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Abstract—Multi-access edge computing (MEC) enables extreme low-latency AI services, such as Augmented Reality (AR) and Virtual
Reality (VR), by deploying cloudlets in locations close to users. Meanwhile, a 5G hierarchical service market is emerging with both
large-scale and small-scale network service providers competing for both computing and network bandwidth resources of an
infrastructure provider. In this paper, we investigate the problem of caching services originally deployed in remote clouds to cloudlets in
an MEC network in a hierarchical service market. For the service caching problem, we first propose a novel approximation-restricted
framework that guarantees the stability of the 5G service market. Under the proposed framework, we first propose an approximation
algorithm with a provable approximation ratio for the problem with non-selfish network service providers. We then design an efficient
Stackelberg congestion game with selfish network service providers, and analyze the Price of Anarchy (PoA) of the proposed
Stackelberg congestion game to measure the efficiency loss of the game due to selfishness of network service providers. Considering
that the request rate of each service may not be given in advance, we study the service caching problem with the uncertainlity of
request rates, and propose an approximation algorithm and a Stackelberg game via leveraging the randomized rounding technique. We
finally evaluate the performance of the proposed algorithms and mechanisms by both simulations and implementations in a real test-
bed. Results show that the performance of our proposed mechanisms achieve around 9.2% less cost than those of
existing approaches.

Index Terms—Mobile edge computing, service caching, stackelberg congestion game, approximation algorithms, price of anarchy
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1 INTRODUCTION

5GSERVICES are on rise due to the fast deployment of 5G
infrastructures. According to a recent report on

COVID-19 implications [1], the 5G service market is
expected to grow from $49.7 billion in 2019 to about $68.6

billion in 2020, as the demand for high-speed and better
quality services is increasing because people are spending
more time indoors for both work and leisures. Since most of
such services are originally deployed in remote clouds,
placing the services into a multi-access edge computing
(MEC) network has been envisioned as a key approach to
enable a stable 5G service market with high-quality network
services. For example, Moving AR/VR services from data
centers to cloudlets at an edge location (such as museums
and sport stadium) or 5G base-stations within the proximity
of users can significantly reduce the motion-to-photon
latency experienced by VR users [17], [47], [57].

In this paper, we consider the scenario that network ser-
vice providers hope to strategically and progressively move
services that are originally deployed in remote clouds to
cloudlets in a two-tiered MEC network [34], [39], [44], as
shown in Fig. 1. Unlike the traditional service placement in
MEC networks, we focus on placing existing services in
remote clouds to cloudlets, and we refer it as the service cach-
ing. Due to the resource capacity constraints on cloudlets,
services are only temporarily cached and their original serv-
ices are still kept in remote clouds for later use when the
cached service is destroyed from cloudlets.

The MEC network is operated by an infrastructure pro-
vider through leasing its resources to various network ser-
vice providers. We consider a hierarchical service market with
its first layer consisting of large-scale network service pro-
viders and its second layer having small-scale network ser-
vice providers. Both large- and small-scale network service
providers compete for both computing and bandwidth
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resources in the MEC network. Specifically, large-scale net-
work service providers have bulk lease contracts with the
infrastructure provider while small-scale network service
providers lease on-demand resources to meet their instant
demands when caching their services. An example of such
hierarchical service market is the Alibaba edge node service
(ENS) [2]. ENS enables large-, small- and medium-scale ser-
vice providers to provide efficient and low-latency services
to their users without the necessity of building their own
infrastructures.

Significant challenges exist in the service caching in a
hierarchical service market of an MEC network: (1) the
cached instance of a service in the MEC and its original
instance in the cloud have to be synchronized to ensure the
correct operation of future cached service instances. As
such, the states of the cached and original instances need to
be updated quite often. How to jointly cache services, assign
requests to the cached instances, and update the states of the
cached instances to be consistent with their original instan-
ces are fundamentally challenging; (2) If the network service
providers in a service market are not well coordinated, they
may cache their services to the cloudlets with lowest costs
and delays. This leads to significant congestion and perfor-
mance degradation on some cloudlets in the MEC. Also,
selfish network service providers may jeopardize the social
benefit of all players [27], leading to an unstable market in
which no network service provider wants to participate.
Any mechanisms for the market have to be stable and close
to the social optimum; and (3) a network service provider
may not know the future request rates of its services. How
to design a near-optimal adaptive mechanism by incorpo-
rating such request rate uncertainty is another challenge.

While studies on computing offloading and service
placement [9], [12], [13], [16], [19], [20], [26], [28], [32], [37],
[41], [42], [43], [44], [45], [46], [49], [51], [56] have been con-
ducted, service caching from remote clouds to cloudlets
with states updating in an MEC network has been hitherto
overlooked. Also, due to limited computing resource capac-
ities on cloudlets, the MEC network may experience conges-
tions when too many services are cached in it, thereby
reducing the benefits it brought to. Such congestion-aware

service caching is largely ignored by existing studies. To the
best of our knowledge, we are the first to incorporate con-
gestion levels of cloudlets, request rate uncertainty for the
service caching problem in a two-tiered MEC network, by
proposing near-optimal and stable mechanisms with
guaranteed gaps against their social optimum.

