
Towards the Full Extensibility of Multipath TCP
with eMPTCP

Bin Yang1, Dian Shen1(Cooresponding author), Junxue Zhang2, Fang Dong1, Junzhou Luo1, John C.S. Lui3
1
School of Computer Science and Engineering, Southeast University, Nanjing, China

2
iSing Lab, Hong Kong University of Science and Technology, China

3
Department of Computer Science and Engineering, The Chinese University of Hong Kong, China

Abstract—MPTCP provides the basic multipath support for

network applications to deliver high throughput and robust

communication. However, the original MPTCP is designed with

limited extensibility. Various research works have tried to extend

MPTCP to attain better performance or richer functionalities.

These existing approaches either modify the kernel implemen-

tation of MPTCP, which involve considerable engineering ef-

forts and may accidentally introduce security issues, or control

MPTCP via user-space tools, which suffer from restricted func-

tionality support. To address this issue, we propose eMPTCP, an

easy-to-use framework to fully extend MPTCP without security
risks. Internally, eMPTCP has a modular and pluggable model

which allows operators to specify a comprehensive MPTCP

extension as a chain of sub-policies. eMPTCP further enforces

the policies through packet header manipulations. To ensure

safety, eMPTCP is implemented using eBPF. Despite the stringent

constraints of eBPF, we show that it is possible to implement an

elaborated framework for a fully extensible MPTCP. Through

verifying MPTCP in a number of real-world cases and extensive

experiments, we show that eMPTCP is able to support a wide

range of MPTCP extensions, while the overhead of eMPTCP

operations in the kernel is in the scale of nanosecond, and the

extra processing time accounts for only about 0.63% of flows’

transmission time.

I. INTRODUCTION

Multipath transport has become a popular option in today’s
networks. Mobile devices usually have multiple wireless inter-
faces like Wi-Fi and cellular accesses [1], and it has become
a norm for multihoming servers to have many parallel paths
in data center networks [2]. In order to better exploit the mul-
tipath feature of networks, Multipath TCP (MPTCP) [3] was
proposed to enable applications to simultaneously utilize sev-
eral IP-addresses/interfaces for communication. With MPTCP,
applications are able to use multiple paths concurrently to
increase the aggregated capacity and to provide robustness
when there is any link failure.

Despite the promising benefits of using MPTCP, the diver-
sity of network traffic workloads and increasing performance
requirements of applications significantly complicate its usage.
To provide better performance or enhanced functionalities,
there has been a wave of extensions over the native MPTCP,
covering a wide array of use cases, including traffic scheduler
[4]–[11], path management [12]–[17], and network-application
co-design [18]–[21], etc. For instance, as heterogeneous paths
may cause under-utilization of the fast path and the degrada-
tion of MPTCP performance, Zhang, et al, [11] extended the

traffic scheduler of MPTCP by developing an adaptive sched-
uler based on deep reinforcement learning. In order to improve
the performance for small flows, MMPTCP [13] extended the
standard MPTCP by modifying the path management module
to randomly scatter packets in the network so as to exploit
all available paths for small flows. Franck Le, et al. [19] co-
designed MPTCP with virtual machine (VM) migration to
increase the service reachability in a cloud environment.

However, the native MPTCP1 implementation is not de-
signed for easy extensibility. Existing methods of imple-
menting new extensions on the native MPTCP, including the
modifications of its kernel implementation or using a user-
space control module, have several undesirable drawbacks.
First, to correctly modify the native MPTCP kernel code
usually takes considerable amount of time and efforts, and
the modification may not be compatible with new MPTCP
releases. Second, by using a user-space control module (e.g.,
mptcpd [25]), the functionality and extensibility are highly
restricted to the exposed interfaces, which is insufficient for
many emerging scenarios. Recently, Extended Berkeley Packet
Filter (eBPF) [26] emerges as a powerful technology to inject
user-defined programs into kernel space. Viet-Hoang Tran and
Olivier Bonaventure [27] have taken the first step toward
extending transport protocols with eBPF. However, it remains
an open question on how to use it to dynamically tune and
fully extend MPTCP to best fit different users’ needs. The
challenges are summarized as follow:

Lack of flexibility. All existing methods to extend the
native MPTCP are to handcraft a policy as a single monolithic
program. With the increasing complexity of MPTCP control
policies, it is difficult to know which building blocks of the
policies are (in)appropriate for real-world dynamic and fluc-
tuating workloads. Such an integrated, all-in-one monolithic
model lacks the ability to fine-tune and dynamically combine
modules of advanced control policies.

Limited functionalities. Current methods to extend
MPTCP, either by user-space daemons or user-defined ker-
nel extensions, are limited by the functionalities of native

1MPTCP currently has two versions. MPTCPv0 [RFC6824] consists of a
set of patches to the Linux kernel [22], the latest version of which is v0.95.
MPTCPv1 is standardized by RFC8684 [23] and upstreamed to the Linux
kernel recently. It is available to users using kernel version 5.6 or newer
[24]. As eMPTCP does not impose any limitation on the MPTCP version, we
will not make a distinction between MPTCPv0 and MPTCPv1 in this paper.
Instead, we refer to both of them as the native MPTCP.978-1-6654-8234-9/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 3
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 N
et

w
or

k
Pr

ot
oc

ol
s (

IC
NP

) |
 9

78
-1

-6
65

4-
82

34
-9

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IC

NP
55

88
2.

20
22

.9
94

03
54

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 08:16:22 UTC from IEEE Xplore. Restrictions apply.

MPTCP stack. For example, current MPTCP and its extensions
only work on end-hosts, so they have insufficient knowledge
and controlability of the underlying network. Thus, current
MPTCP extensions are restrictive in supporting emerging
scenarios such as multi-tenant environment.

Simultaneously ensure security and ease-of-use. Using
eBPF to extend MPTCP kernel with a user-defined program
can ensure security because eBPF has a verifier to strictly
check the safety and validity of the loaded program. However,
eBPF also imposes many hard limits on the verifier-acceptable
programs. Naively applying eBPF can be too restrictive to
implement some legitimate MPTCP extensions in practice.

We believe such challenges significantly hinder experimen-
tation and innovation in exploiting the multipath capability of
networks, which motivate this research.

We propose eMPTCP, a flexible framework to extend
MPTCP. This framework enables network operators to easily
specify a chain of modular policies to dynamically control
the behaviors of MPTCP at runtime. Extending MPTCP by
eMPTCP offers the following benefits:
• Modular and pluggable. Instead of using a monolithic

programming model, eMPTCP allows a modular speci-
fication of policies as a chain. Network operators can
customize and dynamically plug their program into a chain
of policies on MPTCP, without interrupting the running
network services. These modules can be further shared and
reused among multiple chains, thereby enhancing efficiency.

• Adding new functionalities. eMPTCP supports a wide
range of MPTCP operations, including controllable path
establishment, traffic scheduling, etc. By allowing inspec-
tion and manipulation on network packets, eMPTCP can
utilize the information from different layers of network
protocols, yielding unique insights and exerting the control
beyond the end-hosts. Specifically, we seek to add new
functionalities to MPTCP, by investigating and innovating
the usage of MPTCP in emerging scenarios such as multi-
tenant environment.

