not always reveal its outcome, even probabilistically.
For example, a user might leave the system randomly at
some point before examining the entire recommended list
St, resulting in unobserved feedback for the unexamined
items. To handle such probabilistic feedback, we assume
that after the action St is selected, the base arms in a ran-
dom set τt ∼ Dtrig(St,Xt) are triggered depending on the
outcome Xt, where Dtrig(S,X) is an unknown probabilis-
tic distribution over the subsets 2[m] given S and X . This
means that the outcomes of the arms in τt, i.e., (Xt,i)i∈τt ,
are revealed as feedback to the learner, which could also
be involved in determining the reward of action St as we
introduce later. To allow the algorithm to estimate the
mean µi directly from samples, we assume the outcome
does not depend on whether the arm i is triggered, i.e.,
EX∼Darm,τ∼Dtrig(S,X)[Xi|i ∈ τ ] = EX∼Darm [Xi]. We use
pDarm,S
i to denote the probability that base arm i is triggered

when the action is S and the mean vector is µ.

Reward function. At the end of round t ∈ [n], the learner
receives a nonnegative reward Rt = R(St,Xt, τt), deter-
mined by action St, outcome Xt, and triggered arm set τt.
Similarly to (Wang & Chen, 2017), we assume the expected
reward to be r(St;µt) := E[R(St,Xt, τ)], a function of
the unknown mean vector µ, where the expectation is taken
over the randomness of Xt and τt ∼ Dtrig(St,Xt).

Reward conditions. Owing to the nonlinearity of the re-
ward and the combinatorial structure of the action, it is
essential to give some conditions for the reward function
to achieve any meaningful theoretical guarantee (Wang &
Chen, 2017). We consider the following conditions:

Condition 1 (Monotonicity, Wang & Chen (2017)). We
say that a CMAB-T problem satisfies the monotonicity con-
dition, if for any action S ∈ S, for any two distributions
Darm,D′

arm ∈ D with mean vectors µ,µ′ ∈ [0, 1]m such
that µi ≤ µ′

i for all i ∈ [m], we have r(S;µ) ≤ r(S;µ′).

Condition 2 (1-norm TPM Bounded Smoothness, Wang &
Chen (2017)). We say that a CMAB-T problem satisfies the
1-norm triggering probability modulated (TPM) bounded
smoothness condition with coefficient B1, if there exists
coefficient B1 > 0 (referred to as smoothness coefficient),
if for any two distributions Darm,D′

arm ∈ D with mean

vectors µ,µ′ ∈ [0, 1]m, and for any action S ∈ S , we have
|r(S;µ′)− r(S;µ)| ≤ B1

∑
i∈[m] p

Darm,S
i |µi − µ′

i|.

Remark 1 (Intuitions of Condition 1 and Condition 2). Con-
dition 1 indicates the reward is monotonically increasing
when the parameter µ increases. Condition 2 bounds the
reward smoothness/sensitivity, i.e., the amount of the reward
change caused by the parameter change from µ to µ′. In the
learning to rank (Section 4.1), for example, these conditions
upper bounds the difference in total number of purchases
when the purchase probability for the items changes from
µ to µ′. For Condition 2, the key feature is that the pa-
rameter change in each base arm i is modulated by the
triggering probability pµ,S

i , saving a pmin factor in (Chen
et al., 2016) where pmin is the minimum positive triggering
probability. Intuitively, for base arm i that is unlikely to be
triggered/observed (small pµ,S

i ), Condition 2 ensures that
a large change in µi (due to insufficient observation) only
causes a small change (multiplied by pµ,S

i ) in reward, sav-
ing a pmin factor in (Wang & Chen, 2017) where pmin is the
minimum positive triggering probability. In learning to rank
application, for example, since users will never purchase an
item if it is not examined, increasing or decreasing the pur-
chase probability of an item that is unlikely to be examined
(i.e., with small pµ,S

i ) does not significantly affect the total
number of purchases.

2.2. Offline Data Collection and Performance Metric

Offline dataset. Fix any CMAB-T problem I together
with its underlying distribution Darm. We consider the
offline learning setting, that is, the learner only has ac-
cess to a dataset D consisting of n feedback data D :=
{(St, τt, (Xt,i)i∈τt)}

n
t=1 collected a priori by an experi-

menter. Here, we assume the experimenter takes an un-
known data collecting distribution DS over feasible actions
S, such that St is generated i.i.d. from St ∼ DS for any
offline data t ∈ [n]. After St is sampled, the environment
generates outcome Xt ∼ Darm. Then τt ∼ Dtrig(St,Xt) are
triggered, whose outcome are recorded as (Xt,i)i∈τt . To this
end, we use pDarm,DS

i to denote the data triggering probabil-
ity, i.e., pDarm,DS

i = ES∼DS ,X∼Darm,τ∼Dtrig(S,X)[I {i ∈ τ}],
which indicates the frequency of observing arm i ∈ [m].

Approximation oracle and α approximate suboptimal-
ity gap. The goal of the offline learning problem for
CMAB-T is to identify the optimal combinatorial action
that maximizes the expected reward. Correspondingly,
the performance of an offline learning algorithm A is
measured by the suboptimality-gap, defined as the differ-
ence in the expected reward between the optimal action
S∗ := argmaxS′∈S r(S′;µ) and the action Ŝ chosen by
algorithm A with dataset D as input. For many reward func-
tions, it is NP-hard to compute the exact S∗ even when µ
is known, so similar to (Chen et al., 2013; Wang & Chen,
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2017; Liu et al., 2022; 2024a), we assume that algorithm A
has access to an offline α-approximation ORACLE, which
takes any mean vector µ ∈ [0, 1]m as input, and outputs
an α-approximate solution S ∈ S, i.e., S = ORACLE(µ)
satisfies

r(S;µ) ≥ α ·max
S′∈S

r(S′;µ) (1)

Given any action Ŝ ∈ S, the α-approximate suboptimality
gap over the CMAB-T instance I with unknown base arm
mean µ is defined as

SubOpt(Ŝ;α, I) := α · r(S∗;µ)− r(Ŝ;µ), (2)

Our objective is to design an algorithm A such that
SubOpt(Ŝ;α, I) is minimized with high probability 1− δ,
where the randomness is taken over the (DS ,Darm,Dtrig).

2.3. Data Coverage Conditions: Quality of the Dataset

Since the offline learning performance is closely related
to the quality of the dataset D, we consider the following
conditions about the offline dataset:

Condition 3 (Infinity-norm TPM Data Coverage). For a
CMAB-T instance I with unknown distribution Darm and
mean vector µ, let S∗ = argmaxS∈S r(S;µ).2 We say that
the data collecting distribution DS satisfies the infinity-norm
triggering probability modulated (TPM) data coverage con-
dition, if there exists a coefficient C∗

∞ > 0 (referred to as
coverage coefficient), such that

max
i∈[m]

pDarm,S
∗

i

pDarm,DS
i

≤ C∗
∞. (3)

Condition 4 (1-norm TPM Data Coverage). For a CMAB-T
instance I with unknown distribution Darm and mean vector
µ, let S∗ = argmaxS∈S r(S;µ). We say that the data
collecting distribution DS satisfies the 1-norm triggering
probability modulated (TPM) data coverage condition, if
there exists a coefficient C∗

1 > 0, such that

∑
i∈[m]

pDarm,S
∗

i

pDarm,DS
i

≤ C∗
1 . (4)

Remark 2 (Intuition of Condition 3 and Condition 4). Both
Condition 3 and Condition 4 evaluate the quality of the
dataset D, which directly impacts the amount of data re-
quired to accurately estimate the expected reward of the
optimal S∗. The denominator pDarm,DS

i represents the data
generation rate for arm i, and 1

p
Darm,DS
i

corresponds to the

expected number of samples needed to observe one instance

2Note that for simplicity, we choose an arbitrary optimal so-
lution S∗ , and in practice, we can choose one that leads to the
smallest coverage coefficient.

of arm i. Incorporating similar triggering probability mod-
ulation as in Condition 2, we use pDarm,S

∗

i to reweight the
importance of each arm i, and when pDarm,S

∗

i is small, the
uncertainty associated with arm i has small impact on the
estimation. Consequently, a large amount of data is not
required for learning about arm i. Notably, because we com-
pare against the optimal super arm S∗, we only require the
weight pDarm,S

∗

i of the optimal action S∗ as the modulation.
This is less restrictive than uniform coverage conditions that
require adequate data for all possible actions, as used by
Chen & Jiang (2019b); Jiang (2019).

The primary difference between Condition 3 and Condi-
tion 4 lies in the computation of the total expected data
requirements for all arms. Condition 3 adopts a worst-case
perspective using the max operator, whereas Condition 4
considers the total summation over i ∈ [m]. Generally,
the relationship C∗

1 ≤ K∗C∗
∞ holds. Depending on the

application, different conditions may be preferable, offer-
ing varying guarantees for the suboptimality gap. Detailed
discussion is provided in Remark 4.

Remark 3 (Extension to handle out-of-distribution DS).
Note that Condition 3 and Condition 4 are restrictions on
the base arm level. Hence, our framework is flexible and can
accommodate any data collection distribution DS , including
distributions over actions S ′ that may assign zero probability
to the optimal action S∗ or even extend beyond the feasible
action set S. For example, in the LLM cache problem
(Section 4.2), the experimenter might ensure arm feedback
by using an empty cache in each round, leveraging cache
misses to collect feedback. In this case, the distribution DS
assigns zero probability to the optimal cache configuration
as well as any reasonable cache configurations.

3. CLCB Algorithm and Theoretical Analysis
In this section, we first introduce the Combinatorial Lower
Confidence Bound (CLCB) algorithm (Algorithm 1) and
analyze its performance in Section 3. We then derive a
lower bound on the suboptimality gap, and we show that our
gap upper bound matches this lower bound up to logarithmic
factors.

The CLCB algorithm first computes high-probability lower
confidence bounds (LCBs) for each base arm (line 5). These
LCB estimates are then used as inputs to a combinato-
rial oracle to select an action Ŝ that approximately max-
imizes the worst-case reward function r(S∗;

¯
µ) (line 7).

The key part of Algorithm 1 is to conservatively use the
LCB, penalizing each base arm by its confidence interval,√

log( 4mn
δ )/2Ni.This approach, rooted in the pessimism

principle (Jin et al., 2020a), mitigates the impact of high
fluctuations in empirical estimates caused by limited obser-
vations, effectively addressing the uncertainty inherent in
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Algorithm 1 CLCB: Combinatorial Lower Confidence
Bound Algorithm for Off-CMAB

1: Input: Dataset D = {(St, τt, (Xt,i)i∈τt)}
n
t=1, compu-

tation oracle ORACLE, probability δ.
2: for arm i ∈ [m] do
3: Calculate counter Ni =

∑n
t=1 I{i ∈ τt}.

4: Calculate empirical mean µ̂i =
∑n

t=1 I{i∈τt}Xt,i

Ni
.

5: Calculate LCB
¯
µi = µ̂i −

√
log( 4mn

δ )

2Ni
.

6: end for
7: Call oracle Ŝ = ORACLE(

¯
µ1, ...,

¯
µm).

8: Return: Ŝ.

passively collected data.

Theorem 1. Let I be a CMAB-T problem and D a dataset
with n data samples. Let Ŝ denote the action given by CLCB
(Algorithm 1) using an α-approximate oracle. If the problem
I satisfies (a) monotonicity (Condition 1), (b) 1-norm TPM
smoothness (Condition 2) with coefficient B1 , and (c) the
infinity-norm TPM data coverage condition (Condition 3)
with coefficient C∗

∞; and the number of samples satisfies
n ≥ 8 log(m

δ )

min
i∈[m]:p

Darm,S∗
i

>0
p
Darm,DS
i

, then, with probability at

least 1−δ (the randomness is taken over the all distributions
DS ,Darm,Dtrig), the suboptimality gap satisfies:

SubOpt(Ŝ;α, I) ≤ 2αB1K̄
∗
2

√
2C∗

∞ log(2mn/δ)

n
, (5)

where K̄∗
2 :=

∑
i∈[m]

√
pDarm,S∗

i is the ℓ2-action size of S∗.

Further, if problem I satisfies the 1-norm TPM data cover-
age condition (Condition 4) with coefficient C∗

1 , then, with
probability at least 1− δ, the suboptimality gap satisfies:

SubOpt(Ŝ;α, I) ≤ 2αB1

√
2K̄∗C∗

1 log(2mn/δ)

n
, (6)

where K̄∗ :=
∑

i∈[m] p
Darm,S

∗

i is the action size of S∗.

Proof Idea. The proof of Theorem 1 consists of three key
steps: (1) express the suboptimality gap in terms of the
uncertainty gap r(S∗;µ)−r

(
S∗;

¯
µ
)

over the optimal action
S∗, rather than the on-policy error over the chosen action
Ŝ as in online CMAB, (2) leverage Condition 2 to relate
the uncertainty gap to the per-arm estimation gap, and (3)
utilize Condition 2 to deal with the arbitrary data collection
probabilities and bound the per-arm estimation gap in terms
of n. For a detailed proof, see Appendix D. ■

Remark 4 (Discussion of Theorem 1). Looking at the sub-
optimality gap result, both Eq. (5) and Eq. (6) decrease at a
rate of 1√

n
with respect to the number of offline data sam-

ples n. Additionally, they scale linearly with the smoothness

coefficient B1 and the approximation ratio α. For problems
satisfying Eq. (5), the gap scales linearly with the ℓ2-action
size K̄∗

2 and the the coverage coefficient C∗
∞ in Eq. (5).

For problems satisfying Eq. (6), the gap depends on the
action size K̄∗ and the 1-norm data coverage coefficient
C∗

1 . To output an action that is ϵ-close to S∗, Eq. (5) and
Eq. (6) need Õ(B2

1α
2K̄∗

2
2
C∗

∞/ϵ2) and Õ(B2
1α

2K̄∗C∗
1/ϵ

2)
samples, respectively.

In general, we have C∗
1 ≤ K∗C∗

∞ and K̄∗ ≥ (K̄∗
2 )

2

K∗ , indi-
cating that neither Eq. (5) nor Eq. (6) strictly dominates the
other. For instance, for CMAB with semi-bandit feedback
where pDarm,S

∗

i = pDarm,S
∗

j = 1 for any i, j ∈ S∗ and 0 other-
wise, Eq. (6) is tighter than Eq. (5) since K̄∗ = K̄∗

2 = K∗

and C∗
1 ≤ K∗C∗

∞. Conversely, for the LLM cache to be
introduced in Section 4.2, if the experimenter selects the

empty cache each time, such that pDarm,S∗
i

pDs,S∗
i

= 1 for i ∈ S∗,

then we have C∗
1 = K∗C∗

∞. Since K̄∗ ≥ (K̄∗
2 )

2

K∗ so Eq. (5)
is tighter than Eq. (6).

Lower bound result. In this section, we establish the
lower bound for a specific combinatorial multi-armed bandit
(CMAB) problem: the stochastic k-path problem I. This
problem was first introduced in (Kveton et al., 2015c) to
derive lower bounds for the online CMAB problem.

The k-path problem involves m arms, representing path
segments denoted as [m] = 1, 2, . . . ,m. Without loss
of generality, we assume m/k is an integer. The feasi-
ble combinatorial actions S consist of m/k paths, each
containing k unique arms. Specifically, the j-th path for
j ∈ [m/k] includes the arms (j − 1)k + 1, . . . , jk. We de-
fine k-path(m, k,C∗

∞) as the set of all possible outcome
and data collection distribution pairs (Darm,DS) satisfying
the following conditions:

(1) The outcome distribution Darm specifies that all arms in
any path j ∈ [m/k] are fully dependent Bernoulli random
variables, i.e., Xt,(j−1)k+1 = Xt,(j−1)k+2 = · · · = Xt,jk,
all with the same expectation µj .

(2) The pair (Darm,DS) satisfies the infinity-norm TPM
data coverage condition (Condition 3) with C∗

∞, i.e.,

maxi∈[m]
pDarm,S∗
i

p
Darm,DS
i

≤ C∗
∞.

The feedback of the k-path problem follows the classi-
cal semi-bandit feedback for any S ∈ S, i.e., pDarm,S

i =

1 if i ∈ S and pDarm,S
i = 0 otherwise. We use

D = (St, (Xt,i)i∈St
)nt=1 to denote a random offline k-path

dataset of size n and D ∼ D(Darm,DS) to indicate dataset
D is generated under the data collecting distribution DS
with the underlying arm distribution Darm.

