
Towards Fast Large-scale Graph Analysis via Two-dimensional
Balanced Partitioning

Shuai Lin
University of Science and Technology

of China
HeFei, China

shuailin@mail.ustc.edu.cn

Rui Wang
Zhejiang University
Hangzhou, China

rwang21@zju.edu.cn

Yongkun Li
University of Science and Technology

of China
HeFei, China

ykli@ustc.edu.cn

Yinlong Xu
Anhui Province Key Laboratory of

High Performance Computing, USTC
HeFei, China

ylxu@ustc.edu.cn

John C.S. Lui
The Chinese University of Hong Kong

Hong Kong, China
cslui@cse.cuhk.edu.hk

Fei Chen
Huawei

Nanjing, China
chenfei57@huawei.com

Pengcheng Wang
Huawei

Nanjing, China
wangpengcheng25@huawei.com

Lei Han
Huawei

Nanjing, China
phoebe.han@huawei.com

ABSTRACT
Distributed graph systems often leverage a cluster of machines
by partitioning a large graph into multiple small-size subgraphs.
Thus, graph partition usually has a signi�cant impact on the per-
formance of distributed graph systems. However, existing widely
used partition schemes in practical graph systems can realize a
good balance only in one dimension, e.g., either the number of
vertices or the number of edges, and they may also incur lots of
edge cuts. To address the problem, we develop BPart, which adopts
a two-phase partition scheme to realize two-dimensional balance
for both vertices and edges. Its core idea is to �rst partition the
original graph into more small pieces than the cluster scale, and
combine the partition to realize desired properties, then selectively
combine the small pieces to construct larger subgraphs to generate
two-dimensional balanced partition. We implement BPart into two
open-source distributed graph systems, Gemini [58] and KnightK-
ing [57]. Results show that BPart realizes good balance in both
dimensions, and also signi�cantly reduces the number of edge cuts.
As a result, BPart reduces the total running time of various graph
applications by 5% - 70%, compared to multiple existing partition
schemes, e.g., Chunk-V, Chunk-E, Fennel, and Hash.
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1 INTRODUCTION
Graph analysis has received a lot of attentions in both academia and
industry in recent years, and many graph analytic algorithms have
been proposed to explore useful information over graphs. Examples
of widely studied graph algorithms include personalized PageRank
[14, 31], SimRank [26], Deepwalk [40], Node2vec [19], and so on.
To support the e�cient execution of graph algorithms, various
graph systems are developed recently. In particular, as graph sizes
increase, e.g., many web graphs already contain billions of vertices
and hundreds of billions of edges, it is ine�cient to analyze such big
graphs in a single machine, so distributed graph systems based on
a cluster of machines have been developed to handle large graphs,
such as PowerGraph [17], GraphX [18], G-Miner [7], Gemini [58],
and KnightKing [57], etc.

Distributed graph systems usually partition a large graph into
multiple subgraphs and store each subgraph in a single machine of
the cluster, then each machine only processes the local subgraph
and transmits the analysis tasks to other machines if needed. To
coordinate the analysis tasks between machines, the bulk synchro-
nous parallel (BSP) model is often used [5, 17, 18, 37, 46, 49, 57, 58].
In detail, the graph analysis tasks are processed in an iterative
fashion, and in each iteration, all machines perform the analysis
on the local subgraphs and transmit the computing data to other
machines in parallel. When all machines �nish the computation
and communication, then they go to the next iteration. Note that
this BSP model is widely used in many distributed graph systems to
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support general graph analytic algorithms, including Gemini [58]
and distributed random walk system KnightKing [57].

We �nd that graph partition plays a critical role in distributed
graph processing, and it not only a�ects the balance of computing
loads between machines due to the unbalanced vertices or edges
between partitioned subgraphs, but also in�uences the amount of
communication tra�c due to the large amount of edge cuts (i.e.,
the edges between partitioned subgraphs). Both of them determine
the time cost in each iteration for BSP based graph systems, and
�nally in�uence the overall graph processing e�ciency. To realize
balanced computing loads between machines in each iteration, we
observe that the key factor is to enable balanced graph partition
in both vertices and edges. The main reason is that the comput-
ing loads usually depend on both the number of vertices as well
as the number of edges of the subgraph. For example, for many
random walk based algorithms, the computing loads are mainly
decided by the number of walkers and the number of steps that
each walker can move over the subgraph, which are dependent on
the number of vertices and edges, respectively. On the other hand,
to reduce the communication tra�c, the key factor is to minimize
the number of edge cuts between subgraphs, as there would be a
data transfer between machines if there is an edge cut between
the subgraphs stored in the two machines. Thus, it motivates us to
develop a two-dimensional balanced graph partition scheme, i.e.,
to partition the graph into equal sizes on both vertices and edges,
and meanwhile, to minimize the the number of edge cuts between
partitioned subgraphs.

