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Abstract—Multi-access edge computing promises satisfactory user experience by offloading tasks to the MEC server deployed at the
network edge. However, since the MEC server is often resource-limited as compared to the cloud infrastructure, how to efficiently utilize
its resources for system performance optimization becomes a challenge. In this paper, we study this problem with the aim at
maximizing user’s QoE through jointly optimizing service selection, computation resource allocation and task offloading decision, which
is less studied in existing literature. We formulate a mixed-integer nonlinear programming problem (MINLP) for the task and propose a
utility-based approach together with a low-complexity resource-efficiency based heuristic to address the problem. We consider realistic
settings, where centralized solutions may not apply and an optimal mechanism needs to adapt as system operates. A distributed
algorithm based on the Lagrangian-dual based decomposition theory is proposed, and we prove all sub-problems derived can be
efficiently solved. In line with the current VM technology, we develop a cost-aware online algorithm that explicitly incorporates the cost
of service switches into service selection and resource allocation. We evaluate our mechanism through both synthetic and trace-driven
simulations, and results indicate they are effective as compared to representative baseline algorithms.

Index Terms—Multi-access edge computing, service selection, computation resource allocation, task offloading, online algorithm
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1 INTRODUCTION

MOBILE applications have dominated the Internet for the
past few years [13] and they are now becoming more

and more resource-hungry and delay-sensitive. Applications
such as augmented reality and interactive online gaming are
common today and they impose a stringent requirement on
both computing and networking capacity. Cloud computing,
which is the de-facto platform for providing network comput-
ing services, nevertheless, is insufficient at supporting these
applications due to the long distance (hence long delay)
between cloud data center and user equipment (UE). The con-
text-awareness of computation [32], [29] also requires work-
load being processed as locally as possible. These issues have
led to a call for alternative network computing paradigms
that bring computation and storage capacities of cloud in
close proximity to end-users, giving rise to the concept known
as Multi-access Edge Computing (MEC, formally known as
Mobile EdgeComputing [26]).

MEC offers superior user experience by offloading
resource-intensive computation from mobile devices to the
MEC servers deployed at the network edge, i.e., base sta-
tions. However, as compared to the cloud infrastructure, the
MEC server is often resource-limited due to constraints of
physical space, power supply, etc. For example, it is common
that network operators deploy a computing sever with small
computation resources or a cluster with medium resources
to implement cloudlet based mobile computing. This
resource-limitation at the MEC server poses significant chal-
lenges for system operators to optimize performance since
not all services can be simultaneously hosted at the network
edge, and how to optimally select services to accommodate
at the MEC server then becomes a critical research prob-
lem [48], [40].

Designing an optimal policy for service selection faces
many challenges. First, services are heterogeneous in both
resource requirement (i.e., CPU, memory) and workload/
demand from users. A training task (i.e., updating DNNmod-
els) from IoT sensors typically consumes more computation
resources but can tolerate long delays than a face recognition
request from mobile phones. To achieve high system perfor-
mance, characteristics of services and the corresponding tasks
from UEs should be appropriately taken into account during
the service selection process. Second, whereas services are
often fixed in system, tasks from UEs and system conditions
(i.e., channel quality) are changing over time. This requires
that service selection needs to adapt to these changes as well.
Third, as dynamic service selection is involved in a stochastic
MEC system, service switches are unavoidable when some
new services “replace” the existing ones. Service switches are
generally not cost-free as they may significantly degrade
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system performance, i.e., certain amount of time is needed to
download a new service/VM from cloud and then start it at
theMEC server, duringwhich tasks cannot be served. The cost
of service switches requires that optimal service selection pol-
icy be cost-aware, i.e., it achieves high system performance
while at the same time incurs less service switches.

In this paper, we study the service selection1 problem in a
general MEC system with limited resources at the MEC
server, i.e., an Edge Cloud Node (ECN) in a wireless local
area network [16], and our goal is to optimize user experience.
We formally define user’s QoE (quality of experience) as the
weighted sum of task latency reduction and energy savings at
UEs, and formulate an optimization problem for the task
through jointly optimizing service selection, computation
resource allocation and task offloading decision, which are
tightly coupled if one wants to optimize system performance.
The problem is NP-hard in general and we propose a utility-
based reformulation and then develop a low-complexity effi-
cient heuristic to solve it. We also devise a distributed and
online algorithm that adapts to both workload and system
variations, which at the same time explicitly integrates the
cost of service switches that cannot be simply neglected in a
real MEC system. Simulation and numerical results demon-
strate that our proposed mechanism is capable at improving
user’s QoE while at the same time keeping the system stable,
as compared to representative baseline algorithms. For exam-
ple, it is observed that our cost-aware online algorithm
achieves more than 50% performance enhancement than the
Top-Rate-Allocation algorithm (which is the most efficient
among centralized baseline algorithms), while incurs less ser-
vice switches under real-world taskworkloads.

More specifically, we make the following contributions:

(1) We propose a fine-grained task offloading policy by
dividing tasks of each service into multiple sub-types
based on their workload characteristics, i.e., task
data size, computation intensity, transmission rate
between UE and the MEC server, and making task
offloading decisions based on these sub-types. This
policy allows us to fully leverage the heterogeneity
of tasks for system performance optimization com-
pared to other policies such as service-level task off-
loading [48], while at the same time keeps the model
computationally tractable, i.e., there are a small num-
ber of task offloading decision variables in the
model.

(2) We study the problem of maximizing user’s QoE by
jointly optimizing service selection, VM resource alloca-
tion and task offloading decision.We formulate the joint
optimization task as a mixed-integer nonlinear pro-
gramming problem (MINLP) and prove its NP-hard-
ness. To solve it efficiently, we reformulate the problem
as a network utilitymaximization problem (NUM)with
a cardinality constraint which is much simpler in form,
and then propose a low-complexity resource-efficiency
based heuristic for solving thisNUMproblem.

(3) We analyze structural properties of the joint optimiza-
tion problem and develop a decentralized algorithm

by decomposing it into sub-problems for the service
providers and the MEC server, with the Lagrangian-
dual based decomposition theory. We prove that all
sub-problems derived can be efficiently solved and
that the algorithm converges.

(4) The joint optimization task is further studied in an
online setting, where service/VM switches at theMEC
server can significantly impact system performance.
We formally define the cost of service switches, and
propose a cost-aware online algorithm for optimal ser-
vice selection and resource allocation.

(5) We evaluate our mechanism through both synthetic
and trace-driven simulations. Results indicate that as
compared to baseline algorithms, our resource-effi-
ciency based heuristic significantly improves system
performance, and the cost-aware online algorithm
converges fast and that it is capable of achieving
high performance while at the same time effectively
avoids system instability, i.e., a slight amount of VM
switches is incurred as system operates.

The remainder of this paper is organized as follows. In
Section 2 we introduce system model and the problem we
concentrate. Section 3 gives problem formulation for the
joint optimization task and its alternative NUM representa-
tion. We also present the resource-efficiency based heuristic
in this section. Section 4 describes our decentralized mecha-
nism and Section 5 elaborates the cost-aware online algo-
rithm. Section 6 presents numerical results via simulations.
We discuss future research directions and related work in
Sections 7 and 8 concludes the paper.

2 PROBLEM DESCRIPTION

We consider a generic Multi-access Edge Computing system
as shown in Fig. 1, where a set of collocated User Equip-
ments (UEs) (e.g., smart phones, IoT sensors, unmanned
vehicles) are served by a base station. To generalize the
model, this base station can be either macro cell (eNB), small
cell (SCeNB), or femto cell (HeNB). Integrated with the base
station is a set of servers (called MEC server) deployed by
the mobile network operator so that computation-intensive
and latency-sensitive tasks from UEs can be offloaded to the
server for better network performance and enhanced users’
quality of experience (QoE).

Fig. 1. A simple multi-access edge computing system.

1. Sometimes also referred to as service placement or service caching
in existing literature.
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Without loss of generality, we assume there are N different
type of tasks (e.g., image processing, navigation) generated by
UEs in the system. Each type i can be further categorized into
Ni sub-types based on the parameters of tasks (e.g., data size,
computation intensity, transmission rate between UE and the
base station). Unlike previous work that allocate computing
resources of theMEC server to UEs [25], [2] or tasks [52], in this
work, we consider allocating computing resources to individ-
ual services that are hosted by virtual machines (VMs), each of
which is capable of performing computation for one specific
type of task. For example, navigation for unmanned vehicles
and face recognition for mobile users are hosted by two sepa-
rate VMs for security consideration. It is assumed that not all
services/VMs2 are hosted simultaneously at the MEC server
due to its resource (memory, storage, etc) constraints.

Computation tasks are generated by UEs. Once a computa-
tion task is generated, the request is routed to the MEC server
for potential offloading. The computation can only be per-
formed at the server if the corresponding service is hosted and
significant performance gains can be achieved. Otherwise, the
task is computed locally at theUEwhere it originates.3

With the above setting, three questions arise naturally as
how to utilize the computing resource of the MEC server and
how tasks are computed. More specifically, these questions
are: 1) which services/VMs should be hosted at the MEC server? –
also known as the service selection problem, 2) how much resources
should be allocated to these services? – also known as the VMresource
allocation problem, and 3) which computation tasks should be off-
loaded to the MEC server so that significant performance gains can
be achieved? – also known as the task offloading decision problem.