Theorem 2. Let us denote A(D) ∈ S as the action
returned by any algorithm A that takes a dataset D of n
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samples as input. For any m, k ∈ Z+, such that m/k is an
integer, and any C∗

∞ ≥ 2, the following lower bound holds:
infA sup(Darm,DS)∈k-path(m,k,C∗

∞) ED∼D(Darm,DS)[r(S
∗;µ)−

r(A(D);µ)] ≥ kmin

(
1,
√

C∗
∞
n

)
.

Comparing this result to the upper bound established in
Theorem 1 for the k-path problem, we can verify that this
problem satisfies Condition 2 with B1 = 1 and K̄∗

2 = k,
meaning that our upper bound result matches the lower
bound up to logarithmic factors.

4. Applications of the Off-CMAB Framework
In this section, we introduce three representative applica-
tions that can fit into our Off-CMAB-T framework with
new/improved results, which are summarized in Table 1.
We also provide empirical evaluations for the cascading
bandit and the LLM cache in Section 5.

4.1. Offline Learning for Cascading Bandits

The cascading bandit problem (Kveton et al., 2015a; Li et al.,
2016; Vial et al., 2022; Dai et al., 2025a) addresses the on-
line learning to rank problem (Liu et al., 2009) under the cas-
cade model (Craswell et al., 2008). The canonical cascading
bandit problem considers a T -round sequential decision-
making process. At each round t ∈ [T ], a user t comes to
the recommendation system (e.g., Amazon), and the learner
aims to recommend a ranked list St = (at,1, ..., at,k) ⊆ [m]
of length k (i.e., a super arm) from a total of m candidate
products (i.e., base arms). Each item i ∈ St has an un-
known probability µi of being satisfactory and purchased
by user t, which without loss of generality, is assumed to be
in descending order µ1 ≥ µ2 ≥ ... ≥ µm.

Reward function and cascading feedback. Given the
ranked list St, the user examines the list from at,1 to at,k
until they purchase the first satisfactory item (and leave
the system) or exhaust the list without finding a satisfac-
tory item. If the user purchases an item (suppose the jt-th
item), the learner receives a reward of 1 and observes out-
comes of the form (Xt,a1 , ..., Xt,ajt−1

, Xt,ajt
, ..., Xt,ak

) =

(0, ..., 0, 1,−, ...,−), meaning the first jt − 1 items are un-
satisfactory (denoted as 0), the jt-th item is satisfactory
(denoted as 1), and the outcomes of the remaining items
are unobserved (denoted as −). Otherwise, the learner
receives a reward of 0 and observes Bernoulli outcomes
(Xt,a1 , ..., Xt,ak

) = (0, 0, ..., 0). The expected reward is
r(St;µ) = E[{∃i ∈ [k] : Xt,ai

= 1}] = 1−
∏

i∈St
(1−µi).

Since µ1 ≥ µ2... ≥ µm, we know that the optimal ranked
list is the top-k items S∗ = (1, 2, ..., k). The goal of the cas-
cading bandit problem is to maximize the expected number
of user purchases by applying an online learning algorithm.
For this setting, we can see that it follows the cascading

feedback and the triggered arms are τt = {at,1, ..., at,jt}
where jt = K if (at,1, ...at,k) = (0, .., 0) or otherwise
jt = argmin{i ∈ [k] : Xt,at,i = 1}.

Learning from the offline dataset. We consider the of-
fline learning setting for cascading bandits, where we are
given a pre-collected dataset D = (St, τt, (Xt,i)i∈τt)

n
t=1

consisting of n ranked lists and the user feedback for these
ranked lists, where each St is sampled from the data col-
lecting distribution DS . Let us use qij to denote the prob-
ability that arm i is sampled at the j-th position of the
ranked list, for i ∈ [m], j ∈ [k]. Then we have pDarm,DS

i ≥∑k
j=1 qij(1−µ1)

j−1 and pDarm,S
∗

i =
∏i−1

j=1(1−µj). There-
fore, we can derive that the 1-norm data coverage coefficient

in Condition 4 is C∗
1 =

∑k
i=1

∏i−1
j=1(1−µj)∑k

j=1 qij(1−µ1)j−1 .

Algorithm and result. This application fits into the CMAB-
T framework, satisfying Condition 2 with coefficient B1 = 1
as in (Wang & Chen, 2017). The oracle is essentially to
find the top-k items regarding LCB

¯
µi, which maximizes

r(S;
¯
µ) in O(m log k) time complexity using the max-heap.

Plugging this oracle into line 7 of Algorithm 1 gives the
algorithm, whose detail is in Algorithm 4 in Appendix F.

Corollary 1. For cascading bandits with arms µ1 ≥
µ2... ≥ µm and a dataset D with n data points, suppose
n ≥ 8 log( 2mn

δ )

mini∈[k]

∑k
j=1 qij(1−µ1)j−1 , where qij is the probability

that item i is sampled at the j-th position regarding DS .
Letting Ŝ be the ranked list returned by Algorithm 4, then
with probability at least 1− δ,

r(S∗;µ)− r
(
Ŝ;µ

)
≤ 2

√√√√2k log( 2mn
δ )

n

k∑
i=1

∏i−1
j=1(1− µj)∑k

j=1 qij(1− µ1)j−1
, (7)

If DS is a uniform distribution so that qij = 1
m , it holds

that C∗
1 ≤ µ1·m

µk
and

r(S∗;µ)− r
(
Ŝ;µ

)
≤ 2

√
2k log( 2mn

δ )

n
· mµ1

µk
. (8)

4.2. Offline Learning for LLM Cache

The LLM cache is a system designed to store and retrieve
outputs of Large Language Models (LLMs), aiming to en-
hance efficiency and reduce redundant computations during
inference (Pope et al., 2022; Bang, 2023; Zhu et al., 2023;
Dai et al., 2025b).

In the LLM cache bandit (Zhu et al., 2023), which is a T -
round sequential learning problem, we consider a finite set
of m distinct queries Q = {q1, ..., qm}. Each query q ∈ Q
is associated with an unknown expected cost c(q) ∈ [0, 1]

6
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Table 1. Summary of the results of applying the Off-CMAB framework to various applications.
Application Smoothness Data Coverage Suboptimality Gap Improvements

Learning to Rank (Section 4.1) B1 = 1 C∗
1 = µ1·m

µk
Õ
(√

k
n · mµ1

µk

)∗
−

LLM Cache (Section 4.2) B1 = 1 C∗
1 = m Õ

(√
m
n

)
Õ
(√

k2

C1

)†
Social Influence Maximization (Section 4.3) B1 = V Assumption 1∗∗ Õ

(√
V 2d2

maxσ
2(S∗;G)

η·γ3·n

)
Õ
(√

V 4

k2d2
maxη

)‡
∗ m, k, µ1, µk denote the number of items, the length of the ranked list, and click probability for 1-st and k-th items, respectively;
† m, k,C1 denote the number of LLM queries, the size of cache, and the lower bound of the query cost, respectively;
∗∗ Similar to Chen et al. (2021), we depend directly on assumption for seed sampling probability bound γ and the activation probability bound η;
‡ V, dmax, σ(S

∗;G), k denote the number of nodes, the max out-degree, optimal influence spread, and the number of seed nodes, respectively.

and unknown probability p(q) ∈ [0, 1], for a total of 2m
base arms. When query q is input to the LLM system, the
LLM processes it and returns a corresponding response (i.e.,
answer) r(q). Every round t when the LLM processes q, it
will incur a random cost Ct(q) with mean c(q), representing
floating point operations (FLOPs) or the price for API calls
(Zhu et al., 2023). We assume that Ct(q) = c(q) + ϵt(q),
where ϵt(q) is a sub-Gaussian noise that captures the uncer-
tainties in the cost, with E[ϵt(q)] = 0.

The goal of LLM cache bandit is to find the optimal cache
M∗ storing the query-response pairs that are both likely to
be reused and associated with high costs.

Expected cost function and cache feedback. In each round
t, a user comes to the system with query qt, which is sam-
pled from Q according to a fixed unknown distribution
{p(q)}q∈Q with

∑
q∈Q p(q) = 1. To save the cost of re-

peatedly processing the queries, the LLM system maintains
a cache Mt ⊆ Q, storing a small subset of queries of size
k ≥ 0 with their corresponding results. After qt is sam-
pled, the agent will first check the current cache Mt. If
the query qt is found in the cache, i.e., qt ∈ Mt, we say
the query hits the cache. In this case, the result of qt is
directly returned without further processing by the LLM.
The cost of processing this query is 0 and will save a poten-
tial cost Ct(qt), which is unobserved to the agent. If query
qt does not hit the cache, the system processes the query,
incurring a cost Ct(qt) which is observed by the learner,
and returns the result r(qt). Let us denote c = (c(q))q∈Q
and p = (p(q))q∈Q for convenience. Given any cache
M and the query q, the random cost saved in round t is
Ct(M, q) = I{q /∈ M}Ct(q). Thus the expected cost
incurred is

c(M; c,p) = E

∑
q∈Q

Ct(M, q)

 =
∑
q/∈M

p(q)c(q). (9)

From our CMAB-T point of view, selecting any cache M
of size k can be regarded as selecting the super arm S =
Q−M with size m− k, which is the complement of M.
Thus, our super arms represent the queries not entered into

the cache. In this context, the expected cost function can
be rewritten as: c(S; c,p) =

∑
q∈S p(q)c(q). The goal of

LLM cache bandit is to find the optimal cache M∗ storing
the query-response pairs that are both likely to be reused
and associated with high costs, i.e., to find out the optimal
super arm S∗ = argminS⊆Q:|S|≥m−k c(S; c,p).

We separately consider the cache feedback for c and p. For
unknown costs c, we can see that τt,c = qt if qt ∈ Mt and
τt,c = ∅ otherwise. For unknown probability distribution
p, we observe full feedback τt,p = Q since qt means qt
arrives and all other queries do not arrive. For the triggering
probability, we have that, for any S ∈ S, the triggering
probability for unknown costs pDarm,S

q,c = p(q) for q ∈ S and
0 otherwise. The triggering probability for unknown arrival
probability pDarm,S

q,p = 1 for all q ∈ Q.

Learning from the offline dataset. We consider the offline
learning setting for the LLM cache, where we are given
a pre-collected dataset D = (Mt, qt, Ct)

n
t=1 consisting of

the selected cache Mt, the arrived query qt, and their cost
feedback Ct = Ct(qt) if qt /∈ Mt or Ct = ∅ is unobserved
otherwise, where each Mt is sampled from the data col-
lecting distribution DS . Let ν(q) = PrM∼DS [q /∈ M] be
the probability that q is not sampled in the experimenter’s
cache. Then we can derive that the 1-norm data coverage
coefficient in Condition 4 is C∗

1 =
∑

q∈S∗
1

ν(q) +m.

Algorithm and result. This application fits into the CMAB-
T framework, satisfying the 1-norm TPM smoothness con-
dition with coefficient B1 = 1 (see Appendix G.1 for the
detailed proof). Since we are minimizing the cost rather
than maximizing the reward, we use the UCB p̄(q)c̄(q). The
oracle is essentially to find the top-k queries regarding UCB
p̄(q)c̄(q), which minimizes c(S; c̄, p̄) in O(m log k) time
complexity using the max-heap. The detailed algorithm and
its result is provided in Algorithm 5.

Since the arrival probabilities p are full-feedback categorical
random variables, we can further improve our result by a
factor of

√
m by directly using the empirical mean of p̂

instead of UCB p̄. The improved algorithm is shown in
Algorithm 2 with its theoretical suboptimality guarantee:

7
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Algorithm 2 CLCB-LLM-C: Combinatorial Lower Confi-
dence Bound Algorithm for LLM Cache

1: Input: Dataset D = {(Mt, qt, Ct)}nt=1, queries Q,
solver Top-k, probability δ.

2: for query q ∈ Q do
3: Calculate counters N(q) =

∑n
t=1 I{q = qt} and

Nc(q) =
∑n

t=1 I{q = qt and qt /∈ Mt}.
4: Calculate empirical means p̂(q) = N(q)/n and

ĉ(q)=
∑

t∈[n] I{q = qt and qt /∈ Mt}Ct/Nc(q).

5: Calculate UCB c̄(q) = ĉ(q) +
√

2 log( 4mn
δ )

Nc(q)
.

6: end for
7: Call M̂ = Top-k (p̂(q1)c̄(q1), ..., p̂(qm)c̄(qm)) .
8: Return: M̂.

Theorem 3. For LLM cache bandit with a dataset D of
n data samples, suppose n ≥ 8 log( 1

δ )

minq∈Q−M∗ p(q)ν(q) , where
ν(q) is the probability that query q is not included in each
offline sampled cache. Letting M̂ be the cache returned by
algorithm Algorithm 5, then with probability at least 1− δ,

c(M∗; c,p)− c
(
M̂; c,p

)
(10)

≤ 2

√
2
∑

q∈Q−M∗
1

ν(q) log(
6mn
δ )

n
+ 2

√
2m log( 3δ )

n
,

If the experimenter samples empty cache Mt = ∅ in each
round as in (Zhu et al., 2023) so that ν(q) = 1, it holds that

c(M∗; c,p)− c
(
M̂; c,p

)
≤ 4

√
2m log( 6mn

δ )

n
. (11)

Remark 5 (Discussion of Theorem 3). Looking at Eq. (11),
our result improves upon the state-of-the-art result (Zhu

et al., 2023) Õ(k
√

m
C1n

) by a factor of Õ(
√

k2

C1
), where

C1 > 0 is assumed to be an lower bound of c(q) for q ∈ Q.
This improvement comes from our tight analysis to deal
with the triggering probability (the 1/C1 can be thought
of as minimum triggering probability in their analysis) and
from the way that we deal with full-feedback arm p. Fur-
thermore, since we use the UCB c̄ while they use LCB

¯
c, our algorithm in principle can be generalized to more
complex distributions as long as the optimal queries are
sufficiently covered. As a by-product, we also consider the
online streaming LLM cache bandit setting as in (Zhu et al.,
2023) from our CMAB-T point of view, which improves
their result Õ(km

√
T

C1
) by a factor of Õ(k

√
m

C1
). We defer the

details to Appendix G.3.

4.3. Offline Learning for Influence Maximization with
Extension to Node-level Feedback

Influence maximization (IM) is the task of selecting a small
number of seed nodes S in a social network G(V, E , p) to

maximize the influence spread σ(S;G) from these nodes.
IM has been intensively studied over the past two decades
under various diffusion models, such as the independent cas-
cade (IC) model (Kempe et al., 2003b), the linear threshold
(LT) model (Chen et al., 2010), as well as different feedback
such as edge-level and node-level feedback models. For
the edge-level feedback model, IM smoothly fits into our
framework by viewing each edge weight puv for (u, v) ∈ E
as the base arm. In this section, we consider a more re-
alistic yet challenging setting where we can only obverse
the node-level feedback (Chen et al., 2020; 2021), showing
that our framework still applies as long as we can construct
a high probability lower bound (LCB) for each base arm
(edge). Due to space constraints, we present only our main
result here. The detailed setting, algorithm, and theoretical
analysis can be found in Appendix C.

Theorem 4. Under Assumption 1, suppose the number of
data n ≥ 392 log( 12nE

δ )

η·γ . Letting Ŝ be the seed set returned
by Algorithm 3, then it holds with probability at least 1− δ,

ασ(S∗;G)− σ
(
Ŝ;G

)
(12)

≤ 48
√
6

√
V 2d2maxσ

2(S∗;G) · log( 12nEδ )

η · γ3 · n
,

where dmax is the maximum out-degree, γ, η are lower
bounds for seed sampling probability and the activation
probability, respectively, as in Assumption 1.

Remark 6 (Discussion). To find out an action Ŝ such that
σ(Ŝ;G) ≥ (α − ϵ)σ(S∗;G), our algorithm requires that
n ≥ Õ

(
V 2d2

max

ϵ2ηγ3

)
, which improves the existing result by a

factor of Õ
(

V 4

k2d2
maxη

)
, owing to our variance-adaptive LCB

construction and the tight CMAB-T analysis. We also relax
the assumption of Chen et al. (2021) for the seed sampling
probability and activation probability, owing to the usage of
LCBs, rather than directly using the empirical mean of edge
weight puv . See Appendix C for the detailed discussion.