However, the widely used graph partitioning schemes in existing
distributed graph systems usually realizes balance in only one di-
mension, i.e., either the number of vertices or the number of edges
is balanced, or ignore the problem of minimizing edge cuts. For
example, one partitioning design is to do chunking in the vertex
stream or in the edge stream (see §2.2 for detailed introduction), so
it can evenly split the amount of vertices or edges. We call the two
design choices Chunk-V and Chunk-E, respectively, and both of
them are adopted in recent distributed graph systems, for example,
Gemini [58] and GridGraph [60] adopt Chunk-V, and the state-of-
the-art distributed random walk system KnightKing [57] adopts
Chunk-E. However, these algorithms can realize balance only in
one dimension and the other dimension is quite imbalanced. This
is because many real-world graphs often exhibit a scale-free nature
[42]. That is, the vertex degrees usually follow a power-law distri-
bution and high-degree vertices are easily gathered together in the
same subgraph [4]. For example, when partitioning the Twitter [51]
graph into 8 subgraphs by using Chunk-V, the number of edges
can vary from 61M to 737M. Similarly, for Chunk-E, the number
of vertices can di�er from 744K to 14M. As a result, the computing
loads between machines are highly imbalanced, and this introduces
a high synchronization overhead for BSP model as it takes a long
time to wait for the slowest machine. For instance, when running
KnightKing on an eight-machine testbed, the average waiting time
of each machine can be 20%-40% of the total computation time for
graph algorithms like Deepwalk (see §4.3). Another simple partition
design used in practical systems, e.g., Giraph and Pregel system
[5, 37], is to do hashing by randomly assigning each vertex to a
subgraph. Even though hash-based design can achieve balanced
partition in both dimensions, but it introduces a very large number

of edges cuts and thus incurs a large amount of communication traf-
�c. For example, there are around 88% of edges cuts even we only
partition into 8 subgraphs under Twitter and Friendster dataset.

To realize balanced graph partition for both vertices and edges,
and meanwhile, reduce the number of edge cuts, we develop a
two-dimensional balanced graph partition scheme, BPart, and its
main idea is to adopt a two-phase partitioning scheme, which �rst
partitions the original graph into many small pieces with desired
properties, and then selectively combines them to form the �nal
partition. Speci�cally, in the partition phase, we aim for relaxing the
unbalanced degree in both dimensions simultaneously. To realize
it, we follow the idea of stream-based partition in Fennel [50], and
when deciding the assignment of each candidate vertex to which
subgraph, we leverage a weighted policy to quantify its impact on
each subgraph in multiple aspects, e.g., its impact on the increased
number of vertices and edges, as well as the number of edge cuts.
With the weighted policy, we can reduce the skewness of the distri-
bution of the number of vertices and the distribution of the number
of edges of the partitioned subgraphs, and we can also adjust the
two distributions to make them be inversely proportional, so that
the partitioned small subgraphs can be combined to form larger
ones with better balance. In the second phase, we combine small
subgraphs into a larger one by leveraging the inversely propor-
tional feature to improve the balance. By applying the two-phase
partition process for multiple rounds, we can �nally realize the de-
sired balance for both vertices and edges and also limit the number
of edge cuts.

To demonstrate the e�ectiveness and e�ciency of BPart, we also
implement BPart into two distributed graph systems, Gemini [58]
and KnightKing [57], which support general iteration-based graph
algorithms such as PageRank [39] and Connected Component, and
random walk algorithms, e.g., personalized PageRank (PPR) [14],
random walk with jump (RWJ) [23], random walk with domina-
tion (RWD) [34], Deepwalk [40] and node2vec [19], respectively.
Experiments show that BPart can achieve well balanced partition
for both vertices and edges among subgraphs, and also signi�cantly
reduces the number of edge cuts compared to hash-based design,
e.g., hash generates around 87.5% edge cuts, while BPart reduces
this number to 50% in Friendser [15]. As a result, BPart reduces the
total running time of various graph applications by 5% - 70%, com-
pared to multiple existing partition schemes, Chunk-V, Chunk-E,
Fennel, and Hash (see §4). We will release the source codes in the
�nal paper.

The rest of this paper is organized as follows. In §2, we �rst
introduce the framework of distributed graph computation, then
introduce existing graph partitioning schemes, and analyze their
limitations to motivate the design of BPart. In §3, we present the
main idea and the design details of BPart, and evaluate its perfor-
mance in §4. Finally, §5 reviews related work and §6 concludes this
paper.

2 BACKGROUND AND MOTIVATION
In this section, we �rst introduce the computation framework of
distributed graph systems, then introduce the widely used graph
partition algorithms, and analyze their limitations to motivate the
design of two dimensional balanced partition.



Towards Fast Large-scale Graph Analysis via Two-dimensional Balanced Partitioning ICPP ’22, August 29-September 1, 2022, Bordeaux, France

Machine�0
(Store�subgraph�0)

Iteration�0 Iteration�1

…
Machine�1

(Store�subgraph�1)

Machine�2
(Store�subgraph�2)

Computation

Communication

(Possible�wait)

Wait�all�machines�to�finish�computing�and�communication

Figure 1: Iteration-based computation with BSP.

2.1 Distributed Graph Computation
Distributed graph systems usually adopt an iteration-based compu-
tation framework with a bulk synchronous parallel (BSP) model to
coordinate the analysis tasks between machines [5, 17, 18, 37, 46,
49, 57, 58]. Figure 1 shows the general idea of the iteration-based
BSP model. Speci�cally, as the graph is partitioned into multiple
subgraphs which are stored in di�erent machines, a graph com-
putation task is executed in an iteration-based way, and in each
iteration, each machine �rst processes the local subgraph and then
synchronizes with other machines. In particular, for each machine,
the execution process within one iteration consists of two phases:
computation, and communication. In the computation phase, the
analysis task is executed over the local subgraph stored in the ma-
chine until no updates can be made, and this greedy-like strategy
is to fully utilize the local subgraph for minimizing the communi-
cation frequency between machines. When the computation phase
ends, the machine enters into the communication phase, in which it
needs to �rst send its own computing data to other corresponding
machines for further updates, and then waits to receive the data
transmitted from all other machines after they �nish their compu-
tation. This phase lasts until all machines �nish the computation
and communication in the current iteration. After that, they go to
the next iteration. Note that the computation and communication
phases may be processed in a pipelined fashion in some systems,
thus amortizing part of the communication cost.