• Higher pace of development. With intent-based abstrac-
tions and security-verified helper functions provided by
eMPTCP, network operators can focus on the essential
policy development without worrying about the details
and security issues of the MPTCP kernel. Policies like
traffic scheduling in eMPTCP are written and maintained
in Python and run from user space without security risks.
eMPTCP delivers the above advantages by an implemen-

tation based on eBPF [26]. The key ingredients of eMPTCP
include: (1) a selector-actor style policy chain, which allows
operators to specify and plug in an advanced policy via
a flexible combination of its building blocks; (2) a policy
enforcer, which provides a wide range of MPTCP control
operations based on packet header manipulation; (3) an intent-
based abstraction along with a rich set of verifier-accepted
helper functions.

We evaluate eMPTCP by implementing several represen-
tative MPTCP extensions. In particular, we investigate the

usage of MPTCP in a multi-tenant cloud environment. By
enabling MPTCP traffic generated from VMs to traverse
through multiple physical links, we improve the throughput
of baseline by up to 1.32⇥. We also enable some existing
MPTCP extensions with eMPTCP. For path management, we
extend the default path-manager of MPTCP by using only
one path for small flows and gradually adding subflows with
user-defined parameters. The path-manager can reduce the
flow completion time of small flows by up to 32.1%. For
the traffic scheduler, we implement an ECF-like [9] dynamic
scheduler for a network with heterogeneous paths. Such a
scheduler can be implemented easily using only tens of LoCs
by eMPTCP and improves the application throughput by up
to 1.41⇥. Throughout the evaluation, eMPTCP incurs only a
small overhead in the level of nanosecond on both servers and
low-end devices such as Raspberry Pi, and the extra processing
time accounts for as low as 0.63% of flows’ transmission time.
All source codes of eMPTCP and the use cases are publicly
available on GitHub2.

II. BACKGROUND AND MOTIVATION

A. Multipath TCP (MPTCP)
MPTCP is a transport layer protocol, which removes the

single path limitation of conventional TCP. It enables the ap-
plications to simultaneously utilize several network interfaces
for communication. Applications using MPTCP can benefit
from higher aggregate throughput by exploring parallel com-
munication paths, and achieve better robustness by seamlessly
switching paths when link failures occur. It is an important
protocol for critical environments like mobile communication,
data center networking, etc. MPTCP is also emerging as a
multipurpose next-generation transport protocol, which has the
potential of replacing the current single-path TCP.

As defined by the MPTCP protocol, a separate path between
the source and the destination is represented by a subflow.
For example, if two communicating hosts and each has two
network interfaces (and hence two IP addresses), MPTCP
can establish up to four subflows between these two hosts.
Among all the subflows, a primary subflow corresponds to the
four-tuple TCP connection requested by the application. The
primary subflow is established first, followed by secondary
subflows on the other paths. Subflows are said to have been
established once their TCP connections are settled and are
ready to send or receive data. If a path becomes inaccessible,
its corresponding subflow is removed by MPTCP.

B. Extended Berkeley Packet Filter (eBPF)
eBPF [28] is an emerging powerful technology, which

allows developers to define programs that can be safely
executed in the Linux kernel. eBPF works in several steps.
First, a standard compiler (e.g., Clang-9) is used to turn eBPF
programs into BPF bytecode, whose format is independent of
the underlying hardware architecture. Then, the bytecodes are
compiled just-in-time (JIT) into the eBPF RISC instructions
and finally attached to kernel functions.

2https://github.com/chonepieceyb/mptcp ebpf control frame

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 08:16:22 UTC from IEEE Xplore. Restrictions apply.

To ensure security, eBPF incorporates a verifier to check
whether the program can be safely attached to the kernel.
The verifier is executed every time eBPF loads a program to
the kernel. The goal of the verifier is to prevent the program
from accessing unauthorized memory, and to guarantee that
the execution of eBPF programs will always terminate. From
our experience, it is not easy to pass an eBPF verifier, even for
a simple program. In practice, users usually leverage pseudo-
C code to develop the eBPF program and then compile it into
eBPF bytecode. The verifier checks the validity of program by
the compiled eBPF bytecode, rather than the original program.
However, the bytecode-oriented verifying information cannot
be directly correlated with eBPF programs, making it diffi-
cult for troubleshooting. In fact, this issue poses significant
challenges in producing a verifier-acceptable program.

To facilitate programming, eBPF provides a variety of
helper functions. These helper functions are implemented as
part of the kernel and can be called by the BPF program with
appropriate parameters. The list and functionality of helpers
in the kernel are steadily increasing. Currently, there are over
100 helpers in the latest Linux kernel. However, we only need
few of them to extend the MPTCP.

C. Extending the native MPTCP
To achieve better performance or enhanced functionalities,

there has been a number of extensions over the native MPTCP,
which cover a wide range of use cases, including traffic
scheduler [4]–[11], path management [12]–[17] and network-
application co-design [18]–[20], etc. For example, the path-
manager is the key component of MPTCP, which is responsible
to decide when and which paths (or set of paths) should
be used for the communication. The actual decisions about
path establishment are application-specific. MPTCP by default
provides four types of path-managers: default, fullmesh,
ndiffports and binder. Unfortunately, all these path-
managers are reported to be harmful to small flows in certain
cases. Therefore, MMPTCP [13] attempted to extend native
MPTCP with more intelligent path-managers. Furthermore,
the native MPTCP suffers from performance degradation when
there are multiple heterogeneous paths. Therefore, it is natural
to extend the native MPTCP with an enhanced traffic scheduler
that reacts to the network state change. Some representative
traffic schedulers for MPTCP include ECF [9], BLEST [7] and
STFT [10]. To adapt the native MPTCP to emerging usage
scenarios, users have sought to extend MPTCP, such as in
the multi-tenant environment [19], [20], cross-layer network
design [18]–[21], etc.

To extend MPTCP, one can use a user-space control daemon
provided by MPTCP. For example, mptcpd [25] is a user space
daemon that performs MPTCP path-management related oper-
ations. Currently, the latest version mptcpd v0.11 (released in
August, 2022) supports only a set functionalities such as path
management. Compared with mptcpd, eMPTCP has several
advantages.

First, as a generic netlink based solution, mptcpd has a
strong coupling with the MPTCP kernel stack. Its supported

events and operations rely entirely on the kernel stack im-
plementation. Its update has to be consistent with the kernel
version release. On the contrary, eMPTCP is not dependent
on the kernel and MPTCP versions . This is beneficial,
because it usually takes a long time for kernel developers
to accept code changes and release a new version. Mean-
while, eMPTCP is compatible with various already deployed
Linux kernel versions, and mptcpd is not. Currently, we have
tested eMPTCP with kernel versions 4.19, 5.10, 5.15, 5.19,
MPTCPv0 and MPTCPv1, it works with all the versions
without any modification.

Second, from the overhead perspective, eMPTCP has mul-
tiple advantages over mptcpd.

1) The overhead of the generic netlink based user space
solution is much larger. In mptcpd, each individual control
consists of event-triggering in the kernel, event handling in
user space and finally calling a command API to enforce the
control back to the kernel. Instead, eMPTCP works in the
kernel for most use cases once the selector and actor chains
are loaded. We implement a simple plugin using mptcpd to set
a subflow to be backup and measure its processing overhead.
From our measurement, this simple action takes at least 145µs
on a high-end server. For comparison, the same operation
implemented by eMPTCP takes 640-900ns. The overhead is
approximately 150-200⇥ higher. As a consequence, eMPTCP
enables more fine-grained control over MPTCP traffic, e.g.
packet level control.