5. Experiments

(a) Synthetic Dataset (b) Real-world Dataset

Figure 1. Suboptimality gaps for cascading bandit application.

We now present experimental results on both synthetic and
real-world datasets. Each experiment was conducted over 20

8
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Figure 2. Comparison of different offline data generation methods.

(a) Synthetic Dataset (b) Real-world Dataset

Figure 3. Suboptimality gaps for LLM cache application.

independent trials. For cascading bandits on the application
of learning to rank, in the synthetic setting, item parameters
µi are drawn from U [0, 1], and in each round t, a ranked
list St of K items is randomly sampled. Fig. 1a shows that
compared to CUCB-Offline (Chen et al., 2016), which is an
offline adaptation of CUCB for our setting, and EMP (Liu
et al., 2021), which always selects the action based on the
empirical mean of rewards, CLCB (Algorithm 1) reduces
suboptimality gaps by 47.75% and 20.02%, respectively.
For real-world evaluation, we use the Yelp dataset3, where
users rate businesses (Dai et al., 2024c). We randomly select
m = 200 rated items per user and recommend up to K
items to maximize the probability of user engagement. The
unknown probability µi is derived from Yelp, and cascading
feedback is collected. Fig. 1b compares suboptimality gaps
over n = 100 rounds for K = 4, 8 , with a logarithmic scale
on the y-axis. Note that as K increases, the expected reward
also changes, thus reducing suboptimality gaps. CLCB
consistently achieves the lowest suboptimality gap.

Moreover, we generate offline datasets D with n = 100 in
four different ways: random sampling, UCB-based genera-
tion, LCB-based generation, and empirical-based generation.
For the UCB-based, LCB-based, and empirical-based data
generation methods, we select the top K = 5 arms with
the largest UCB, LCB, and empirical reward means, respec-
tively. It can be observed in Fig. 2 that our method con-
sistently maintains the smallest suboptimality gap. When
using the UCB data generation method, our algorithm per-
forms significantly better than the CUCB-Offline and EMP
baselines, which aligns with our theoretical results.

3https://www.yelp.com/dataset

Similarly, we conduct experiments in the LLM cache setting.
In the synthetic setup, we simulate 100 distinct queries
with a cache size of 40, following a power-law frequency
distribution (α = 0.9) as in (Zhu et al., 2023). As shown
in Fig. 3a, our CLCB-LLM-C algorithm outperforms LFU
(which evicts the least frequently accessed items to optimize
cache usage) (Zhu et al., 2023) and LEC (which minimizes
inference cost by evicting items with the lowest estimated
expected cost) (Zhu et al., 2023), achieving at least 1.32×
improvement. For real-world evaluation, we use the SciQ
dataset (Welbl et al., 2017). We evaluate GPT-4-o with the
“o200k base” encoding with cache sizes K = 10 and K =
20, where cost is defined by OpenAI’s API pricing with
the tiktoken library (OpenAI, 2025). Fig. 3b shows that
CLCB-LLM-C (Algorithm 2) reduces costs by up to 36.01%
and 20.70%, compared to LFU and LEC. Moreover, a larger
K shows a lower suboptimality gap, which is consistent with
Theorem 3. Further details on experimental setups, results,
and additional comparisons can be found in Appendix J.

6. Conclusion and Future Directions
In this paper, we introduce Off-CMAB, the first offline
learning framework for CMAB. We propose two novel data
coverage conditions and develop a provably sample-efficient
CLCB algorithm, matching the lower bound up to logarith-
mic factors. We show the practical usefulness of our frame-
work via three diverse applications—learning to rank, LLM
caching, and social influence maximization—achieving new
or improved theoretical results. These results are further
validated through extensive experiments on both synthetic
and real-world datasets. Looking ahead, an exciting direc-
tion is to develop variance-adaptive algorithms to further
improve our theoretical guarantees. Additionally, extend-
ing our framework to offline RL with combinatorial action
spaces is another promising direction for future research.
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Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press, 2020.

12

https://api.semanticscholar.org/CorpusID:28202810
https://api.semanticscholar.org/CorpusID:28202810
https://api.semanticscholar.org/CorpusID:5806691
https://api.semanticscholar.org/CorpusID:5806691
https://api.semanticscholar.org/CorpusID:229923558
https://api.semanticscholar.org/CorpusID:229923558
https://api.semanticscholar.org/CorpusID:229923558
https://api.semanticscholar.org/CorpusID:207605508
https://api.semanticscholar.org/CorpusID:207605508
https://api.semanticscholar.org/CorpusID:207605508
https://api.semanticscholar.org/CorpusID:18100844
https://api.semanticscholar.org/CorpusID:18100844
https://api.semanticscholar.org/CorpusID:7214363
https://api.semanticscholar.org/CorpusID:7214363
https://api.semanticscholar.org/CorpusID:218595964
https://api.semanticscholar.org/CorpusID:218595964
https://api.semanticscholar.org/CorpusID:211011033
https://api.semanticscholar.org/CorpusID:211011033
https://api.semanticscholar.org/CorpusID:173990380
https://api.semanticscholar.org/CorpusID:173990380
https://api.semanticscholar.org/CorpusID:219530894
https://api.semanticscholar.org/CorpusID:219530894
https://api.semanticscholar.org/CorpusID:219530894
https://api.semanticscholar.org/CorpusID:261697361
https://api.semanticscholar.org/CorpusID:261697361


Offline Learning for Combinatorial Multi-armed Bandits

Lattimore, T., Kveton, B., Li, S., and Szepesvari, C.
Toprank: A practical algorithm for online stochastic rank-
ing. Advances in Neural Information Processing Systems,
31, 2018.

Le Cam, L. Asymptotic methods in statistical decision
theory. Springer Science & Business Media, 2012.

Lee, S., Seo, Y., Lee, K., Abbeel, P., and Shin, J. Offline-
to-online reinforcement learning via balanced replay and
pessimistic q-ensemble. In Conference on Robot Learn-
ing, pp. 1702–1712. PMLR, 2022.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Li, F., Liu, J., and Ji, B. Combinatorial sleeping bandits
with fairness constraints. IEEE Transactions on Network
Science and Engineering, 7(3):1799–1813, 2019.

Li, G., Ma, C., and Srebro, N. Pessimism for offline linear
contextual bandits using ell p confidence sets. Advances
in Neural Information Processing Systems, 35:20974–
20987, 2022a.

Li, G., Shi, L., Chen, Y., Chi, Y., and Wei, Y.
Settling the sample complexity of model-based of-
fline reinforcement learning. ArXiv, abs/2204.05275,
2022b. URL https://api.semanticscholar.
org/CorpusID:248085509.

Li, S., Wang, B., Zhang, S., and Chen, W. Contextual com-
binatorial cascading bandits. In International conference
on machine learning, pp. 1245–1253. PMLR, 2016.

Lin, B. and Bouneffouf, D. Optimal epidemic control as
a contextual combinatorial bandit with budget. In 2022
IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE), pp. 1–8. IEEE, 2022.

Liu, S., See, K. C., Ngiam, K. Y., Celi, L. A., Sun,
X., and Feng, M. Reinforcement learning for clini-
cal decision support in critical care: Comprehensive
review. Journal of Medical Internet Research, 22,
2020. URL https://api.semanticscholar.
org/CorpusID:219676905.

Liu, T.-Y. et al. Learning to rank for information retrieval.
Foundations and Trends® in Information Retrieval, 3(3):
225–331, 2009.

Liu, X., Zuo, J., Chen, X., Chen, W., and Lui, J. C.
Multi-layered network exploration via random walks:
From offline optimization to online learning. In Interna-
tional Conference on Machine Learning, pp. 7057–7066.
PMLR, 2021.

Liu, X., Zuo, J., Wang, S., Joe-Wong, C., Lui, J., and Chen,
W. Batch-size independent regret bounds for combina-
torial semi-bandits with probabilistically triggered arms
or independent arms. In Advances in Neural Information
Processing Systems, 2022.

Liu, X., Zuo, J., Wang, S., Lui, J. C., Hajiesmaili, M.,
Wierman, A., and Chen, W. Contextual combinatorial
bandits with probabilistically triggered arms. In Inter-
national Conference on Machine Learning, pp. 22559–
22593. PMLR, 2023a.

Liu, X., Zuo, J., Xie, H., Joe-Wong, C., and Lui, J. C.
Variance-adaptive algorithm for probabilistic maximum
coverage bandits with general feedback. In IEEE INFO-
COM 2023-IEEE Conference on Computer Communica-
tions, pp. 1–10. IEEE, 2023b.

Liu, X., Dai, X., Wang, X., Hajiesmaili, M., and Lui,
J. Combinatorial logistic bandits. arXiv preprint
arXiv:2410.17075, 2024a.

Liu, X., Wang, S., Zuo, J., Zhong, H., Wang, X., Wang, Z.,
Li, S., Hajiesmaili, M., Lui, J., and Chen, W. Combina-
torial multivariant multi-armed bandits with applications
to episodic reinforcement learning and beyond. arXiv
preprint arXiv:2406.01386, 2024b.

Merlis, N. and Mannor, S. Batch-size independent regret
bounds for the combinatorial multi-armed bandit prob-
lem. In Conference on Learning Theory, pp. 2465–2489.
PMLR, 2019.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Nachum, O., Dai, B., Kostrikov, I., Chow, Y., Li, L.,
and Schuurmans, D. Algaedice: Policy gradient
from arbitrary experience. ArXiv, abs/1912.02074,
2019. URL https://api.semanticscholar.
org/CorpusID:208617840.

Narasimhan, H., Parkes, D. C., and Singer, Y. Learnability
of influence in networks. Advances in Neural Information
Processing Systems, 28, 2015.

Neu, G. First-order regret bounds for combinatorial semi-
bandits. In Conference on Learning Theory, pp. 1360–
1375. PMLR, 2015.

Nguyen-Tang, T., Gupta, S., Nguyen, A. T., and Venkatesh,
S. Offline neural contextual bandits: Pessimism, optimiza-
tion and generalization. arXiv preprint arXiv:2111.13807,
2021a.

13

https://api.semanticscholar.org/CorpusID:248085509
https://api.semanticscholar.org/CorpusID:248085509
https://api.semanticscholar.org/CorpusID:219676905
https://api.semanticscholar.org/CorpusID:219676905
https://api.semanticscholar.org/CorpusID:208617840
https://api.semanticscholar.org/CorpusID:208617840


Offline Learning for Combinatorial Multi-armed Bandits

Nguyen-Tang, T., Gupta, S., Tran-The, H., and Venkatesh, S.
Sample complexity of offline reinforcement learning with
deep relu networks. arXiv preprint arXiv:2103.06671,
2021b.

Niazadeh, R., Golrezaei, N., Wang, J. R., Susan, F., and
Badanidiyuru, A. Online learning via offline greedy algo-
rithms: Applications in market design and optimization.
In Proceedings of the 22nd ACM Conference on Eco-
nomics and Computation, pp. 737–738, 2021.

Nie, G., Nadew, Y. Y., Zhu, Y., Aggarwal, V., and Quinn,
C. J. A framework for adapting offline algorithms to
solve combinatorial multi-armed bandit problems with
bandit feedback. In International Conference on Machine
Learning, pp. 26166–26198. PMLR, 2023.

Nika, A., Elahi, S., and Tekin, C. Contextual combinatorial
volatile multi-armed bandit with adaptive discretization.
In International Conference on Artificial Intelligence and
Statistics, pp. 1486–1496. PMLR, 2020.

OpenAI. OpenAI LLM API. https://platform.
openai.com/, 2025.

Pope, R., Douglas, S., Chowdhery, A., Devlin, J.,
Bradbury, J., Levskaya, A., Heek, J., Xiao, K.,
Agrawal, S., and Dean, J. Efficiently scal-
ing transformer inference. ArXiv, abs/2211.05102,
2022. URL https://api.semanticscholar.
org/CorpusID:253420623.

Qin, L., Chen, S., and Zhu, X. Contextual combinatorial
bandit and its application on diversified online recommen-
dation. In Proceedings of the 2014 SIAM International
Conference on Data Mining, pp. 461–469. SIAM, 2014.

Qu, G., Chen, Q., Wei, W., Lin, Z., Chen, X., and Huang,
K. Mobile edge intelligence for large language mod-
els: A contemporary survey. ArXiv, abs/2407.18921,
2024. URL https://api.semanticscholar.
org/CorpusID:271534421.

Rashidinejad, P., Zhu, B., Ma, C., Jiao, J., and Russell, S. J.
Bridging offline reinforcement learning and imitation
learning: A tale of pessimism. IEEE Transactions on
Information Theory, 68:8156–8196, 2021.

Rashidinejad, P., Zhu, H., Yang, K., Russell, S. J.,
and Jiao, J. Optimal conservative offline rl with
general function approximation via augmented la-
grangian. ArXiv, abs/2211.00716, 2022. URL https:
//api.semanticscholar.org/CorpusID:
253255046.

Richardson, M. and Domingos, P. M. Mining
knowledge-sharing sites for viral marketing. Pro-
ceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining,
2002. URL https://api.semanticscholar.
org/CorpusID:5785954.

Riedmiller, M. Neural fitted q iteration–first experiences
with a data efficient neural reinforcement learning method.
In Machine learning: ECML 2005: 16th European con-
ference on machine learning, Porto, Portugal, October
3-7, 2005. proceedings 16, pp. 317–328. Springer, 2005.

Saha, A. and Gopalan, A. Combinatorial bandits with rela-
tive feedback. Advances in Neural Information Process-
ing Systems, 32, 2019.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin,
M., Fu, D. Y., Xie, Z., Chen, B., Barrett,
C. W., Gonzalez, J., Liang, P., Ré, C., Stoica, I.,
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The appendix is organized as follows.

• In Appendix A, we discuss the extended related works on

– combinatorial multi-armed bandits,
– offline bandit and reinforcement learning,
– related offline learning applications.

• In Appendix B we give more justification for studying the combinatorial multi-armed bandits (CMAB) with only the
offline dataset.

• In Appendix C, we provide the following details for

– the influence maximization under node-level feedback setting
– CLCB-IM-N algorithm
– the gap upper bound

• In Appendix D, we prove the upper bound of the suboptimal gap

– under the infinity-norm TPM data coverage condition (Condition 3)
– under 1-norm TPM data coverage condition (Condition 4).

• In Appendix E, we prove

– the lower bound of suboptimal gap for the k-path problem with semi-bandit feedback.

• In Appendix F, we prove

– the gap upper bound for the offline learning problem in cascading bandits.

• In Appendix G, we prove

– the standard gap upper bound of for offline learning in LLM cache
– the improved gap upper bound for offline learning in LLM cache
– the improved regret upper bound for online streaming LLM cache

• In Appendix H, we prove

– the gap upper bound for the influence maximization under the node-level feedback.

• In Appendix I, we prove auxiliary lemmas that serve as important ingredients for our analysis.

• In Appendix J, we provide the additional experimental results.

A. Extended Related Works
A.1. Combinatorial Multi-armed Bandits

The combinatorial multi-armed bandit (CMAB) problem has been extensively studied over the past decade, covering
domains such as stochastic CMAB (Gai et al., 2012; Kveton et al., 2015c; Combes et al., 2015; Chen et al., 2016; Wang &
Chen, 2017; Merlis & Mannor, 2019; Saha & Gopalan, 2019; Agrawal et al., 2019; Liu et al., 2022; 2024b), adversarial
CMAB (György et al., 2007; Uchiya et al., 2010; Cesa-Bianchi & Lugosi, 2012; Bubeck et al., 2012; Audibert et al., 2014;
Neu, 2015; Han et al., 2021), and hybrid best-of-both-worlds settings (Zimmert et al., 2019; Ito, 2021; Tsuchiya et al., 2023).
Contextual extensions with linear or nonlinear function approximation have also been explored (Qin et al., 2014; Takemura
et al., 2021; Liu et al., 2023a; Chen et al., 2018; Nika et al., 2020; Choi et al., 2024; Hwang et al., 2023; Liu et al., 2024b).