According to the above computation process, it is clear that if the
computing loads in an iteration are not balanced, some machines
may need to wait for receiving data from other slow machines
which are still doing computation, and this signi�cantly degrades
system performance and they should be minimized as much as
possible. In fact, the waiting time really depends on when the
machine itself and the slowest one �nish their computation tasks.
In other words, the total waiting time of all machines, which we
call the synchronization overhead, depends on the balance of the
computing loads of all machines. In the ideal case, if all machines
process the same amount of computing workloads, then they can
immediately receive the data from other machines after �nishing
their own computation and the send of their data to other machines,
then all machines can go to the next iteration.

2.2 Graph Partition Algorithms
One simple and widely used graph partition is to treat all vertices
or edges as a vertex stream, and then takes vertices or edges from

the stream one by one to decide which subgraph it should belong to.
Figure 2(a) illustrates the work �ow of a simple design, which we
call Chunk-V and is used in multiple systems [58, 60]. It sequentially
adds the adjacent vertex IDs and their corresponding edges to the
same subgraph, until it reaches the balanced indicator, after that it
adds the rest of the vertices to another subgraph. It continues the
above process until we add all vertices to the subgraphs. Similarly,
we can also treat the edges as a stream to do a similar partition, and
we call it Chunk-E, which is also used in multiple systems [32, 57],
and it is illustrated in Figure 2(b). Note that Chunk-V and Chunk-E
are designed to balance either the number of vertices or the number
of edges, while they do not take into consideration the number of
edge cuts, i.e., the edges between partitioned subgraphs.

To reduce edge cuts, the Fennel algorithm [50] takes each vertex
from the vertex stream, and computes a score for each partition,
then adds this vertex and its associated edges to the partition with
the highest score. Figure 2(c) illustrates the process. The score is
de�ned as follows:

S(�,Gi ) = |Vi \ N (�)| � �� |Vi |��1,

where N (�) is the neighbor set of vertex� ,Vi is the vertex set of the
subgraph Gi , � and � are two constants. The �rst term |Vi \ N (�)|
denotes the number of common vertices between� 0s neighbors and
Vi , if this number is large, then adding � to the subgraph Gi could
minimize the number of edge cuts. The second term �� |Vi |��1 de-
notes the number of vertices already assigned toGi with a weighted
factor, so it is like a penalty factor to avoid a large partition contin-
uing to have more vertices, and this penalty factor helps to balance
the number of vertices in di�erent partitions.

Another simple partition design is to use hash, and its key idea
is to randomly assign each vertex to a subgraph. Its work �ow is
similar to that of Fennel as shown in Figure 2(c), and the di�erence
is that instead of computing a complicated score, it simply generates
a hash value for each vertex to decide which subgraph to assign.

2.3 Limitations
Limitation #1: Ine�ciency of 2D balanced partition.We note
that existing algorithms except for hash can only achieve balanced
partition in one dimension, either the number of vertices or the
number of edges. For example, Chunk-V and Fennel can only bal-
ance the number of vertices, however, the number of edges is quite
imbalanced; Chunk-E can balance the number of edges, However,
the number of vertices is quite imbalanced.

To further demonstrate the result, we run the above introduced
three partition algorithms, i.e., Chunk-V, Chunk-E, and Fennel, to
show the distributions of the number of vertices and edges. In the
interest of space, we take only the Twitter graph as an example, and
partition the graph into four subgraphs to run on a four-machine
cluster. We observe similar results under more graph datasets (see
§4). Figure 3 shows that Chunk-V and Fennel can realize a balanced
partition for the number of vertices, but the numbers of edges are
highly imbalanced, and the gap, i.e., the di�erence between the
maximum and the minimum numbers of edges, can reach up to 8⇥.
Chunk-E can realize a balanced partition for the number of edges,
but the numbers of vertices are highly imbalanced, and the gap can
reach up to 13⇥.
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Figure 2: Illustration on graph partition algorithms: Chunk-V, Chunk-E, Fennel and Hash.
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Figure 3: The ratios of the number of vertices and the num-
ber of edges in subgraphs G0 �G3.

ChunkͲE FennelChunkͲV

Figure 4: The distribution of the computing loads between
machines in di�erent iterations (Iter0 - Iter3).

Due to the imbalance of the number of vertices or the number of
edges, it inevitably leads to an imbalanced computing loads between
machines. To further demonstrate, we take a random walk applica-
tion as an example, and run experiments to show the computing
load distribution. We start �ve random walks from each vertex
over the Twitter graph, and let each walk move four steps. Figure 4
shows the computing load of each machine, which is characterized
by using the number of walking steps. We see that the computing
loads between machines are highly imbalanced. In particular, for
Chunk-V and Fennel, even though the initial numbers of walks
started at each machine are balanced in the �rst iteration due to the
balanced vertices, the computing loads are still highly imbalanced,
because the walkers can move di�erent numbers of steps due to
the imbalanced number of edges.
Limitation #2: High communication tra�c. Hash based algo-
rithm can realize the balanced partition in both dimensions, how-
ever, it faces high edge cuts between subgraphs due to the random-
ness of assigning vertices to subgraphs. As a result, it causes high
communication tra�c due to the higher probability of visiting an
edge cut. To demonstrate this, we �rst show the ratio of edge cuts
when using di�erent partition algorithms, e.g., Chunk-V, Chunk-E,
Fennel, and Hash. As shown in Figure 5(a), when partitioning into 8
subgraphs, we can see that Chunk-E and Hash contain around 90%
edge cuts, that is, around 90% edges are crossing edges between
partitioned subgraphs. We also see that Fennel signi�cantly reduces
the number of edges cuts, which is only around 30%. To further

show the impact of edge cuts, we also run a random walk appli-
cation as an example to show the communication tra�c, which is
de�ned as the number of message walks, i.e., the number of walks
being transmitted. We also start �ve randomwalks from each vertex
and let each walk move four steps. Figure 5(b) shows that Chunk-E
and Hash have more than 2⇥ walks being transmitted compared
with Fennel as they contain more edge cuts.