2) eMPTCP relies on the eBPF verifier to ensure that
all the codes can run safely in the kernel. The bilateral
effect of this verifier is that it ensures control logic to meet
the stringent performance requirement of the kernel. On the
contrary, mptcpd does not verify the registered plugin. Thus,
it cannot ensure that the extensions perform consistently in
the user space. For example, some unbounded loop or thread
sleep in the plugin will cause the management to not work as
expected .

3) eMPTCP works by monitoring the MPTCP traffic and
taking actions before the traffic enters kernel MPTCP stack,
while mptcpd works after the traffic being processed in the
kernel stack. As a consequence, eMPTCP enables to take early
control over MPTCP before the packets are processed by the
kernel stack. This will save kernel processing if some options
or packets need to be filtered or dropped.

However, we believe that mptcpd and eMPTCP do not
have to be an either-or choice. Actually, both solutions can
work together and complement each other for wider and more
intelligent use of MPTCP.

Besides, extending MPTCP by using eBPF provides a
promising solution to support various use cases when multiple
communication paths exist. Some previous works have at-
tempted to use eBPF to add or modify certain specific network
options into the kernel, such as TCP Timeout Option, TCP
Congestion Control Option, acknowledgement option and etc.
However, few of these research works have considered the
multipath transport scenario. Viet-Hoang Tran and Bonaven-
ture [27] presented an enhanced MPTCP path-manager as one

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 08:16:22 UTC from IEEE Xplore. Restrictions apply.

representative kernel extension using eBPF. Nonetheless, it
remains an open question on how to dynamically tune and
fully extend MPTCP to best fit different users’ needs.

D. Motivation of eMPTCP

We summarize the following challenges of existing methods
to extend the native MPTCP, which motivate our design.

First, all existing methods of extending MPTCP only sup-
port the monolithic model that the policy designers need to
handcraft the policy into one single program. The limitations
are: 1) Network operators are unable to easily implement, test
and tune the components of an advanced MPTCP extension
in the kernel. For example, the scheduling algorithms of a
traffic scheduler need to be dynamically tuned or substituted
for different network conditions and workloads. Unfortunately,
under the current setting, it is hard to know which building
blocks of the extension work improperly in real-world sys-
tems, therefore inhibiting the policies from maximizing their
performance gain. 2) It lacks the flexibility to combine and
reuse the components of an existing MPTCP extension. For
example, while many other extensions incorporate the traffic
classifier and measurement module, such basic components
can not be reused for the new extension. With current methods,
developers need to implement and recompile the whole kernel
module from scratch.

Second, current methods to extend MPTCP, either by user-
space daemons or user-defined kernel extensions, are limited
by the functionalities of the native MPTCP stack. For ex-
ample, current MPTCP and its extensions work on end-hosts
only, hence lacking both knowledge and controllability of the
underlying network. With the presence of some bottleneck
links, the users of MPTCP can not take advantage of efficient
communication over multiple paths, even though the end-hosts
are multi-interfaced. Especially in the multi-tenant environ-
ment, all existing MPTCP extensions work only in the guest
VMs and can not utilize the aggregated network bandwidth
of hypervisors. Therefore, current MPTCP extensions are
restrictive in supporting emerging scenarios.

Third, although the emerging eBPF technique provides an
effective mean to inject a user-defined program into the kernel
with security guarantee, it is still very restrictive to implement
an MPTCP control policy with eBPF due to its security
validation. From our experience, there are many verifier-
related issues which may hinder the development of MPTCP
extensions. In fact, even some simple yet valid pseudo-C
code might be rejected by the verifier after compiling into
bytecode due to the implicit compiler optimization. The error
information is bytecode-oriented and with poor readability,
which further aggravates the difficulty of troubleshooting.
Therefore, we aim to encapsulate our experience in tackling
these issues, by providing intent-based abstractions and a rich
set of easy-to-use MPTCP-related helper functions.

III. EMPTCP DESIGN

Addressing the above challenges, eMPTCP aims to achieve
the following goals:

User process eMPTCP control
Plane

User Space

NIC1 NIC2 NIC3Hardware

control data

BP
F
M
ap
s

Network Stack

MPTCP

TCP

IP

Driver

Kernel

TX/Rx Ring

Socket API

eMPTCP/XDP

eMPTCP/TC

Fig. 1: eMPTCP and the networking stack.
First, eMPTCP needs to enable users to easily implement an

MPTCP control mechanism in a modular and pluggable man-
ner. eMPTCP allows network operators to divide complicated
MPTCP extensions into some basic and reusable components.
Together with the pluggable feature, network operators can
dynamically tune and combine these components on the fly,
without interrupting the running network services.

Second, eMPTCP needs to support the extension of a
wide range of MPTCP operations, including controllable path
establishment, dynamic traffic scheduling and etc. Beyond
that, eMPTCP should allow an operator to define new options
and add new functionalities for emerging usage scenarios.

Third, eMPTCP needs to be user-friendly to network opera-
tors, so that they can focus on the essential policy development
without security concerns. Although eMPTCP is supposed to
automatically guarantee the correctness of the execution by
the eBPF verifier, it needs to hide the verification issues from
users as much as possible.

As depicted in Fig. 1, eMPTCP is attached at the point
below the TCP/IP stack and right above the network adapter
receive (RX) queue. From the network layering perspective,
it lies between L2 and L3. Thus, eMPTCP can oversee and
manipulate the whole IP packets before they are processed in
the network stack. The design overview of eMPTCP is shown
in Fig. 2. eMPTCP delivers its desirable features through the
following key designs: (1) a selector-actor style policy chain,
(2) a policy enforcer based on packet manipulation , and (3)
the intent-based abstraction.

A. Selector-actor Style Policy Chains
In order to support the modular implementation of MPTCP

policies, two factors need to be considered.
Flexibility. Dividing a complex policy into several sub-

policies provides flexibility. By modifying and configuring
an arbitrary component of a complicated policy, network
operators can perform fine-tuning on the designed MPTCP
extension. Furthermore, the modular design allows the sharing
and reuse of the sub-policies for different extensions. For
example, an MPTCP traffic scheduler can utilize the imple-

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 08:16:22 UTC from IEEE Xplore. Restrictions apply.

selec
tor

selec
tor

actor

Policy Chain

actor

actor chain2

selector chain

actor chain1

packet manipulation1

2

all packets

kernel space

user space

User Lib

chain.set() event.poll()

Algorithms

2

modified
packets 2

modified
packets 1

packet
control
data

ETH IP TCP MPTCP opts

manipulates

Fig. 2: eMPTCP overview.

mentation of the “traffic classifier” component in the path-
manager extension. Furthermore, using a subset of the existing
policies or a combination of them can generate a variety of
new MPTCP extensions easily.

Granularity. The second question is how to and in what
granularity to select the relevant MPTCP connections and on
which the policies are enforced. The control policy can enforce
on various granularity, including connection level, sub-flow
level or even packet level. For example, a path-manager works
on each subflow of an MPTCP connection; the traffic scheduler
work for specific packets or subflows.