The main contributions of this paper are summarized as
follows.

! We propose a novel approximation-restricted strategy
with theoretical performance guarantees for the ser-
vice caching problem.

! Under the approximation-restricted strategy, we
devise an approximation algorithm with an approxi-
mation ratio for the service caching problem without
selfish network service providers. We design a novel
Stackelberg congestion game for the problem in an
MEC network with resource capacities, and analyze
the Price of Anarchy (PoA) of the game.

! For the service caching problem with uncertain
request rates, we devise an approximation algo-
rithm and a Stackelberg strategy for the service
caching problem, based on the randomized
rounding technique.

! We evaluate the performance of the proposed mecha-
nisms in both simulation environments and a real test-
bed. Results show that the proposed algorithms out-
perform existing studies by around 9.2% in terms of
the service caching cost delivered by the algorithms.

The remainder of the paper is arranged as follows. Sec-
tion 2 summarizes state of the arts on service caching in
MEC networks. Section 3 introduces the system model,
notations and problem formulation. The proposed Stackel-
berg congestion game for the service caching problem is
described in Section 4. The approximation algorithm and
Stackelberg strategy for the service caching problem with
request rate uncertainty are designed in Section 5. Section 6
provides experimental results on the performance of the
proposed algorithms in both the simulation environment
and a real test-bed. The paper is concluded in Section 7.

2 RELATED WORK

The studies on service caching can be related to either com-
putation offloading, service provisioning, or edge content
caching in MEC networks.

For studies on computation offloading, most existing
studies either did not consider service placement/caching
or ignored the impact of congestion of cloudlets during task
offloading [14], [28], [51], [52], [56]. For example, Yu et al.
[51] considered an application provisioning and data rout-
ing problem, with bandwidth and delay guarantees for data
sources. Misra et al. [28] recently studied the task offloading
problem in a software-defined network, where Internet-of-
Things (IoT) devices are connected to fog computing nodes
by multi-hop IoT access-points (APs). Zhou et al. [56] stud-
ied the joint task offloading and scheduling problem, by
considering wireless network connections and mobile
device mobility. Yang et al. [50] proposed a multi-task learn-
ing model to obtain an optimal computation offloading
strategy for an MEC network.

Fig. 1. An example of the two-tiered cloud network.
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For investigations on service provisioning, most of them
did not consider a hierarchical service market with an infra-
structure provider and various network service providers.
In addition, they did not jointly consider the caching of
services from the data centers to cloudlets in the MEC net-
work and the state updating between cached and original
services [6], [8], [13], [16], [19], [20], [26], [32], [41], [45], [51],
[55]. For example, Farris et al. [13] devised methods for ser-
vice replication and migration for mobile users with an
objective to minimize the degradation of the quality of expe-
rience (QoE) and the service replication cost. Xu et al. [45]
investigated a problem of service placement in MEC-
enabled cellular networks, and proposed algorithms based
on Lyapunov optimization and Gibbs sampling, to reduce
the computation latency experienced by users. Wang et al.
[41] presented a problem of provisioning a social VR appli-
cation in MEC networks to serve a number of users to mini-
mize the social cost for placing services in cloudlets.
Ndikumana et al. [29] proposed a joint communication,
computation, caching, and control framework for big data
processing in MEC networks, to minimize a weighted sum
of bandwidth consumption and latency. Zhu et al. [58]
aimed to maximize the computation completion ratio for
wireless MEC networks, by proposing an algorithm to
jointly optimize time allocation and computation schedul-
ing for mobile devices. Deng et al. [11] proposed an
approach to find optimal deployment of micro-services in
MEC networks, with the aim to minimize the deployment
cost subject to response time requirements of requests. Jin
et al. [21] investigated the service chaining problem in MEC
networks, to simultaneously reuse computing and band-
width resources while meeting latency requirements. Pou-
larakis et al. [31] studied the problem of service placement
and request routing in MEC-enabled multi-cell networks
with multiple types of resources.

There are also several related studies on the content
placement or caching in MEC networks [16], [20], [26], [44].
However, content caching is fundamentally different from
service caching. Specifically, service caching needs caching
services that consume computing resources, while content
caching requires sufficient storage to store contents. Also,
these studies neither consider the cache cost [16], [20] nor
consider updating activities between local edge servers and
remote clouds [26]. For instance, Hou et al. [16] investigated
the problem of content caching in mobile networks and
devised efficient algorithms to predict content popularity.
Similarly, Jiang et al. [20] considered a content caching and
delivery problem by placing popular contents in base sta-
tions and user equipments, such that the access latency of
users is minimized, subject to the capacity constraints of
base stations. Li et al. [26] considered a caching scheme for
mobile networks, where each base station can cache popular
contents to minimize delay experienced by users. Xiong
et al. [44] investigated the interactions among content ser-
vice providers under a novel ‘sponsored content’ scheme,
by proposing a Stackelberg game.