(a) Edge cuts (b) Total message walks

Figure 5: The ratio of edge cuts and total message when us-
ing di�erent partition algorithms.

3 DESIGN OF BPART
In this section, we �rst introduce a key observation on the balanced
degree of graph partition, then present the main idea of our new
partition scheme BPart, which targets for two-dimensional balanced
partition by using a two-phase partition scheme. After that, we
present the design details in each phase.

3.1 Observation & Main Idea
Note that for graph partition, the balanced degree of the parti-
tioned subgraphs is characterized in two dimensions: the number
of vertices and the number of edges of the subgraphs.

Observation. Balancing the measure in one dimension often re-
sults in a highly imbalanced distribution in the other dimension.
Speci�cally, if the distribution of the number of vertices of the
partitioned subgraphs is well balanced, then the distribution of
the number of edges may be highly skewed, and vice versa. The
rationale of this observation can be justi�ed as follows. As natural
graphs like social networks usually have a scale-free nature, e.g.,
the degrees of vertices follow a power-law distribution. As a result,
if the number of vertices are evenly partitioned, then the subgraphs
containing the high-degree vertices usually have many more edges
than other subgraphs. That is, the distribution of the number of
edges of the partitioned subgraphs is highly skewed.

To further validate the observation, we conduct experiments to
show the skewness of the distribution for the imbalanced dimen-
sion on real-world graphs. In the interest of space, we only show
the results on Twitter [51], while we also observe similar trend
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(a) Partitioning with Chunk-V (b) Partitioning with Chunk-E

Figure 6: Distribution of |Vi |’s and |Ei |’s.

on other graphs like Friendster [15] and LiveJournal [36]. Here
we partition the graph into 64 small subgraphs with the vertices
balanced algorithm, Chunk-V, and the edges balanced algorithm,
Chunk-E. Figure 6 shows the the ratio of the number of vertices
(i.e., |Vi |/|V |) and the ratio of the number of edges (i.e., |Ei |/|E |) of
each subgraph. Here Vi and Ei denote the vertex set and the edge
set of subgraph Gi , V and E denote the vertex set and the edge set
of the original graph. We see that Chunk-V balances the number of
vertices, while the number of edges is highly imbalanced. Similarly,
Chunk-E balances |Ei |’s, while |Vi |’s are highly imbalanced.
Remark:The observation also implies that due to the highly skewed
distribution in the imbalanced dimension, i.e., either the number of
vertices or the number of edges, it is also hard to realize balance by
simply combining subgraphs.

Main idea: Two-phase partition. To realize balanced partition in
both dimensions, including the number of vertices and the number
of edges of the partitioned subgraphs, we develop a new partition
scheme, BPart, and its key idea is to adopt a two-phase partition,
which includes a partitioning phase and a combing phase.

As illustrated in Figure 7, in the partitioning phase, instead of
targeting for a balanced partition, which realizes perfect balance
in one dimension, but usually makes the other dimension highly
imbalanced, our goal is to reduce the skewness of the distributions
in both dimensions. The rationale is that by generating subgraphs
without extremely large number of vertices or edges, it is possible
to combine these subgraphs to realize balance in two dimensions
for the �nal output. To realize it, our idea is to leverage a weighted
policy to re�ect the in�uences of both the vertices and edges during
the partition. With this weighted policy, we can adjust the distri-
butions of both the number of vertices and edges, and coordinate
the two distributions to make them inversely proportional, i.e., the
subgraph with fewer vertices has more edges. In the combining
phase, we can selectively combine two subgraphs into a larger one
according to the distributions of the number of vertices and edges,
thus making the newly combined subgraphs have more balanced
distributions in both dimensions.

To realize the above two-phase partition, there are two challenges
we need to address. First, how to design a weighted policy in the
partition process to take into account both the in�uences of vertices
and edges, so that the distribution of the number of vertices and the
distribution of the number of edges of the partitioned subgraphs can
be adjusted as desired, e.g., to make them be inversely proportional
as we need. Second, how to combine small subgraphs into larger
ones, and we may need multiple rounds of combinations, so as to
�nally realize the desired balance for both vertices and edges. In
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Figure 7: Idea of two-phase partition in BPart.

the following, we will introduce the design details of BPart to solve
the two challenges.

3.2 Partitioning Phase Design
We follow the idea of stream-based partition in Fennel (see §2.2), and
design a new balance indicator to guide the graph partition process.
The key idea is to leverage a weighted approach to integrate the
in�uences of both vertices and edges, mathematically, we design
the weighted balance indicatorWi for subgraph Gi as follows:

Wi = c ⇥ |Vi | + (1 � c) ⇥ |Ei |/d̄, (1)

where c (0  c  1) is a weighting factor to control the weight
of |Vi | and |Ei |, d̄ is the average degree of the graph. With this
weighted balance indicator, during the partition, the goal is to make
Wi ’s be equal. In particular, c = 0 corresponds to the edge balance
indicator, which makes the number of edges of each subgraph equal,
and c = 1 corresponds to the vertex balance indicator, which makes
the number of vertices of each subgraph equal. For the weighting
factor, we use equal weights of |Vi | and |Ei | based on our empirical
study, i.e., we set c = 1

2 by default.
Based on the new indicator Wi , we follow the stream-based

partition work �ow, and compute the score of vertex� for subgraph
Gi , i.e., S(�,Gi ), as follows:

S(�,Gi ) = |Vi \ N (�)| � ��W��1
i , (2)

where Vi denotes the current vertex set of subgraph Gi , N (�) de-
notes� 0s neighbors, |Vi\N (�)| denotes the number of common ver-
tices between� 0s neighbors andVi , the large number of |Vi \N (�)|
denotes less edge cuts between subgraphs. � and � are constants
used for adjusting the weights of the edge-cut number and the
balanced degree.