Obviously, different answers to the above questions will
lead to different system performance and users’ QoE. More-
over, it is not hard to see that the three design choices (service
selection, VM resource allocation and task offloading) are
tightly coupled ifwewant to optimize the systemperformance,
i.e., computation resources should be allocated to those serv-
ices such that significant performance gains can be achieved by
offloading their tasks to the server. To fully realize the potential
ofMEC, a joint optimization of service selection, resource alloca-
tion and task offloading decision is thus required. It is also
worth noting that as the characteristics of tasks and network
conditions fluctuate over time, in practice we need an online
and adaptive (possibly distributed) algorithmic solution.

In this paper, we seek to answer the aforementioned ques-
tions by studying the problem of maximizing users’ QoE,
with both latency and energy consumption of processing com-
putation workloads taken into account. Starting from models
to characterize latency and energy consumption in MEC, we
formulate the joint optimization problem as a mixed-integer
nonlinear programming problem (MINLP) and prove its NP-
hardness. We show that the problem can be reformulated as a
network utilitymaximization (NUM) problemwith a tractable
form. This NUM problem, although still challenging to solve,
facilitates us to design efficient heuristic algorithm by exploit-
ing its structural properties. The joint optimization task is fur-
ther studied under decentralized and online settings, for
whichwe also develop efficient algorithmic solutions.

3 PROBLEM FORMULATION AND HEURISTIC

ALGORITHM

In this section, we present computation models of UEs and
the MEC server, i.e., models to characterize latency and
energy consumption when computation is performed at UE
and the MEC server. We then give problem formulation for
the joint service selection, VM resource allocation and task
offloading decision based on these models. A network util-
ity maximization reformulation of the problem is presented
and a low-complexity heuristic algorithm to efficiently solve
the problem follows then.

3.1 Problem Formulation
We start by analyzing the problem when all parameters
are fixed and are given a prior. Let !i and !ij be the
arrival rate of tasks of type i and that of tasks of type ij
(sub-type j in type i), respectively, !i ¼

PNi
j¼1 !ij. We

make no assumptions on !i and !ij, i.e., the task arrivals
can be Poisson or any other processes. Each task Aij can
be characterized by a tuple AijðLij; Cij; fij; pij; Kij; wijÞ,
where Lij is the data size of the task, Cij is the required
computation intensity (number of CPU cycles per bit);
fij, pij and Kij are CPU frequency, transmission power
and energy coefficient of the UE where Aij is generated,
respectively. And wij is the data transmission rate
between the UE and the MEC server. Table 1 summa-
rizes the main notations used in this paper.

TABLE 1
Main Notations

Symbol Definition

N Number of services in system
M Number of services that can be hosted at the MEC

server
F CPU frequency at the MEC server
FMAX Maximal CPU frequency that can be allocated to a

service
i Index of task types
j Index of sub-types of tasks
Aij A task of type ij (sub-type j in task of type i)
!ij Arrival rate of task Aij

Lij Data size of task Aij

Cij Computation intensity of task Aij

fij CPU frequency of the UE where task Aij originates
pij Transmission power of the UE where task Aij

originates
Kij Energy coefficient of the UE where Aij originates
wij Data rate between the UE where Aij originates and

the MEC server
TLocal
ij Latency of task Aij if it is computed locally at UE

TMEC
ij Latency of task Aij if it is computed at the MEC server

ELocal
ij Energy consumption of performing task Aij at UE

EMEC
ij Energy consumption at UE if task Aij is computed at

the MEC server
xij A binary variable denoting whether task Aij is

offloaded
yi A binary variable denoting whether service/VM i is

hosted
at the MEC server

Fi Computation resource allocated to service i

2. We use services and VMs interchangeably.
3. We assume in this work that tasks will not be offloaded to cloud

due to the excessive long propagation delay.
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When Aij is computed locally, the latency TLocal
ij of the

task is simply the time needed to perform computation at
the UE, which is

TLocal
ij ¼ Lij % Cij

fij
; (1)

where Lij % Cij is the computation workload (in CPU
cycles). The energy consumption ELocal

ij is [26]

ELocal
ij ¼ Kij % ðLijCijÞ % f2

ij: (2)

Let F and Fi be the CPU resource of the MEC server and
that allocated to service/VM i, respectively. When task Aij

is offloaded to the MEC server, the latency TMEC
ij (which

includes the time to upload the data and perform computa-
tion at the server4) can be given as follows:

TMEC
ij ¼ Lij

wij
þ Lij % Cij

Fi
; (3)

and the energy consumption EMEC
ij at UE is5

EMEC
ij ¼ pij %

Lij

wij
: (4)

Since in MEC, users’ QoE is mainly related to latency and
energy consumption, we define the gain Gij of offloading
task Aij to the MEC server as the weighted sum of latency
reduction and energy savings, which is as follows:

GijðFiÞ ¼ aij %
ELocal

ij ' EMEC
ij

ELocal
ij

þ bij %
TLocal
ij ' TMEC

ij

TLocal
ij

;

(5)

where aij 2 ½0; 1) (bij ¼ 1' aij) is a constant denoting the
relative weight between energy savings and latency reduc-
tion. When aij = 1, the problem becomes that of minimizing
energy consumption, while aij = 0 means the goal is to mini-
mize task latency. Note that these two weights can vary
from task to task.

Letxij 2 f0; 1g be a variable denotingwhether taskAij is off-
loaded, with xij ¼ 1 if Aij is computed at the MEC server, and
xij ¼ 0 otherwise. Likewise, let yi 2 f0; 1g denote whether ser-
vice/VM i is hosted at the MEC server, with yi ¼ 1 if VM i is
present, and yi ¼ 0 otherwise. Also denoteM as the number of
VMs that the MEC server can accommodate due to its resource
constraint, and FMAX as the maximum CPU frequency that a
single VM can be allocated to. With these notations, we can for-
mulate the offline joint service selection, VM resource allocation
and task offloading decision problemwith the goal tomaximize
users’ QoE as the following optimization problem

Max:
XN

i¼1

XNi

j¼1

!ij %GijðFiÞ % xij (6a)

s.t.:
XN

i¼1

Fi * F; (6b)

XN

i¼1

yi * M; (6c)

xij * yi; 8i; j; (6d)

0 * Fi * FMAX; 8i (6e)

yi 2 f0; 1g; xij 2 f0; 1g; 8i; j; (6f)

where yi, Fi, and xij are decision variables that correspond
to service selection, resource allocation and task offloading
decision, respectively. Constraint (6b) and (6c) represent
resource limitation at the MEC server, and (6d) states that a
task can only be offloaded to the server if the corresponding
service is hosted.

The above problem is in fact a mixed-integer nonlinear
programming (MINLP) problem that is typically hard to
solve. In general, it is NP-hard as shown in the following
theorem.

Theorem 3.1. The offline joint optimization problem as stated
in (6) is NP-hard.

Proof. We prove the theorem by showing that the following
problem (7), which is a simplified version of problem (6)
(by dropping the cardinality constraint), is NP-hard

Max:
XN

i¼1

XNi

j¼1

!ij %GijðFiÞ % xij (7a)

s.t.:
XN

i¼1

Fi * F; (7b)

0 * Fi * FMAX; 8i (7c)

xij 2 f0; 1g; 8i; j (7d)

For the above problem, constraint (7d) can be relaxed as
0 * xij * 1 since this does not change the optimal solu-
tion. Moreover, based on Eq. (5), we can see that the
objective of the problem can be expressed as : min gðzzÞ ¼
hðzzÞ þ

P
i
fiðzzÞ
hiðzzÞ

with the variable zz ¼ ðxx; FF ÞT and feasible
solution set being a compact convex set, where xx ¼
ðx11; x12; . . .ÞT, FF ¼ ðF1; F2; . . .ÞT, hðzzÞ ¼

PN
i¼1

PNi
j¼1 !ij

ð aijpijLij

wijE
Local
ij

þ bijLij

wijT
Local
ij

' 1Þxij is a convex function (linear),

fiðzzÞ ¼
PNi

j¼1
!ijbijLijCij

TLocalij

xij + 0 is convex (linear) and

hiðzzÞ ¼ Fi > 0 is concave. This kind of problem, namely,
the Sum-of-Ratios Problem, has been shown NP-
hard [14].

Next, we prove NP-hardness of problem (6) by contra-
diction. Suppose there exists a polynomial-time algorithm
that solves problem (6). By setting M + N and yi ¼ 1 8i,

4. Following the common practice [8], we assume a negligible
amount of post-processing data to be transmitted back to the UE.