Our work falls within the stochastic CMAB with semi-bandit feedback domain, first introduced by Gai et al. (2012), with a
specific focus on CMAB with probabilistically triggered arms (CMAB-T). Chen et al. (2016) introduced the concept of arm
triggering processes for applications like cascading bandits and influence maximization, proposing the CUCB algorithm
with a regret bound of O(B1

√
mKT log T/pmin) regret bound under the 1-norm smoothness condition with coefficient

B1. Subsequently, Wang & Chen (2017) refined this result, proposed a stronger 1-norm triggering probability modulated

17



Offline Learning for Combinatorial Multi-armed Bandits

(TPM) B1 smoothness condition, and employed triggering group analysis to eliminate the 1/pmin factor from the previous
regret bound. More recently, Liu et al. (2022) leveraged the variance-adaptive principle to propose the BCUCB-T algorithm,
which further reduces the regret’s dependency on action-size from O(K) to O(logK) under the new variance and triggering
probability modulated (TPVM) condition. While inspired by these works, our study diverges by addressing the offline
CMAB setting, where online exploration is unavailable, and the focus is on minimizing the suboptimality gap rather than
regret.

Another notable line of work considers CMAB with full bandit feedback (György et al., 2007; Cesa-Bianchi & Lugosi,
2012; Niazadeh et al., 2021; Fourati et al., 2023; Nie et al., 2023; Fourati et al., 2024b;a; Sun et al., 2025). In their setting,
the feedback only provides aggregate rewards for the entire super arm, often resulting in higher regret (e.g., O(T 2/3)) and
requiring fundamentally different oracle designs. In contrast, our setting (CMAB with semi-bandit feedback) assumes
semi-bandit feedback, where the learner observes individual arm-level feedback for selected arms (i.e., components of the
super arm). This enables more informative learning and allows us to construct accurate base-arm estimators for use in our
oracles, leading to an O(T 1/2) regret bound. Moreover, prior full-bandit approaches often rely on additional structural
assumptions such as submodularity to achieve these bounds. Similarly, our approach leverages smoothness assumptions on
the reward function to ensure statistical efficiency in the offline regime.

A.2. Offline Bandit and Reinforcement Learning

Offline reinforcement learning (RL), also known as “batch RL”, focuses on learning from pre-collected datasets to make
sequential decisions without online exploration. Initially studied in the early 2000s (Ernst et al., 2005; Riedmiller, 2005;
Lange et al., 2012), offline RL has gained renewed interest in recent years (Levine et al., 2020).

From an empirical standpoint, offline RL has achieved impressive results across diverse domains, including robotics (Singh
et al., 2021), healthcare (Liu et al., 2020), recommendation systems (Chen et al., 2023), autonomous driving (Kiran et al.,
2020), and large language model fine-tuning and alignment (Casper et al., 2023). Algorithmically, offline RL approaches can
be broadly categorized into policy constraint methods (Fujimoto et al., 2018; Kumar et al., 2019), pessimistic value/policy
regularization (Haarnoja et al., 2018; Kumar et al., 2020), uncertainty estimation (Agarwal et al., 2019), importance sampling
(Jiang & Li, 2015; Nachum et al., 2019), imitation learning (Fujimoto & Gu, 2021; Chen et al., 2019), and model-based
methods (Kidambi et al., 2020; Yu et al., 2021).

Theoretically, early offline RL studies relied on strong uniform data coverage assumptions (Szepesvari & Munos, 2005;
Chen & Jiang, 2019a; Wang et al., 2019; Xie et al., 2021a). Recent works have relaxed these assumptions to partial coverage
for tabular Markov Decision Processes (MDPs) (Rashidinejad et al., 2021; Yin et al., 2021; Shi et al., 2022; Li et al.,
2022b), linear MDPs (Jin et al., 2020b; Chang et al., 2021; Bai et al., 2022), and general function approximation settings
(Rashidinejad et al., 2022; Zanette et al., 2021; Xie et al., 2021b; Zanette & Wainwright, 2022).

Offline bandit learning has also been explored in multi-armed bandits (MAB) (Rashidinejad et al., 2021), contextual MABs
(Rashidinejad et al., 2021; Jin et al., 2020b; Li et al., 2022a), and neural contextual bandits (Nguyen-Tang et al., 2021b;a).

While our work leverages the pessimism principle and focuses on partial coverage settings, none of the aforementioned
offline bandit or RL studies address the combinatorial action space, which is the central focus of our work. Conversely,
recent work in the CMAB framework demonstrates that episodic tabular RL can be viewed as a special case of CMAB (Liu
et al., 2024b). Building on this connection, our proposed framework can potentially extend to certain offline RL problems,
offering a unified approach to tackle both combinatorial action spaces and offline learning.

A.3. Related Offline Learning Applications.

Cascading bandits, a classical online learning-to-rank framework, have been extensively studied in the literature (Kveton
et al., 2015a;b; Li et al., 2016; Wang & Chen, 2018; Vial et al., 2022; Zhong et al., 2021; Liu et al., 2022; Wang et al.,
2023; 2024). Offline cascading bandits, on the other hand, focus primarily on reducing bias in learning settings (Joachims,
2002; Wang et al., 2018; 2016; Keane & O’Brien, 2006; Zhang et al., 2023). Unlike these prior works, our study tackles the
unbiased setting where data coverage is insufficient. Moreover, we are the first to provide a theoretically guaranteed solution
using a CMAB-based approach.

LLM caching is a memory management technique aimed at mitigating memory footprints and access overhead during
training and inference. Previous studies have investigated LLM caching at various levels, including attention-level (KV-
cache) (Pope et al., 2022; Kwon et al., 2023; Sheng et al., 2023; Bang, 2023), query-level (Gim et al., 2023; Zhu et al., 2023),
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and model/API-level (Qu et al., 2024; Dai et al., 2024a; Feng et al., 2024). Among these, the closest related work is the
LLM cache bandit framework proposed by Zhu et al. (2023). However, their approach is ad hoc, whereas our CMAB-based
framework systematically tackles the same problem and achieves improved results in both offline and online settings.

Influence Maximization (IM) was initially formulated as an algorithmic problem by Richardson & Domingos (2002) and
has since been studied using greedy approximation algorithms (Kempe et al., 2003b; Chen et al., 2009). The online IM
problem has also received significant attention (Wen et al., 2017; Vaswani et al., 2017a; Wu et al., 2019; Vaswani et al.,
2017b; 2015; Wang & Chen, 2017). In the offline IM domain, our work aligns closely with the optimization-from-samples
(OPS) framework (Balkanski et al., 2015; 2016; Chen et al., 2020; 2021), originally proposed by Balkanski et al. (2015).
Specifically, our work falls under the subdomain of optimization-from-structured-samples (OPSS) (Chen et al., 2020; 2021),
where samples include detailed diffusion step information (S0, ..., SV−1) instead of only the final influence spread σ(S0;G)
in the standard OPS. Compared to Chen et al. (2021), which selects the best seed set using empirical means, our approach
employs a variance-adaptive pessimistic LCB, improving the suboptimal gap under relaxed assumptions.

B. More Justification of Studying Offline CMAB
While online bandits are a natural choice when online data is readily available and inexpensive, many real-world applications
restrict access to only offline data as follows, which motivates the study of offline CMAB.

For instance, consider the cascading bandit model in recommendation systems (Kveton et al., 2015a). Online CMAB
learning requires a tight feedback loop where the platform (i.e., the learner) updates its recommendation policy after every
user interaction. However, in many practical scenarios, such fine-grained online feedback is unavailable as the platform
cannot afford to update at such a high frequency. Instead, data is collected in batches (e.g., over a week), logged, and then
used to update the policy in a single offline training phase. This workflow aligns precisely with our offline CMAB setting.

Another motivating scenario involves outsourced system design. For example, if OpenAI or Anthropic outsources the design
of an LLM caching system, the consultant (i.e., the learner) typically receives only anonymized user logs. They must learn
user behavior and design the system purely based on this private offline dataset and cannot reach out for direct interaction
with the users, which fits naturally into the offline CMAB framework.

Moreover, our work on CMAB also mirrors the development trajectory in reinforcement learning (RL). RL began with a
focus on online learning (Mnih et al., 2013); then, around 2020, concerns over the cost and availability of online interactions
led to a growing emphasis on offline RL—learning solely from logged data (Levine et al., 2020). More recently, hybrid
approaches (Lee et al., 2022) combining offline pretraining with online fine-tuning have emerged. Similarly, after establishing
foundational results in online CMAB, we now focus on the offline setting as a crucial step toward enabling future hybrid
CMAB approaches.

We will incorporate this discussion and examples into the final version of the paper.

C. Offline Learning for Influence Maximization with Extension to Node-level Feedback
Influence maximization (IM) is the task of selecting a small number of seed nodes in a social network to maximize the
influence spread from these nodes, which has been applied in various important applications such as viral marketing,
epidemic control, and political campaigning (Richardson & Domingos, 2002; Kempe et al., 2003b; Chen et al., 2009). IM
has been intensively studied over the past two decades under various diffusion models, such as the independent cascade
(IC) model (Kempe et al., 2003b), the linear threshold (LT) model (Chen et al., 2010), and the voter model (Narasimhan
et al., 2015)], as well as different feedback such as edge-level and node-level feedback models (Chen et al., 2020). For the
edge-level feedback model, IM smoothly fits into our framework by viewing each edge as the base arm, which can obtain
the theoretical result similar to our previous two applications. In this section, we consider a more realistic yet challenging
setting where we can only obverse the node-level feedback, showing that our framework still applies as long as we can
construct a high probability lower bound (LCB) for each base arm (edge).

Influence maximization under the independent cascade diffusion model. We consider a weighted digraph G(V, E , p)
to model the social network, where V is the set of nodes and E is the set of edges, with cardinality V = |V| and E = |E|,
respectively. For each edge (u, v) ∈ E , it is associated with a weight or probability puv ∈ [0, 1]. We use N(v) = N in(v) to
denote the in-neighbors of node v ∈ V .
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The diffusion model describes how the information propagates, which is detailed as follows. Denote S0 ⊆ V as the
seed nodes and Sh ⊆ V as the set of active nodes at time steps h ≥ 1. By default, we let S−1 = ∅. In the IC model,
at time step h ≥ 1, for each node v /∈ Sh−1, each newly activated node in the last step, u ∈ N(v) ∪ (Sh−1\Sh−2),
will try to active v independently with probability puv. This indicates that v will become activated with probability
1 −

∏
u∈N(v)∪(Sh−1\Sh−2)

(1 − puv). Once activated, v will be added into Sh. The propagation ends at step h when
Sh = Sh−1. It is obvious that the propagation process proceeds in at most V − 1 time steps, so we use (S0, S1, ..., SV−1)
to denote the random sequence of the active nodes, which we refer to as influence cascade. Let Φ(S0) = SV−1 be the final
active node set given the seed nodes S0. The influence maximization problem aims to select at most k seed nodes so as to
maximize the expected number of active nodes σ(S0;G) := E [|Φ(S0)|], which we often refer to as the influence spread of
S0 given the graph G. Formally, the IM problem aims to solve S∗ = argmaxS⊆V σ(S;G).

Offline dataset and learning from the node-level feedback. We consider the offline learning setting for IM where the
underlying graph G is unknown. To find the optimal seed set S∗, we are given a pre-collected dataset consisting of n
influence cascades D = (St,0, St,1, ..., St,V−1)

n
t=1 and a probability δ. Our goal is to output a seed node set Ŝ(D, δ), whose

influence spread is as large as possible with high probability 1− δ.

Similar to (Chen et al., 2021), we assume these n influence cascades are generated independently from a seed set distribution
St,0 ∼ DS , and given St,0, the cascades are generated according to the IC diffusion process. For each node v ∈ V , we
use qv = Pr [v ∈ St,0] to denote the probability that the node v is selected by the experimenter in the seed set St,0. We
use pG(v̄) := Pr [v /∈ St,1] to denote the probability that the node v is not activated in one time step when the graph is G.
For any two nodes u, v ∈ V , we use pG(v̄|u) := Pr [v /∈ St,1|u ∈ St,0] and pG(v̄|ū) := Pr [v /∈ St,1|u /∈ St,0] to denote
the probability that the node v is not activated in one time step conditioned on whether the node u is in the seed set St,0

or not, respectively. We also assume DS is a product distribution, i.e., each node u ∈ V is selected as a seed node in St,0

independently. Similar to (Chen et al., 2021), we also need an additional Assumption 1.
Assumption 1 (Bounded seed node sampling probability and bounded activation probability). Let Ẽ(S∗) ⊆ E be the set of
edges that can be triggered by the optimal seed set S∗. There exist parameters η ∈ (0, 1] and α ∈ (0, 1/2] such that for any
(u, v) ∈ Ẽ(S∗), we have qu ∈ [γ, 1− γ] and pG(v̄) ≥ η.

Algorithm that constructs variance-adaptive LCB using the node-level feedback. Note that in this setting, we cannot
obtain edge-level feedback about which node influences which node in the dataset. It is an extension which cannot be
directly handled by Algorithm 1 since one cannot directly estimate the edge weight from the node-level feedback. However,
as long as we can obtain a high probability LCB for each arm (u, v) ∈ E and replace the line 5 of Algorithm 1 with this new
LCB, we can still follow a similar analysis to bound its suboptimality gap. Our algorithm is presented in Algorithm 3.

Inspired by (Chen et al., 2021), for each node-level feedback data t ∈ [n], we only use the seed set St,0 and the active nodes
in the first diffusion step St,1 to construct the LCB.

Since each node u is independently selected in St,0 with probability qu, and we consider only one step activation for any
node v, the event {v is activated by u} and the event {v is activated by other nodes G− {u}} are independent. Thus, we
have pG(v̄) = (1− qupuv) · pG\{u}(v̄) = (1− qupuv) · pG(v̄|ū). Rearranging terms, we have:

puv =
1

qu

(
1− pG(v̄)

pG(v̄|ū)

)
. (13)

Let us omit the graph G in the subscript of pG(v̄) and pG(v̄|ū) when the context is clear.

We can observe that puv is monotonically decreasing when qu or p(v̄) increases and when p(v̄|ū) decreases. Therefore,
we separately construct intermediate UCB for qu, p(v̄) and LCB for p(v̄|ū) and plug into Eq. (13) to construct an overall
LCB

¯
puv for each arm puv as in line 7. Based on the LCB for each edge, we construct the LCB graph

¯
G and call IM oracle

over
¯
G. Also note that for each intermediate UCB/LCB, we use variance-adaptive confidence intervals to further reduce the

estimation bias.
Theorem 5. Under Assumption 1, suppose the number of data n ≥ 392 log( 12nE

δ )

η·γ . Let Ŝ be the seed set returned by
algorithm Algorithm 3, then it holds with probability at least 1− δ that

ασ(S∗;G)− σ
(
Ŝ;G

)
≤ 48

√
6

√
V 2d2maxσ

2(S∗;G) · log( 12nEδ )

η · γ3 · n
, (14)

where dmax is the maximum out-degree of the graph G.
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Algorithm 3 CLCB-IM-N: Combinatorial Lower Confidence Bound Algorithm for Influence Maximization with Node-level
Feedback

1: Input: Dataset D = {(St,0, St,1, ..., St,V−1)}nt=1, nodes V , edges E , cardinality k, influence maximization solver IM,
probability δ.

2: for edge (u, v) ∈ E do
3: Calculate counters n0,u = |{i ∈ [n] : u ∈ Si,0}| , n1,v̄ = |{i ∈ [n] : v /∈ Si,1}|, n1,ū,v̄ = |{i ∈ [n] : u /∈

Si,0 and v /∈ Si,1}|;
4: Calculate empirical means q̂u = n0,u/n, p̂(v̄) = n1,v̄/n, p̂(v̄|ū) = n1,ū,v̄/n1,v̄;

5: Calculate variance-adaptive intervals ρu =

√
6(1−q̂u)q̂u log( 12nE

δ )

n +
9 log( 12nE

δ )

n , ρ(v̄) =

√
6(1−p̂(v̄))p̂(v̄) log( 12nE

δ )

n +

9 log( 12nE
δ )

n , ρ(v̄|ū) =
√

6(1−p̂(v̄|ū))p̂(v̄|ū) log( 12nE
δ )

n0,ū
+

9 log( 12nE
δ )

n0,ū
;

6: Compute intermediate UCB/LCB q̄u = min{q̂u + ρu, 1}, p̄(v̄) = min{p̂(v̄) + ρ(v̄), 1},
¯
p(v̄|ū) = max{p̂(v̄|ū) −

ρ(v̄|ū), 0};
7: Compute edge-level LCB

¯
puv = min

{
1,max

{
0, 1

q̄u

(
1− p̄(v̄)

¯
p(v̄|ū)

)}}
for (u, v) ∈ E .