Considering both flexibility and granularity, eMPTCP uses
a selector-actor style policy chain for designing MPTCP
extensions. As Fig. 2 shows, this design decouples the policy
chain into two functionally independent components: (1) a
selector chain and (2) an actor chain. The selector mainly
decides which granularity the policies are enforced. The se-
lector chain filters unrelated packets or packet groups, and
forwards the related packets to specific action chains. A typical
selector includes the Connection selector which checks the 4-
tuple to handle only the desired MPTCP connections. Note
that selectors are also chainable. The network operator can
specify an arbitrary number of selectors with logic operators
like AND or OR to combine them. This multiple expression
combiner is an efficient way to select different granularities of
network packets. For example, combined with the Connection
selector, operators can specify a subflow selector to identify
those subflows belonging to the same MPTCP connection by
checking the MPTCP token. Then, the actor chain performs
the operations that should be taken on the selected packets.
The implementation of selectors and actors is modular and can
be chained with arbitrary numbers. All the sub-policies can be
configurated with different parameters, added or removed from
chains at run-time, without interrupting the running services.
Note that combing selectors and actors in a chain can form a
sophisticated mechanism with high flexibility and various lev-
els of granularity. Such a selector-actor model further benefits
eMPTCP with improved performance by filtering irrelevant
packets as soon as they reach the NIC, and forwarding the
relevant ones to the suitable actor chain. The filtered packets

can be dropped or dispatched to the native kernel stack. It
is worth mentioning that the selector-actor policy chain is a
general structure. It can be utilized to extend other protocols
as required. eMPTCP supports users to develop their own
selectors/actors easily and provides well-designed, MPTCP-
specific and verifier-acceptable selectors/actors.
B. Packet Manipulation

eMPTCP policy enforcer utilizes packet manipulation to
support a wide range of MPTCP operations. Such a design is
based on the rationale that MPTCP adds a new set of options to
the TCP option field, which are exchanged between MPTCP-
enabled end-hosts. Therefore, modifying the MPTCP-specific
options in the packet header can alter the MPTCP behaviors.

TABLE I: Selectors supported by eMPTCP.

Selector name Functionality

subflow Filter packets by the TCP 4-tuple.
ip_pair Filter packets by a (src,dst) pair.
src/dst Filter packets by source or destination

IP address.
sequence Filter packets by Data Sequence Num-

ber or Subflow Sequence Number
packet_type Filter packets by type, e.g., MPTCP

SYN, Data ACK, etc,.

Defined by the standard MPTCP protocol, the main packet
header options include MP_CAPABLE, MP_JOIN, MP_DSS3,
ADD_ADDR, REMOVE_ADDR, MP_PRIO, MP_FAIL,
MP_FASTCLOSE and etc. Through manipulation on these
options, eMPTCP can provide control on the subflow-level
behaviors of MPTCP. For example, removing the ADD_ADDR
packets from the communication peer will inhibit MPTCP
from establishing new subflows, and re-inject that packet
would automatically trigger MPTCP to establish new
subflows. Beyond that, rate-limiting of MPTCP subflows is
implemented through modifying the receive window (RWND)
on incoming ACKs. The rationale behind this design is
that the protocol stack uses min(CWND, RWND) to limit
how many packets it can send. This enforcement of RWND
provides an upper bound to rate limit a flow in networks.
This is feasible because, as RFC6824 and RFC8684 have
mentioned, a host should maintain the connection-level
receive window as well as all subflow-level windows. Table
I demonstrates the selectors supported by eMPTCP and their
selection granularity. Table II summarizes the actors supported
by eMPTCP and the corresponding packet manipulation.
The method of packet manipulation enables eMPTCP to
support a rich set of functionalities. For example, it enables
MPTCP to interact with other cross-layer network protocols.

Note that MPTCPv0 and MPTCPv1 have some differences
in the protocol design and eMPTCP is expected to handle
the difference automatically. One representative example is to
work around ADD_ADDR. Specifically, MPTCP utilizes the
ADD_ADDR option to announce additional addresses (and,

3Currently, we do not modify MP DSS in existing extensions. We name it
here for its potential usage and eMPTCP’s ability to manipulate it.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 08:16:22 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Actors supported by eMPTCP.

Actor name Parameters Description

rate_limit Rate Update the recv_win of ACKs of a subflow to control the sending rate.
set_backup Priority Add MP_PRIO option to packet to set or remove the current subflow
blk_subflow N/A Remove and store MP_ADD_ADDR to avoid creation of subflows.
add_subflow N/A Add MP_ADD_ADDR to packet and enable creation of subflows.
get_connect N/A Parse MP_CAPABLE option t send MPTCP keys to event queue.
get_subflow N/A Parse MP_JOIN option to send subflow token to event queue.
record Metric Record specific metrics of selected packets such as RTT, flow size and etc,.

optionally, ports) on which a host can be reached. The mech-
anism of the ADD_ADDR option is quite different between
MPTCPv0 and v1. In MPTCPv1, there are some additional
mechanisms: 1) MPTCPv1 introduces ADD_ADDR ack for
reliable transmission of this option. 2) MPTCPv1 adds ad-
ditional information (8 octets of truncated HMAC) with the
ADD_ADDR option for authentication. eMPTCP handles the
additional mechanisms. First, to block the ADD_ADDR Option,
in MPTCPv1, after filtering the ADD_ADDR option, the peer
won’t send ADD_ADDR ack back because the ADD_ADDR

was not received. The sender will keep retransmitting the
ADD_ADDR if the ADD_ADDR ack is not received within a
specified timeout (configurable with sysctl).

There are two methods to solve this issue:
1) Filtering subsequent retransmitted ADD_ADDR. To keep

the extra remote addresses invisible to the host, a direct way
is to filter the subsequent retransmitted ADD_ADDR. This
approach is easy to implement and suitable for short-term
blocking. It is also convenient for recovering the ADD_ADDR.
We can just remove such blocking, and the retransmitted
ADD_ADDR can be received by the peer.

2) Constructing the ADD_ADDR ack. The second method
is that, when blocking the ADD_ADDR, we also construct
the corresponding ADD_ADDR ack and send it to the peer.
Constructing ADD_ADDR ack can be implemented through the
eMPTCP actor. In detail, the actor attached to the XDP/TC
hook constructs the ADD_ADDR ack based on the originally re-
ceived ADD_ADDR. It swaps MAP PORT, sets the Echo-Flag,
removes the truncated HMAC, and recalculates the checksum.
After that, the actor sends the ADD_ADDR ack back to the
sender through XDP/TC packet redirecting. Although this
method prevents the ADD_ADDR retransmission, it requires an
additional mechanism to recover the blocked addresses. The
trick is to reconstruct the ADD_ADDR packet. To achieve this
goal, we duplicate the latest ACK and inject the previously
blocked ADD_ADDR information (including the authentication
information). In this manner, the constructed packet will be
accepted by the kernel stack. Note that the duplicated acks
won’t affect the congestion window. This is because MPTCP
treats duplicated acks carrying any MPTCP option except
DSS options as control packets rather than congestion signals,
according to RFC 8684.

C. Intent-based Abstraction

In order to accelerate the development of MPTCP exten-
sions, eMPTCP provides a rich set of intent-based abstractions.

