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ABSTRACT Federated learning (FL) is a well-regarded distributed machine learning technology that
leverages local computing resources while protecting privacy. The over-the-air (OTA) computation has
been adopted for FL to prevent excessive consumption of communication resources by employing the
superposition nature of wireless waveform. Meanwhile, energy harvesting technology can relieve the
energy constraint of clients and enable durable computation for FL. However, few of the existing works
on OTA FL have considered jointly performing client selection and receive beamforming optimization
with energy harvesting clients. The objective of this work is to address this issue to improve the learning
performance of OTA FL. Specifically, we first derive the expression of the optimality gap regarding
client selection and receive beamforming design. Then, to minimize the optimality gap, a mixed-integer
nonlinear programming (MINLP) problem is formulated and decomposed into two sub-problems. Next,
the semidefinite relaxation method and the channel-energy-data (CED)-based method are developed to
optimize the receive beamforming sub-problem and client selection sub-problem iteratively. One alternative
optimization method is proposed to deal with the decoupled sub-problems for obtaining the solutions to
the original MINLP problem. Our simulation results demonstrate that the proposed solution is superior
to the other comparison schemes in various parameter settings.

INDEX TERMS Federated learning, over-the-air computation, client selection, receive beamforming,
energy harvesting.

I. INTRODUCTION

DUETO the increase in the number of deployed Internet
of Things (IoT) devices, a great amount of data

is continuously generated by them. Developers typically
resort to deep learning techniques to extract meaningful
information from these data. Moreover, with the development
of hardware, the computing and storage capabilities of
end devices, such as smartphones, smartwatches, and other

intelligent IoT devices, have been significantly enhanced,
which makes it possible to train models locally. Federated
learning (FL) [2] has been proposed as an effective tech-
nique for distributed training on distributed IoT devices while
preserving privacy.

Under the typical FL paradigm, clients collaborate to train
a shared model with their local data and send the updates
to the parameter server (PS). Then, the PS aggregates the
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received signals and broadcasts the averaged updates to
the selected clients. The communication resources between
clients and PS are usually constrained and the clients are
required to interact with the PS multiple rounds during the
training processes. As a result, the communication bottleneck
becomes a significant problem that needs to be solved for FL.
Some strategies have been proposed to impose communica-
tion efficiency for FL such as adjusting the number of local
epochs [2] and client selection [3]. In [2], the communication
cost can be reduced for FL by carrying out multiple local
epochs at the client side before communication. In [3], the
authors jointly optimize client selection and bandwidth allo-
cation for FL to realize fast convergence and communication
efficiency.

Different from the above works, which are implemented
with digital transmission for FL, some studies [4], [5] adopt
over-the-air (OTA) computation to reduce the communication
cost for FL. Compared with digital transmission, clients can
share the same wireless channel via analog transmission due
to the superposition property of the multiple access channel.
The communication overhead can be reduced for OTA FL by
making full utilization of the spectrum resources when clients
send the gradients to PS. In addition, the privacy leakage
from the client to the PS can be avoided for OTA FL since
the signals received at the PS side through OTA computation
are aggregated signals. Recent research studies for OTA FL
focus on client selection [6], power control [7], data hetero-
geneity [8], and energy constraint [9]. The authors in [6]
conduct the convergence analysis for OTA FL and develop
a client selection scheme when transmission power control
is taken into consideration. In [7], the authors optimize the
transmission power control to directly maximize the con-
vergence speed of the OTA FL system with convergence
analysis. In [8], the convergence analysis for OTA FL with
heterogeneous data is given, and the authors conclude that
convergence can be guaranteed for OTA FL with heteroge-
neous data and fading channels. Besides, due to the limited
battery capacity of IoT intelligent devices, the energy con-
straint is one key issue that needs to be addressed. The
authors in [9] first derive the convergence analysis for OTA
FL when energy constraint is considered for local clients.
Then, they formulate an online optimization client selection
problem and employ the Lyapunov optimization technique
to optimize a stable client selection scheme by solving the
nonlinear integer programming problem.

However, in most of the current papers, energy harvest-
ing technologies have not been considered. Energy harvested
from the environment such as wind, solar power, and human
motion can enable local clients to perform sustained train-
ing and achieve green computing. There are some prior
research studies have successfully applied energy harvest-
ing techniques to wireless transmission [10], [11], task
offloading, and resource allocation [12], [13] for mobile
edge computing. The authors in [13] aim to minimize
energy consumption while meeting the quality of services
for local clients with energy harvesting by optimizing task

offloading and resource scheduling among the local clients,
edge server and cloud. There are also some prior works
regarding FL with energy harvesting clients via traditional
digital transmission [14], [15]. In [14], the time-division
duplex is used for gradient transmission for typical FL.
The authors formulate one integer linear program for client
selection and client association and employ the branch and
bound algorithm to minimize the training loss when multiple
base stations exist. In [15], two different energy harvesting
modes are investigated which include deterministic energy
arrivals and stochastic energy arrivals. They conclude that
energy harvesting technology can realize sustainable dis-
tributed learning. Different from [14], [15] that merely focus
on the typical FL, we propose a novel energy-aware OTA FL
system that incorporates the energy harvesting technique to
supply power to local clients. Instead of considering energy
consumption as the constraint for the typical FL in [14], [15],
we try to quantify the impact of energy consumption and
energy harvesting on the convergence performance of OTA
FL. In [16], the authors investigate the energy harvesting
technique for OTA FL, and two distributions of energy arrival
processes including Bernoulli distribution and uniform distri-
bution are discussed. Different from [15], [16], which merely
make client selection decisions based on the distribution of
the harvested energy arrivals, in this paper, we make client
selection decisions based on the channel-energy-data (CED)
coefficient. Instead of simply giving the convergence analysis
of the optimality gap for OTA FL regarding client selection
in [16], we give the convergence analysis of the optimality
gap for OTA FL regarding energy harvesting, energy con-
sumption, receive beamforming, client selection, and data
size. In our previous study [1], the client selection problem
under the energy constraint is formulated as one nonlinear
integer programming problem for one single-input single-
output OTA FL system with energy harvesting clients, and
the receive beamforming design is not considered.

In this paper, we apply energy harvesting techniques to
OTA FL system to realize durable computation and reduce
reliance on conventional battery sources. Our proposal is to
optimize the joint problem of client selection, receive beam-
forming design, and energy management for one single-input
multiple-output1 OTA FL system with energy harvesting and
energy constraint. The main contributions of this paper are
summarized as follows:

• We first derive the optimality gap between the actual
loss and the optimal loss for OTA FL and quantify
the impacts of energy harvesting, energy consumption,
client selection, and receive beamforming design on
the optimality gap. To minimize the optimality gap,
we formulate a mixed-integer nonlinear programming
(MINLP) problem based on the convergence analysis.