By using the weighted policy in partitioning, we can make the
skewness of the distributions of the number of vertices and edges
of the partitioned subgraphs be reduced, and in particular, the num-
ber of vertices could be inversely proportional to the number of
edges. The rationale is that asWi ’s are equal, then the subgraph
containing fewer vertices (i.e., smaller |Vi |) must have more edges
(i.e., larger |Ei |). We also run experiments to further demonstrate
this result. We still use the same setting as that in Figure 6, and
the results are presented in Figure 8. We can see that neither |Vi |
nor |Ei | is balanced among subgraphs, while the skewness is de-
creased compared with the results in Figure 6, and besides, the two
distributions of |Vi |’s and |Ei |’s are inversely proportional to each
other. This implies that we could realize the desired balance for
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Figure 8: The ratios of |Vi |’s and |Ei |’s with the weighted pol-
icy (subgraphs are reordered).

both vertices and edges through appropriate combinations of these
small subgraphs.

3.3 Combing Phase Design
Suppose that we want to partition a graph into N subgraphs and
aim to achieve a two-dimensional balanced partition for both ver-
tices and edges. We can �rst partition the graph into 2 ⇥ N small
subgraphs based on the weighted balance indicator de�ned in Equa-
tion (1), then sort these small subgraphs by the number of vertices
in each subgraph, i.e., |Vi |. According to the inversely proportional
nature, the subgraph with a smaller |Vi | generally has a larger |Ei |,
and vice versa. Therefore, at each time, we can combine the sub-
graph with the least number of vertices (also with the most number
of edges) and the subgraph with the most number of vertices (also
with the least number of edges) into a larger subgraph, and keep
doing this combination for the remaining subgraphs. Finally, we
can get N larger subgraphs, and these combined N subgraphs have
more balanced vertices and edges.

Multi-layer combination.We note that only one shot of combi-
nation is usually not enough to achieve a good balance as desired.
Luckily, the two distributions of |Vi | and |Ei | of the combined sub-
graphs are still inversely proportional, and this guides us to design
a multi-layer combination strategy, which keeps doing the combi-
nation in multiple rounds until the balanced condition is satis�ed.
Speci�cally, as illustrated in Figure 9, after each round of combi-
nation as introduced above, we check the balanced degree of |Vi |
and |Ei | for each combined subgraph. If the subgraph reaches the
balanced thresholds for both vertices and edges, we take it as a �nal
partitioned subgraph. Otherwise, we re-partition the remaining
subgraphs and go into the next layer to do another round of combi-
nation. For example, in the second layer, suppose that we need to
partition the remaining graph into Nr subgraphs, i.e., N � Nr sub-
graphs combined in the �rst layer already get balanced. As shown
in Figure 9, we �rst partition the remaining graph into 4⇥Nr small
subgraphs (here Nr = N � 1), and then do the combination in two
rounds. In the �rst round, 4 ⇥ Nr small subgraphs are combined to
generate 2 ⇥ Nr subgraphs, then in the second round, these 2 ⇥ Nr
subgraphs are further combined to generate the �nal Nr subgraphs.
After that, we check the balanced degree of |Vi | and |Ei | of each
combined subgraph once again and repeat the above process until
all combined subgraphs are balanced for both vertices and edges.
Generally, we can get the desired balanced partition for both ver-
tices and edges after two or three rounds of combinations based on
our experiments.
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Figure 9: Multi-layer combination.

Connectivity of the combined subgraphs.With the combination-
based graph partition scheme, as the �nal partitioned subgraph is
combined with multiple small-size subgraphs, one may worry about
whether the small subgraphs which belong to the �nal combined
one are still well connected, i.e., whether they still have enough
number of edge connections between these small subgraphs or
not. We would like to point out that even we partition the graph
into many small subgraphs, there are still a lot of edge connections
between any two of these small subgraphs. To demonstrate this, we
take Friendster, which has 3.6 billion edges in total, as an example,
and partition it into 64 small subgraphs, and we �nd that there
are at least 50,000 edge connections between any two subgraphs,
and in most of the cases, the above number is 500,000. This result
implies that it is safe to guarantee that the two-phase partition in
BPart will not make the combined subgraphs disconnected.

4 EVALUATION
To demonstrate the e�ectiveness and e�ciency of BPart, we com-
pare with four commonly used graph partition algorithms, Chunk-
V, Chunk-E, Fennel, and Hash. In the experiments, we take both
KnightKing [57], which is the state-of-the art distributed graph sys-
tem for running random walk algorithms, and Gemini [58], which
also supports other graph algorithms, as the code bases, and inte-
grate all partition algorithms into the systems for comparison. We
�rst show the balanced degree in both dimensions by comparing
with Chunk-V, Chunk-E and Fennel, then we compare the balance
of the computing loads and the total running time for various graph
algorithms. After that, we show the comparison with hash based
partition, including the number of edge cuts and the running time
for di�erent graph algorithms.