User Lib

Network Stack

Network Device Driver

BPF
MAP

TC hook

XDP hook

selector entry

selectors

actor entry

actorsselector entry

selectors

actor entry

actors

get actor id

get context

get params

control
data

eMPTCPget context

params
conversion

eth

ip

tcp

mptcp

pkt

Fig. 3: eMPTCP implementation.
First of all, eMPTCP incorporates a set of helper functions
to customize the combination of policy chains, e.g., adding,
removing or inserting a selector or an actor to an arbitrary
chain. With the provided interfaces, operators can specify their
desired control policy as a chain of user-defined programs.
eMPTCP also provides a rich set of easy-to-use MPTCP-
related helper functions to encapsulate the policy enforcers.
The underlying implementation details of these helper func-
tions are transparent to users and they have all passed the
strict eBPF verifier. This design greatly eases the adoption of
eMPTCP, and it decouples the policy design from underlying
kernel execution. Network operators can focus on the policy
essentials without worrying about the details and security
issues of the MPTCP kernel.

IV. EMPTCP IMPLEMENTATION

As shown in Fig. 3, the implementation of eMPTCP is
primarily based on eBPF technology. In this section, we
discuss the details of how to implement eMPTCP and share
our experience in tackling various verifier-related issues when
using eBPF to implement a complicated framework.

A. Policy Chaining Using eBPF Tail Calls
The functional logic of eMPTCP is to disseminate the user-

defined MPTCP control policy into multiple small building
blocks and chain them together using eBPF tail calls. First,
each building block of the policy is implemented by an
eBPF program. An eMPTCP program supports controlling
both directions of egress and ingress network traffic. For
ingress traffic, we attach eBPF programs to eXpress Data
Path (XDP) [29], and for ingress traffic, we attach them to

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 08:16:22 UTC from IEEE Xplore. Restrictions apply.

Traffic Control (TC) [30]. These small eBPF programs are
analyzed and loaded independently, such that it reduces the
analysis complexity of the verifier and helps to pass the eBPF
restrictions on program sizes. Second, to support the run-
time combination of these building blocks, operators need to
describe how and in what order these sub-policies are to be
chained. The description of policy chaining is defined in the
data structure called chain context as depicted in Fig. 4. In
eMPTCP implementation, the chain context is an array of 4
bytes data. The first byte represents the next sub-policy to be
called. The second to fourth bytes represent the parameters of
the current sub-policy. Furthermore, the context is stored as the
meta data (XDP_md for XDP, and cb for TC, respectively)
of packet data structure in the kernel. The entrance of the
chain, either a selector or an actor, parses the meta data,
acquires the index of the next sub-policy and then queries the
prog_array of eBPF tail calls to locate the next sub-policy.
The sub-policies can be reused and combined dynamically
by customizing the context meta data. It is worth noting that
policy chains introduce additional overhead while facilitating
modularity and scalability. The overheads are caused by stor-
ing and processing the chain context information. However, the
overhead is quite small, because of the full use of existing data
structures (XDP and TC’s packet metadata) and the carefully
designed policy chain context data structure.
B. Data Sharing Among Different Sub-policies

eMPTCP works by chaining multiple eBPF programs and
executing the policy sequentially. Since eBPF prohibits the use
of global variables, sharing data among these eBPF programs
is highly restrictive. Addressing this issue, eMPTCP has two
mechanisms to share intermediate results or control parameters
among sub-policies. First, if the shared data is small enough,
e.g., less than 2 bytes, it can be stored inline with the chain
context using the last two bytes. Such a method is cost-efficient
and avoids extra storage or memory access. Alternatively, if
the shared data is large, we use BPF MAP to realize the
data sharing. Conventionally, a BPF MAP can not be shared
among separate programs, as the MAP file descriptor itself is
unable to share among eBPF programs. Hence, we use eBPF
bpf_obj_get() system call to obtain a file descriptor of
BPF MAP, and then use bpf_map_reuse_fd() function
to replace where the same BPF MAP is used in different
programs. Another usage of BPF MAP is to share data
between user space programs and kernel functions. In such
a scenario, the MAP might be automatically destroyed if no
program in the kernel is using it. To prevent the MAP from
unintentionally being deallocated, we pin the BPF MAP to the
BPF Virtual File System (VFS). BPF VFS is actually not a real
file system, it only keeps the MAP alive by always referring
it, incurring a small overhead.
C. Different Kinds of Packet Manipulation

eMPTCP exerts a fine-grained control on MPTCP through
packet manipulation. Some representative manipulations are:

(1) Modifying an existing MPTCP option. This kind of
operations require no change on the length of header space.

1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+--------------+---+-----------+------------------------------+
| Next Policy | P | Reserved | Address / Immediate |
+--------------+---+-----------+------------------------------+

Policy Context 1 Policy Context 2 Policy Context 3 Policy Context 4

Fig. 4: Definition of the chain context.
eMPTCP provides a set of inline helper functions to obtain
pointers to header options of different protocols, such that
the user-defined program can access the packet directly and
modify the desired header field. To ensure consistency, a helper
function is evoked to update the checksum.

(2) Removal of an MPTCP option. eMPTCP performs the
removal of an option by overriding the option with NOP rather
than shrinking the length of header space which introduces
additional overhead. Thus, the removal operation reuses the
packet modification helper functions, with the difference that
the specific option is always modified by value NOP.

(3) Injection of a new MPTCP option. Since eBPF does not
provide a native API to increase the length of a packet header,
we implement the operation in three steps. First, increase
the length of the packet by eBPF adjust-header-room

helper functions. Second, move the original packet header data
forward and reserve the space for injection of the new options.
Finally, write the MPTCP option into the reserved space and
update the checksum. Similarly, we provide this functionality
as an inline helper function to simplify the usage and expand
the original eBPF helper functions.

Note that eMPTCP can work with very long MPTCP
connections. The trick here is that, when it injects any
MPTCP option, eMPTCP leverages or duplicates the latest
packets or ACKs to piggyback the option values. With correct
Timestamp and checksum, the packets will be accepted by
the TCP stack. Moreover, the duplicated ACKs won’t affect
the congestion window, according to RFC 8684.

D. Verifier Acceptable Helper Functions
eMPTCP accepts standard user-defined eBPF programs as

customized policies (actors or selectors). Beyond the basic
eBPF helper functions, eMPTCP has provided a wide range of
helper functions such as increasing the MPTCP header space,
acquiring the specific MPTCP option, adding a new MPTCP
option and, most importantly, a set of functions to manipulate
the policy chain. These helper functions are all intent-based
and eBPF verifier acceptable. Thus, it significantly simplifies
the development of customized policies, allowing operators to
focus on designing the policy essentials.

V. EVALUATION

In this section, we first evaluate the performance overhead of
using eMPTCP in practice. Then we present several real-world
MPTCP extensions implemented by eMPTCP and evaluate
their performance.

Testbed. The testbed we use in the experiments consists
of 7 servers, each of which is equipped with two Intel(R)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 08:16:22 UTC from IEEE Xplore. Restrictions apply.

(a) Overhead of the main opera-
tors of eMPTCP.

(b) Overhead of eMPTCP with
different length of policy chains.

(c) Overhead of eMPTCP with
different selection granularities.

(d) CPU usage of eMPTCP.

Fig. 5: Performance evaluation on server.
Xeon(R) E5-2630 v4 CPUs (12 cores) and 128GB of memory.
Each server is equipped with 3 10Gbps Broadcom Network
Interface Card, and are connected through a Mellanox 40Gb
switch. The internal network is considered to be non-blocking,
and a similar setup is used by many existing researches [31].
Beyond high-end servers, we also deploy and test eMPTCP
on low-end devices. In the test cases, we use Raspberry Pi
4B as the representative device. The Raspberry Pi 4B we use
in the experiment is equipped with a Cortex-A72 (ARM v8)
1.5GHz CPU (4 cores), 8GB memory. We use its WiFi and
wire Ethernet interfaces under 300Mbps speed.