1. The single-input multiple-output setting is considered for OTA FL in
this paper. The massive multiple-input multiple-output and the clustered
beamformers [17] can reduce the aggregation error for OTA computation
with low latency, which is considered to cooperate with our work in the
future.
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• Then, the original intractable MINLP problem is trans-
formed into an online MINLP problem. By decompos-
ing the online MINLP problem, two sub-problems can
be obtained one for client selection and the other for
receive beamforming design.

• To address the MINLP problem, we introduce several
optimization strategies, encompassing a semidefinite
relaxation (SDR) approach for the receive beamform-
ing design sub-problem, a CED-based technique for
the client selection sub-problem, and an alternative
optimization method to jointly optimize the decoupled
sub-problems.

• We conduct a thorough theoretical analysis of the
proposed scheme and validate its performance via simu-
lation experiments. A comparative evaluation with other
comparison schemes reveals that our proposed approach
exhibits substantial advantages in terms of convergence
performance for OTA FL. Besides, we also evalu-
ate the impact of design parameters on the learning
performance of OTA FL.

The rest of this paper is organized as follows. In Section II,
we briefly review the related works about OTA FL. In
Section III, we introduce the FL model, the communication
model for OTA FL, and the energy management model for
OTA FL. The convergence performance is derived and the
problem is formulated in Section IV. Section V develops the
jointly online optimizing algorithm for client selection and
receive beamforming design. Section VI shows the simula-
tion results. Finally, this paper is concluded in Section VII.
The notations used throughout this paper are summarized in
Table 1.
Notations: Let R denote the real number sets and C denote

the complex sets. Let regular letters, bold lower-case letters,
and bold capital letters denote scalars, vectors, and matrices,
respectively. The complex normal distribution with mean
0 and covariance matrix σ 2 is denoted with CN

(
0, σ 2).

The transpose operation and conjugate transpose operation
are denoted as (.)T and (.)H , respectively. Let E[.] denote
the expectation operation.

II. RELATED WORKS
Recently, OTA FL has been proposed for communication-
efficient distributed learning by making full use of the
spectrum resources [4], [5]. Most of the recent articles focus
on the transmission power control [18], [19], client selec-
tion scheme design [5], [20], [21], and receive beamforming
design [22] for the OTA FL system. The design of transmis-
sion power for local clients can mitigate aggregation errors
and improve the convergence speed for OTA FL. In [18], the
authors adopt the successive convex approximation method
and the trust region method to optimize transmission power
for OTA FL when non-uniform channel fading exists. In [19],
the authors optimize the transmission power to minimize the
aggregation error for OTA FL when taking gradient statistics
into account.

TABLE 1. A summary of notations.

Client selection is one effective scheme to improve the
learning performance of the OTA FL system. In [5], the
authors adopt the difference-of-convex-functions method to
mitigate the influence of system heterogeneity and network
heterogeneity for OTA FL. Specifically, the optimization of
client selection and receive beamforming for OTA FL is
realized by minimizing the model aggregation error and max-
imizing the number of selected clients. In [23], the clients
with weak channels are neglected for the broadband situ-
ation and the authors prove that the latency for OTA FL
is smaller compared with the FL via digital transmission.
In addition, the diverse energy constraints are investigated
in [9] and the client selection scheme is designed with
the Lyapunov optimization to realize fast convergence. The
work [21] adopts the SDR technique to minimize the opti-
mality gap of the training loss by jointly optimizing client
selection and power control for OTA FL.

Multi-antenna beamforming is another way to improve the
performance for OTA FL [20], [22], [24], [25], [26], [27].
In [20], the receive beamforming is optimized with the
difference-of-convex-functions method, and the client selec-
tion is designed with the Gibbs sampling method for
reconfigurable intelligent surface-assisted OTA FL system.
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FIGURE 1. Federated learning system via over-the-air computation with energy harvesting.

The work [22] jointly optimizes the receive beamforming
design and learning rate with the combined method of
difference-of-convex-functions method and exhaustive search
method. In [27], the authors adopt the SDR technique to deal
with the receive beamforming design, and the client selection
is solved with the difference-of-convex-functions method.

Different from the previous studies that only focus on
transmission power control for OTA FL, the influence of
energy constraint and energy harvesting on the learning
performance of OTA FL is also investigated in this paper. The
convergence analysis of the OTA FL system is derived, which
is related to energy management, client selection, receive
beamforming design, and transmission power control. The
optimized decisions of the client selection and receive beam-
forming for the OTA FL system are influenced not only
by the transmission power control but also by the energy
management.

III. SYSTEM MODEL
We consider an OTA FL system which is composed of a
PS with N antennas and K single-antenna local clients, as
shown in Fig. 1.2 Let K denote the local client set. The
feature-label pairs for local client k ∈ K can be represented
as Dk =

{(
xk,i, yk,i

)
, i ∈ {1, . . . ,Dk}

}
, where xk,i is the

i-th input feature vector, yk,i is the corresponding ground
truth label. Let Dk denote the number of the local training
samples for local client k, and the total number of training
samples for all local clients is D = ∑

k∈K Dk. In addition,

2. The typical FL with one-staged communication structure is considered
in this paper. Two-staged communication [28] for distant clients by intro-
ducing the intermediary server can improve the convergence performance
for OTA FL, which is beyond the scope of this paper and considered as
the future work.

each client can harvest energy from the ambiance, and the
harvested energy will be used to sustain its computation
and transmission energy consumption. In the following,
we will introduce some background knowledge related to
the FL model, the communication model, and the energy
consumption and harvesting models.

A. FEDERATED LEARNING MODEL
We assume that the total number of training rounds is T for
one typical FL system, and the information will continue to
be exchanged between the local client side and the PS side
during this period. At the t-th training round, the typical FL
system conducts the following four steps:

• Client selection: At first, a subset of clients Kt are
selected from K by the PS to join in the training.
Let β t = [β1,t,β2,t, . . . ,βK,t] denote the client selec-
tion vector, and βk,t ∈ {0, 1} represents a binary
indicator. If client k is selected at the t-th training
round, βk,t = 1, otherwise, βk,t is set as 0, thus
Kt =

{
k|βk,t = 1, k ∈ K

}
.

• Global model broadcast: The current global model
wt ∈ RS is broadcast to the selected local clients, where
S represents the total number of model parameters.