5. Since our goal is to optimize users’ QoE, we ignore energy con-
sumption of the MEC server. Furthermore, although a simple energy
consumption model for uploading data is adopted in this work, we
note that more complex models of energy consumption at UEs, i.e., a
smartphone in 4G LTE networks [17], can also be handled by our
framework and algorithms proposed.
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we are able to solve problem (7) in polynomial-time, and
this contradicts the conclusion that (7) is NP-hard. tu

3.2 Alternative Problem Representation
Given that problem (6) is NP-hard, we seek efficient heuris-
tic algorithms for approximate solution. We make two
observations from Eq. (5): 1) the gain GijðFiÞ of offloading
task Aij to the MEC server is an increasing and concave
function of the allocated resource Fi, and 2) positive gains
can only be achieved when adequate resource is allocated.
Let F 0

ij be the resource allocation such that GijðF 0
ijÞ ¼ 0, i.e.,

GijðFiÞ > 0 when Fi > F 0
ij, and GijðFiÞ < 0 when Fi <

F 0
ij. We define a utility function UijðFiÞ for task Aij as fol-

lows:

UijðFiÞ ¼
0; Fi < F 0

ij

GijðFiÞ; Fi + F 0
ij
;

(
(8)

and a utility function UiðFiÞ for tasks of type i

UiðFiÞ ¼
XNi

j¼1

!ijUijðFiÞ: (9)

It is not hard to see that UiðFiÞ is a nonnegative and increas-
ing function of Fi.

Let FF ¼ ðF1; F2; . . . ; FNÞ, and CardðFF Þ be the cardinality
function of FF , i.e., it equals to the number of non-zero ele-
ments in FF . We can now reformulate Problem (6) as the fol-
lowing network utility maximization problem (NUM) with
a cardinality constraint

Max:
XN

i¼1

UiðFiÞ (10a)

s.t.:
XN

i¼1

Fi * F; (10b)

0 * Fi * FMAX; 8i (10c)

CardðFF Þ * M; (10d)

where the cardinality constraint (10d) represents the con-
straint that the MEC server can hostM services at most.

Theorem 3.2. Let (F ,
i , y

,
i , x

,
ij) and (F#

i ) be the optimal solution
to Problem (6) and (10), respectively. ThenF ,

i ¼ F#
i . Moreover,

the two problems have the same maximum objective function
value, i.e.,

PN
i¼1

PNi
j¼1 !ij %GijðF ,

i Þ % x,
ij ¼

PN
i¼1 UiðF#

i Þ.

Proof. It is not hard to see that y,i ¼ 0 iff F ,
i ¼ 0. This is

because y,i ¼ 0 if F ,
i ¼ 0, since hosting a service with no

computing resource allocated brings no performance
gains but it takes a place to provide service at the MEC
server. Likewise F ,

i ¼ 0 if y,i ¼ 0, due to the fact that allocat-
ing computing resource to a service not hosted at the server
also brings no performance gains butmerelywastes the allo-
cated resource.Moreover, according to (6d), we have x,

ij ¼ 0
if y,i ¼ 0 (or equivalently F ,

i ¼ 0), and therefore
GijðF ,

i Þx,
ij ¼ 0 if F ,

i ¼ 0. To maximize the objective func-
tion, we also haveGijðF ,

i Þ > 0 and x,
ij ¼ 1 ifF ,

i > 0.
Now we prove that (F ,

i ) is a feasible solution to Prob-
lem (10), i.e., it satisfies constraints (10b) (10c) (10d). This
is because: 1) CardðF ,F ,Þ * M since

P
i y

,
i * M (from (6c))

and y,i ¼ 0 iff F ,
i ¼ 0 as we have proved (recall that

y,i 2 f0; 1g), and 2) constraint (10b) and (10c) also appear
in Problem (6) (see (6b) and (6e)).

On the other hand, given that (F#
i ) be the optimal

solution to Problem (10), we can construct a solution
(F#

i , y#i , x
#
ij ) such that it is feasible to Problem (6) . The

construction is as follows: 1) y#i ¼ 0 if F#
i ¼ 0, y#i ¼ 1 if

F#
i > 0, and 2) x#

ij ¼ 1 if F#
i > 0 and GijðF#

i Þ > 0, and
x#
ij ¼ 0 otherwise. Then we can see that

P
i y

#
i * M since

CardðF#F#Þ * M, i.e., (F#
i , y#i , x

#
ij ) satisfies constraint (6c).

It is also easy to check that constraints (6b) (6d) (6f) are
satisfied by (F#

i , y#i , x
#
ij ). The theorem follows by observ-

ing from Eqs. (8) and (9) that
PN

i¼1 UiðFiÞ ¼PN
i¼1

PNi
j¼1 !ij %GijðFiÞ when GijðFiÞ > 0, i.e., the two

problems have the same objective function value. tu

Remark: The proof of Theorem 3.2 also suggests a way to derive a
solution to Problem (6) from a solution to problem (10), such that the
two problems have the same objective function value. This allows us to
obtain solution to Problem (6) by solving Problem (10), which is much
simpler in form as it only contains resource allocation variables. How-
ever, as a nonlinear optimization problem with cardinality constraint,
problem (10) is still very hard to solve, since even a linear optimization
problemwith cardinality constraint is shownNP-hard [11].

3.3 Heuristic Algorithm
In this subsection, we propose an efficient heuristic algorithm
to solve problem (10) based on its structural properties and the
concept of resource efficiency.Wemake the following two obser-
vations about Problem (10): 1) each utility UiðFiÞ is an increas-
ing function of Fi – the resource allocated to service i, and 2)
the objective function is separable, i.e., it is the sum of individ-
ual utilitiesUiðFiÞwhich is a function of its local variable Fi.

The main idea of our algorithm is that we first solve prob-
lem (10) with no cardinality constraint, i.e., the relaxed prob-
lem, which is a utility maximization problemwith continuous
variables. This relaxed problem, however, is not convex.
Nevertheless, we can approach the optimal solution by
exploiting the structural properties, as can be seen in Proce-
dure 1.We then adjust the derived solution such that the cardi-
nality constraint is satisfied while at the same time,
the objective function value is further increased. This is
achieved in Procedure 2.

Procedure 1. Allocating Resources to the N Services.

Input: Task arrival rates !ij’s; Utility functions UiðFiÞ’s; Num-
ber of services/VMsN ; CPU resource of the MEC server
F ; Change of resource DF ;

Output: Resource allocation FF ¼ ðF1; F2; . . . ; FNÞ;
1: S  f1; 2; . . . ; Ng
2: for i 2 S do
3: Fi  FMAX.
4: DU'

i ðFiÞ UiðFiÞ ' UiðFi ' DF Þ.
5: while

PN
i¼1 Fi > F do

6: Select j 2 S such that DU'
j ðFjÞ ¼ minfDU'

i ðFiÞgi2S .
7: Fj  Fj ' DF .
8: if UjðFjÞ ¼ 0 then
9: Fj  0, S  S n fjg.
10: else
11: DU'

j ðFjÞ UjðFjÞ ' UjðFj ' DF Þ.
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More specifically, our algorithm consists of two proce-
dures. In Procedure 1, we solve the relaxed problem by first
allocating the maximum allowed CPU resource to each ser-
vice, that is, FMAX. We then take resource from each service
until the sum of allocated resource equals to that of the
MEC server. Note that each time a constant amount DF of
CPU resource is taken from a service, the service with the
least resource efficiency is selected (see line 6). Here resource
efficiency is defined to be the difference of utility when DF
resource is taken, i.e., DU'

i ðFiÞ ¼ UiðFiÞ ' UiðFi ' DF Þ. Tak-
ing resource from a service with the least resource efficiency
guarantees that the total utility (objective function value) is
decreased least.

After execution of Procedure 1, we obtain computation
resource allocation to the N services. We then select the top
M services with the largest utilities, and allocate the remain-
ing resource (if any from other services) to these selected M
services, as shown in Procedure 2. Note that each time we
add a constant amount DF of CPU resource to a service, we
select the service with the most resource efficiency (line 6).
Similarly, here resource efficiency is defined to be the differ-
ence of utility when DF resource is added, i.e., DUþ

i ðFiÞ ¼
UiðFi þ DF Þ ' UiðFiÞ. This guarantees that the objective
function value is increased most. The algorithm terminates
when all resource of the MEC server is allocated to the M
services.

We note that our algorithm works in a greedy manner, as
in both procedures it adds or takes resource from the service
with the most or least resource efficiency. Assuming there
exists an oracle for evaluating resource efficiency, the time
complexity of Procedure 1 is OðN%FMAX'F

DF Þ, and that of Pro-
cedure 2 is at most Oð F

DFÞ. Therefore, the time complexity of

our algorithm is OðN%FMAX'F
DF Þ þOð F

DFÞ ¼ OðN%FMAX

DF Þ.

4 DECENTRALIZED MECHANISM

The heuristic algorithm proposed in the above section is
centralized as it takes as input detailed information about

tasks and network conditions, which include task arrival
rates, task parameters, UE configuration, etc. However, in
practice one may need decentralized mechanisms, i.e.,
when each application/service provider does not want to
reveal its utility function to the MEC server, or the MEC
server is not able to collect information about UEs. A decen-
tralized mechanism also adapts to network changes and
workload variations naturally. In this section, we propose
such a decentralized mechanism based on structural prop-
erties of the problem under consideration and the Lagrang-
ian-dual decomposition theory, where the MEC server and
service providers work collectively to determine an appro-
priate resource allocation.