8: end for
9: Construct LCB graph

¯
G = (V, E ,

¯
p) with edge-level LCB

¯
p = (

¯
puv)(u,v)∈E .

10: Call IM sovler Ŝ = IM(
¯
G, k).

11: Return: Ŝ.

Remark 7 (Discussion). To find out an action Ŝ such that σ(Ŝ;G) ≥ (α − ϵ)σ(S∗;G), our algorithm requires that
n ≥ Õ

(
V 2d2

max

ϵ2ηγ3

)
, which improves the existing result by at least a factor of Õ

(
V 4

k2d2
maxη

)
, owing to our variance-adaptive

LCB construction and the tight CMAB-T analysis. We also relax the assumption regarding Assumption 1, where we require
bounded qu, p(v̄) only for (u, v) ∈ E(s∗), since we use LCB

¯
puv. Chen et al. (2021), instead, needs bounded qu, p(v̄) for

all (u, v) ∈ E as they directly use the empirical mean of puv .

D. Proof for the Upper Bound Result
Proof of Theorem 1. We first show the regret bound under the infinity-norm TPM data coverage condition (Condition 3):

Let Ni(D) be the counter for arm i as defined in line 3 of Algorithm 1, given the dataset D and the failure probability δ.

Let µ̂(D) = (µ̂1(D, δ), ..., µ̂m(D, δ)) be the empirical mean defined in line 4 of Algorithm 1.

Let
¯
µ(D, δ) =

(
¯
µ1(D, δ), ...,

¯
µm(D, δ)

)
be the LCB vector defined in line 5 of Algorithm 1.

Let Ŝ(D, δ) be the action returned by Algorithm 1 in line 7.

Let pDarm,DS
i be the data collecting probability that for arm i, i.e., the probability of observing arm i in each offline data.

Let S̃∗ = {i ∈ [m] : pDout,S
∗

i > 0} be the arms that can be triggered by the optimal action S∗ and p∗ = mini∈S̃∗ p
Darm,DS
i be

the minimum data collection probability.

We first define the events Earm and Ecounter as follows.

Earm :=

|µ̂i(D)− µi| ≤

√
log( 2mn

δ )

2Ni(D)
for any i ∈ [m]

 (15)

Ecounter :=

{
Ni(D) ≥ n · pDarm,DS

i

2
for any i ∈ S̃∗

∣∣∣∣∣n ≥
8 log m

δ

p∗

}
(16)

When n ≥ 8 log m
δ

p∗ and under the events Earm and Ecounter, we have the following gap decomposition:

αr(S∗;µ)− r
(
Ŝ(D, δ);µ

)
(17)
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(a)
= αr(S∗;µ)− αr

(
S∗;

¯
µ(D, δ)

)︸ ︷︷ ︸
uncertainty gap

(18)

+ αr
(
S∗;

¯
µ(D, δ)

)
− r

(
Ŝ(D, δ);

¯
µ(D, δ)

)
︸ ︷︷ ︸

oracle gap

+ r
(
Ŝ(D, δ);

¯
µ(D, δ)

)
− r

(
Ŝ(D, δ);µ

)
︸ ︷︷ ︸

pessimism gap

(b)

≤ α
(
r(S∗;µ)− r

(
S∗;

¯
µ(D, δ)

))
(19)

(c)

≤ αB1

∑
i∈[m]

pDarm,S
∗

i

(
µi −

¯
µi(D, δ)

)
(20)

(d)

≤ 2αB1

∑
i∈[m]

pDarm,S
∗

i

√
log( 2mn

δ )

2Ni(D)
(21)

(e)

≤ 2αB1

∑
i∈[m]

pDarm,S
∗

i

√
log( 2mn

δ )

n · pDarm,DS
i

(22)

≤ 2αB1

∑
i∈[m]

√
pDarm,S∗

i

√√√√ log( 2mn
δ ) · pDarm,S∗

i

n · pDarm,DS
i

(23)

(f)

≤ 2αB1K̄
∗
2

√
2 log(2mn

δ ) · C∗
∞

n
, (24)

where inequality (a) is due to adding and subtracting αr
(
S∗;

¯
µ(D, δ)

)
and r

(
Ŝ(D, δ);

¯
µ(D, δ)

)
, inequality (b) is due to

oracle gap ≤ 0 by Eq. (1) as well as pessimism gap ≤ 0 by monotonicity (Condition 1) and Lemma 5, inequality (c) is
due to 1-norm TPM smoothness condition (Condition 2), inequality (d) is due to Lemma 5, inequality (e) is due to event
Ecounter, inequality (f) is due to infinity-norm TPM data coverage condition (Condition 3).

Next, we show the regret bound under the 1-nrom TPM data coverage condition (Condition 4).

When n ≥ 8 log m
δ

p∗ and under the events Earm and Ecounter, we follow the proof from Eq. (17) to Eq. (23) and proceed as:

αr(S∗;µ)− r
(
Ŝ(D, δ);µ

)
(25)

=αr(S∗;µ)− αr
(
S∗;

¯
µ(D, δ)

)︸ ︷︷ ︸
uncertainty gap

(26)

+ αr
(
S∗;

¯
µ(D, δ)

)
− r

(
Ŝ(D, δ);

¯
µ(D, δ)

)
︸ ︷︷ ︸

oracle gap

+ r
(
Ŝ(D, δ);

¯
µ(D, δ)

)
− r

(
Ŝ(D, δ);µ

)
︸ ︷︷ ︸

pessimism gap

≤α
(
r(S∗;µ)− r

(
S∗;

¯
µ(D, δ)

))
(27)

≤αB1

∑
i∈[m]

pDarm,S
∗

i

(
µi −

¯
µi(D, δ)

)
(28)

≤ 2αB1

∑
i∈[m]

√
pDarm,S∗

i

√√√√2 log(2mn
δ ) · pDarm,S∗

i

n · pDarm,DS
i

(29)

(a)

≤ 2αB1

√∑
i∈[m]

pDarm,S∗

i

√√√√∑
i∈[m]

2 log(2mn
δ ) · pDarm,S∗

i

n · pDarm,DS
i

(30)

(b)

≤ 2αB1

√
2K̄∗C∗

1 log(
2mn
δ )

n
, (31)

where inequality (a) is due to Cauchy Schwarz inequality, and inequality (b) is due to 1-norm TPM data coverage condition
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Condition 4.

The final step is to show event Earm and Ecounter hold with high probability. By Lemma 5 and Lemma 6, event Earm and
Ecounter both hold with probability at least with 1− δ. By setting δ′ = δ/2 concludes the proof.

■

E. Proof for the Lower Bound Result
Proof of Theorem 2. Let ∆ ∈ [0, 1

4 ] be a gap to be tuned later and let C∗
∞ ≥ 2. We consider a k-path problem with

two problem instances P1 and P2, where m/k path’s mean vectors are µ1 = ( 12 ,
1
2 − ∆, 0, ..., 0) ∈ Rm/k and µ2 =

( 12 ,
1
2 +∆, 0, ..., 0) ∈ Rm/k, respectively. For the data collecting distribution, DS follows p = ( 1

C∗
∞
, 1− 1

C∗
∞
, 0, ..., 0) for

both P1 and P2. We have that the optimal action S∗
1 = (1, 2, ..., k) for P1 and S∗

2 = (k + 1, k + 2, ..., 2k) for P2.

For the triggering probability, pP1,S
∗

i = 1 for i = 1, ..., k and 0 otherwise and pP2,S
∗

i = 1 for i = k + 1, ..., 2k and 0
otherwise.

We then show that both problem instances P1,P2 satisfy Condition 3. For P1 and P2, we have

max
i∈[m]

pP1,S
∗

i

pP1,DS
i

=
1
1

C∗
∞

= C∗
∞, (32)

max
i∈[m]

pP2,S
∗

i

pP2,DS
i

=
1

1− 1
C∗

∞

(a)

≤ C∗
∞, (33)

where inequality (a) is due to C∗
∞ ≥ 2.

Let us define suboptimality gap of any action Ŝ as:

g(Ŝ;µ) := r(S∗(µ);µ)− r(Ŝ;µ) (34)

where S∗(µ) is the optimal super arm under µ.

For any action Ŝ ∈ S, we have

g(Ŝ;µ1) + g(Ŝ;µ2) ≥ k∆ (35)

Recall that A(D) is the action returned by algorithm A and we use the Le Cam’s method (Le Cam, 2012):

inf
A

sup
(Darm,DS)∈k-path(m,k,C∗

∞)

ED∼D(Darm,DS)[r(S
∗;µ)− r(A(D);µ)] (36)

≥ inf
A

sup
µ∈µ1,µ2

ED[g(A(D);µ)] (37)

(a)

≥ inf
A

1

2
(Ep⊗µ1 [A(D);µ1)] + Ep⊗µ2 [g(A(D);µ2)]) (38)

(b)

≥ k∆

4
exp

(
−KL

(
Pp

⊗
µ1
||Pp

⊗
µ2

))
, (39)

where inequality (a) is due to max a, b ≥ (a+ b)/2, and inequality (b) is due to the following derivation:

Let event E = {g(A(D);µ1) ≤ k∆
2 }. On ¬E it holds that g(A(D);µ1) ≥ k∆

2 and on E it holds that g(A(D);µ2) ≥
k∆− g(A(D);µ1) ≥ k∆

2 . Thus, we have:

inf
A

1

2
(Ep⊗µ1 [g(A(D);µ1)] + Ep⊗µ2 [g(A(D);µ2)]) (40)

≥k∆

4
(Pp⊗µ1

(¬E) + Pp⊗µ2
(E)) (41)

(a)

≥ k∆

8
exp

(
−KL

(
Pp

⊗
µ1
||Pp

⊗
µ2

))
(42)
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(b)

≥ k

8e
min

(
1

4
,

√
C⋆

∞
20n

)
(43)

(44)

where inequality (a) is due to Lemma 8 and inequality (b) comes from: KL (Pp⊗µ1∥Pp⊗µ2) ≤ nKL(Pµ1
∥Pµ2)

C⋆
∞

≤
n(2∆)2

C⋆
∞(1/4−∆2) ≤ 20n∆2/C⋆

∞. Here we use the fact that each arm in the path are fully dependent Bernoulli random variables,

KL (Bern(p)||Bern(q)) ≤ (p−q)2

q(1−q) and that ∆ ∈ [0, 1
4 ]. By taking ∆ = min

(
1
4 ,
√

C⋆
∞

20n

)
concludes Theorem 2. ■

F. Proof for the Application of Offline Learning for Cascading Bandits
Proof of Corollary 1. For the cascading bandit application, we need to prove how it satisfies the monotonicity condition
(Condition 1), the 1-norm TPM condition (Condition 2), the 1-norm data coverage condition (Condition 4), and then settle
down the corresponding smoothness factor B1, data coverage coefficient C∗

1 , action size K̄∗.

Algorithm 4 CLCB-Cascade: Combinatorial Lower Confidence Bound Algorithm for Cascading Bandits

1: Input: Dataset D = {(St, τt, (Xt,i)i∈τt)}
n
t=1, cardinality k > 0, solver Top-k, probability δ.

2: for arm i ∈ [m] do
3: Calculate counter Ni =

∑n
t=1 I{i ∈ τt};

4: Calculate empirical mean µ̂i =
∑n

t=1 I{i∈τt}Xt,i

Ni
;

5: Calculate LCB
¯
µi = µ̂i −

√
log( 2mn

δ )

2Ni
.

6: end for
7: Call oracle Ŝ = Top-k(

¯
µ1, ...,

¯
µm).

8: Return: Ŝ.

For the monotonicity condition (Condition 1), the 1-norm TPM condition (Condition 2), Lemma 1 in Wang & Chen (2017)
yields B1 = 1.

For the 1-norm data coverage condition (Condition 4), recall that we assume the arm means are in descending order
µ1 ≥ µ2 ≥ ... ≥ µm, therefore we have S∗ = (1, 2, ..., k), and

pDarm,S
∗

i =

{∏i−1
j=1(1− µj), if i ≤ k,

0, else if i ≥ k + 1.
(45)

As for pDarm,DS
i , we have

pDarm,DS
i ≥

k∑
j=1

qij(1− µ1)
j−1, (46)

where qij is the probability that arm i is sampled at the j-th position of the random ranked list sampled by the experimenter.

By math calculation, we have

C∗
1 =

∑
i∈[m]

pDarm,S
∗

i

pDarm,DS
i

≤
k∑

i=1

∏i−1
j=1(1− µj)∑k

j=1 qij(1− µ1)j−1
(47)

and

K̄∗ =
∑
i∈[m]

pDarm,S
∗

i ≤
∑
i∈[k]

1 = k (48)
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Plugging B1 = 1, C∗
1 =

∑k
i=1

∏i−1
j=1(1−µj)∑k

j=1 qij(1−µ1)j−1 , K̄
∗ = k into our general result Theorem 1 yields the general result of

Corollary 1.

When we assume that the data collecting distribution DS follows the uniform distribution from all possible ordered lists
S = {(a1, ..., ak) : ai ∈ [m] for all i ∈ [m], and ai ̸= aj for all i ̸= j}. Then we have qi,j = 1

m , and using Eq. (46) we
have

pDarm,DS
i ≥

k∑
j=1

(1− µ1)
j−1

m
=

1− (1− µ1)
k

µ1 ·m
(49)

We can use Eq. (47) and Eq. (45) to bound

C∗
1 =

∑
i∈[m]

pDarm,S
∗

i

pDarm,DS
i

≤
∑
i∈[m]

pDarm,S
∗

i
1−(1−µ1)k

µ1·m

(50)

≤
∑k

j=1(1− µk)
j

1−(1−µ1)k

µ1·m

(51)

=

1−(1−µk)
k

µk

1−(1−µ1)k

µ1·m

(52)

≤ µ1 ·m
µk

. (53)

Plugging B1 = 1, C∗
1 = µ1·m

µk
, K̄∗ = k into our general result Theorem 1 concludes Corollary 1.

■

G. Algorithm and Proof for the LLM Cache Application
G.1. Offline Learning for the LLM Cache under the Standard CMAB-T View

Algorithm 5 CLCB-LLM-C: Combinatorial Lower Confidence Bound Algorithm for LLM Cache

1: Input: Dataset D = {(Mt, qt, ct)}nt=1, queries Q, solver Top-k, probability δ.
2: for arm q ∈ Q do
3: Calculate counter N(q) =

∑n
t=1 I{q = qt} and Nc(q) =

∑n
t=1 I{q = qt and qt /∈ Mt};

4: Calculate empirical probability p̂(q) = N(q)/n, ĉ(q) =
∑

t∈[n] I{q = qt and qt /∈ Mt}ct/Nc(q);

5: Calculate UCB of the cost c̄(q) = ĉ(q)+
√

2 log( 4mn
δ )

Nc(q)
, and UCB of the arrival probability p̄(q) = p̂(q)+

√
2 log( 4mn

δ )

n .
6: end for
7: Call M̂ = Top-k (p̄(q1)c̄(q1), ..., p̄(qm)c̄(qm)) .
8: Return: M̂.

For this LLM cache problem, we first show the corresponding base arms, super arm, and triggering probability. Then we
prove this problem satisfies the 1-norm TPM smoothness condition (Condition 2) and 1-norm TPM data coverage condition
(Condition 4). Finally, we give the upper bound result by using Theorem 1.

From the CMAB-T point of view, we have 2m base arms: the first m arms correspond to the unknown costs c(q) ∈ [0, 1]
for q ∈ Q, and the last m arms corresponds to the arrival probability p(q) ∈ [0, 1] for q ∈ Q.

Let us denote c = (c(q))q∈Q and p = (p(q))q∈Q for convenience.

Recall that we treat the queries S ∈ S outside the cache M as the super arm, where S = {Q −M : M ⊆ Q, |M| ≤ k}.

We can write the expected cost for each super arm S ∈ S as c(S; c,p) =
∑

q∈S p(q)c(q).

Then we know that S∗ = argmaxS∈S c(S; c,p), which contains the top m− k queries regarding p(q)c(q).
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For the triggering probability, we have that, for any S ∈ S, the triggering probability for unknown costs pDarm,S
q,c = p(q) for

q ∈ S and 0 otherwise. The triggering probability for unknown arrival probability pDarm,S
q,p = 1 for all q ∈ Q.