• Local model update: The selected local client k update
the local model wk,t as wk,t = wt. Suppose that
f
(
wk,t, xk,i, yk,i

)
is the loss function for the correspond-

ing local training sample
(
xk,i, yk,i

)
, i ∈ {1, . . . ,Dk} at

client k. The local loss for all samples at client k is
calculated as

Fk,t
(
wk,t,Dk

)
= 1
Dk

Dk∑

i=1

f
(
wk,t, xk,i, yk,i

)
. (1)
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Let ∇f
(
wk,t, xk,i, yk,i

)
denote the gradient of

f
(
wk,t, xk,i, yk,i

)
. The local gradient gk,t ∈ RS is

calculated as

gk,t = 1
Dk

Dk∑

i=1

∇f
(
wk,t, xk,i, yk,i

)
. (2)

After the training process is completed, the selected
client k transmits the local gradients gk,t to the PS.

• Model aggregation: After receiving the signals, the
global gradient can be represented as

gt =
∑

k∈Kt
Dkgk,t∑

k∈Kt
Dk

. (3)

Let η denote the fixed learning rate. The global model
is updated as

wt+1 = wt − ηgt. (4)

The global loss for the selected clients can be given by

Ft(wt,Kt) =
∑

k∈Kt
DkFk,t

(
wk,t,Dk

)
∑

k∈Kt
Dk

. (5)

B. COMMUNICATION MODEL
For the OTA FL system, the communication process includes
the global model broadcasting from the PS to clients and
the local model uploading from clients to the PS. In this
paper, we assume that the global model can be broadcast
correctly from the PS to clients. In the upload process via
OTA computation, the selected clients need to send their
updated gradients to PS synchronously with the shared wire-
less channel. Let pk,t represent the power control factor of
client k at the t-th training round. The pre-processing opera-
tion for local gradients gk,t at client k during the t-th training
round is as follows:

ϕk,t = pk,tgk,t. (6)

Let hk,t ∈ CN denote the channel coefficient of client
k at the t-th training round, where N is the number of
receive antennas at the PS side, and mt ∈ CN denote the
receive beamforming vector at the t-th training round. We
assume that the channel coefficients may fluctuate in dif-
ferent training rounds but stay quasi-static during the same
training round. Let zt = [z[1]

t , z[2]
t , . . . , z[S]

t ] ∈ CN×S repre-
sent the additive white Gaussian noise (AWGN) matrix, in
which, z[s]

t denotes the induced noise for s-th gradient signal.
Each element of z[s]

t follows the complex normal distribu-
tion of CN

(
0, σ 2). The PS receives the aggregated gradients

vector rt ∈ CS at the t-th training round as

rt =
∑

k∈Kt

mH
t hk,tϕk,t +mH

t zt. (7)

To get the averaged gradients of the OTA FL system, the
PS post-processes the received aggregated gradients [6] as

r̄t = rt
αt
∑

k∈Kt
Dk

, (8)

where αt represents the normalization scaling factor at the
t-th training round. Then, the error estimate εt between
the aggregated gradients r̄t and the error-free gradients gt
at the t-th training round can be expressed as

εt =
∑

k∈Kt

(
mH
t hk,tpk,t
αt

− Dk
)
gk,t

∑
k∈Kt

Dk

+ mH
t zt

αt
∑

k∈Kt
Dk

. (9)

According to [29], to minimize the mean squared error, the
uniform forcing technology is used for OTA computation.
As a result, the power control factor pk,t needs to satisfy
the requirement for the selected client k at the t-th training
round as follows:

pk,t = αtDk(mH
t hk,t)

H

||mH
t hk,t||2

. (10)

Besides, the average value of the transmission power for
client k during the t-th training round is constrained by the
maximum transmission power P0 as follows:

∥∥pk,tgk,t
∥∥2

S
≤ P0. (11)

Taken (10) into (8), the averaged gradients can be rewritten
as follows:

r̄t =
∑

k∈Kt
Dkgk,t + mH

t zt
αt∑

k∈Kt
Dk

. (12)

C. ENERGY CONSUMPTION AND HARVESTING MODELS
According to [30], the transmission time of each training
round for OTA FL is calculated as

τtr =
⌈
S
R

⌉
Tslot, (13)

where Tslot is the transmission time for each resource block
and R is the number of the transmitted signals for each
resource block. Let ck denote the computation energy con-
sumption for one training sample of client k. The data size
Dk for client k may be varied across different clients because
of the heterogeneous data distribution. The total energy con-
sumption includes the computation energy consumption and
transmission energy consumption. In this paper, the number
of local epoch is set as 1 for simplicity.3 By combining (10)
and (13), the total energy consumption etotk,t [9] for local client
k during the t-th training round can be calculated as

etotk,t =

Computation energy
consumption︷︸︸︷
Dkck +

Transmission energy consumption︷ ︸︸ ︷
τtr
∥∥pk,tgk,t

∥∥2

S

= Dkck + τtrα
2
t D

2
k

S||mH
t hk,t||2

∥∥gk,t
∥∥2

. (14)

3. Extending to multiple local epochs is viable by adequately
re-orchestrating the energy consumption and harvesting models.
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We assume that the local client k can harvest energy
from the surrounding environment. The energy harvesting
process is constructed based on a successive energy arrival
model. Let earrt = [earr1,t, . . . , e

arr
K,t] denote the newly arrived

energy vector during the t-th training round, and earrk,t means
the arrived energy for client k during the t-th training
round. For each local client, the energy harvested from the
surrounding environment can be stored in the battery and
used to supply subsequent computation and transmission
energy consumption.

Let bk,t represent the battery capacity at the beginning
of the t-th training round for local client k. The maximum
battery capacity for all clients is set as Bmax. At the t-th
training round, the total energy consumption cannot exceed
the residual battery capacity for each selected client k, which
is represented as

etotk,t ≤ bk,t. (15)

The updated battery capacity of each client can not exceed
the maximum battery capacity Bmax during each training
round. The updated battery level bk,t+1 for client k at the
end of the t-th training round can be expressed as follows:

bk,t+1 = min
{
bk,t − etotk,t + earrk,t,B

max}. (16)

The transmission energy consumption is constrained by the
residual battery capacity and maximum transmission power.
Based on (11) (14), and (15), the transmission energy for
client k at the t-th training round cannot be larger than the
transmission energy threshold &max

k,t , which is calculated as

&max
k,t = min

{
bk,t − Dkck, τtrP0

}
. (17)

The presence of channel fading and the introduced noise
make the received gradient signals deviate from their actual
values for OTA FL. The client selection and receive beam-
forming design both have impacts on the received signals for
OTA FL because of the energy constraint, channel fading,
and communication error. In the next section, we derive
the impact of the convergence performance of the OTA
FL system regarding the client selection matrix β, the
receive beamforming matrix m, and the transmission energy
threshold &max

k,t .