4.1 Decentralized Mechanism
Similar to heuristic algorithm, the decentralized mechanism we
propose also consists of two procedures, where the first proce-
dure solves the relaxed problem (with no cardinality constraint),
and the second procedure adjusts the solution so that resource
of theMECserver is fully allocated to exactlyM services.

In both procedures, we solve optimization problems
using Lagrangian-based dual decomposition. The problem
(called primal problem) we address in the first procedure is
as follows:

Max:
XN

i¼1

UiðFiÞ

s.t.:
XN

i¼1

Fi * F;

0 * Fi * FMAX; 8i (11Þ

Let FF ¼ ðF1; F2; . . . ; FNÞ and P + 0. Here P is considered as
the price of resource. Define Lagrangian

LðFF; P Þ ¼
XN

i¼1

UiðFiÞ ' P

!XN

i¼1

Fi ' F

"

¼
XN

i¼1

ðUiðFiÞ ' PFiÞ þ PF (12)

As the first term is separable, we have maximize FF
PN

i¼1
ðUiðFiÞ ' PFiÞ ¼

PN
i¼1 maximize FiðUiðFiÞ ' PFiÞ. According

to [31], we can now readily formulate optimization problem
for each service provider i as follows:

Service Provider i’s Problem.

Max: UiðFiÞ ' P % Fi

s:t: : 0 * Fi * FMAX (13Þ

Fig. 2. Utility function UiðFiÞ.

Procedure 2. Adjusting Resources toM Services.
Input: Resource allocation FF ¼ ðF1; F2; . . . ; FNÞ; Utility func-

tions UiðFiÞ’s; Number of services/VMs M; Change of
resource DF ;

Output: Resource allocation FF ¼ ðF1; F2; . . . ; FMÞ;
1: Re-arrange FF as FF ¼ ðF½1); F½2); . . . ; F½N )Þ such that

F½1) + F½2) + . . . + F½N );
2: Favailable  F '

PM
i¼1 F½i), S  f½1); ½2); . . . ; ½M)g.

3: for i 2 S do
4: DUþ

i ðFiÞ UiðFi þ DF Þ ' UiðFiÞ.
5: while Favailable > 0 do
6: Select j 2 S such that DUþ

j ðFjÞ ¼ maxfDUþ
i ðFiÞgi2S .

7: Fj  Fj þ DF .
8: Favailable  Favailable ' DF .
9: if Fj + FMAX then
10: Favailable  Favailable þ Fj ' FMAX.
11: Fj  FMAX.
12: S  S n fjg
13: else
14: DUþ

j ðFjÞ UjðFj þ DF Þ ' UjðFjÞ.
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Theorem 4.1. Problem (13) can be efficiently solved, i.e, there
exists a polynomial-time algorithm to it.

Proof. Let F 0
ij be the root of equation GijðFiÞ ¼ 0, j ¼

1; 2; . . . ; Ni. Without loss of generality, assume that F 0
i1 <

F 0
i2 < . . . < F 0

iNi
* FMAX. Since GijðFiÞ is concave, from

Eqs. (8) and (9), we can see that UiðFiÞ is a piece-wise
increasing concave function, i.e., UiðFiÞ is increasing and
concave in each ½F 0

ij; F
0
ijþ1) (see Fig. 2). It follows that the

objective function UiðFiÞ ' PFi is also concave in
½F 0

ij; F
0
ijþ1). This implies that we can solve problem (13) by

solving a series of problems, each one with the decision
variable constrained in ½F 0

ij; F
0
ijþ1), and each one is a con-

vex optimization problem. The optimal solution is the
one with the largest objective function value. tu

Correspondingly, the dual problem for the MEC server
is:

MEC Server’s Problem.

Min: gðP Þ ¼
XN

i¼1

giðP Þ þ PF

s:t: P + 0 (14Þ

where giðP Þ is the maximum value of the objective function
solved in problem (13) for a given P . Note that problem (14)
is convex even when problem (11) is not [3], [31].

The MEC server solves problem (14) by updating the
price P . Note that as giðP Þ is not differentiable in P , the pro-
jected sub-gradient method is adopted. More specifically,
once the MEC server receives the required amount of
resource from each service provider, its price is adjusted as
follows:

Ptþ1 ¼
#
Pt þ g

!XN

i¼1

Ft
i ' F

"$þ
: (15)

where g > 0 is a step size, t denotes time, and ½x)þ ¼
maxfx; 0g.

We want to emphasize that: 1) it is possible there exists
multiple optimal solutions to problem (13). In this case, any
optimal solution can be selected by the service provider i to
form a valid sub-gradient of giðP Þ with respect to P [4]; 2)
although the sub-gradient based approach solves prob-
lem (14), the duality gap between the optimal primal solu-
tion and the optimal dual solution is generally non-zero due
to nonconcavity of utility functions. Furthermore, computa-
tion resource allocation derived may also violate the capac-
ity constraint from the MEC server. To circumvent this
problem, we propose the following rule to obtain a valid
resource allocation

Fa
i ¼

Fo
i ;

PN
i¼1 F

o
i * F

Fo
i %FPN

i¼1
Fo
i

;
PN

i¼1 F
o
i > F :

8
<

: (16)

where fFo
i g denotes the distributed solution from service

provider i and Fa
i the regulated resource allocation to the

service.
In short, in the mechanism each service provider locally

calculates its required resources based on the price adver-
tised by the MEC server, and the MEC server adjusts the

price based on resources required by each service provider.
The solution to the primal problem (11) is obtained when
this process converges.

After execution of the first procedure, we have resource
allocation to each service. The second procedure then starts
by selecting the top M services with the largest utilities,
with the help of each service provider reporting its utility
function value when the first procedure terminates. The
goal of this procedure is to allocate the remaining resources
to the selected services. This can be achieved in a similar
way as the first procedure. Formally, let Fa

i be the amount
of resource that has been allocated to service i (obtained by
executing the first procedure, see Eq. (16)), and S be the set
of these selected M services. The primal problem we
address in the second procedure can be formulated as

Max:
X

i2S
UiðFa

i þ DFiÞ

s.t.:
X

i2S
DFi * F '

XN

i¼1

Fa
i ;

0 * DFi * FMAX ' Fa
i ; 8i 2 S (17Þ

where DFi is the decision variable denoting the amount of
resources (from services not in S) to be allocated to service
i. Similarly, we can decompose problem (17) into sub-prob-
lems for each service provider and the MEC server by the
Lagrangian-based dual decomposition. The properties of
these sub-problems are identical to (13) and (14), and can be
efficiently (and locally) solved in exactly the same way. We
omit these details for space limitation and conciseness.

4.2 Complexity Analysis
Here we present an analysis on the computational complex-
ity of our decentralized mechanism, by comparing it with
the canonical price-based distributed algorithm based on
dual decomposition for convex NUM problems [49], [24],
which has proven computationally efficient. Note that as
compared to the canonical price-based distributed algorithm
to convex NUM problem, the added complexity by our
mechanism comprises of two parts. The first one is on the
regulating operation (Eq. (16)) performed by theMEC server,
which obviously incurs very low cost and thus can be
neglected. The second one is on solving the non-convex opti-
mization problem (13) by each service provider. Instead of
one convex optimization problem to be solved by each ser-
vice provider as in the canonical distributed algorithm, in
our mechanism multiple convex optimization problems are
solved by each service provider. As a result, under the same
accuracy of solutions, the complexity of our mechanism is at
most 2%NMAX times that of the canonical distributed algo-
rithm assuming that utility functions are all concave, where
NMAX ¼ maxfNigNi¼1 (recall that the factor 2 is for the fact
that our mechanism consists of two procedures and that the
second procedure incurs less cost than the first one).

Suppose interior-point algorithm using barrier method is
applied to solve the convex optimization problem. Based
on [3] (Chapter 11), we know that the complexity is com-
posed of two parts, namely, iteration complexity (outer iter-
ations) and per-iteration computation (inner iterations or
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Newton iterations) cost. The former is on the order of
dlog ð2=ðt

0"ÞÞ
logu e, where u and t0 are the so-called barrier parame-

ters, and " is the accuracy of the solution. On the other
hand, the per-iteration complexity is on the order of
2ðu'1'loguÞð20'8aÞ

abð1'2aÞ2
þ 6, where a and b are the backtracking

parameters in Newton’s method. As a result, the complexity
of solving a single convex optimization problem is

dlog ð2=ðt
0"ÞÞ

logu e% ð2ðu'1'loguÞð20'8aÞ
abð1'2aÞ2

þ 6Þ, and that of solving each

service provider i’s sub-problem at each round can be given

as dlog ð2=ðt
0"ÞÞ

logu e% ð2ðu'1'loguÞð20'8aÞ
abð1'2aÞ2

þ 6Þ %Ni. The complexity

for solving sub-problems by all service providers at each
round is therefore at most Oðdlog ð2=ðt

0"ÞÞ
logu e% ð2ðu'1'loguÞð20'8aÞ

abð1'2aÞ2
þ

6Þ %N %NMAXÞ.
Now let us focus on how many rounds are required by

the price-based dual decomposition method to solve the
original problem (11), with the inexactness of the sub-prob-
lem solvers at each round. Note that this issue have been
well studied for NUM problems with convex objective func-
tions, i.e., the algorithm converges in Oð 1ffiffi

k
p Þ from [28], [36].