Now we can prove that this problem satisfies the 1-norm TPM smoothness condition (Condition 2) with B1 = 1. That is, for
any S ∈ S, any p,p′, c, c′ ∈ [0, 1]m, we have

|c(S; c,p)− c(S; c′,p′)| = |c(S; c,p)− c(S; c′,p) + c(S; c′,p)− c(S; c′,p′)| (54)
≤ |c(S; c,p)− c(S; c′,p)|+ |c(S; c′,p)− c(S; c′,p′)| (55)

=

∣∣∣∣∣∣
∑
q∈S

p(q)c(q)− p(q)c′(q)

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑
q∈S

p(q)c′(q)− p′(q)c′(q)

∣∣∣∣∣∣ (56)

≤
∑
q∈S

p(q) |c(q)− c′(q)|+
∑
q∈S

c′(q) |p(q)− p′(q)| (57)

≤
∑
q∈S

p(q) |c(q)− c′(q)|+
∑
q∈Q

|p(q)− p′(q)| (58)

Next, we prove that this problem satisfies the 1-norm TPM data coverage condition (Condition 3).

Let ν(q) = PrM∼DS [q /∈ M] be the probability that q is not sampled in the experimenter’s cache M ∼ DS . Then the data
collecting probability for unknown costs pDarm,DS

q,c = p(q)ν(q) and pDarm,DS
q,p = 1 for unknown arrival probability, for q ∈ Q.

We can prove that the LLM cache satisfies Condition 4 by

∑
q∈Q

(
pDarm,S

∗

q,c

pDarm,DS
q,c

+
pDarm,S

∗

q,p

pDarm,DS
q,p

)
=
∑
q∈Q

(
p(q)I{q ∈ S∗}

p(q)ν(q)
+ 1

)
≤
∑
q∈S∗

1

ν(q)
+m = C∗

1 . (59)

Finally, we have K̄∗ =
∑

q∈Q
(
pDarm,S

∗

q,c + pDarm,S
∗

q,p

)
=
∑

q∈Q p(q)I{q ∈ S∗}+
∑

q∈Q 1 ≤ 1 +m.

Plugging into Theorem 1 with B1 = 1, C∗
1 =

∑
q∈S∗

1
ν(q) +m, K̄∗ = 1 +m, we have the following suboptimality upper

bound.

Lemma 1 (Standard Upper Bound for LLM Cache). For LLM cache bandit with a dataset D of n data samples, let M∗ be
the optimal cache and suppose n ≥ 8 log( 1

δ )

minq∈Q−M∗ p(q)ν(q) , where ν(q) is the probability that query q is not included in each

offline sampled cache. Let M̂ be the cache returned by algorithm Algorithm 5, then it holds with probability at least 1− δ
that

SubOpt(M̂;α, c,p) := c(M∗; c,p)− c
(
M̂; c,p

)
(60)

≤ 2

√√√√2(m+ 1)
(∑

q∈Q−M∗
1

ν(q) +m
)
log( 4mn

δ )

n
, (61)

if the experimenter samples empty cache in each round as in (Zhu et al., 2023) so that ν(q) = 1, it holds that C∗
1 ≤ 2m and

SubOpt(M̂;α,µ) := c(M∗;p, c)− c
(
M̂;p, c

)
(62)

≤ 2

√
4m(m+ 1) log( 4mn

δ )

n
. (63)

G.2. Improved Offline Learning for the LLM Cache by Leveraging the Full-feedback Property and the
Vector-valued Concentration Inequality

Theorem 6 (Improved Upper Bound for LLM Cache). For LLM cache bandit with a dataset D of n data samples, let M∗

be the optimal cache and suppose n ≥ 8 log( 1
δ )

minq∈Q−M∗ p(q)ν(q) , where ν(q) is the probability that query q is not included in

26



Offline Learning for Combinatorial Multi-armed Bandits

each offline sampled cache. Let M̂ be the cache returned by algorithm Algorithm 5, then it holds with probability at least
1− δ that

SubOpt(M̂;α,µ) := c(M∗;p, c)− c
(
M̂;p, c

)
(64)

≤ 2

√
2
∑

q∈Q−M∗
1

ν(q) log(
6mn
δ )

n
+ 2

√
2m log( 3δ )

n
, (65)

if the experimenter samples empty cache in each round as in (Zhu et al., 2023) so that ν(q) = 1, it holds that C∗
1 ≤ m and

SubOpt(M̂;α,µ) := c(M∗;p, c)− c
(
M̂;p, c

)
(66)

≤ 4

√
2m log( 6mn

δ )

n
. (67)

In this section, we use an improved CMAB-T view by clustering m arrival probabilities p(q) as a vector-valued arm, which
is fully observed in each data sample (observing q means observing one hot vector eq ∈ {0, 1}m with 1 at the q-th entry and
0 elsewhere).

Specifically, we have m + 1 base arms: the first m arms correspond to the unknown costs c(q) for q ∈ Q, and the last
(vector-valued) arm corresponds to the arrival probability vector (p(q))q∈Q.

Let us denote c = (c(q))q∈Q and p = (p(q))q∈Q for convenience.

For the triggering probability, for any action S, we only consider unknown costs pDarm,S
q,c = p(q) for q ∈ S and 0 otherwise.

For the 1-norm TPM smoothness condition (Condition 2), directly following Eq. (58), we have that for any S ∈ S, any
p,p′, c, c′ ∈ [0, 1]m,

|c(S; c,p)− c(S; c′,p′)| ≤
∑
q∈S

p(q) |c(q)− c′(q)|+
∑
q∈Q

|p(q)− p′(q)| =
∑
q∈S

p(q) |c(q)− c′(q)|+ ∥p− p′∥1 (68)

Recall that the empirical arrival probability vector is p̂ and the UCB of the cost is c̄.

Recall that M̂ = argmax|M|=k

∑
q∈M p̂(q)c̄(q) given by line 7 in Algorithm 2, which from the CMAB-T view, corresponds

to the super arm Ŝ = Q− M̂ = argminS∈S c(S; c̄, p̂).

Since we treat p as a single vector-valued base arm and consider the cost function (and minimizing the cost) instead of the
reward function (and maximizing the reward), we need a slight adaptation of the proof of Eq. (17) as follows:

Recall that the dataset D = {(Mt, qt, ct)}nt=1.

Recall that Nc(q) =
∑n

t=1 I{q = qt and qt /∈ Mt} is the number of times that q is not in cache Mt.

Recall that ν(q) is the probability that query q is not included in each offline sampled cache Mt.

Let p∗ = minq∈Q−M∗ p(q)ν(q) be the minimum data collecting probability.

First, we need a new concentration event for the vector-valued Earv and two previous events as follows.

Earv :=

∥p̂− p∥1 ≤

√
2m log( 2δ )

n

 (69)

Earm :=

|ĉ(q)− c(q)| ≤

√
log( 2mn

δ )

2Nc(q)
for any q ∈ Q

 (70)
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Ecounter :=

{
Nc(q) ≥

n · pDarm,DS
q,c

2
for any q ∈ Q−M∗

∣∣∣∣∣n ≥
8 log m

δ

p∗

}
(71)

Following the derivation of Eq. (17), we have:

c(Ŝ; c,p)− c (S∗; c,p) (72)
(a)
= c(S∗; c̄, p̂)− c (S∗; c,p)︸ ︷︷ ︸

uncertainty gap

+ c
(
Ŝ; c̄, p̂

)
− c (S∗; c̄, p̂)︸ ︷︷ ︸

oracle gap

+ c
(
Ŝ; c,p

)
− c

(
Ŝ; c̄, p̂

)
︸ ︷︷ ︸

pessimism gap

(73)

(b)

≤ c(S∗; c̄, p̂)− c (S∗; c,p) + c
(
Ŝ; c,p

)
− c

(
Ŝ; c̄, p̂

)
(74)

(c)

≤ c(S∗; c̄, p̂)− c (S∗; c,p) + c
(
Ŝ; c̄,p

)
− c

(
Ŝ; c̄, p̂

)
(75)

(d)

≤ c(S∗; c̄, p̂)− c (S∗; c,p) + ∥p̂− p∥1 (76)
(e)

≤
∑
q∈S∗

p(q) |c̄(q)− c(q)|+ 2 ∥p̂− p∥1 (77)

(f)

≤
∑
q∈S∗

p(q) |c̄(q)− c(q)|+ 2

√
2m log( 1δ )

n
, (78)

where inequality (a) is due to adding and subtracting c (S∗; c̄, p̂) and c
(
Ŝ; c̄, p̂

)
, inequality (b) is due to oracle gap ≤ 0 by

line 7 of Algorithm 2, inequality (c) is due to the monotonicity, inequality (d) is due to Eq. (58), inequality (e) is also due to
Eq. (58), inequality (f) is due to the event Earv.

Then for the first term of Eq. (78), we follow Eq. (28) to Eq. (31):

∑
q∈S∗

p(q) |c̄(q)− c(q)| ≤ 2αB1

√
2K̄∗C∗

1 log(
2mn
δ )

n
+ 2

√
2m log( 1δ )

n
(79)

≤ 2αB1

√
2K̄∗C∗

1 log(
2mn
δ )

n
(80)

≤ 2

√
2
∑

q∈Q−M∗
1

ν(q) log(
2mn
δ )

n
(81)

where the last inequality is plugging in B1 = 1, α = 1, K̄∗ =
∑

q∈Q pDarm,S
∗

q,c =
∑

q∈Q p(q)I{q ∈ S∗} ≤ 1, and
C∗

1 =
∑

q∈S∗
1

ν(q) .

Putting together Eq. (81) and Eq. (78), we have

c(Ŝ; c,p)− c (S∗; c,p) ≤ 2

√
2
∑

q∈Q−M∗
1

ν(q) log(
2mn
δ )

n
+ 2

√
2m log( 1δ )

n
(82)

Finally, by Lemma 5, Lemma 6, and Lemma 7 we can show that event Earm, Ecounter, Earv all hold with probability at least
with 1− δ. Setting δ′ = 1

3δ concludes the theorem.

G.3. Online learning for LLM Cache

For the online setting, we consider a T -round online learning game between the environment and the learner. In each round
t, there will be a query qt coming to the system. Our goal is to select a cache Mt (or equivalently the complement set
Q−Mt in each round t ∈ [T ]) so as to minimize the regret:

Reg(T ) =

T∑
t=1

E [c(Mt; c,p)− c(M∗; c,p)] . (83)

28



Offline Learning for Combinatorial Multi-armed Bandits

Similar to Zhu et al. (2023), we consider the streaming setting where the cache of size k is the only space we can save the
query’s response. That is, after we receive query qt each round, if the cache misses the current cache Mt, then we can
choose to update the cache Mt by adding the current query and response to the cache, and replacing the one of the existing
cached items if the cache Mt is full. This means that the feasible set Qt+1 needs to be a subset of the Mt ∪ qt, for t ∈ [T ].

For this setting, we propose the CUCB-LLM-S algorithm (Algorithm 6).

Algorithm 6 CUCB-LLM-S: Combinatorial Upper Confidence Bound Algorithm for Online Streaming LLM Cache

1: Input: Queries Q, cache size k, probability δ.
2: Initialize: Counter, empirical mean, LCB for unknown costs Nc,0(q) = 0, ĉ0(q) = 0,

¯
c0(q) = 0. Empirical mean for

arrival probability p̂0(q) = 0, for all q ∈ Q. Initial cache M1 = ∅.
3: for t = 1, 2, ..., T do
4: User t arrives with query qt.
5: if qt ∈ Mt then
6: Incur cost Ct = 0 but does not receive any feedback.
7: Update p̂t(qt) =

(t−1)·p̂t−1(qt)+1
t , and p̂t(qt) =

(t−1)·p̂t−1(qt)+0
t for q ̸= qt.

8: Keep Nc,t(q) = Nc,t−1(q), ĉt(q) = ĉt−1(q) for q ∈ Q.
9: Keep Mt+1 = Mt.

10: else
11: The Cache misses and the system pay random cost Ct with mean c(qt) to compute the response of qt.
12: Update p̂t(qt) =

(t−1)·p̂t−1(qt)+1
t , and p̂t(qt) =

(t−1)·p̂t−1(qt)+0
t for q ̸= qt.

13: Update Nc,t(qt) = Nc,t−1(qt) + 1, ĉt(qt) =
Nc,t−1(qt)·ĉt−1(qt)+Ct

Nc,t−1(qt)+1 .
14: Keep Nc,t(q) = Nc,t−1(q), ĉt(q) = ĉt−1(q) for q ̸= qt.

15: Compute
¯
ct(q) = max

{
ĉt(q)−

√
6 log(t)
Nc,t(q)

, 0
}

for all q ∈ Q.
16: if |Mt| < k then
17: Add qt’s response into Mt so that Mt+1 = Mt ∪ qt.
18: else if minq∈Mt

p̂t(q)
¯
ct(q) ≤ p̂t(qt)

¯
ct(qt) then

19: Replace qt,min’s response with qt’s, i.e., Mt+1 = Mt − qt,min + qt, where qt,min = argminq∈Mt
p̂t(q)

¯
ct(q).

20: else
21: Keep Mt+1 = Mt.
22: end if
23: end if
24: end for

The key difference from the traditional CUCB algorithm, where any super arm S ∈ S can be selected, is that the feasible
future cache Mt+1 in round t + 1 is restricted to Mt+1 ⊆ Mt

⋃
qt, where Mt is the current cache and the query that

comes to the system. This means that we cannot directly utilize the top-k oracle as in line 7 of Algorithm 2 and other online
CMAB-T works (Wang & Chen, 2017; Liu et al., 2023b) due to the restricted feasible action set. To tackle this challenge,
we design a new streaming procedure (lines 16-22), which leverages the previous cache Mt and newly coming qt to get the
top-k queries regarding p̂t(q)

¯
ct(q).

We can prove the following lemma:
Lemma 2 (Streaming procedure yields the global top-k queries). Let Mt be the cache selected by Algorithm 6 in each
round, then we have Mt = argmaxM⊆Q:|M|≤k

∑
q∈M p̂t−1(q)

¯
ct−1(q).

Proof. We prove this lemma by induction.

Base case when t = 1:

Since
¯
c0(q) = p̂0(q) = 0 for any q ∈ Q, we have M1 = argmaxM⊆Q:|M|≤k p̂0(q)¯

c0(q) = ∅.

For t ≥ 2:

Suppose Mt = argmaxM⊆Q:|M|≤k

∑
q∈M p̂t−1(q)

¯
ct−1(q).

Then we prove that Mt+1 = argmaxM⊆Q:|M|≤k

∑
q∈M p̂t(q)

¯
ct(q) as follows:
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Case 1 (line 5): If qt ∈ Mt, then
¯
ct(q) =

¯
ct−1(q) remain unchanged for q ∈ Q. For the arrival probability, p̂t(qt) ≥ p̂t−1(qt)

is increased, and p̂t(q) =
(t−1)·p̂t−1(q)

t are scaled with an equal ratio of t−1
t for q ̸= qt. Therefore, the relative order of

queries q ∈ Q−qt remain unchanged regarding p̂t−1(q)
¯
ct−1(q) and p̂t(q)

¯
ct(q). Moreover, p̂t−1(qt)

¯
ct−1(qt) ≤ p̂t(qt)

¯
ct(qt)

is increased while other queries are decreased, so qt remains in the top-|Mt| queries. Thus, Mt+1 = Mt remains the
top-|Mt| queries.

Case 2 (line 16): If qt /∈ Mt and |Mt| < k, then we know that all the queries q /∈ (Mt + qt) never arrives, and c̄t(q) = 0.
Therefore, p̂t(qt)

¯
ct(qt) ≥ p̂t(q)

¯
ct(q) = 0 for any q /∈ (Mt + qt), and Mt + qt are top-|Mt + 1| queries.

Case 3 (line 18): If qt /∈ Mt and |Mt| = k, then
¯
ct(q) =

¯
ct−1(q) remain unchanged for q ∈ Q − qt and p̂t(q) =

(t−1)·p̂t−1(q)
t are scaled with an equal ratio of t−1

t for q ̸= qt, so the relative order of queries q ∈ Q− qt remain unchanged
regarding p̂t−1(q)

¯
ct−1(q) and p̂t(q)

¯
ct(q). The only changed query is the qt, so we only need to replace the minimum

query qt,min = argminq∈Mt
p̂t(q)

¯
ct(q) with qt, if p̂t(qt,min)

¯
ct(qt,min) ≤ p̂t(qt)

¯
ct(qt), which is exactly the line 19. This

guarantees that Mt+1 are top-k queries regarding p̂t(q)
¯
ct(q), concluding our induction. ■

Now we go back to the CMAB-T view by using St = Q − Mt, and by the above Lemma 2, we have St =
argminS⊆Q:|S|≥k

∑
q∈S p̂t−1(q)

¯
ct−1(q).