MPTCP setup. eMPTCP does not impose any limitation on
the MPTCP version. We have tested eMPTCP on Linux kernel
version 4.19, 5.10, 5.15, 5.19 with MPTCPv0 and MPTCPv1.
To reduce unnecessary CPU overhead, we turn off MPTCP
header checksumming while keeping the conventional TCP
checksums enabled. In most experiments, receive buffers are
set according to RFC6182 [32] as 256MB.

Workloads. In the experiments, we generate a large number
of flows, representing network traffic of varying characteristics
(e.g., packet sizes, network bandwidth usage) by Traffic Gen-
erator [31] which is widely used in many recent researches.

A. Overhead

We conduct several experiments on both high-end servers
and Raspberry Pi to evaluate the overhead introduced by
eMPTCP. We evaluate the time of several representative oper-
ators to process one packet using high-resolution timestamps.
First, we evaluate eMPTCP on servers.

As shown in Fig. 5a, the processing time of all eMPTCP
operations is in the level of nanosecond. The operation with
the largest cost is set_flow_prio, because this operator
conducts packet header space adjustment. The total overhead
of a policy chain is composed of all selectors and actors.

Further, we perform two evaluations by controlling the
selection granularity and the length of the policy chain,
respectively. In the first evaluation, the coarsest granularity
represents the worst situation when all packets are processed

(a) Overhead of the main opera-
tors of eMPTCP.

(b) Overhead of eMPTCP with
different length of policy chains.

(c) Overhead of eMPTCP with
different selection granularities.

(d) CPU usage of eMPTCP.

Fig. 6: Performance evaluation on Raspberry Pi.

by the policy chain. The length of policy chain was set to 2
(1 selector and 1 actor), 4 (1 selector and 3 actors) and 8 (4
selectors and 4 actors), respectively. As Fig. 5b shows, the
extra operation time of eMPTCP contribute to less than 2%
of the total transmission time of flows, for all length of the
policy chain. Moreover, the cost is stable even with the number
of concurrent flows increasing to 10000, demonstrating the
scalability of eMPTCP. In the second evaluation, the length of
the policy chain was fixed to 4 and the selection granularity
is varied from coarse-grained to fine-grained with different
selectors. Fig. 5c shows that the average overhead of eMPTCP
is around 0.63% of the total packet transmission time. The
result reveals that the finer the granularity is, the fewer packets
will be selected for actors, thus incurring less overhead. It also
demonstrates the effectiveness of the selector chain to reduce
additional overhead by filtering most of irrelevant packets.

eMPTCP also costs a few extra CPU cycles. We measure
the extra CPU usage under heavy traffic by switching on/off
eMPTCP. Fig. 5d demonstrates the results that eMPTCP cost
less than 0.35% extra CPU usage on average. Then, we test
eMPTCP on Raspberry Pi. As shown in Fig. 6a, the processing
time of the representative eMPTCP operations is just a little
higher than that on servers by an average 1.8⇥. It still remains
around a few hundred nanoseconds, ranging from 95ns to
859ns. Further, we observe from Fig. 6b that although the
absolute value of the processing time is higher, the percentage
it accounts for the total packet processing time is lower. On
Raspberry Pi, the performance cost ranges only from 0.52%
to 0.85%. The reason is that, on low-end devices the network
throughput is much lower, such that the processing time for
each packet prolongs. In this case, the performance cost, in
terms of the amount of time compared to the packet processing
time, decreases. For the aspects of extra CPU usage, we can
see from Fig. 6d that, even on low-end devices, eMPTCP takes
very little extra CPU usage of less than 3%. This is because all
the eMPTCP functions have passed the strict verifier of eBPF,
and it meets the stringent resource constraints of the kernel.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 08:16:22 UTC from IEEE Xplore. Restrictions apply.

(a) Comparison of throughput
with eMPTCP under different
pairs of VMs

(b) Comparison of throughput
with eMPTCP under different
background flows.

Fig. 7: Effectiveness of eMPTCP enabled scheduler for multi-
tenant environment.

B. Use Cases

Building on top of eMPTCP, we can implement various
user-defined control policies for the multipath environment
with a modest size of code and zero changes to the native
kernel implementation of MPTCP.

Use case 1: MPTCP in the multi-tenant environment.

One promising feature of eMPTCP is to enable new func-
tionalities of MPTCP. In this test case, we investigate the
usage of MPTCP in the multi-tenant environment. With the
increasing demands of VM-VM communication, it is an urge
to utilize multiple paths in data center networks to improve the
network performance. Intuitively, the multipath transmission
functionality can be added to VMs by deploying and enabling
MPTCP in VMs. However, such a naive method will face
two challenges. First, MPTCP is an end-host solution and
the traffic of MPTCP-enabled VMs is not guaranteed to
send through different physical links. Second, VMs belong
to customers and we do not assume the network operators
have all authority over guests’ VMs. Thus, current methods
to extend MPTCP by kernel modification or mptcpd are not
applicable in the multi-tenant environment. Addressing this
issue, we deploy eMPTCP on the hypervisors, and implement
a simple traffic management policy that different subflows are
sent through multiple physical interfaces.

By enabling different subflows to send through multi-
ple physical interfaces, eMPTCP delivers higher aggregate
throughput for VMs. We measure the throughput of traffic
between one pair of VMs with varying amounts of background
traffic. Fig. 7a demonstrates that eMPTCP can improve the
aggregate throughput for VMs by 23.03% when there is no
background traffic. The improvement is more obvious when
there is intensive background traffic. As is shown in Fig. 7b,
when the background traffic reaches 3Gbps, the improvement
can be as large as 32.3%. The reason is that, with eMPTCP
and the congestion control algorithms of MPTCP, VMs can
better utilize multiple paths in the multi-tenant environment
while sharing the network with other tenants.
Use case 2: Path management. Path management is a key
component in the connection establishment of MPTCP. It
controls when and how to establish subflows between two
hosts. We design a simple path-manager, which works as

(a) Comparison of FCT for small
flows.

(b) Comparison of thoughput for
large flows.

Fig. 8: Effectiveness of eMPTCP enabled path-manager.

(a) Comparison of throughput
with traffic scheduler.

(b) Comparison of avg through-
put for multi flows.

Fig. 9: Effectiveness of eMPTCP enabled traffic-scheduler.

follows. First, for an arbitrary flow, MPTCP uses only one
path to transmit it at first and incrementally adds subflows with
the number of bits this flow has sent. Second, when adding
new subflows, only those sharing no common links with the
existing subflows will be added. Such a simple path-manager
benefits small flows with small latency and large flows with
higher throughput.

Fig. 8a demonstrates the effectiveness of the eMPTCP
implemented path-manager in improving the Flow Completion
Time (FCT) for small flows (less than 220KB). Through
disabling subflows establishment at the beginning of the con-
nection, eMPTCP provides the performance near native TCP
and significantly reduces the overhead of MPTCP.

For large flows, eMPTCP further improves the capability of
MPTCP by increasing the throughput of MPTCP. As shown
in Fig. 8b, eMPTCP improves the throughput of MPTCP by
23.1% on average. This improvement is realized by removing
the redundant paths which potentially cause congestion on the
bottleneck link.