4.1 Experiment Setup
Testbed. Our testbed consists of a cluster of eight machines, which
are connected with 56 Gbps Ethernet. Each machine is equipped
with two 24-core Intel Xeon CPU E5-2650 v4 processors and 64GB
DRAM, and runs CentOS. In the experiments, we may vary the
number of machines being really used so as to study the impact of
the cluster scale.
Datasets. We consider three graph datasets with di�erent scales.
Table 1 shows the statistics of the graph datasets. All these graphs
are real-world social networks, and they are also widely used to
evaluate many graph systems [8, 17, 55, 57].
Metrics of balanced degree. We use the following two metrics
to characterize the balanced degree of subgraphs:

• Bias: We de�ne bias as the di�erence between the maximum
value and the mean value, normalized by the mean value,
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Figure 10: Balanced degree measured with the bias metric for both the number of vertices and the number of edges. Note that
the numbers in the parentheses denote the number of partitioned subgraphs.

Graphs # of Vertices # of Edges Avg Degree
LiveJournal [36] 7.5M 225M 29.99
Twitter [51] 41.39M 1.48B 35.72

Friendster [15] 65.60M 3.6B 54.87
Table 1: Statistics of the graph datasets.

mathematically, for a set of n values {xi |i = 0, 1, ...,n � 1},
the bias is de�ned as

Bias: B = (max(xi ) �mean(xi ))/mean(xi )

where max(xi ) is the maximum value of xi ’s, and mean(xi )
denotes the mean. This bias metric is chosen because the
computation time in each iteration is determined by the
slowest machine, i.e., the machine with the maximum com-
puting load. All other machines need to wait for the slowest
machine to �nish its computation before going to the next
iteration. Note that xi ’s can be either the numbers of vertices
or the numbers of edges of the partitioned subgraphs.

• Fairness: We use Jain’s fairness index [25], which is de�ned
as follows.

Fairness: F = (
’n�1

i=0
|xi |)2/[n ⇥

’n�1
i=0

|xi |2]

Note that the value of the Jain’s fairness index ranges from
1
n to 1. F = 1

n means that the partition is completely imbal-
anced, i.e., one subgraph contains all the vertices or edges,
while F = 1 means that the partitioned subgraphs are com-
pletely balanced, i.e., all subgraphs contain the same number
of vertices or edges. This metric is also commonly used for
fairness measures in many applications [24, 33, 43].

Graph algorithms.
We consider sevenwidely studied algorithms, personalized PageR-

ank (PPR) [14], random walk with jump (RWJ) [23], random walk
with domination (RWD) [34], Deepwalk [40] and node2vec [19],
PageRank (PR)[39], and Connected Components (CC)[21]. The �rst
�ve of them are random walk algorithms, and we start |V | walks for
all algorithms, by using the same setting as in KnightKing. For each
walk, RWJ, RWD, Deepwalk and node2vec are terminated with a �x
number of steps. In each step of walk, RWJ jump to a random vertex
with probability 0.2, and PPR terminate with probability 0.1. The

(a) Balance of vertices (b) Balance of edges

Figure 11: Balanced degree (Jain’s fairness) when partition-
ing into di�erent number of subgraphs.

last two of them are iteration based algorithms, and we run them
on Gemini. We run PR for ten iterations and CC until convergence.

4.2 Balanced Degree of the Partition
We compare the balanced degree of the partition results of Chunk-V,
Chunk-E, Fennel and BPart on three real-world graphs. We �rst
show the bias metric for the number of vertices and the number
of edges of the partitioned subgraphs, and the results are shown
in Figure 10. The x-axis and y-axis denote the bias of the number
of vertices and the bias of the number of edges, respectively. Each
point in the �gure denotes the result of a partition algorithm which
partitions the large graph into a certain number of subgraphs (e.g.,
4, 8, or 16). We can see that existing partition algorithms achieve
balance only in one dimension. Speci�cally, Chunk-E can realize
a balanced edge partition, but the bias of the number of vertices
can reach up to 9.06. When the number of subgraphs gets larger,
the bias also gets larger. On the contrary, Chunk-V and Fennel
can realize a balanced vertex partition, but the numbers of edges
among subgraphs are highly imbalanced, and the bias of the number
of edges can reach up to 9.15. However, BPart can always realize
two-dimensional balanced partition. Besides, when the number
of partitioned subgraphs grows, the bias grows fast for Chunk-V,
Chunk-E, and Fennel, but for BPart, the bias always keeps to be
small, e.g., it is always smaller than 0.1.

We also compare the balanced degree with o�ine partition al-
gorithms [1, 3, 28, 47]. These algorithms usually need to load the
whole graph data into memory to traverse multiple times, so they
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are often time-consuming. The state-of-the-art algorithm is Mt-
KaHIP [3], which uses a multi-level approach. In detail, it �rst
coarsens the original graph into a smaller graph, and this is done
by treating multiple vertices as one vertex by using the label propa-
gation method, then it partitions the coarsened graph, and �nally,
it adopts uncoarsening/local search to recovery from these coars-
ened subgraphs. We consider three real-word graphs mentioned
above, and use Mt-KaHIP to partition each graph into 8 subgraphs.
We show the bias metrics for the number of vertices and the bias
metrics for the number of edges. The bias metrics of the number of
vertices are 0.03 for all the three datasets, and the bias metrics of
the number of edges are 2.5853, 2.5622, and 0.7046 for LiveJournal,
Twitter, and Friendster, respectively. The results imply that the
number of edges is quite imbalanced. However, BPart can always
achieve a balanced partition in two dimensions, and the bias can
be always smaller than 0.1 in both dimensions.