Then we have the following theorem.

Theorem 7. For the online streaming LLM cache problem, the regret of Algorithm 6 is upper bounded by

O
(√

mT log(mT
δ )
)

with probability at least 1− δ.

Proof. We also define two high-probability events:

Earv :=

∥p̂t − p∥1 ≤

√
2m log( 2Tδ )

t
for any t ∈ [T ]

 (84)

Earm :=

|ĉt(q)− c(q)| ≤

√
log( 3mT

δ )

2Nc,t(q)
for any q ∈ Q, t ∈ [T ]

 (85)

Now we can have the following regret decomposition under Earv and Earm:

Reg(T ) = E

[
T∑

t=1

(c (St; c,p)− c (S∗; c,p))

]
(86)

(a)
= E

[
T∑

t=1

(
c (St; c,p)− c (St;

¯
ct−1, p̂t−1)︸ ︷︷ ︸

uncertainty gap

+ c (St;
¯
ct−1, p̂t−1)− c (S∗;

¯
ct−1, p̂t−1)︸ ︷︷ ︸

oracle gap

+ c(S∗;
¯
ct−1, p̂t−1)− c (S∗; c,p)︸ ︷︷ ︸

optimistic gap

)]
(87)

(b)

≤ E

[
T∑

t=1

(c (St; c,p)− c (St;
¯
ct−1, p̂t−1) + c(S∗;

¯
ct−1, p̂t−1)− c (S∗; c,p))

]
(88)

(c)

≤ E

[
T∑

t=1

(c (St; c,p)− c (St;
¯
ct−1, p̂t−1) + c(S∗; c, p̂t−1)− c (S∗; c,p))

]
(89)

(d)

≤ E

 T∑
t=1

c (St; c,p)− c (St;
¯
ct−1, p̂t−1) +

√
2m log( 2Tδ )

t

 (90)

(e)

≤ E

 T∑
t=1

∑
q∈St

p(q) |̄ct−1(q)− c(q)|+ 2

√
2m log( 2Tδ )

t

 (91)
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(f)

≤ E

 T∑
t=1

∑
q∈St

2p(q)

√
log( 3mT

δ )

2Nc,t−1(q)
+ 2

√
2m log( 2Tδ )

t

 (92)

≤E

 T∑
t=1

∑
q∈St

p(q)

√
2 log(3mT

δ )

Nc,t−1(q)

+ 4

√
2mT log(

2T

δ
) (93)

(g)

≤ 14

√
2mK̄∗T log(

3mT

δ
) + 2m+ 4

√
2mT log(

2T

δ
) (94)

(f)

≤ 18

√
2mT log(

3mT

δ
) + 2m (95)

where inequality (a) is due to adding and subtracting terms, inequality (b) is due to oracle gap ≤ 0 by St =
argminS⊆Q:|S|≥k

∑
q∈S p̂t−1(q)

¯
ct−1(q) (indicated by Lemma 2), inequality (c) is due to the monotonicity, inequal-

ity (d) is due to Eq. (58) and event Earv, inequality (e) is also due to Eq. (58), inequality (f) is due to the event
Earm, and inequality (g) is by the same derivation of Appendix C.1 starting from inequality (50) by recognizing
pD,St

i = p(q), µ̄t,i =
¯
ct−1(q), µi = c(q), inequality (f) is due to K̄∗ =

∑
q∈Q pDarm,S

∗

q,c =
∑

q∈Q p(q)I{q ∈ S∗} ≤ 1.

■

H. Proof for the Influence Maximization Application under the Node-level feedback
Proof for Theorem 4. Recall that the underlying graph is G(V, E , p) and our offline dataset is D =
{(St,0, St,1, ..., St,V−1)}nt=1.

For each node-level feedback data t ∈ [n], recall that we only use the seed set St,0 and the active nodes in the first diffusion
step St,1 to construct the LCB.

We use qv = Pr [v ∈ St,0] to denote the probability that the node v is selected by the experimenter in the seed set St,0.

We use p(v̄) := Pr [v /∈ St,1] to denote the probability that the node v is not activated in one time step.

We use p(v̄|u) := Pr [v /∈ St,1|u ∈ St,0] and p(v̄|ū) := Pr [v /∈ St,1|u /∈ St,0] to denote the probability that the node v is
not activated in one time step conditioned on whether the node u is in the seed set St,0 or not, respectively.

Recall that we use the following notations to denote the set of counters, which are helpful in constructing the unbiased
estimator and the high probability confidence interval of the above probabilities qv, p(v̄) and p(v̄|ū):

n0,u = |{t ∈ [n] : u ∈ St,0}| , (96)
n0,ū = |{t ∈ [n] : u /∈ St,0}|, (97)
n1,v̄ = |{t ∈ [n] : v /∈ St,1}|, (98)

n1,ū,v̄ = |{t ∈ [n] : u /∈ St,0 and v /∈ St,1}| (99)

Recall that for any u, v ∈ V and given probability δ, we construct the UCB q̄u, p̄(v̄), and LCB
¯
p(v̄|ū) as follows.

q̄u = min{q̂u + ρu, 1}, (100)
p̄(v̄) = min{p̂(v̄) + ρ(v̄), 1}, (101)

¯
p(v̄|ū) = max{p̂(v̄|ū)− ρ(v̄|ū), 0} (102)

where the unbiased estimators are:

q̂u = n0,u/n, (103)
p̂(v̄) = n1,v̄/n, (104)

p̂(v̄|ū) = n1,ū,v̄/n0,ū (105)

and the variance-adaptive confidence intervals are:

ρu =

√
6(1− q̂u)q̂u log(

1
δ )

n
+

9 log(1δ )

n
, (106)
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ρ(v̄) =

√
6(1− p̂(v̄))p̂(v̄) log(1δ )

n
+

9 log( 1δ )

n
(107)

ρ(v̄|ū) =

√
6 (1− p̂(v̄|ū)) p̂(v̄|ū) log(1δ )

n0,ū
+

9 log( 1δ )

n0,ū
(108)

Based on the above unbiased estimators and confidence intervals, we define the following events to bound the difference
between the true parameter and their UCB/LCBs:

Earm,1(u) :=

qu ≤ q̄u ≤ min

qu + 4
√
3

√
qu(1− qu) log(

1
δ )

n
+ 28 ·

log( 1δ )

n
, 1


 (109)

Earm,2(v̄) :=

p(v̄) ≤ p̄(v̄) ≤ min

p(v̄) + 4
√
3

√
p(v̄)(1− p(v̄)) log(1δ )

n
+ 28 ·

log( 1δ )

n
, 1


 (110)

Earm,3(ū, v̄) :=

max

p(v̄|ū)− 4
√
3

√
p(v̄|ū)(1− p(v̄|ū)) log(1δ )

n0,ū
− 28 ·

log( 1δ )

n0,ū
, 0

 ≤
¯
p(v̄|ū) ≤ p(v̄|ū)

 (111)

Ecounter(u) :=
{
n0,ū ≥ n(1− qu)

2

∣∣∣∣n ≥
8 log 1

δ

1− qu

}
. (112)

Eemp,1(v̄) :=

{
p̂(v̄) ≤ 2p(v̄)

∣∣∣∣n ≥
8 log 1

δ

p(v̄)

}
(113)

Eemp,2(ū, v̄) :=

{
p̂(v̄|ū) ≥ p(v̄|ū)/2

∣∣∣∣n0,u ≥
8 log 1

δ

p(v̄|ū)

}
(114)

Recall that the relationship between puv and qu, p(v̄) and p(v̄|ū) is:

puv =
1

qu

(
1− p(v̄)

p(v̄|ū)

)
(115)

Then we construct the LCB
¯
puv based on the above intermediate UCB q̄u, p̄(v̄), and LCB

¯
p(v̄|ū):

¯
puv = min

{
1,max

{
0,

1

q̄u

(
1− p̄(v̄)

¯
p(v̄|ū)

)}}
. (116)

(1) It is obvious that
¯
pu,v is a lower bound of puv, i.e.,

¯
pu,v ≤ puv, since qu ≤ q̄u, p(v̄) ≤ p̄(v̄),

¯
p(v̄|ū) ≤ p(v̄|ū) under

event Earm,1(u), Earm,2(v̄), Earm,3(ū, v̄).

(2) Our next key step is to show that the difference between
¯
pu,v and puv is very small and decreases as the number of data

samples n increases:

Fix any two nodes u, v, we define two intermediate LCBs for puv where only one parameter changes at a time:

¯
p1,uv =

1

q̄u

(
1− p(v̄)

p(v̄|ū)

)
(117)

¯
p2,uv =

1

q̄u

(
1− p̄(v̄)

p(v̄|ū)

)
(118)

Suppose γ ≤ qu ≤ 1− γ, p(v̄) ≥ η, and n ≥ 392 log( 1
δ )

η·γ ,
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We can bound each term under event Earm,1(u), Earm,2(v̄), Earm,3(ū, v̄) by:

puv −
¯
p1,uv =

1

qu

(
1− p(v̄)

p(v̄|ū)

)
− 1

q̄u

(
1− p(v̄)

p(v̄|ū)

)
(119)

=
q̄u − qu
q̄uqu

(
1− p(v̄)

p(v̄|ū)

)
(120)

(a)
=

q̄u − qu
q̄u

· puv (121)

(b)

≤
4
√
3

√
qu log( 1

δ )

n + 28
log( 1

δ )

n

qu
· puv (122)

(c)

≤
8
√
3

√
qu log( 1

δ )

n

qu
· puv (123)

= 8
√
3

√
log( 1δ )

nqu
· puv (124)

(d)

≤ 8
√
3

√
log( 1δ )

γ · n
· puv, (125)

where equality (a) is due to Eq. (115), inequality (b) is due to the event Earm,1(u), inequality (c) is due to 28
log( 1

δ )

n ≤

4
√
3

√
qu log( 1

δ )

n when n ≥ 392 log( 1
δ )

η·γ > 49
3

log( 1
δ )

qu
, inequality (d) is due to qu ≥ γ.

¯
p1,uv −

¯
p2,uv =

1

q̄u

(
1− p(v̄)

p(v̄|ū)

)
− 1

q̄u

(
1− p̄(v̄)

p(v̄|ū)

)
(126)

=
1

q̄u

(
p̄(v̄)− p(v̄)

p(v̄|ū)

)
(127)

(a)

≤ 1

γ

(
p̄(v̄)− p(v̄)

p(v̄|ū)

)
(128)

(b)

≤ 1

γ

4
√
3

√
p(v̄) log( 1

δ )

n + 28
log( 1

δ )

n

p(v̄|ū)
(129)

(c)

≤ 1

γ

8
√
3

√
p(v̄) log( 1

δ )

n

p(v̄|ū)
(130)

(d)

≤ 8
√
3

γ

√
log( 1δ )

p(v̄) · n
(131)

(e)

≤ 8
√
3

γ

√
log( 1δ )

η · n
, (132)

where inequality (a) is due to q̄t ≥ qu ≥ γ, inequality (b) is due to the event Earm,2(v̄), inequality (c) is due to 28
log( 1

δ )

n ≤

4
√
3

√
p(v̄) log( 1

δ )

n when n ≥ 392 log( 1
δ )

η·γ > 49
3

log( 1
δ )

p(v̄) , inequality (d) is due to p(v̄) ≤ p(v̄|ū), inequality (e) is due to p(v̄) ≥ η.

Before we bound
¯
p2,uv −

¯
puv , we first show that

¯
p(v̄|ū) ≥ 1

2p((v̄|ū)) > 0 for any (u, v) ∈ E . That is:

¯
p(v̄|ū)

(a)

≥ p(v̄|ū)− 4
√
3

√
p(v̄|ū) log(1δ )

n0,ū
−

28 log(1δ )

n0,ū
(133)
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(b)

≥ p(v̄|ū)− 8
√
3

√
p(v̄|ū) log(1δ )

n0,ū
(134)

(c)

≥ p(v̄|ū)
2

> 0 (135)

where inequality (a) is due to event Earm,3(ū, v̄), inequality (b) is due to 4
√
3
√

p(v̄|ū) log( 1
δ )

n0,ū
≥ 28 log( 1

δ )

n0,ū
when n0,u >

49
3

log( 1
δ )

p(v̄|ū) , which is guaranteed when n ≥ 98 log( 1
δ )

3η·γ under the event Ecounter(u) and 1− qu ≥ γ (i.e., n0,u ≥ nγ
2 ), inequality

(c) is due to 4
√
3
√

p(v̄|ū) log( 1
δ )

n0,ū
≤ p(v̄|ū)

2 when n0,u >
196 log( 1

δ )

p(v̄|ū) , which is guaranteed when n ≥ 392 log( 1
δ )

η·γ under the event
Ecounter(u) and 1− qu ≥ γ (i.e., n0,u ≥ nγ

2 ).

When min
{
1,max

{
0, 1

q̄u

(
1− p̄(v̄)

¯
p(v̄|ū)

)}}
= 1, we have

¯
p2,uv −min

{
1,max

{
0,

1

q̄u

(
1− p̄(v̄)

¯
p(v̄|ū)

)}}
≤ 0. (136)

When min
{
1,max

{
0, 1

q̄u

(
1− p̄(v̄)

¯
p(v̄|ū)

)}}
< 1, we have

¯
p2,uv −min

{
1,max

{
0,

1

q̄u

(
1− p̄(v̄)

¯
p(v̄|ū)

)}}
(137)

=
¯
p2,uv −max

{
0,

1

q̄u

(
1− p̄(v̄)

¯
p(v̄|ū)

)}
(138)

≤
¯
p2,uv −

1

q̄u

(
1− p̄(v̄)

¯
p(v̄|ū)

)
(139)

=
1

q̄u

(
1− p̄(v̄)

p(v̄|ū)

)
− 1

q̄u

(
1− p̄(v̄)

¯
p(v̄|ū)

)
(140)

=
p̄(v̄)

q̄u

(
p(v̄|ū)−

¯
p(v̄|ū)

¯
p(v̄|ū)p(v̄|ū)

)
(141)

(a)

≤ p̄(v̄)

q̄u

4
√
3
√

p(v̄|ū) log( 1
δ )

n0,ū
+

28 log( 1
δ )

n0,ū

¯
p(v̄|ū)p(v̄|ū)

 (142)

(b)

≤ p̄(v̄)

q̄u

8
√
3
√

p(v̄|ū) log( 1
δ )

n0,ū

¯
p(v̄|ū)p(v̄|ū)

 (143)

(c)

≤ p̄(v̄)

q̄up(v̄|ū)

8
√
3
√

p(v̄|ū) log( 1
δ )

n0,ū

1
2p(v̄|ū)

 (144)

(d)

≤
p(v̄) + 4

√
3

√
p(v̄) log( 1

δ )

n + 28
log( 1

δ )

n

q̄up(v̄|ū)

8
√
3
√

p(v̄|ū) log( 1
δ )

n0,ū

1
2p(v̄|ū)

 (145)

(e)

≤
p(v̄) + 8

√
3

√
p(v̄) log( 1

δ )

n

q̄up(v̄|ū)

8
√
3
√

p(v̄|ū) log( 1
δ )

n0,ū

1
2p(v̄|ū)

 (146)
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(f)

≤ 2p(v̄)

q̄up(v̄|ū)

8
√
3
√

p(v̄|ū) log( 1
δ )

n0,ū

1
2p(v̄|ū)

 (147)

=
32
√
3 · p(v̄)

q̄u · p(v̄|ū)

√
log( 1δ )

p(v̄|ū) · n0,ū
(148)

(g)

≤ 32
√
3

q̄u

√
log( 1δ )

p(v̄) · n0,ū
(149)

(h)

≤ 32
√
6

q̄u

√
log( 1δ )

η · n · (1− qu)
(150)

(i)

≤ 32
√
6

√
log( 1δ )

η · γ3 · n
(151)

where inequality (a) is due to event Earm,3(ū, v̄), inequality (b) is due to 4
√
3
√

p(v̄|ū) log( 1
δ )

n0,ū
≥ 28 log( 1

δ )

n0,ū
when n0,u >

49
3

log( 1
δ )

p(v̄|ū) , which is guaranteed when n ≥ 98 log( 1
δ )

3η·γ under the event Ecounter(u) and 1− qu ≥ γ (i.e., n0,u ≥ nγ
2 ), inequality

(c) is due to Eq. (135), inequality (d) is due to the event Earm,2(v̄), inequality (e) is due to 4
√
3

√
p(v̄) log( 1

δ )

n ≥ 28 log( 1
δ )

n

when n > 49
3

log( 1
δ )

η , inequality (f) is due to p(v̄) ≥ 8
√
3

√
p(v̄) log( 1

δ )

n when n ≥ 392 log( 1
δ )

γ , inequality (g) is due to
p(v̄) ≥ p(v̄|ū), inequality (h) is due to the event Ecounter(u), inequality (i) is due to q̄u ≥ qu ≥ γ, 1− qu ≥ γ.