Use case 3: Traffic scheduling. Traffic scheduling is known
to significantly impact the MPTCP performance, especially
in the heterogeneous network environment. When MPTCP
sends the packets on paths with different throughput and delay,
packets arriving at the receiver could be out-of-order. In such a
case, packets sent from the fast paths have to wait for packets
sent from the slow paths. Further, the re-ordering of packets
also incurs extra costs. Addressing this issue, many traffic
schedulers for MPTCP have been proposed. Among many of
them, we implement a simple version based on the design of
ECF [9], which allows for determining the sending rate on
all subflows periodically at the interval of 100ms. The rate
decision is defined by a vector < r1, r2, ..., ri >, where ri

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 08:16:22 UTC from IEEE Xplore. Restrictions apply.

represents the rate of ith subflow.
In this test case, we establish two paths, one of which is

set with the latency of 20ms and the other is set with the
latency of 50ms, corresponding to a fast subflow and a slow
subflow, respectively. At each decision interval, the scheduler
calculates the rates on each path. Fig. 9a shows that such a
traffic scheduler can improve the throughput by at most 41.6%
and on average 30.9%. We further evaluate the effectiveness
of this scheduler with a large number of concurrent flows.
As Figure 9b shows, the scheduler can improve the average
throughput by 16.8% in this case.

VI. RELATED WORK

Currently, there are a lot of efforts to enhance MPTCP,
such as path management, traffic scheduler and etc. For
example, as traffic scheduling has a significant impact on
the performance of MPTCP, Frömmgen et al. [8] proposed
a high-level programming model for MPTCP scheduler and
built a corresponding runtime environment in the kernel ,
which enables application-aware scheduling. Zhang et al. [11]
developed an adaptive scheduler based on deep reinforcement
learning to schedule multi-path traffic for different scenarios.
Cai et al. [15] presented an online learning-based method to
select multiple paths by learning the stochastic metrics of
the paths. ECF scheduler [9] was developed which makes
a prediction about transfer time through subflows and sends
packets through the path with an earlier completion time. For
path management, Hesmans et al. developed MPTCP path
management Netlink [12] and Socket [14] API, which enables
userspace and application-oriented path management. Zongor
et al. [16] pointed out that when the subflows of MPTCP are
not fully disjoint, the throughput will be limited by bottleneck
links. Gao et al. [17] calculated the optimal path set and chose
the optimal number and subflow-path assignment for MPTCP
connections. Many existing works have tried to extend MPTCP
in various scenarios, Franck et al. [19] utilized MPTCP to
seamlessly migrate live VMs across WAN boundaries. Xu
et al. [20] developed a congestion control algorithm that
detects path-sharing by comparing RTT and ECN of different
subflows.

Despite the promising usage of MPTCP, extending MPTCP
is not easy. Existing methods either modify the kernel imple-
mentation of MPTCP, which involves considerable engineering
efforts and may introduce security flaws, or control MPTCP
via user-space tools such as mptcpd [25], which suffers from
highly-restricted functionalities. Based on eBPF, Viet-Hoang
Tran and Olivier Bonaventure [27] take the first step toward
extending network protocols with eBPF. However, they only
reveal the implementing details of an enhanced MPTCP path
management, challenges still remain to fully extend MPTCP
for more real use cases.

Beyond MPTCP, there are also many works that exploit
the multipath feature of networks. For example, Gurtov et
al. [33] developed a multipath scheduler called mHIP laying
between IP and HIP layer which avoids many common issues
in multipath environments, such as address hijacking, and

vulnerability to address changing. Ashkan et al. [34] designed
a userspace multipath system called MPFlex which runs as a
transport layer proxy and provides multipath services for TCP
and UDP traffic. De Coninck et al. [21] proposed Multipath
QUIC which enables QUIC with the multipath transmission.
Although these works are not directly based on MPTCP, their
designs can inspire the extensions of MPTCP and can be
further facilitated by eMPTCP.

VII. CONCLUSION

In this paper, we have presented eMPTCP, a framework
which enables to extend MPTCP with customized control poli-
cies. eMPTCP is highly flexible and pluggable. Implemented
based on eBPF, eMPTCP benefits from the security and
robustness of the kernel development. We have demonstrated
that several representative MPTCP extensions can be eas-
ily implemented with eMPTCP. Extensive experiments have
shown that eMPTCP incurs little overhead in the level of
nanosecond with negligible packet processing overhead. Some
future directions to improve eMPTCP include the following.

Extending eMPTCP in the mobile environment. MPTCP
has been most widely used on mobile devices to aggregate
the bandwidth of heterogeneous paths or realize seamless
handovers between networks. Therefore, extending MPTCP in
the mobile environment is a potentially significant scenario.
Since eMPTCP is implemented based on eBPF which has
been supported since kernel version 4.9 and Android 9 [35],
we believe that eMPTCP is also feasible to deploy on mobile
devices. A future plan of eMPTCP is to evaluate the feasibility
and robustness when deploying on mobile devices.

Extending to support more transport protocols. While the
design of eMPTCP mainly targets at MPTCP, we believe that
it is capable of supporting more general transport protocols
with the help of XDP and TC. By enabling inspection on
network packets, eMPTCP combines the view from the differ-
ent layers of protocols, yielding more insights into cross-layer
innovations. The implementation of eMPTCP also encourages
a practical way to encapsulate more verifier acceptable, robust
eBPF helper functions.

ACKNOWLEDGEMENTS

This work is supported by National Key R&D Program
of China 2018AAA0100500, National Natural Science Foun-
dation of China under Grants, No. 61902065, 61972085,
61906040, the Natural Science Foundation of Jiangsu Province
under grant BK20190345, BK20190335, Jiangsu Provincial
Key Laboratory of Network and Information Security un-
der Grants No.BM2003201. We also thank the Big Data
Computing Center of Southeast University for providing the
experiment environment and computing facility. John C.S. Lui
is supported in part by the GRF 14200321.

We also thank the shepherd Prof. Olivier Bonaventure
and anonymous reviewers of this paper for their constructive
comments to improve the quality of the paper.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 08:16:22 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] O. Bonaventure and S. Seo, “Multipath TCP Deployments,” IETF
Journal, vol. 12, no. 2, pp. 24–27, 2016.

[2] G. Chen, Y. Lu, Y. Meng, B. Li, K. Tan, D. Pei, P. Cheng, L. Luo,
Y. Xiong, X. Wang, and Y. Zhao, “FUSO: Fast Multi-Path Loss Recovery
for Data Center Networks,” IEEE/ACM Transactions on Networking,
vol. 26, no. 3, pp. 1376–1389, 2018.

[3] C. Paasch and O. Bonaventure, “Multipath TCP,” Communications of
the ACM, vol. 57, no. 4, pp. 51–57, 2014.

[4] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith, “Mitigating
Receiver’s Buffer Blocking by Delay Aware Packet Scheduling in
Multipath Data Transfer,” in 2013 27th International Conference on
Advanced Information Networking and Applications Workshops, 2013,
pp. 1119–1124.