We also show the balanced degree of the partitioned subgraphs
by using the Jain’s fairness index as the balanced degree metric.
To also study the impact of partitioning into a large number of
subgraphs, we consider the case of partitioning into 8, 16, 32, 64,
and 128 subgraphs. In the interest of space, we show only the re-
sult under Twitter graph, and we observe similar results for other
graphs. As shown in Figure 11, we can see that the fairness index
when using our proposed BPart is always very close to one, and
this implies that BPart can always achieve balance in both dimen-
sions. Besides, the balanced degree keeps stable when varying the
number of partitioned subgraphs, so BPart can be used to realize
two-dimensional balanced partition for distributed graph systems
running on tens to hundreds of machines.
Partition Overhead. Before studying the impact of BPart on sys-
tem performance, we �rst show its overhead. Speci�cally, we count
the time cost of partitioning the three real-world graphs into 8
subgraphs, respectively, and show the results in Table 2. We can
see that chunk-V, Chunk-E cost much less time to �nish the par-
tition process compared with Fennel and BPart. Hash also costs
less time than Fennel and BPart, but costs more time than Chunk-V
and Chunk-E. The reason is that for each vertex, computing the
score required by Fennel and BPart is more time-consuming than
generating a random number by hash, while computing hash is
more time-consuming than simply adding the number of nodes or
neighbors in Chunk-V and Chunk-E. Fortunately, the partition is
usually executed in preprocess, and it only needs to execute once
for all graph analytic tasks. Therefore, costing hundreds of seconds
to partition the graph is still acceptable. Besides, we also observe
that our proposed partition algorithms cost relatively more time,
compared with the corresponding baselines. This is because our
algorithms may need multiple rounds of combination to realize a
two-dimensional balanced partition, which brings a higher parti-
tion overhead. We believe that this overhead is acceptable, as we
can make the computation more balanced, and thus save a lot of
application running time and improve the e�ciency of distributed
graph processing.

4.3 Balance of Computing Loads
Wenow evaluate the balanced degree of the computing loads among
the cluster of machines, so as to demonstrate the impact of balanced

LiveJournal Twitter Friendster
Chunk-V 0.1739 0.9849 1.572322
Chunk-E 0.1738 1.0045 1.572702
Hash 1.8463 9.5549 15.2458
Fennel 6.4711 55.4845 179.0585
BPart 17.1727 89.6942 210.3751

Table 2: Time overhead (s) of partition algorithms.

graph partition on the performance of distributed graph processing
systems. We adopt KnightKing as code base and integrate various
partition algorithms into it for experiments. Note that we do not
modify the computation process of KnightKing. As KnightKing is
optimized for random walks, we start 5|V | simple random walks
simultaneously and let each walk run four steps, that is, the system
runs four iterations in total. Figure 13 shows the ratio of waiting
time during the whole execution of these random walks, which is
de�ned as the total waiting time of all machines divided by the total
running time of completing all these randomwalks. We can see that
with the partition algorithms, Fennel, Chunk-V and Chunk-E, there
is up to 70% of time wasted on waiting for the slowest machine to
�nish computation due to the imbalanced distribution for either
the number of vertices or the number of edges. On average, the
ratios of waiting time are 45% and 55% for the cases of having 4
machines and 8 machines, respectively. On the other hand, due to
the balanced partition in both two dimensions, BPart costs much
less time on waiting, e.g., the ratios are only 10% and 20% for the
cases of using 4 machines and 8 machines, respectively.

To further illustrate why unbalanced partition brings a lot of
waiting time, we also show the distribution of the computation
time of each machine in every iteration. The results are shown in
Figure 12, and each sub-�gure shows the results in one iteration.
Here we only show the results for Friendster on 8 machines, and we
observe similar results for other datasets and cluster scales. Note
that the y-axis denotes the computation time of each machine. From
the results, we can observe a highly imbalanced results for the com-
putation time among di�erent machines in almost all iterations, for
Fennel, Chunk-V and Chunk-E. That is, it wastes a long time for
certain machines to wait for the slowest machine to complete its
computation in each iteration. While for BPart, the computation
time distribution among machines is much more balanced in all it-
erations, this bene�ts from the two-dimensional balanced partition.
As a result, BPart can save a lot of waiting time and improve the
e�ciency of distributed graph processing.

4.4 Running Time of Graph Applications
We now evaluate the total running time of various graph applica-
tions when using di�erent graph partitioning schemes. Note that
we consider seven di�erent graph applications (see §4.1). The re-
sults are shown in Figure 14. The x-axis represents di�erent graph
applications, and the y-axis represents the normalized computa-
tion time. We normalize the time when using Chunk-V as one. The
results show that BPart always outperforms other partition algo-
rithms in all situations. Speci�cally, BPart can reduce 5%-70% of the
total running time compared with Fennel and Chunk-V, and reduce
10%-60% of the total running time compared with Chunk-E. These
results show that by balancing both the number of vertices and the
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

Figure 12: The computing time on eachmachine in di�erent iterations: unbalanced partition leads to unbalanced computation.

(a) Four machines (b) Eight machines

Figure 13: The ratio of the total waiting time of all machines
to the total running time of random walks: balanced parti-
tion algorithms signi�cantly reduce the waiting time.

number of edges in each subgraph, BPart balances the computing
loads, so it has better performance for distributed graph processing.