We expect the same rate of convergence by our mechanism,
although it still requires rigorous mathematical proofs.

5 COST-AWARE ONLINE SOLUTION

We now focus on the joint service selection, VM resource
allocation and task offloading decision problem in an online
setting. Given our centralized and decentralized algorithms
in Sections 3 and 4 , a natural approach for online solution
is to apply them directly as the system operates, i.e., time is
divided into successive slots and at the end of each slot we
run either of the two algorithms to obtain a new solution for
the next time slot. This approach, although straightforward,
will not necessarily guarantee satisfactory system perfor-
mance and could probably lead to poor users’ QoE, since
both algorithms fail to consider the cost of service switches,
i.e., it takes time for the MEC server to fetch a VM from
cloud and then start the service, during which tasks from
UEs can not be serviced by the server. To optimize perfor-
mance and control system stability, the cost of service
switches should be incorporated into the design of the algo-
rithm. In this section, we formally define the cost of switch
for a service and then propose an online algorithm that opti-
mally select services.

5.1 Cost-Aware Service Selection
We denote time as T ¼ 0; 1; 2; . . . by dividing it into succes-
sive slots with equal length DT . At the end of each slot t, a
new solution to the joint optimization problem is obtained
by running the algorithm we have proposed. Let St and S

0

be the set of services that are hosted at time slot t and that
are newly computed at the end of slot t, respectively. Note
that S

0
may differ in St. The task of optimal service selection

then becomes how to select services in St [ S
0
and how

much resources should be allocated to these services, so
that network utilities are maximized at time slot tþ 1.

Let Ft
i and F

0
i be the amount of computation resource

allocated to service i at time t, and that is newly computed
at the end of time t (potentially to be adopted for time
tþ 1), respectively. Since our goal is to maximize utilities,

we define cost of switching a service i at time t as the utility
changes incurred by re-allocating its resources from Ft

i to
F
0
i . Formally, we have the following definitions:

Definition 5.1. We define switch of a service i at time t as allo-
cating computation resources to service i from Ft

i to F
0
i , and

the cost of switch for i at time t as the utility changes incurred
by this re-allocation.

With the above definition, we now compute the cost of
switches for services in St and S

0
. Note that St [ S

0
can be

divided into three non-overlapping sub-sets:

! St n S0 , these services are hosted at time slot t, but
will not be present at time tþ 1. The cost of switch-
ing for a service i in St n S0 can be computed as

C1
i ¼ Ut

i ðF
t
i Þ; (18)

where Ut
i ðFt

i Þ is the utility of service i observed at
time slot t.

! St \ S
0
, these services are hosted at time slot t and

will also be present at time tþ 1, but with different
resource allocation, i.e., from Ft

i to F
0
i . The cost of

switch for a service i in St \ S
0
can be calculated as

C2
i ¼ Ut

i ðF
t
i Þ ' U

0
iðF

0
i Þ; (19)

where U
0
iðF

0
i Þ is the utility of service i computed at

the end of time slot t.
! S

0 n St, these services are not hosted at time t but will
be hosted at tþ 1, i.e., it will be downloaded from
cloud. Denote by T Start

i as the time needed to fetch
and start service i. Since a service i 2 S

0 n St is
unavailable during this time, the cost of switch can
be expressed as follows:6

C3
i ¼ 'U

0
iðF

0
i Þ þ

T Start
i

DT
U
0
iðF

0
i Þ ¼ ðT

Start
i

DT
' 1Þ % U

0
iðF

0
i Þ: (20)

Let zi 2 f0; 1g be a binary variable denoting whether or
not to perform switch for service i, with zi ¼ 0 if we keep
the service configuration unchanged, and otherwise we
adopt the new resource allocation for service i. The task of
optimal service selection at the end of each time slot t can be
formulated as a cost minimization problem, as follows:

Min:
X

i2StnS0
C1

i % zi þ
X

i2St\S0
C2

i % zi þ
X

i2S0 nSt
C3

i % zi (21a)

s.t.:
X

i2St[S0
ðF 0i ' Ft

i Þ % zi * 0; (21b)

X

i2S0 nSt
zi '

X

i2StnS0
zi * 0 (21c)

zi 2 f0; 1g; 8i 2 St [ S
0

(21d)

where constraint (21b) is for the computation resource limi-
tation at the MEC server, i.e., the amount of allocated

6. We assume the time needed to start a new service is less than the
length of a time slot, i.e., T Start

i * DT;8i.
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resource for time tþ 1 should not exceed F (recall thatP
i2St F

t
i ¼

P
i2S0 F

0
i ¼ F ), and constraint (21c) is for the car-

dinality constraint.

Procedure 3. Online Algorithm for Selecting Services

1: Start with an initial service selection S0 and resource alloca-
tion F 0.

2: Collect information about tasks and UEs at time slot 0.
3: Solve for S

0
and F

0
by running the centralized algorithm,

i.e., Procedure 1 and 2.
4: S1  S

0
, F 1  F

0
.

5: t 1.
6: for t ¼ 1; 2; . . . do
7: Collect information about tasks and UEs.
8: Solve for S

0
and F

0
.

9: Obtain Stþ1 and Ftþ1 by solving problem (21).
10: Allocate the remaining resource to services in Stþ1 using

Procedure 2, and update Ftþ1 accordingly.

Problem (21) is an integer linear programming (ILP) prob-
lem that has been well studied, and efficient algorithms, i.e.,
branch-and-bound, exist. Note that the solution to prob-
lem (21) does not guarantee that the server’s resource is fully
allocated. In that case, we allocate the remaining resource to
the selected services by running the algorithm we proposed,
i.e., Procedure 2, which further increases network utilities. A
detailed description of the algorithm using centralized solu-
tion can be found in Procedure 3.

6 EVALUATION

In this section, we perform numerical studies, first to show
the efficacy of our resource-efficiency based heuristic algo-
rithm on optimizing utilities, i.e., reducing task delays and
energy consumption at UEs, and second to evaluate the per-
formance of our cost-aware online algorithm. We use both
synthetic and trace-driven simulations.

6.1 Evaluation Setup
For synthetic simulations, we assume there are 50 services
in system and the MEC server can only accommodate 15 of
them, i.e., N ¼ 50 and M ¼ 15. The number of sub-types of
each task is randomly picked from f1; 2; 3; 4; 5g. CPU
resource of the MEC server is set as F ¼ 50 GHz, and the
maximum resource allocated to each service should not
exceed 10 GHz, i.e., FMAX ¼ 10 GHz. The change of
resource DF in Procedures 1 and 2 is set as 1 MHz.

Task parameters are configured as follows. We assume
that for each parameter there exists a set that contains its pos-
sible values, and the value of each parameter in simulation is
randomly selected from the set. More specifically, in our sim-
ulation the data size of each task Lij is randomly selected
from [500 KB, 2000 KB, 3000 KB, 5000 KB, 10000 KB], and
the computation intensity Cij is selected from [100 bit/cycle,
200 bit/cycle, 300 bit/cycle, 400 bit/cycle, 500 bit/cycle].
Note that these settings represent workload of a typical face
recognition application [8] leveraging MEC. Meanwhile,
CPU frequency of UE fij is chosen from [0.5 GHz, 0.8 GHz,
1.0 GHz, 1.2 GHz], and the bandwidth between UE and the
MEC server wij is selected from [1 Mb/s, 1.5 Mb/s, 2 Mb/s,
2.5 Mb/s, 3 Mb/s]. The transmission power of UE pij is cho-
sen from [0.6 W, 0.8 W, 1 W, 1.2 W, 2 W], which is typical
for a smartphone uploading data in commercial 4G LTE net-
works [17]. The energy coefficient of all UEs are set equally
asKij ¼ K ¼ 0:18 , 10'12.

For task arrival process,we assume tasks fromUEs are gen-
erated independently according to a Poisson process and that
their popularity follows a Zipf distribution. Unless otherwise
specified, the skewness parameter of the Zipf distribution is
set as s ¼ 0:8, the overall task arrival rate is set as ! = 10000/
sec, and theweight for each task is set as bij ¼ b ¼ 0:5.

We compare ourmechanismwith the following four bench-
marks: Random-Allocation, Top-Rate-Allocation, Fixed-Allo-
cation and Canonical Price-based allocation. Among them, the
first three are centralizedwhile the last one is decentralized.

(1) Random-Allocation: This is the algorithm that allocates
CPU resource of the MEC server to services randomly
selected.