IV. CONVERGENCE ANALYSIS AND PROBLEM
FORMULATION
The convergence analysis of the OTA FL system is given in
this section. Note that the energy constraint and transmis-
sion power control are both introduced into the convergence
analysis for OTA FL. The derived convergence results reveal
that the channel coefficient, the transmission energy thresh-
old, and the data size all have impacts on the convergence
rate of the OTA FL system. Based on the convergence result,
the non-convex MINLP problem is built as P1. Because of
the stochasticity of the channel coefficient and energy har-
vesting, the offline problemP1 is transformed into the online
non-convex MINLP problem P2.

A. CONVERGENCE ANALYSIS
According to (4) and (8), the global model for the OTA FL
system at the t-th training round is updated through

wt+1 = wt − ηr̄t. (18)

For ease of convergence analysis, we have the following
assumptions regarding loss functions [3], [6].
Assumption 1 (l-Smoothness): For parameters w and v,

there is a non-negative constant l to make the following
inequality hold as

F(w)− F(v) ≤ (w− v)T∇F(v) + l
2
‖w− v‖22. (19)

Assumption 2 (PL Inequality): There exists a non-
negative µ constant to make the Polyak-Lojasiewicz (PL)
condition satisfy as follows:

‖∇F(w)‖22 ≥ 2µ
[
F(w)− F

(
w∗
)]

. (20)

Assumption 3 (Gradient Bound): The local gradients
‖∇f (w)‖22 is bounded by the global gradients ‖∇F(w)‖22
with parameters λ1 ≥ 0 and λ2 ≥ 0, such that

‖∇f (w)‖22 ≤ λ1 + λ2‖∇F(w)‖22. (21)

Let F(w∗) denote the optimal loss, and the optimality
gap between the actual loss and the optimal loss at the t-th
training round can be formally represented as E[F(wt+1)]−
F(w∗). A smaller optimality gap represents better learning
performance for the OTA FL system. The relationship of the
optimality gap for two adjacent rounds is given in Lemma 1.
Lemma 1: When Assumptions 1-3 are satisfied, with the

learning rate η = 1
l , the given client selection vector β t, the

given receive beamforming vector mt, and the transmission
energy threshold &max

k,t = min
{
bk,t − Dkck, τtrP0

}
, the opti-

mality gap E[F(wt+1)] − F(w∗) at the t-th training round
within the energy constraint is given by

E[F(wt+1)]− F
(
w∗
)

≤ ψt
(
E[F(wt)]− F

(
w∗
))

+ λ1

l
φt, (22)

where ψt and φt can be represented as follows:

ψt = 1− µ

l
+ 2µλ2φt

l
, (23)

φt = σ 2τtr

2
(∑

k∈K Dkβk,t
)2

(

max
k∈K

βk,tD2
k ||mt||2

&max
k,t ||mH

t hk,t||2

)

+ 2
(
D−∑k∈K βk,tDk

)2

D2 . (24)

Proof: See Appendix A.
Lemma 1 reveals that the upper bound of the optimal-

ity gap at the t-th training round E[F(wt+1)] − F(w∗) is
related with the optimality gap at the (t − 1)-th training
round E[F(wt)]−F(w∗), ψt, and φt. By repeatedly applying
Lemma 1 and collecting terms, we have the optimality gap
after the total number of T training rounds as in Theorem 1.
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Different from Lemma 1, Theorem 1 illustrates the relation-
ship between the optimality gap after T training rounds and
the initial optimality gap.
Theorem 1: Suppose that the total number of training

rounds is set as T and the initial global model is set as
w1. The optimality gap after T training rounds of the OTA
FL system is given by

E
[
F(wT+1)

]
− F

(
w∗
)
≤ *T(β,m), (25)

where

*T(β,m) =
T∏

t=1

ψt
(
E[F(w1)]− F

(
w∗
))

+ λ1

l




T−1∑

t=1

T∏

j=t+1

ψjφt + φT



. (26)

Proof: See Appendix B.
Theorem 1 reveals that the optimality gap is upper-

bounded by *T(β,m). When the initial optimality gap
E[F(w1)] − F(w∗) and the parameters µ, l, λ1, and λ2
of Assumptions 1-3 are known, the upper bound of the
optimality gap is decided by ψ1, φ1, . . . , ψT and φT .

B. PROBLEM FORMULATION
According to Theorem 1, the optimality gap after T train-
ing rounds E

[
F(wT+1)

]
− F(w∗) is influenced by the client

selection vector β t, the receive beamforming vector mt, and
the transmission energy threshold &max

k,t , which are obtained
from each training round t and each selected client k. The
transmission power control and energy constraint are both
introduced into the convergence analysis process of the opti-
mality gap. To minimize the optimality gap after T training
rounds, the problem P1 can be formulated as

P1 : min
β,m

*T(β,m) (27a)

s.t. βk,t ∈ {0, 1}, ∀k ∈ K, 1 ≤ t ≤ T, (27b)

mt ∈ CN, 1 ≤ t ≤ T. (27c)

It is difficult to solve the problem P1 directly because
of the stochasticity of the channel coefficient ht and
the harvested energy vector earrt for each training round t.
We try to reformulate the problem P1 and focus on solving
the problem with an online pattern according to Lemma 1.

The optimality gap at the t-th training round E[F(wt+1)]−
F(w∗) is defined as +t+1. According to Lemma 1,
we have

+t+1 ≤
(

1− µ

l
+ 2µλ2φt

l

)
+t +

λ1

l
φt

=
(

1− µ

l

)
+t +

(
2µλ2

l
+t +

λ1

l

)
φt. (28)

One can observe that the optimality gap at the t-th training
round +t+1 is decided by φt when the parameters of assump-
tions µ, l, λ1, λ2, and the optimality gap at the (t − 1)-th
training round +t are known. Therefore, the problem P1 can

be transformed to P2 to minimize φt with an online pattern,
which can be formulated as follows:

P2 : min
β t

φt
(
β t,mt

)
(29a)

s.t. βk,t ∈ {0, 1}, ∀k ∈ K, (29b)

mt ∈ CN . (29c)

The formulated problem P2 is one MINLP problem rather
than the nonlinear integer programming problem in [1]. The
receive beamforming design and transmission power control
are both considered in P2, which makes the problem more
difficult to solve compared with [1].