4.5 Comparison with Hash
Recall that hash based algorithm can achieve balanced partition in
two dimensions, but it results in lots of edge cuts. Thus, we also
compare with hash-based partition algorithm. We �rst show the
ratio of the number of edge cuts, i.e., the number of edges between
di�erent subgraphs divided by the total number of edges of the
graph. The results are shown in Table 3. We can see that Hash and
Chunk-E have more edge cuts compared with other algorithms, for
example, Hash has around 87% edge cuts for all datasets, but Fennel
and BPart have around only 35% and 55% edge cuts, respectively.
Note that as BPart partitions the graph into smaller pieces in the
partition phase, so it has more edge cuts compared with Fennel,
while Fennel achieves balance in only one dimension.

LiveJournal Twitter Friendster
Chunk-V 0.5758 0.7475 0.6592
Chunk-E 0.9033 0.9026 0.7645
Fennel 0.6491 0.3338 0.3565
Hash 0.8750 0.8749 0.8750
BPart 0.7331 0.6226 0.5301

Table 3: The ratio of the number of edge cuts (i.e., the
edges between partitioned subgraphs) to the total number
of edges.

We then show the computation time of the seven graph appli-
cations when using Hash and BPart for partition. Other settings

are the same as those in §4.4. Figure 15 shows the results, and we
normalize the time when using Hash as one. The x-axis denotes
di�erent graph applications, and the y-axis denotes the normalized
computation time. From the results, we can see that even Hash
achieves two-dimensional balanced partition, BPart still outper-
forms it, e.g., for random walk based algorithms, BPart can decrease
5% to 20% of the total computation time, while for other iteration
based algorithms, BPart can reduce the computation time by 20%
to 35%. The reduction of the computation time mainly comes from
the decrease of the number of edge cuts, because fewer edge cuts
incur smaller communication cost during the computation process.

5 RELATEDWORK
Graph processing systems.Many distributed graph processing
systems, which leverage a cluster of machines to handle very large
graphs, have been proposed in recent years [7, 8, 17, 18, 30, 37, 49].
Pregel [37] �rst proposed the vertex-centric BSP computationmodel
to support the distributed graph processing on multiple machines,
and a lot of succedent works followed this computation model
and developed the prototype systems for distributed graph pro-
cessing. Many design e�orts are proposed to improve the system
e�ciency, such as designing di�erentiated graph partitioning and
computation model according to the scale-free nature of real-world
graphs like PowerGraph [17], PowerLyra [8], and Gemini [58], and
improving the e�ciency of graph mining and graph query [30]. Be-
sides, KnightKing [57] optimized the performance of random walk
processing. LiveGraph [59] optimized the graph storage for trans-
actional graph processing situations. GraphScope [11] exposed a
uni�ed programming interface with variety graph computing. And
Mycelium [44] provided distributed queries with private protection,
etc. However, the above works do not pay much attention to the
imbalance of computing loads between cluster machines due to
imbalanced graph partition. Di�erent from them, BPart targets for
realize a balanced computing loads distribution via two-dimensional
balanced graph partition, so as to reduce the synchronization over-
head and improve the distributed graph processing e�ciency. In
addition to distributed graph systems, a number of out-of-core sin-
gle machine graph processing systems are also proposed to handle
large graphs [2, 32, 35, 45, 52, 60]. They store the graph data on
external storage devices, like SSDs, and iteratively load a subgraph
into memory and conduct the computation related to that subgraph.
Graph partition strategies. In recent years, various design e�orts
are made to improve graph partition e�ciency and accelerate graph
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(a) LiveJournal (b) Twitter (c) Friendster

Figure 14: Normalized running time of di�erent graph application algorithms.

(a) Twitter (b) Friendster

Figure 15: The normalized computation time of various
graph applications when using Hash and BPart for graph
partition.

processing. These partition strategies can be classi�ed into two cat-
egories, vertex-cut partition algorithms and edge-cut partition al-
gorithms. Vertex-cut partition algorithms [8, 17, 20, 41, 56] split the
edge set into multiple disjoint partitions, and cut the vertices that
have edge connections with more than one subgraph. Generally,
each of the subgraphs will store a duplicate of these vertices’ infor-
mation to enable the computing, thus introducing many redundant
data. Edge-cut partition algorithms [3, 6, 9, 10, 12, 13, 16, 22, 27–
29, 38, 47, 48, 50, 53, 54] are more commonly used. They split the
vertex set intomultiple disjoint partitions and cut the edges that con-
nect the vertices of two di�erent partitions. Generally, the graph
computations through these edge cuts are transmitted between
subgraphs through the network in distributed graph processing
systems.

Note that in practical distributed systems, the stream-based parti-
tion, which takes the vertices or edges as a stream and sequentially
assign the the same number of vertices or edges as a partition, is
widely used [35, 60]. However, these algorithms can only realize
a balanced partition in one dimension, i.e., either the number of
vertices or the number of edges. By randomly assigning each vertex
to a subgraph, the hash-based partition can achieve a balanced
partition in two dimensions, but it faces lots of edge cuts. Besides,
GD [4] uses a gradient descent method to split a graph into two
subgraphs, and it can also achieve balanced partition in two dimen-
sions, but it is very time-consuming and only partition a graph into

power of two subgraphs. Di�erent from them, BPart targets for
partitioning the graph into any number of subgraphs, while aiming
for achieving a two-dimensional balanced graph partition with a
small number of edge cuts between subgraphs.

6 CONCLUSION
In this paper, we propose a two-dimensional balanced graph parti-
tioning scheme BPart, which realizes balance for both the number
of vertices and the number of edges of the partitioned subgraphs.
By integrating BPart into distributed graph systems, it makes the
computing loads between machines be well balanced,
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