(2) Top-Rate-Allocation: This algorithm allocates CPU
resource of the MEC server to services with the top largest
arrival rate, i.e., services with the top M largest arrival rates
are selected.

(3) Fixed-Allocation: This algorithm allocates CPU resource
of theMEC server to services that are pre-determined.

(4) Canonical price-based resource allocation: This algorithm
works with the assumption that all tasks from UEs will be
offloaded to theMEC server, which leads to a convex optimi-
zation problem with decision variables FF ¼ ðF1; F2; . . . ; FNÞ
and objective function

PN
i¼1

PNi
j¼1 !ij %GijðFiÞ. The standard

price-based dual decomposition mechanism initially pro-
posed for bandwidth allocation [31] is then applied.

Note that for benchmarks (1)–(3), CPU resource alloca-
tion to the selected M services is determined optimally by
running our proposed resource-efficiency based heuristic,

Fig. 3. Performance comparison of our centralized heuristic algorithm and the TOP-Rate-Allocation algorithm: (a) under varying skewness parameter
s; (b) under varying task arrival rate !; (c) under varying weight parameter b.
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i.e., Procedure 1. For benchmark (4), we adopt the same two
procedures to derive the distributed solution as in our
decentralized mechanism. The only difference is that now
the primal problem and the sub-problem for each service pro-
vider become convex.

6.2 Simulation Results

6.2.1 Performance Over Synthetic Workload

We first evaluate the performance of our resource-efficiency
based heuristic (both centralized and decentralized), i.e., when
task parameters are given a priori and only a single time
slot is considered (therefore no cost of switch is incurred).
Fig. 3 shows utilities achieved by the Top-Rate-Allocation
and our centralized heuristic algorithm, under varying task
arrival rate !, skewness parameter s and weight b. From the
figure, we can see that our centralized heuristic algorithm
achieves more utility than the Top-Rate-Allocation algo-
rithm, and as much as 22% improvement can be observed
when s ¼ 0:6;b ¼ 0:5 and ! ¼ 10000/sec. Meanwhile, the

improvement decreases as the workload becomes more
skewed (see Fig 3a). We believe this is due to the fact that
the Top-Rate-Allocation algorithm tends to select services
randomly when the skewness parameter is small, i.e., less
than 1.0, since the task arrival rate tends to be uniformly dis-
tributed in that case, which then leads to a large utility
improvement given that task parameters (task data size,
computation intensity, etc) in simulation are randomly
selected. Fig. 3b shows that as expected, the utility improve-
ment grows linearly with the increase of the task arrival
rate, since utility is a linear function in it under a fixed pop-
ularity distribution. Fig. 3c tells that the utility achieved by
each algorithm can be significantly impacted by the weight
parameter b, which implies that it can be used to effectively
tune system performance, i.e., balancing delays and energy
consumption. This property can be further observed in
Fig. 4 where the actually delay reductions and energy sav-
ings of the two algorithms are depicted. More specifically,
we find that more energy savings can be achieved when b is
small whereas more delay reductions can be obtained when

Fig. 4. Delay and energy consumption achieved by centralized algo-
rithms. s ¼ 0:8;! ¼ 10000=sec.

Fig. 5. Performance comparison of our decentralized algorithm and the Canonical Price-based Allocation algorithm: (a) under varying skewness
parameter s; (b) under varying task arrival rate !; (c) under varying weight parameter b.

Fig. 6. Delay and energy consumption achieved by decentralized algo-
rithms. s ¼ 0:8;b ¼ 0:6.
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it gets larger. This is in accordance with the fact that b is
the weight denoting the relative importance of optimiz-
ing delays (see Eq. (5)). It is also interesting to see from
Fig. 4a that the delay reductions are negative when b *
0:6, even when the total utilities are positive (see
Fig. 3c). After a careful examination we find that there

are many tasks that will greatly benefit from offloading
for energy savings at the cost of large delay penalties.
For example, given 3GHz computation resource at the
MEC server, a task with 2000KB data size, 100bit/cycle
computation intensity, 1.0GHz UE’s CPU frequency,
0.5Mb/s bandwidth and 0.8W trans power would
achieve nearly 100% energy savings, however, the task
delay will be 600% when it is offloaded.

Figs. 5 and 6 give the performance of our decentralized
algorithm and the Canonical Price-based Allocation algo-
rithm. Again we can see that our algorithm outperforms
and that as much as 45% improvement can be achieved
when s ¼ 1:0, b ¼ 0:5 and ! = 10000/sec. Similar trends can
be identified with regard to how the utility changes when
each parameter varies, except that the utility gain achieved
by our algorithm now increases as the workload becomes
more skewed (Fig. 5a versus Fig. 3a).

Figs. 7 and 8 show the performance of our heuristic algo-
rithm as comparedwith the optimal solution, where the opti-
mal solution is derived by an exhaustive method that
evaluates all feasible solutions to problem (6), that is, all com-
binations of the values of the binary variables fxijg and fyig
(xij * yi). The optimal solution is the one with the highest
objective function value among all these possible combina-
tions. Due to NP-hardness of the problem, we only evaluate
the optimal solution for system with small sizes, i.e., N * 20
and M * 5. From the figures we can see that our resource-
efficiency based heuristic is able to achieve 86%-98% of the
optimal performance with the average 90%, when N ¼ 10
andM ¼ 3; and it achieves 73%-96% with the average 84%,
whenN ¼ 20;M ¼ 5.

We then evaluate the performance of our cost-aware
online algorithms. To this end, we set the time needed to
load and start a service at the MEC server T Start

i = 20 sec.

Fig. 7. Performance comparison to optimal solution (N ¼ 10,M ¼ 3).

Fig. 8. Performance comparison to optimal solution (N ¼ 20,M ¼ 5).

Fig. 9. Performance comparison of online centralized algorithms under
stationary simulated workload.
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The length of each time slot DT is set as DT =100 sec, and the
simulation time is 1000 sec. We investigate both utilities by
different algorithms as well as the number of VM switches
incurred in each time slot.

Fig. 9 shows performance of the four centralized algorithms
as time elapses, where we randomly select 15 services at the
very beginning of simulation, i.e., the first time slot, and allo-
cate CPU resource of the MEC server equally among them. In
each time slot that follows, the Fixed-Allocation algorithm
keeps hosting these services, whereas the Random-Allocation
picks services randomly. The Top-Rate-Allocation selects
services based on the observed task arrival rates in each slot.
Note that again resource allocation to the selected services in
each time slot is determined optimally by our resource-effi-
ciency based heuristic. We make the following observations
from Fig. 9: 1) both our online centralized algorithm and the
Top-Rate-Allocation outperform the other two in utilities, and
our algorithm has the highest utility among them; 2) the Ran-
dom-Allocation algorithmfluctuates and has theworst perfor-
mance in both achieved utilities and VM switches, whereas
the Fixed-Allocation behaves stably, i.e., no VM switch is
incurred; and 3) both our cost-aware online algorithm and the
Top-Rate-Allocation converge fast that it takes 2 - 4 time slots
for them to stabilize. These results indicate that our online
algorithm can effectively optimize system performance while
at the same time avoids system instability.

Fig. 10 shows the performance of our online decentralized
algorithm and the Canonical Price-based Allocation algo-
rithm. From the figure, we can see that although our decen-
tralized algorithm achieves less utility than its centralized
counterpart, it still outperforms the Canonical Price-based
Allocation algorithm. For example, we observe more than
20% improvement when s ¼ 1:2, b ¼ 0:6. Meanwhile, both
algorithms are cost-efficient that they keep hosting the same
services when the process stabilizes.

6.2.2 Performance Over Real World Traces

We also conduct a trace-based simulation to investigate the
performance of our online algorithms (both centralized and
decentralized) over real world traffic. The trace dataset we
used is from [42], which contains packet inter-arrival times
generated by 5 applications from 36 wireless devices. To
have enough services in simulation, we regard each device
as a single service and each application from a device as a
sub-type of tasks. In this way, we have 36 services and 264
sub-types of tasks. Meanwhile, to simulate the task arrival
process, we stretch the time axis in each trace by 60 (so that
a second in the time axis now becomes a minute). The num-
ber of services that can be accommodated at the MEC server
is set as 10, and all other parameters remain unchanged.

Fig. 11 shows the performance of the four centralized algo-
rithms in trace-driven simulations. From the figure, we can see
that: 1) our online algorithm outperforms the other three in the
achieved utilities, under different weight parameters; 2) both
our algorithm and the Top-Rate-Allocation converge fast
under real world workloads, i.e., the convergence time is
less than 5 time slots; and 3) it is interesting that our
online algorithm even incurs less VM switches than the

Fig. 10. Performance comparison of online decentralized algorithms
under stationary simulated workload.

Fig. 11. Performance comparison of online centralized algorithms in
trace-driven simulation.
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Top-Rate-Allocation algorithm, i.e., in most time slots we find
that noVMswitches is incurred by our algorithmwhereas that
is 28 3 for the Top-Rate-Allocation. This result indicates that
under real-world workloads our online algorithm is more sta-
ble than the Top-Rate-Allocation.