By analyzing (12) and (24), one can observe that if more
clients are selected to upload the gradients, the loss decreases
faster. However, due to the constraint of the transmission
power control and residual battery capacity, αt will be smaller
and the signal-to-noise ratio (SNR) will decrease when more
clients are selected to participate in the training, which will
make the convergence speed slower.

V. JOINTLY ONLINE OPTIMIZING CLIENT SELECTION
AND RECEIVE BEAMFORMING
In this section, we propose an alternative optimization
method to solve the problem P2. Specifically, the SDR
programming method is adopted to optimize the receive
beamforming when the client selection vector is given,
and the discrete search method named the CED-based
method is proposed to realize client selection with the
given receive beamforming design. The process of the alter-
native optimization will iterate for a predefined number
of iterations. Besides, we also give discussions about the
computation complexity of the proposed algorithms.

A. RECEIVE BEAMFORMING OPTIMIZATION
At the t-th training round, assuming that the client selection
vector β t is given. To optimize the receive beamforming
design for the OTA FL system, the problem P2 can be
simplified as

P3.1 : min
mt

max
k∈K

βk,tD2
k ||mt||2

&max
k,t ||mH

t hk,t||2
. (30)

For the convenience of the analysis, the min-max problem
P3.1 is reformulated as one minimization problem P3.2,
which is presented in Lemma 2.
Lemma 2: By assuming that Mt = mtmH

t and Hk,t =
hk,thHk,t, the non-convex receive beamforming optimization
problem P3.1 can be reformulated as

P3.2 : min
Mt

Tr(Mt) (31a)

s.t. Tr(MtHk,t) ≥
βk,tD2

k

&max
k,t

,∀k ∈ K, (31b)

Mt * 0, (31c)

rank(Mt) = 1. (31d)

Proof: See Appendix C.
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One effective method to deal with the problem P3.2 is the
SDR method, which obtains the convex relaxed problem by
dropping the rank-one constraint. In this way, the problem
P3.2 can be transformed to

P3.3 : min
Mt

Tr(Mt) (32a)

s.t. Tr(MtHk,t) ≥
βk,tD2

k

&max
k,t

,∀k ∈ K, (32b)

Mt * 0. (32c)

Then, the approximate solution can be obtained by solving
the convex problem P3.3 with CVX toolbox [31]. Assuming
that M∗t is the approximate optimal value of P3.3, then the
eigenvalue decomposition for M∗t is conducted as M∗t =
Ut

∑
UH
t , where Ut =

[
$1, $2, . . . ,$N

]
is the matrix includ-

ing the eigenvalue vectors and
∑ = diag(ρ1, ρ2, . . . , ρN)

is the diagonal matrix including the eigenvalue values. Let
ρmax be the maximum eigenvalue of M∗t and $max be
the corresponding eigenvector of M∗t . According to [29],
if the constraint rank

(
M∗t
)

= 1 is satisfied, the optimal
receive beamforming vector is m∗t = √ρmax$max. If the
constraint rank

(
M∗t
)

= 1 can not be satisfied for the relaxed
problem, we adopt the Gaussian randomization [32] to get
the candidate optimal values m[i]

t = Ut
∑1/2ξ

[i]
t , where ξ

[i]
t

is randomly generated from CN (0, IN×1). We generate the
total number of I candidates for receive beamforming vec-
tor. Then, from the candidates mt ∈

{
m[1]
t , . . . ,m[I]

t

}
, we get

the optimal value m∗t which can get the minimum objective
value according to

m∗t = arg min
mt∈

{
m[1]
t ,...,m[I]

t

}max
k∈K

βk,tD2
k ||mt||2

&max
k,t ||mtHhk,t||2

. (33)

The process for designing the receive beamforming vector
with SDR combined with the Gaussian randomization
approach is summarized in Algorithm 1.

B. CLIENT SELECTION OPTIMIZATION
Given the optimized receive beamforming vector mt obtained
from Algorithm 1, to optimize the client selection decisions,
the problem P2 can be simplified as

P4 : min
β t

φt
(
β t
)

(34a)

s.t. βk,t ∈ {0, 1}, ∀k ∈ K. (34b)

Note that P4 is in essence a nonlinear integer program-
ming problem. There is an inverse correlation between the
optimization objective value φt

(
β t
)
and the maximum con-

straint part maxk∈K

(
βk,tD2

k
&max
k,t ||mH

t hk,t||2

)
. The CED coefficient

for client k at the t-th training round is denoted as follows:

qk,t = βk,tD2
k

&max
k,t ||mH

t hk,t||2
, (35)

which is decided by the channel coefficient hk,t, the
transmission energy threshold &max

k,t and the dataset size Dk.

Algorithm 1 The SDR-Based Receive Beamforming Alg
Input: β t, ht, bt, ct, D, τtr, P0, and I.
Output: mt.
1: Solve (32) to obtain M∗t .
2: if rank(M∗t ) = 1 then
3: m∗t = √ρmax$max;
4: else
5: Obtain the eigenvalue decomposition of M∗t =
Ut

∑
UH
t ;

6: Generate the number of I random vectors, and the
i-th vector is ξ

[i]
t ∈ CN (0, IN×1);

7: Obtain the candidate optimal values m[i]
t =

Ut
∑1/2ξ

[i]
t ;

8: Obtain the optimal receive beamforming vector m∗t
according to (33).

9: mt = m∗t .

Let Qt = [q1,t, q2,t, . . . , qK,t] denote the list of CED
coefficients. The maximum value of Qt is calculated as
Qmax
t = maxk∈K qk,t. One can observe that if the selected

clients have worse channel quality, less available transmis-
sion energy, and larger data size, Qmax

t becomes larger.
By analyzing the problemP4, one can observe that there is

a trade-off relationship between the total number of the
selected training samples

∑
k∈K βk,tDk and Qmax

t . If more
clients are selected during the training process, the num-
ber of the training samples

∑
k∈K βk,tDk will be larger,

which will make the global loss convergence speed be faster.
However, if more clients are selected, Qmax

t will increase,
which will lead to slow convergence. As a result, to improve
the learning performance of the OTA FL system, an effec-
tive client selection scheme is required to minimize the
problem P4.