Combining Eq. (136) and Eq. (151), we have

p2,uv −
¯
puv ≤ 32

√
6

√
log( 1δ )

η · γ3 · n
(152)

Combining Eq. (125), Eq. (132), Eq. (152), the difference then can be bounded by:

puv −
¯
puv = puv −

¯
p1,uv +

¯
p1,uv −

¯
p2,uv +

¯
p2,uv −

¯
puv (153)

≤ 8
√
3

√
log( 1δ )

γ · n
· puv + 8

√
3

√
log( 1δ )

η · γ2 · n
+ 32

√
6

√
log( 1δ )

η · γ3 · n
(154)

≤ 48
√
6

√
log( 1δ )

η · γ3 · n
(155)

Combining the above inequality with Eq. (20) yields:

ασ(S∗;G)− σ
(
Ŝ(D, δ);G

)
(156)

(a)

≤ αB1

∑
(u,v)∈E

pDarm,S
∗

uv

(
puv −

¯
pu,v

)
(157)

(b)

≤ 48
√
6αB1

√
log( 1δ )

η · γ3 · n
∑

(u,v)∈E

pDarm,S
∗

uv (158)

(c)

≤ 48
√
6αV

√
log( 1δ )

η · γ3 · n
∑

(u,v)∈E

pDarm,S
∗

uv (159)

(d)

≤ 48
√
6 · αV ·

√
log( 1δ )

η · γ3 · n
dmaxσ(S

∗;G) (160)

35



Offline Learning for Combinatorial Multi-armed Bandits

where inequality (a) is due to the same derivation of Eq. (20), inequality (b) is due to Eq. (155), inequality (c) is due to
B1 ≤ V by Lemma 2 of (Wang & Chen, 2017). For the last inequality (d), since σ(S∗;G) =

∑
u∈V p∗u where p∗u is the

probability node u is triggered by the optimal action S∗ and p
Darm,S∗
u,v = p∗u, we have

∑
(u,v)∈E p

Darm,S
∗

uv ≤ dmax

∑
u∈V p∗u =

dmaxσ(S
∗;G), where dmax is the maximum out-degree.

Finally, we can set δ′ = δ
12nE so that events Earm,1(u), Earm,2(v̄), Earm,3(ū, v̄), Ecounter(u), Eemp,1(v̄), Eemp,2(ū, v̄) for

any (u, v) ∈ S̃∗ hold with probability at least 1 − δ′, by Lemma 9 and taking union bound over all these events and
(u, v) ∈ E . ■

I. Auxiliary Lemmas
Lemma 3 (Hoeffding’s inequality). Let X1, ..., Xn ∈ [0, 1] be independent and identically distributed random variables
with common mean µ. Let X =

∑n
i=1 Xi. Then, for any a ≥ 0,

Pr[|X − nµ| ≥ a] ≤ 2e−2a2/n (161)

Lemma 4 (Multiplicative Chernoff bound). Let X1, X2, · · · , Xn be independent random variables in {0, 1} with
Pr [Xi = 1] = pi. Let X =

∑n
i=1 Xi and µ =

∑n
i=1 pi. Then, for 0 < a < 1,

Pr[X ≥ (1 + a)µ] ≤ e−µa2/3 (162)

and
Pr[X ≤ (1− a)µ] ≤ e−µa2/2 (163)

Lemma 5 (Concentration of the base arm). Recall that the event Earm =

{
|µ̂i(D)− µi| ≤

√
log( 2mn

δ )

2Ni(D) for any i ∈ [m]

}
.

Then it holds that Pr{Earm} ≥ 1− δ with respect to the randomness of D. And under Earm, we have

µi − 2

√
log( 2mn

δ )

2Ni(D)
≤ µ̂i(D)−

√
log( 2mn

δ )

2Ni(D)
≤ µi (164)

for all i ∈ [m].

Proof.

Pr{¬Earm} = Pr

∃i ∈ [m], |µ̂i(D)− µi| ≥

√
log( 2mn

δ )

2Ni(D)

 (165)

≤
∑
i∈[m]

Pr

|µ̂i(D)− µi| ≥

√
log( 2mn

δ )

2Ni(D)

 (166)

=
∑
i∈[m]

∑
j∈[n]

Pr

Ni = j, |µ̂i(D)− µi| ≥

√
log( 2mn

δ )

2Ni(D)

 (167)

Since St are sampled from i.i.d. distribution DS , Xi,1, ..., Xi,j are i.i.d. random variables fixing i and Ni(D) = j. Then we
use Lemma 3 to obtain:

Pr

Ni(D) = j, |µ̂i(D)− µi| ≥

√
log( 2mn

δ )

2Ni(D)

 ≤ 2e
−2Ni(D)

log( 2mn
δ

)

2Ni(D) ≤ δ

mn
(168)

Combining Eq. (167) gives Pr{Earm} ≥ 1− δ.

And under Earm, µ̂i(D)−
√

log( 2mn
δ )

2Ni(D) ≤ µi ≤ µ̂i(D) +
√

log( 2mn
δ )

2Ni(D) , and rearranging terms gives Eq. (164). ■
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Lemma 6 (Concentration of the base arm counter). Recall that the event Ecounter ={
Ni(D) ≥ n·pDarm,DS

i

2 for any i ∈ [m]

∣∣∣∣n ≥ 8 log m
δ

p∗

}
. Then it holds that Pr[Earm] ≥ 1 − δ with respect to the ran-

domness of D.

Proof.

Pr{¬Ecounter} = Pr

{
∃i ∈ [m], Ni(D) ≥ n · pDarm,DS

i

2

∣∣∣∣∣n ≥
8 log m

δ

p∗

}
(169)

(a)

≤
∑
i∈[m]

Pr

{
Ni(D) ≥ n · pDarm,DS

i

2

∣∣∣∣∣n ≥
8 log m

δ

p∗

}
(170)

(b)

≤
∑
i∈[m]

e−np
D out,DS
i /8 (171)

≤
∑
i∈[m]

e
−

8 log m
δ

p
Dout,DS
i

p
D out,DS
i /8

(172)

(c)

≤ δ, (173)

■

where inequality (a) is due to the union bound over i ∈ [m], inequality (b) is due to Lemma 4 by setting a = 1/2 with
the random Ni(D) being the summation of n i.i.d. Bernoulli random variables with mean pDout,DS

i , inequality (c) is due to
n ≥ 8 log m

δ

p∗ ≥ 8 log m
δ

p
Dout,DS
i

for any i ∈ S̃∗.

Lemma 7 (Concentration of the vector-valued arrival probability). Recall that the event Earv =

{
∥p̂− p∥ ≤

√
2m log( 2

δ )

n

}
.

It holds that Pr[Earv] ≥ 1− δ.

The following lemma is extracted from Theorem 14.2 in Lattimore & Szepesvári (2020).

Lemma 8 (Hardness of testing). Let P and Q be probability measures on the same measurable space (Ω,F) and let A ∈ F
be an arbitrary event. Then,

P (A) +Q (Ac) ≥ 1

2
exp(−KL(P,Q))

where Ac = Ω\A is the complement of A.

Lemma 9 (Variance-adaptive concentration of the UCBs, LCBs, and counters in the influence maximization application). It
holds that Pr{Earm,1(u)} ≥ 1 − 2δ, Pr{Earm,2(v̄)} ≥ 1 − 2δ, Pr{Earm,3(ū, v̄)} ≥ 1 − 2nδ, Pr{Ecounter(u)} ≥ 1 − δ,
Pr{Eemp,1(v̄)} ≥ 1− δ, Pr{Eemp,2(ū, v̄)} ≥ 1− δ, where

Earm,1(u) :=

qu ≤ q̄u ≤ min

qu + 4
√
3

√
qu(1− qu) log(

1
δ )

n
+ 28 ·

log( 1δ )

n
, 1


 (174)

Earm,2(v̄) :=

p(v̄) ≤ p̄(v̄) ≤ min

p(v̄) + 4
√
3

√
p(v̄)(1− p(v̄)) log(1δ )

n
+ 28 ·

log( 1δ )

n
, 1


 (175)

Earm,3(ū, v̄) :=

max

p(v̄|ū)− 4
√
3

√
p(v̄|ū)(1− p(v̄|ū)) log(1δ )

n0,ū
− 28 ·

log( 1δ )

n0,ū
, 0

 ≤
¯
p(v̄|ū) ≤ p(v̄|ū)

 (176)

Ecounter(u) :=
{
n0,ū ≥ n(1− qu)

2

∣∣∣∣n ≥
8 log 1

δ

1− qu

}
. (177)
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Eemp,1(v̄) :=

{
p̂(v̄) ≤ 2p(v̄)

∣∣∣∣n ≥
8 log 1

δ

p(v̄)

}
(178)

Eemp,2(ū, v̄) :=

{
p̂(v̄|ū) ≥ p(v̄|ū)/2

∣∣∣∣n0,u ≥
8 log 1

δ

p(v̄|ū)

}
(179)

Proof. For Pr{Earm,1(u)} ≥ 1− 2δ, Pr{Earm,2(v̄)} ≥ 1− 2δ they are extracted from Lemma 8 from Liu et al. (2022)
without taking union bound on t, u, v as in Liu et al. (2022). For Pr{Earm,3(ū, v̄)} ≥ 1− 2nδ, it is extracted from Lemma
8 from Liu et al. (2022) by only taking union bound on n0,ū. For Pr{Ecounter(u)} ≥ 1 − δ, Pr{Eemp,1(v̄)} ≥ 1 − δ,
Pr{Eemp,2(ū, v̄)} ≥ 1− δ, they follow the proof of Lemma 6 without taking union bound on i ∈ [m]. ■

J. Detailed Experiments
In this section, we present experiments to assess the performance of our proposed algorithms using both synthetic and
real-world datasets. Each experiment was conducted over 20 independent trials to ensure reliability. All tests were performed
on a macOS system equipped with an Apple M3 Pro processor and 18 GB of RAM.

J.1. Offline Learning for Cascading Bandits

We evaluate our algorithm (Algorithm 4) in the cascading bandit scenario by comparing it against the following baseline
methods: 1. CUCB-Offline (Chen et al., 2016), an offline variant of the non-parametric CUCB algorithm, adapted for our
setting. We refer to this modified version as CUCB-Offline. 2. EMP (Liu et al., 2021), which always selects the action based
on the empirical mean of rewards.

Synthetic Dataset. We conduct experiments on cascading bandits for the online learning-to-rank application described
in Section 4.1, where the objective is to select K = 5 items from a set of m = 100 to maximize the reward (Dai et al.,
2025a). To simulate the unknown parameter µi, we draw samples from a uniform distribution U [0, 1] over the interval [0, 1].
In each round t of the offline pre-collected dataset, a ranked list St = (at,1, . . . , at,K) ⊆ [m] is randomly selected. The
outcome Xt,i for each i ∈ St is generated from a Bernoulli distribution with mean µi. The reward at round t is set to 1 if
there exists an item at,k with index k such that Xt,at,k

= 1. In this case, the learner observes the outcomes for the first k
items of St. Otherwise, if no such item exists, the reward is 0, and the learner observes all K item outcomes as Xt,i = 0
for i ∈ St. Fig. 1a presents the average suboptimality gaps of the algorithms across different ranked lists n. The proposed
CLCB algorithm outperforms the baseline methods, achieving average reductions in suboptimality gaps of 47.75% and
20.02%, compared to CUCB-Offline and EMP algorithms, respectively. These results demonstrate the superior performance
of CLCB in offline environments.

Real-World Dataset. We conduct experiments on a real-world recommendation dataset, the Yelp dataset4, which is collected
by Yelp (Dai et al., 2024b). On this platform, users contribute reviews and ratings for various businesses such as restaurants
and shops. Our offline data collection process is as follows: we select a user and randomly draw 200 items (e.g., restaurants
or shops) that the user has rated as candidates for recommendation. The agent (i.e., the recommender system) attempts to
recommend at most K items to the user to maximize the probability that the user is attracted to at least one item in the
recommended list. Each item has an unknown probability µi, derived from the Yelp dataset, indicating whether the user
finds it attractive. Regarding feedback, the agent collects cascading user feedback offline, observing a subset of the chosen
K items until the first one is marked as attractive (feedback of 1). If the user finds none of the items in the recommended
list St attractive, the feedback is 0 for all items. Fig. 1b shows the average suboptimality gaps of different algorithms over
n = 100 rounds across two action sizes (K = 4, 8). Notably, as K changes, the optimal reward also adjusts according to the
expected reward r(St;µ) = 1−

∏
i∈St

(1− µi), which explains why the suboptimality gap for smaller K tends to be larger
compared to that for larger K. CLCB achieves the lowest suboptimality gap compared to CUCB and EMP algorithms,
demonstrating its strong performance even on real-world data.

J.2. Offline Learning for LLM Cache

In the LLM Cache scenario, we compare our algorithm (Algorithm 2) against two additional baselines: LFU (Least
Frequently Used), which is a caching strategy that evicts the least frequently accessed items to optimize cache usage (Zhu

4https://www.yelp.com/dataset
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et al., 2023), and Least Expected Cost (LEC), which is an advanced caching algorithm that minimizes inference cost by
evicting items with the lowest estimated expected cost (Zhu et al., 2023).

Synthetic Dataset. For the LLM cache application described in Section 4.2, we simulate the scenario using 100 distinct
queries and set the cache size to 40. Consistent with (Zhu et al., 2023), the frequency distribution follows a power law with
α = 0.9, and the ground truth cost for each query processed is drawn from a Bernoulli distribution with parameter 0.5. The
simulation is repeated 20 times to ensure robustness, and we report the mean and standard deviation of the results across
different dataset sizes n = {2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048} in Fig. 3a. Our normalized results suggest that
CLCB-LLM-C significantly outperforms the baseline algorithms, LFU and LEC, achieving an average improvement of
1.32×. These results highlight the effectiveness of CLCB-LLM-C in optimizing cache performance for LLM applications.

Figure 4. Algorithms on another LLM.

Real-World Dataset. We use the SciQ dataset (Welbl et al., 2017), which covers
a variety of topics, including physics, chemistry, and biology, to evaluate the
performance of our proposed CLCB-LLM-C algorithm using OpenAI’s LLMs.
The cost is defined as the price for API calls, based on OpenAI’s official API
pricing. Since the cost heavily depends on the token count of the input text,
we utilize OpenAI’s tiktoken library, designed to tokenize text for various
GPT models. We consider two different LLMs with distinct encoding strategies.
Specifically, we use GPT-4-o with the “o200k base” encoding to present the main
experimental results. Additionally, we experiment with another variant, GPT-
4-turbo, which employs the “cl100k base” encoding (OpenAI, 2025). For the
evaluation, we work with 100 distinct prompts from the SciQ dataset in an offline
setting, performing a total of 10,000 queries with cache sizes of K = 10 and
K = 20, respectively. Fig. 3b presents the normalized suboptimality gap of cost over n = 100 rounds. CLCB-LLM-C
achieves 36.01% and 20.70%, less cost compared to LFU and LEC, respectively. Moreover, a larger K shows a lower
suboptimality gap, which is consistent with Theorem 3. In addition to the results presented in the main text using GPT-4-o
with the “o200k base” encoding, we experiment with another LLM, GPT-4-turbo with the “cl100k base” encoding. Fig. 4
demonstrates the robustness of our algorithm across different LLMs.
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