The performance of our online decentralized algorithm and
the Canonical Price-based Allocation algorithm are shown in
Fig. 12. It is clear that our algorithm has a comparable perfor-
mance with the Canonical Price-based Allocation algorithm
when b is small, i.e., b * 0:3, and it outperforms when b gets
larger. In particular, we find that in average 20% utility
improvement can be achieved by our algorithm when b ¼ 0:6
and b ¼ 1:0. Moreover, both algorithms are stable as they
almost incur noVM switches after the process converges.

It is also interesting to observe that there is always a peak in
the utility before reaching convergence for both our central-
ized anddecentralized online algorithms.Adeep investigation
reveals that the peak is due to the construction of dataset in
simulation. More specifically, since in each trace only the
packet inter-arrival times are recorded, the first time slot in the
combined dataset thus contains all the flows (i.e., their first
packet), which then results in a peak in task arrival rate and
also the utilities (recall that utility is a linear function in task
arrival rate).

6.3 Summary of Observations
We end this section by summarizing what we have found in
numerical studies and simulations. First, as compared to base-
line algorithms, both our centralized and decentralized
resource-efficiency based algorithms improve system utility
under a wide range of parameter settings. Second, through
synthetic workload simulations, we observe that our cost-
aware online algorithms converge fast and that they can
achieve high utility while at the same time incur low cost of
VM switches. Trace-driven simulations demonstrate that the
online centralized algorithm is even more stable than the Top-
Rate-Allocation algorithm, and the online decentralized algo-
rithm is able to get a higher performance than the Canonical
Price-based Allocation algorithm. Finally, task latencies and
energy consumptions can be well balanced by our mechanism
through adjusting theweight parameter.

7 DISCUSSIONS AND RELATED WORK

In this section, we explore the implications of our mecha-
nism and present some future research directions. We end
with a brief discussion of the related work.

(1) Determining the NecessaryNumber of Edge Servers.Wehave
assumed that the number of edge servers for each service is
fixed and is a priori known, i.e., at most one VM can be hosted
by the MEC server for each service, whereas in practice the
number of edge servers are not known and should be part of
the optimization problem. Here we show how our framework
can be extended to tackle this problem, by allowing multiple
VMs to be potentially hosted at theMEC server for each service.

Let ni denote the number of VMs for service i. Assuming
that tasks of type ijwill be distributed evenly among these VMs
due to loading balancing, i.e., the rate of tasks directed to each
VM is

!ij
ni
, and that CPU resources allocated to these VMs are

identical, we can then formulate the followingMINLPproblem

Max:
XN

i¼1

XNi

j¼1

!ij %GijðFiÞ % xij (22a)

s.t.:
XN

i¼1

niFi * F; (22b)

XN

i¼1

niyi * M; (22c)

XNi

j¼1

!ij

ni

LijCij

Fi
< 1; 8i; (22d)

xij * yi; 8i; j (22e)

0 * Fi * FMAX; 8i (22f)

yi 2 f0; 1g; xij 2 f0; 1g; ni 2 N; 8i; j (22g)

where ni becomes an extra variable to be optimized. To char-
acterize users’ Quality of Service, i.e., delays of performing
tasks at the MEC server, each VM i can be modeled as a sin-
gle-server queueing system shared by Ni customer classes

Fig. 12. Performance comparison of online decentralized algorithms in
trace-driven simulation.
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under the First-In-First-Out discipline. The latency of per-
forming task Aij at the MEC server comprises of three parts:
1) upload/transmission delay, which is

Lij
wij

; 2) execution delay
by the VM,which is

LijCij
Fi

; and 3) queueing delay, which is the
time spent by the request sitting in a queuewaiting to be proc-
essed. Note that in order for the system to be stable, workload
at each VM should not exceed its computing capacity, as
constraint (22d) states. The queue length distributions and
queueing delay for a single-server system with multi-class
customers under the FIFO discipline has been well studied,
and simple formula has been devised to characterize the joint
queue length distributions under the Poisson customer arriv-
als [9]. For example, letWi be the steady-statewaiting time for
customers (given that the arrival processes are Poissonian, all
customer classes have the same waiting time), and L ¼PNi

j¼1 !ijð1' zjÞ, jzjj * 1; 8j , thenwe have [38]

E½e'LWi ) ¼ ð1' rÞ L
PNi

j¼1

½!ijðbjfLg' zjÞ): (23)

where r < 1 is the load at the VM, bjf.g is the Laplace-
Stieljes transformation. The energy consumption of offload-
ing tasks to the MEC server, and the delay and energy con-
sumption of local computation at UEs remain unchanged.

(2) Incorporating Communication Models. Communication
models (and power management) determine data rate of UEs
and thus can impact delays and energy consumption of per-
forming tasks. We show here through an example how our
framework allows us to flexibly incorporate various communi-
cationmodels. LetL be the number of user equipments (UEs) in
system.Weuse a tupleAs

ijðLij;Cij; fs; ps;Ks;wsÞ to characterize
a task of type ij fromUE s, where fs,Ks, ps andws represent the
local CPU frequency, energy coefficient, transmit power and
data rate of UE s, respectively. Delays and energy consumption
of performing taskAs

ij when it is executed locally andwhen it is
offloaded to theMEC server can be calculated as follows:

TLocal
ij;s ¼ Lij % Cij

fs
; (24)

ELocal
ij;s ¼ Ks % ðLijCijÞ % f2s ; (25)

TMEC
ij;s ¼ Lij

ws
þ Lij % Cij

Fi
; (26)

EMEC
ij;s ¼ ps %

Lij

ws
: (27)

Denote W (Hz) as the available bandwidth of the system,
which is shared by all UEs. Moreover, we assume wireless
channels between UEs and the BS (MEC server) are i.i.d. fre-
quency-flat block fading. The channel power gainHs fromUE
s to theMEC server thus can be given asHs ¼ hsg0ðd0dsÞ

u, where
hs is the small-scale fading channel power gain from UE s to
the MEC server, g0 is the path-loss constant, u is the path-loss
exponent, d0 is the reference distance and ds is the distance
fromUE s to theMEC server. Let as 2 ½0; 1) denote the portion
of bandwidth allocated to UE s, and N0 be the noise power
spectral density at the receiver of theMEC server. Data ratews

ofUE s then can be characterized as

ws ¼ asW log 2ð1þ Hsps
asN0W

Þ; as > 0
0; as ¼ 0

&
(28)

Let !ij;s be the arrival rate of taskAs
ij, andGs

ij be the gain of
offloading As

ij to the MEC server. Also denote by xij;s a binary
variable indicating whether or notAs

ij is offloaded to the MEC
server. Thenwe can formulate the following joint communica-
tion, computation and networking optimization problem

Max:
XL

s¼1

XN

i¼1

XNi

j¼1

!ij;s %Gij;sðFi;as; psÞ % xij;s (29a)

s.t.:
XN

i¼1

Fi * F; (29b)

XN

i¼1

yi * M; (29c)
XL

s¼1

as * 1; (29d)

xij;s * yi; 8i; j; s (29e)

0 * Fi * FMAX; 8i (29f)

0 * ps * pMAX
s ; 8s (29g)

yi 2 f0; 1g; xij;s 2 f0; 1g;as 2 ½0; 1); 8i; j; s (29h)

where as and ps become two new variables to be optimized.
The above problem is, of course, NP-hard. To solve it effec-
tively, our idea is again to leverage the concept of resource effi-
ciency. More specifically, since maxfFi;as;psg f

P
s

P
iP

j !ij;s %Gij;sðFi;as; psÞ % xij;sg ¼ maxfFigfmaxfas;psg
P

s

P
iP

j !ij;sGij;sðFi;as; psÞxij;sg, problem (29) can be decomposed
into two sub-problems: the first (upper-level) sub-problem is
to adjust CPU resource allocations to services so that system
performance can be maximized, which can be formulated as
follows:

MaxfFig :
XL

s¼1

XN

i¼1

XNi

j¼1

!ij;s %Gij;sðFiÞ % xij;s (30a)

s.t.:
XN

i¼1

Fi * F; (30b)

XN

i¼1

yi * M; (30c)

xij;s * yi; 8i; j; s (30d)

0 * Fi * FMAX; 8i (30e)

yi 2 f0; 1g; xij;s 2 f0; 1g; 8i; j; s (30f)
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Note that problem (30) is essentially the same as the one that
we addressed in the current work, and therefore the same
resource efficiency and utility based heuristic algorithm can
be applied. The second (lower-level) sub-problem is to deter-
mine the optimal wireless bandwidth allocations to UEs and
the optimally power allocation of UEs, given a fixed CPU
resource allocations FF ¼ ðF1; F2; . . . ; FNÞ by the upper level.
Mathematically, this sub-problem can be formulated as

Maxfas;psg :
XL

s¼1

XN

i¼1

XNi

j¼1

!ij;s %Gij;sðas; psÞ % xij;s (31a)

s.t.:
XL

s¼1

as * 1; (31b)

xij;s * yi; yi ¼ 1 if Fi > 0; 8i; j; s (31c)