The proposed discrete search method named the CED-
based method for P4 is summarized in Algorithm 2. First,
Qt is sorted in ascending order to get the sorted queue Q′t.
Let q′k,t be the k-th value in Q′t, and let S[k] be the subset
of the selected k clients according to the k smallest values
of Q′t. There are K possible client selection decisions, and
the final client selection is decided by

φ̃[t,k] =
σ 2τtr||mt||2q′k,t
2
(∑

i∈S[k] Di
)2 + 2

(
D−∑i∈S[k] Di

)2

D2 . (36)

The indicator k∗ can be obtained by calculating the index
of the minimum value of φ̃[t,k] as

k∗ = arg min
k∈K

φ̃[t,k]. (37)

The client can be selected if the index k is smaller than k∗

for the sorted queue Q′t, which denotes qk,t ≤ qk∗,t.
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Algorithm 2 The CED-Based Client Selection Algorithm

Input: mt, ht, bt, ct, D, σ 2, τtr, P0, and D.
Output: β t.
1: for k = 1, . . . ,K do
2: Calculate qk,t based on (35);
3: Sort Qt in ascending order to obtain Q′t;
4: Let q′k,t be the k-th smallest value in Q′t, and let S[k] be

the client subset decided by the k smallest values of Q′t;
5: for k = 1, . . . ,K do;
6: Calculate φ̃[t,k] based on (36);
7: Calculate k∗ = arg mink∈K φ̃[t,k];
8: for k = 1, . . . ,K do
9: if qk,t ≤ qk∗,t then
10: Set βk,t ← 1;
11: else
12: Set βk,t ← 0.

C. THE ALTERNATIVE OPTIMIZATION FOR CLIENT
SELECTION AND RECEIVE BEAMFORMING
The proposed alternative optimization method to minimize
the optimality gap of the OTA FL system is summa-
rized in Algorithm 3. At the beginning of the t-th training
round, all clients can be selected at the initial setup as
β t(0) = [1, 1, . . . , 1]. Then, the receive beamforming is opti-
mized with the SDR method according to Algorithm 1. When
the optimized receive beamforming vector mt is obtained,
the selected clients can be obtained based on Algorithm 2.
These two steps are repeated for J times. When the joint
optimization process is completed, the PS sends the global
model to the selected clients. Then, local clients update the
global model and upload the gradients via OTA computation.
The PS obtains the aggregated gradients based on (8). Clients
obtain the energy from the energy resources and update the
current battery level queue based on (16).

The computational complexity of Algorithm 1 for
designing the receive beamforming is mainly decided by the
procedure of obtaining M∗t with SDR algorithm (see Line 1
in Algorithm 1), which is O

(
(N2 + K)3.5) [33]. The com-

putational complexity of Algorithm 2 for optimizing client
selection is mainly determined by the sorting process (see
Line 3 in Algorithm 2), which takes O(KlogK) operations.
In addition, as Algorithm 3 is conducted T rounds during the
training procedure and the alternative optimization is con-
ducted for J iterations, the overall time complexity is given
by O

(
TJ((N2 + K)3.5 + (KlogK))

)
.

Fig. 2 is given to clearly illustrate the relations of the
problems of the whole OTA FL system with energy harvest-
ing. First of all, the problem P1 is formulated according to
Theorem 1 to minimize the optimality gap after T training
rounds for OTA FL. Then, the intractable offline MINLP
problem P1 is transformed to the online MINLP problem
P2 to minimize the optimality gap at the t-th training round
based on (28) and Lemma 1. To solve the problem P2,

Algorithm 3 The Alternative Optimization Algorithm

Input: ht, bt, ct, D, σ 2, τtr, P0, D, I, J, j = 0, and β t(0).
Output: β t, mt.
1: repeat
2: Given β t(j) and (ht, bt, ct,D, τtr,P0, I), obtain
mt(j+ 1) via Algorithm 1;

3: Given mt(j+ 1) and (ht, bt, ct,D, σ 2, τtr,P0,D),
obtain β t(j+ 1) via Algorithm 2;

4: Update mt = mt(j+ 1), β t = β t(j+ 1), j = j+ 1;
5: until j = J.

FIGURE 2. The relations of the problems.

the MINLP problem is decoupled into two sub-problems
as P3.1 for receive beamforming design and P4 for client
selection. The SDR programming is used for optimizing
receive beamforming sub-problem. Specifically, the problem
P3.1 can be transformed to P3.2 via matrix lifting accord-
ing to Lemma 2. Then, the non-convex problem P3.2 is
relaxed to the convex problem P3.3 via dropping rank-one
constraint. Then, the convex problem P3.3 can be solved via
the CVX toolbox. For the client selection sub-problem, the
discrete search method combined with the CED coefficient
is proposed to deal with the nonlinear integer programming
problem P4.

VI. PERFORMANCE EVALUATION
In the simulation, the PS is located at (0, 0, 10), and
40 clients are randomly located within the range of a circle
with a radius of 250 meters. Let h̄k = GPGC

(
3×108

4π fcLk

)ρ

denote the average channel gain for the free-space path loss
model, where GP = 5 dBi denotes the antenna gain of the
PS, GC = 0 dBi denotes the antenna gain of the local clients,
fc = 915 MHz means the carrier frequency, Lk means the
distance between PS and client k, and the pass loss exponent
ρ is set as 3. The channel gain hk,t for client k during the
t-th training round is expressed as hk,t =

√
h̄kγ k,t, where γ k,t

is generated from the Gaussian distribution with zero-mean
and unit-variance. The transmission slot for each resource
block Tslot is set as 1 ms, and the number of the transmit-
ted signals R is set as 14 [30]. Let ēk denote the average
amount of harvested energy per round for client k, and the

VOLUME 4, 2023 1135



CHEN et al.: JOINT CLIENT SELECTION AND RECEIVE BEAMFORMING FOR OVER-THE-AIR FL

harvested energy for client k during the t-th training round
is earrk,t . The harvested energy for client k during the training
processes is [earrk,1, e

arr
k,2, . . . , e

arr
k,T ], which follows a Poisson

distribution with an average of ēk [34]. We assume that ēk
is uniformly distributed between 0.1 J and 1 J for different
clients. The computation energy consumption per sample ck
is set as 0.001 J for all clients. The maximum battery capac-
ity Bmax is set as 20 J, and the maximum transmission power
P0 is set as −10 dB. The total number of candidates I for
receive beamforming vector is set as 5 in Algorithm 2. The
iteration number J for the alternative optimization method
is set as 20.