[5] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
Evaluation of Multipath TCP Schedulers,” in Proceedings of the 2014
ACM SIGCOMM Workshop on Capacity Sharing Workshop, ser. CSWS
’14. New York, NY, USA: Association for Computing Machinery, 2014,
p. 27–32. [Online]. Available: https://doi.org/10.1145/2630088.2631977

[6] F. Yang, Q. Wang, and P. D. Amer, “Out-of-Order Transmission for In-
Order Arrival Scheduling for Multipath TCP,” in 2014 28th International
Conference on Advanced Information Networking and Applications
Workshops, 2014, pp. 749–752.

[7] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, “BLEST: Blocking
Estimation-Based MPTCP Scheduler for Heterogeneous Networks,” in
2016 IFIP Networking Conference (IFIP Networking) and Workshops.
IEEE, 2016, pp. 431–439.

[8] A. Frömmgen, A. Rizk, T. Erbshäußer, M. Weller, B. Koldehofe,
A. Buchmann, and R. Steinmetz, “A Programming Model for
Application-Defined Multipath TCP Scheduling,” in Proceedings of the
18th ACM/IFIP/USENIX Middleware Conference, ser. Middleware ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
134–146. [Online]. Available: https://doi.org/10.1145/3135974.3135979

[9] Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “ECF:
An MPTCP Path Scheduler to Manage Heterogeneous Paths,” in
Proceedings of the 13th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’17. New
York, NY, USA: Association for Computing Machinery, 2017, p.
147–159. [Online]. Available: https://doi.org/10.1145/3143361.3143376

[10] P. Hurtig, K.-J. Grinnemo, A. Brunstrom, S. Ferlin, Alay, and N. Kuhn,
“Low-Latency Scheduling in MPTCP,” IEEE/ACM Transactions on
Networking, vol. 27, no. 1, pp. 302–315, 2019.

[11] H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “ReLeS: A Neural
Adaptive Multipath Scheduler based on Deep Reinforcement Learning,”
in IEEE INFOCOM 2019 - IEEE Conference on Computer Communi-
cations, 2019, pp. 1648–1656.

[12] B. Hesmans, G. Detal, S. Barre, R. Bauduin, and O. Bonaventure,
“SMAPP: Towards Smart Multipath TCP-Enabled Applications,” in
Proceedings of the 11th ACM Conference on Emerging Networking
Experiments and Technologies, ser. CoNEXT ’15. New York, NY,
USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2716281.2836113

[13] M. Kheirkhah, I. Wakeman, and G. Parisis, “MMPTCP: A multipath
transport protocol for data centers,” in IEEE INFOCOM 2016 - The 35th
Annual IEEE International Conference on Computer Communications,
2016, pp. 1–9.

[14] B. Hesmans and O. Bonaventure, “An Enhanced Socket API for
Multipath TCP,” in Proceedings of the 2016 Applied Networking
Research Workshop, ser. ANRW ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 1–6. [Online].
Available: https://doi.org/10.1145/2959424.2959433

[15] K. Cai and J. C. Lui, “An Online Learning Multi-path Selection
Framework for Multi-path Transmission Protocols,” in 2019 53rd Annual
Conference on Information Sciences and Systems (CISS), 2019, pp. 1–2.

[16] L. Zongor, Z. Heszberger, A. Pašić, and J. Tapolcai, “The Performance
of Multi-Path TCP with Overlapping Paths,” in Proceedings of the
ACM SIGCOMM 2019 Conference Posters and Demos, ser. SIGCOMM
Posters and Demos ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 116–118. [Online]. Available:
https://doi.org/10.1145/3342280.3342328

[17] K. Gao, C. Xu, J. Qin, S. Yang, L. Zhong, and G.-M. Muntean, “QoS-
driven Path Selection for MPTCP: A Scalable SDN-assisted Approach,”

in 2019 IEEE Wireless Communications and Networking Conference
(WCNC), 2019, pp. 1–6.

[18] F. Duchene and O. Bonaventure, “Making multipath TCP friendlier to
load balancers and anycast,” in 2017 IEEE 25th International Conference
on Network Protocols (ICNP), 2017, pp. 1–10.

[19] F. Le and E. M. Nahum, “Experiences Implementing Live VM Migration
over the WAN with Multi-Path TCP,” in IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, 2019, pp. 1090–1098.

[20] C. Xu, J. Zhao, J. Liu, and F. Chen, “Revisiting Multipath Congestion
Control for Virtualized Cloud Environments,” in 2020 IEEE/ACM 28th
International Symposium on Quality of Service (IWQoS). IEEE, 2020,
pp. 1–10.

[21] Q. De Coninck and O. Bonaventure, “Multipath QUIC: Design and
Evaluation,” in Proceedings of the 13th International Conference on
Emerging Networking EXperiments and Technologies, ser. CoNEXT ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
160–166. [Online]. Available: https://doi.org/10.1145/3143361.3143370

[22] C. Paasch and S. Barre, “MultiPath TCP (MPTCP)- Linux Kernel
implementation,” http://www.multipath-tcp.org.

[23] “RFC 8684 TCP Extensions for Multipath Operation with Multiple
Addresses,” https://www.rfc-editor.org/rfc/rfc8684.html.

[24] “Netdev Group. (2020) MPTCP Linux kernel upstream. ,”
https://git.kernel.org/pub/scm/linux/kernel/git/netdev.

[25] “Multipath TCP Daemon,” https://github.com/intel/mptcpd.
[26] “Extened Berkeley Packet Filter (eBPF),” http://ebpf.io.
[27] V. H. Tran, “Measuring and Extending Multipath TCP,” Ph.D. disserta-

tion, PhD thesis. UCLouvain, Louvain-la-Neuve, Belgium, 2019.
[28] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New Archi-

tecture for User-level Packet Capture.” in USENIX winter, vol. 46, 1993.
[29] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,

T. Herbert, D. Ahern, and D. Miller, “The EXpress Data Path: Fast
Programmable Packet Processing in the Operating System Kernel,”
in Proceedings of the 14th International Conference on Emerging
Networking EXperiments and Technologies, ser. CoNEXT ’18. New
York, NY, USA: Association for Computing Machinery, 2018, p.
54–66. [Online]. Available: https://doi.org/10.1145/3281411.3281443

[30] W. Almesberger et al., “Linux Network Traffic Con-
trol—Implementation Overview,” 1999.

[31] W. Bai, L. Chen, K. Chen, and H. Wu, “Enabling ECN in Multi-
Service Multi-Queue Data Centers,” in 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). Santa
Clara, CA: USENIX Association, Mar. 2016, pp. 537–549. [On-
line]. Available: https://www.usenix.org/conference/nsdi16/technical-
sessions/presentation/bai

[32] “RFC 6182: Architectural Guidelines for Multipath TCP Development,”
https://datatracker.ietf.org/doc/html/rfc6182.

[33] A. Gurtov and T. Polishchuk, “Secure multipath transport for legacy
Internet applications,” in 2009 Sixth International Conference on Broad-
band Communications, Networks, and Systems, 2009, pp. 1–8.

[34] A. Nikravesh, Y. Guo, F. Qian, Z. M. Mao, and S. Sen, “An In-Depth
Understanding of Multipath TCP on Mobile Devices: Measurement
and System Design,” in Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking, ser. MobiCom ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
189–201. [Online]. Available: https://doi.org/10.1145/2973750.2973769

[35] “Android Open Source Project: Using eBPF Extensions,”
https://source.android.com/devices/architecture/kernel/bpf.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 08:16:22 UTC from IEEE Xplore. Restrictions apply.