0 * ps * pMAX
s ; 8s (31d)

as 2 ½0; 1); 8s (31e)

To solve problem (31), letM ¼ fijFi > 0g, we consider the
following variant

Maxfas;psg :
XL

s¼1

X

i2M

XNi

j¼1

!ij;s %Gij;sðas; psÞ (32a)

s.t.:
XL

s¼1

as * 1; (32b)

" * ps * pMAX
s ; 8s (32c)

as 2 ½"; 1); 8s (32d)

which is obtained by relaxing as and ps to be strictly larger
than or equal to a small positive constant 0 < " < 1

L (so that
the objective function is differentiable), and by assuming all
tasks related to the hosted services will be offloaded to the
MEC server. The optimal value of problem (32) is smaller
than problem (31) but can be expected close to that of (31)
by setting " sufficiently small. Problem (32) can be tackled
with the folowing Gauss-Seidel method [27]:

1) Obtaining the optimal transmit power. For a fixed
bandwidth allocation fasg, the optimal transmit power ps at
UE s is achieved at either the stationary point of the objec-
tive function or one of the boundary points, which can be
given as follows:

ps ¼ argmax:
ps2fv2Hj"*v*pMAX

s g

X

i2M

XNi

j¼1

!ij;s %Gij;sðas; psÞ (33)

H ¼ f"; pMAX
s g [ fpsj

X

i2M

XNi

j¼1

!ij;s
dGij;sðas; psÞ

dps
¼ 0g (34)

2) Obtaining the optimal wireless bandwidth allocation.
For a fixed transmit power allocation fpsg, the optimal

wireless bandwidth allocation fasg can be obtained by solv-
ing the following problem

Maxfasg :
XL

s¼1

X

i2M

XNi

j¼1

!ij;s %Gij;sðas; psÞ (35a)

s.t.:
XL

s¼1

as * 1; (35b)

as 2 ½"; 1); 8s (35c)

The structure of the above problem naturally suggests a
Lagrangian-based method to solve it efficiently. More spe-
cifically, let g > 0 be the Lagrangian multiplier associated
with the constraint

PL
s¼1 as * 1, the partial Lagrangian

function can be written as follows:

Lðfasg; gÞ ¼ '
XL

s¼1

X

i2M

XNi

j¼1

!ij;sGij;sðas; psÞ

þ gð
XL

s¼1

as ' 1Þ (36)

Based on KKT (Karush-Kuhn-Tucker) conditions, the opti-
mal wireless bandwidth allocation a,

s and the optimal
Lagrangian multiplier g, should satisfy

a,
s ¼

maxf";csðg,Þg; 8s; g, > 0PL
s¼1 a

,
s * 1

&
(37)

where csðg,Þ denotes the root of '
P

i2M
PNi

j¼1 !ij;s
dGij;sðas;psÞ

das

¼ g, which is positive and unique as '
P

i2M
PNi

j¼1

!ij;s
dGij;sðas;psÞ

das
> 0 decreases with as. This implies a bisec-

tion search over [gL, gU] for the optimal g,, where gL ¼
max1*s*Lf'

P
i2M

PNi
j¼1 !ij;s

dGij;sðas;psÞ
das

jas¼1g and gU satisfiesP
s maxf";csðgUÞg < 1 . The search process terminates

whenever j
P

s maxf";csðg,Þg' 1j < # , where # > 0 is the
accuracy of the algorithm.

In short, the Gauss-Seidel method iteratively updates the
transmit power and wireless bandwidth allocations until
convergence. The objective function value of problem (32),
given a fixed CPU resource allocation, is then used to evalu-
ate the resource efficiency.

Related Work The issue of resource allocation, task offload-
ing and service selection/placement in MEC has been investi-
gated separately or jointly. Existing work on resource
allocation and task offloading can be generally classified into
four categories: i) Single-User Single-ServerMEC systems [44],
[51], ii) Multi-User Single-Server MEC systems [10], [20], [41],
[34], iii) Multi-User Multi-Server MEC systems [50], [7], [47],
[18], and iv) fog-cloud network [23], [1]. The authors in [44]
proposed convex optimization techniques to minimize the
transmission energy consumption for mobile devices. Authors
in [51] introduced a deep reinforcement learning framework
to minimize the weighted sum of execution delay and energy
consumption. [10] proposed a new strategy based on a Q-
Learning algorithm, and [20] proposed pricing game-based
offloading decision and interference-avoid communication
resource allocation for minimizing the energy-time cost on the
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mobile terminal side. Authors in [41] formulated the problem
as a new Integer Program, and [34] leveraged the Lyapunov
optimization tomaximize the overall task offloading rate.

To minimize the energy-time cost of all mobile users,
authors in [50] proposed an efficient bisection search method,
and [7] introduced a hybrid relaying (HR) approach. The
work on [47] applied stack-based cache mechanism (SCM) to
ensure the fairness of server resources allocation, and [18]
proposed a bilevel optimization approach to minimize the
total energy consumption on the mobile terminal side under
the delay constraint. [23] applied ADMM to jointly optimize
computation offloading and wireless resource allocation,
with the aim to reduce offloading transmission latency and
release the constraint of limited radio resource. A deep recur-
rent Q-network (DRQN) approach in [1] is proposed to guar-
antee users’ QoS requirements.

For service placement/selection problem, researchers
have proposed Tabu-Search (TS) meta-heuristic [5], Low-
MEP [19] and the contextual Multi-armed Bandit (MAB) [30]
approaches to minimize users’ perceived-latency. Collabora-
tive Service Placement (CSP) [6] andMatching Theory based
approach [53] also have been used to maximize the system
performance and minimize the traffic load. To maximize the
number of requests served, [15] proposed an iteration-based
algorithm, and [33] proposed to use a randomized rounding
technique.

Distributed mechanisms for MEC offloading and resource
management have been extensively studied in literature,
where game theory has been widely adopted as a mathemati-
cal tool for the design and analysis of the algorithms. For
example, Liu et al. in [22] formulated a Stackelberg game for
the interaction between mobile users and the MEC server,
and proposed a price-based distributed offloading algorithm.
Zhao et al. in [54] studied the collaborative task offloading in a
vehicular network, where both the MEC server and cloud can
be utilized. They proposed a distributed resource allocation
and task offloading algorithm through formulating a poten-
tial game for the offloading decision making sub-problem
and achieving optimal resource allocation using Lagrange
multipliermethod. Authors in [35] proposed a game-theoreti-
cal joint optimal pricing and resource allocation algorithm for
mobile edge computing in NOMA-based networks, taking
into account the payment by MUs for communication and
computation resources. Wang et al. in [43] extended mobile
edge computing in wireless cellular networks with content
caching, and investigated the joint resource allocation, task
offloading and content caching problem. They proposed a
distributed solution based on the ADMM method. Authors
in [37] studied computation offloading in a distributed MEC
network, and proposed a stochastic gradient descent algo-
rithm to jointly optimize the offloading probability and trans-
mission power of the SDs.

Most recent efforts are dedicated to optimization of MEC
systems in more realistic settings. For example, Tang et al.
[39] considered edge load dynamics and proposed a model-
free deep reinforcement learning-based distributed task off-
loading algorithm for non-divisible delay-sensitive tasks. Li
et al. [21] focused on task offloading with statistical QoS
guarantees, and proposed an algorithm to provide statistical
QoS guarantee for tasks using convex optimization theory
and Gibbs sampling method. Wang et al. [45] studied the

problem of minimizing the maximal computation and trans-
mission delay among all users, and developed a multi-stack
reinforcement learning algorithm to solve the joint task,
spectrum, and transmit power allocation problem. Authors
in [12] studied the joint service placement and request
scheduling problem in edge clouds with the aim at maxi-
mizing the total amount of requests served by multiple
edge clouds. Wen et al. [46] considered the issue of software
caching and multicasting in a MEC system, and proposed
two sub-optimal algorithms to solve the problem of joint
software caching, computation offloading and communica-
tions resource allocation.

Our work differs from existing work in that: 1) we exploit
heterogeneity of tasks from the same service based on their
characteristics, which allows us to develop individual and
fine-grained task offloading policies for them; 2) both the
computation and storage resource constraint at the MEC
server are considered in our system model; and 3) we
explicitly incorporate the cost of service switches from prac-
tical MEC systems in the design of online service caching
and task offloading algorithms.

8 CONCLUSION

We study the problem of maximizing user’s QoE in a
resource-limited MEC system through jointly optimizing
service selection, resource allocation and task offloading
decision, which are tightly coupled in the control of MEC
systems. We formulate the task as a mixed-integer nonlinear
programming problem and prove its NP-hardness. To solve
it efficiently, we first reformulate it as a network utility max-
imization problem (NUM) and then propose a resource-effi-
ciency based heuristic. We further develop distributed and
online algorithms that adapt to system changes, with the
cost of service switches being explicitly incorporated into
the algorithm design. Last, we evaluate our mechanisms
through extensive simulations and results illustrated their
efficiency.
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