We use the Fashion-MNIST dataset [35] to conduct the
experiments. Two kinds of settings regarding the data distri-
bution among clients are taken into consideration according
to [36]: balanced and unbalanced data settings. For both
settings, the training samples at local clients are independent
and identically distributed (i.i.d.). For the balanced data set-
ting, the number of samples is equal to 800 for all clients. For
the unbalanced data setting, the sample size is set randomly
in [100, 200] for half of the clients, and [1000, 2000] for
the other half. By analyzing φt in (24), one can observe that
the convergence rate of the optimality gap is influenced
by the number of selected clients for the balanced data
setting. However, for the unbalanced data setting, the con-
vergence rate of the optimality gap is influenced not only by
the number of selected clients, but also by the data size of
selected clients. We use two kinds of data settings to illus-
trate that by introducing the data size Dk of client k in our
formulations, the proposed scheme can be applied to dif-
ferent data size distributions. The four-layer convolutional
neural network is adopted for training, which consists of
two 5×5 convolution layers, one fully connected layer with
50 units, and one softmax layer. The total number of the
model parameters is 21840, and the total number of training
rounds is set as 1500. The learning rate η is set as 0.01 by
default.

A. COMPARISON SCHEME
We compare the proposed solution CED+SDR with the
following comparison methods:

• Perfect: all clients are selected in each training round
and assuming that the perfect aggregation can be
achieved with the error-free transmission.

• DC [5]: the client selection and receive beamforming
is optimized with the two-step difference-of-convex-
functions (DC) method, and the threshold of the mean
squared error is set as 15 dB.

• CED only: clients are selected with the proposed CED
method without beamforming optimization for each
training round.

• SDR only: for the client selection sub-problem, the local
clients with sufficient energy can be selected, which is
similar to [15], [16]. Besides, the receive beamforming
is optimized with the proposed SDR method.

FIGURE 3. The learning performance under the balanced data setting.

FIGURE 4. The learning performance under the unbalanced data setting.

Fig. 3(a) and Fig. 3(b) demonstrate the performance of
the training loss and test accuracy of the proposed method
with other baselines for the OTA FL system under the bal-
anced data setting. The number of antennas for PS is set
as 10 and the noise power is set as −70 dB. We omit
the training loss of the DC method and SDR only method
since they are too large compared with the other three meth-
ods. The training loss of the other three methods is depicted
in Fig. 3(a). It is observed that the proposed CED+SDR
method performs better compared with the DC method and
SDR only method from Fig. 3(b). Besides, one can observe
that the training loss of the proposed CED+SDR method
decreases faster compared with the CED only method from
Fig. 3(a) even though the accuracy of these two meth-
ods is close in Fig. 3(b). The DC method cannot converge
as it only takes transmission power control into account and
ignores the energy constraint of local clients for the OTA FL
system. The SDR only method performs worst as the selected
clients with SDR only method may have poor channels or
inadequate energy.

The performance of the CED only method performs
better compared with the SDR only method, indicating
that the client selection has a larger impact on the learn-
ing performance of OTA FL than the receive beamforming
optimization.

Fig. 4(a) and Fig. 4(b) demonstrate the learning
performance of the proposed method with other baselines
for the OTA FL system under the unbalanced data setting,
which has the similar trend to the balanced data setting.
From Fig. 3 and Fig. 4, we can get the conclusion that
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FIGURE 5. The impacts of noise power on the learning performance under the
unbalanced data setting.

the proposed scheme can be applied to different data size
distributions.

B. PARAMETER ANALYSIS
In this subsection, the impacts of the noise power, the number
of antennas at the PS side, and the average arrival rate of
the harvested energy on the learning performance of the
proposed CED+SDR method are discussed for the OTA FL
system. We show the experimental results of the proposed
method under the unbalanced data setting as examples since
the results of the proposed method under the balanced data
setting have similar trends to those under the unbalanced
data setting.

In Fig. 5(a) and Fig. 5(b), different noise power settings
are investigated for the proposed CED+SDR method under
the unbalanced data setting for the OTA FL system. The
number of antennas at the PS side is set as 10. We can
see that accuracy of the OTA FL system decreases when
noise power increases for the proposed CED+SDR method
under the unbalanced data setting. The reason is that the
introduced noise makes the gradients deviate from the actual
values in each training round for the OTA FL system.
When the noise power is set too large such as −50 dB,
the SNR is too low to make the OTA FL system con-
verge. When the noise is set as −80 dB, the proposed
CED+SDR method has a similar performance to the Perfect
method.

In Fig. 6(a) and Fig. 6(b), the impacts of the number
of antennas at the PS side are shown for the proposed
CED+SDR method under the unbalanced data setting for
the OTA FL system. The noise power is set as −60 dB for
easily observing the impacts of the number of antennas at
the PS side on the learning performance of the OTA FL
system. We can see that the proposed CED+SDR method
can converge even when the number of antennas at the PS
side is set as 1. And with the number of antennas at the
PS side increasing, the proposed method performs better,
which indicates that the proposed SDR method is effec-
tive for receive beamforming optimization of the OTA FL
system.

To show the influence of the average arrival rate of the har-
vested energy ēk on the learning performance of the proposed

FIGURE 6. The impacts of the number of antennas at the PS side on the learning
performance under the unbalanced data setting.

FIGURE 7. The impacts of the average arrival rate of energy on the learning
performance under the unbalanced data setting.

CED+SDR method conveniently, we set ēk as the same value
for all clients for the OTA FL system. Besides, the number
of antennas at the PS side is set as 10 and the noise power is
set as −60 dB. Fig. 7(a) and Fig. 7(b) show the training loss
and the test accuracy of the proposed CED+SDR method
with different average arrival rate settings for energy harvest-
ing. We can see that accuracy increases when the average
arrival rate of the harvested energy ēk increases for the OTA
FL system under the unbalanced data setting. It is observed
that when the average arrival rate of the harvested energy
ēk is set too small such as 0.2, the proposed method cannot
converge as the SNR is too low caused by the transmission
energy constraint. However, if the average arrival rate of
energy ēk is too large, the learning performance cannot con-
tinue to improve as the transmission energy of local clients
is limited not only by the current battery capacity but also
by the maximum transmission power.

VII. CONCLUSION
The energy management problem is one of the key issues
for the OTA FL system. In this paper, we employ the
energy harvesting technique for OTA FL and derive the
convergence analysis of the optimality gap regarding client
selection, receive beamforming, energy constraint, and power
control. Based on the convergence analysis results, we for-
mulate the online MINLP optimization problem to minimize
the optimality gap when jointly considering client selection
and receive beamforming. The alternative optimization is
developed to solve the MINLP problem. The CED-based
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method is proposed to optimize client selection decisions,
and the receive beamforming is optimized with the SDR
method. The simulation results show that our proposed
method performs better compared with the other benchmarks.

APPENDIX A
PROOF OF LEMMA 1
As denoted by o = ∇F(wt) − r̄t, the errors are introduced
by client selection and noisy channels. When Assumption 1
exists, by incorporating (18) into (19), we have

F(wt+1) ≤ F(wt)− η(∇F(wt)− o)T∇F(wt)

+ lη2

2
‖(∇F(wt)− o)‖22. (38)

By accessing the expected values of (38) and setting the
learning rate to η = 1

l , we have

E
[
F(wt+1)

]

≤ E[F(wt)]−
1
2l
‖∇F(wt)‖22 + 1

2l
E
[
‖o‖22

]
. (39)

Let Kt =
{
k|βk,t = 1, k ∈ K, t ∈ {1, . . . ,T}}

denote the set of selected clients and K̃t ={
k|βk,t = 0, k ∈ K, t ∈ {1, . . . ,T}} denote the set of
unselected clients [3], and then E

[‖o‖22
]
is bounded as

E
[
‖o‖22

]

= E
[∥∥∥∥∇F(wt)−

∑
k∈K βk,tDkgk,t∑
k∈K βk,tDk

− mH
t zt

αt
∑

k∈K βk,tDk

∥∥∥∥
2

2

]

≤ E
[∥∥∥∥∥

∑
k∈K

∑Dk
i=1 ∇f (wk,t, xk,i, yk,i)∑

k∈K Dk
− mH

t zt
αt
∑

k∈K βk,tDk

−
∑

k∈K
∑Dk

i=1βk,t∇f (wk,t, xk,i, yk,i)∑
k∈K βk,tDk

∥∥∥∥∥

2

2





≤ E





∥∥∥∥∥∥
−(D−∑k∈K βk,tDk)

D
∑

k∈K βk,tDk

∑

k∈Kt

Dk∑

i=1

∇f (wk,t, xk,i, yk,i)

+
∑

k∈K̃t

∑Dk
i=1 ∇f (wk,t, xk,i, yk,i)

D

∥∥∥∥∥

2

2





+ Sσ 2||mH
t ||2

‖αt
∑

k∈K βk,tDk‖2

≤ E



 (D−∑k∈K βk,tDk)
D
∑

k∈K βk,tDk

∑

k∈Kt

Dk∑

i=1

∇f (wk,t, xk,i, yk,i)

+
∑

k∈K̃t

∑Dk
i=1 ∇f (wk,t, xk,i, yk,i)

D

]2

+ Sσ 2||mH
t ||2

‖αt
∑

k∈K βk,tDk‖2
. (40)

Compared to typical FL [3], the difference for OTA FL
lies in the introduced aggregation error part Sσ 2||mH

t ||2
‖αt

∑
k∈K βk,tDk‖2

caused by noise.

Based on the Assumption 3, we can get

E
(
‖o‖22

)

≤ E
[

2(D−∑k∈K βk,tDk)
D

√
(λ1 + λ2‖∇F(wt)‖22)

]2

+ Sσ 2||mH
t ||2

‖αt
∑

k∈K βk,tDk‖2

≤ 4
D2

(

D−
∑

k∈K
βkDk

)2(
λ1 + λ2‖∇F(wt)‖22

)

+ Sσ 2||mH
t ||2

∥∥αt
∑

k∈K Dkβk,t
∥∥2

2

. (41)

By incorporating (41) into (39) and subtracting F(w∗)
from both sides of (39), we have

E
[
F(wt+1)

]
− F

(
w∗
)
≤ E[F(wt)]− F

(
w∗
)

+ 2
lD2

(

D−
∑

k∈K
βk,tDk

)2(
λ1 + λ2‖∇F(wt)‖22

)

+ Sσ 2||mH
t ||2

2lαt2(
∑

k∈Kβk,tDk)2
− 1

2l
‖∇F(wt)‖22. (42)

According to (14), (15), and (17), which represent the
calculation of the total energy consumption etotk,t, energy
consumption constraint caused by available battery bk,t, and
the definition of the transmission energy threshold &max

k,t ,
the normalization scaling factor αt at the t-th training round
needs to satisfy the following condition:

αt ≤




βk,t||mH

t hk,t||
√
S&max

k,t
√
τtrDk

∥∥gk,t
∥∥

2



, k ∈ K. (43)

The variable αt can also be expressed as follows:

αt ≤ min
k∈K




βk,t||mH

t hk,t||
√
S&max

k,t
√
τtrDk

∥∥gk,t
∥∥

2



. (44)

Based on Assumption 2 and Assumption 3, we have

‖∇F(wt)‖22 ≥ 2µ
[
F(wt)− F(w∗)

]
, (45)

and

‖gk,t‖2 ≤ λ1 + λ2‖∇F(w)‖2. (46)

By incorporating (44), (45), and (46) into (42), we finally
obtain

E
[
F(wt+1)

]
− F

(
w∗
)

≤ ψt
[
E[F(wt)]− F

(
w∗
)]

+ λ1

l
φt. (47)

The proof of Lemma 1 has been completed.
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APPENDIX B
PROOF OF THEOREM 1
By recursive operation for (22), we can get cumulative
optimality gap after T training rounds as

E
[
F(wT+1)

]
− F(w∗)

≤ ψT
[
E[F(wT)]− F(w∗)

]
+ λ1

l
φT

≤ ψT
(
ψT−1

(
E
[
F(wT−1)

]
− F(w∗)

)
+ λ1

l
φT−1

)
+ λ1

l
φT

≤ · · ·

≤
T∏

t=1

ψt
(
E[F(w1)]− F

(
w∗
))

+ λ1

l




T−1∑

t=1

T∏

j=t+1

ψjφt + φT



. (48)

The proof of Theorem 1 has been completed.

APPENDIX C
PROOF OF LEMMA 2
We assume that the introduced variable τ is set as
mink

&max
k,t ||mH

t hk,t||2
βk,tD2

k
. The problem P3.1 is equivalent to

min
mt

||mt||2
τ

(49a)

s.t.
||mH

t hk,t||2
τ

≥ βk,tD
2
k

&max
k,t

, ∀k ∈ K. (49b)

When another new variable m̃t = mt/
√
τ is given, the

problem (49) can be reformulated as

min
m̃t

||m̃t||2 (50a)

s.t. ||m̃H
t hk,t||2 ≥

βk,tD2
k

&max
k,t

, ∀k ∈ K. (50b)

Note that the problem (50) is the quadratically constrained
quadratic programming (QCQP) problem. According to [29],
when we assume that Mt = mtmH

t and Hk,t = hk,thHk,t are
satisfied, the problem (50) can be rewritten as

min
Mt

Tr(Mt) (51a)

s.t. Tr(MtHk,t) ≥
βk,tD2

k

&max
k,t

, ∀k ∈ K, (51b)

Mt * 0, (51c)

rank(Mt) = 1. (51d)

The proof of Lemma 2 has been completed.
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