In contrast to the mentioned studies on computation off-
loading, service placement, and content caching, we con-
sider service caching in a two-tiered MEC network of a
service market with both an infrastructure provider and
multiple network service providers. In addition, the

communications between origin services at remote clouds
to the cached service at local edge servers are considered
too. It must be mentioned that this paper is an extended ver-
sion of its conference version in [48]. We have significantly
extended the conference version by considering another
closely related optimization problem - the service caching
problem with request rate uncertainty, and for which we
propose a new approximation algorithm with request rate
uncertainty.

3 PRELIMINARY

In this section, we introduce the system model and nota-
tions, and we also define the optimization problems of ser-
vice caching precisely.

3.1 System Model
We consider a two-tiered MEC network G ¼ ðCL [ DC; EÞ
that consists of a set CL of cloudlets deployed in locations
within the proximity of users, and a set DC of remote clouds
located in the core network, as shown in Fig. 1. Let CLi be a
cloudlet in CL. The computing resource in each cloudlet is
virtualized as Virtual Machines (VMs) or containers. Mobile
services and their related databases/libraries can be imple-
mented in the VMs of cloudlets in G. Each cloudlet has a
limited capacity of bandwidth resource to transfer data traf-
fic from/to itself. Let CðCLiÞ and BðCLiÞ be the computing
and bandwidth resource capacities of each cloudlet CLi,
respectively. We do not consider the resource capacity con-
straint on each data center in DC since they have abundant
resources. E is a set of links that interconnect the cloudlets
and data centers in CL [ DC.

3.2 Service Caching
Various large- and small-scale network service providers
exist in the hierarchical service market of an MEC network.
Denote by N a set of network service providers. Let spq be
the qth network service provider in N , where 1 % q % jN j.
Each network service provider spq wants to cache a set of
services to the MEC network. Let Sq be the set of services
offered by spq, and SVq;l be a service in Sq, where 1 % l %
jSqj. We refer to an implementation of service SVq;l in a VM
of a remote cloud as its original instance. The requests of SVq;l

will be directed to the cached instance of SVq;l for processing
if an instance of SVq;l has been cached at a cloudlet in G
already; otherwise, the original instance of SVq;l in the remote
cloud will process its user requests. Denote by rq;l the
request rate (i.e., the number of requests per time unit) that
should be served by service SVq;l. We consider a propor-
tional resource consumption model. That is, the amount of
resource demanded by each service SVq;l is aq & rq;l, where aq
is the amounts of computing resource that network service
provider assigns to each unit of request rate [33], [40], [54].
In addition, transmitting data from/to the cached instance
of SVq;l consumes the bandwidth resource. Therefore, each
network service provider allocates a certain amount of
bandwidth resource to its user requests to guarantee service
performance. Let bq be the bandwidth resource assigned to
a unit of request rate of each SVq;l, the bandwidth consump-
tion of SVq;l thus is bq & rq;l.
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The cached instances of each service SVq;l 2 Sq of net-
work service provider spq may be de-allocated from the
cloudlet due to the capacity constraint on the cloudlet.
Therefore, the original service instance of SVq;l in its remote
cloud will not be de-activated even if there are its cached
instances in the MEC network.

3.3 Cost Model of Service Caching
The cost of caching a service in a cloudlet consists of a ser-
vice instantiation cost due to the instantiation of a VM, the
processing cost due to the processing of data traffic, and the
update cost between the cached service and its original ser-
vice in a remote cloud [3], [15]. These costs are categorized
into the service caching cost and the bandwidth consumption
cost, respectively.

Caching a service to the MEC network means instantiat-
ing a VM and running a service instance in the VM. This
usually incurs a service instantiation cost due to software
setup for the cached service instance. Let cinsq;l be the cost of
instantiating an instance of service SVq;l of network service
provider spq. After service SVq;l being cached at a cloudlet,
its user requests are forwarded to the cloudlet for process-
ing. This incurs costs since data processing requires usage
of computing resource.

The cached services in cloudlet CLi are sharing the com-
puting resource in CLi. Although VMs and containers can
provide resource isolation, inter-VM interferences still exist
in cloud computing platforms including the state-of-the-art
serverless platforms [24]. Such interference usually leads to
performance degradation, thereby generating costs of vio-
lating service quality requirements of users. Intuitively, the
inter-service cost becomes higher when there are a higher
number of services cached in a cloudlet. We thus assume
that the cost of caching a service in CLi depends on the
workload (i.e., the congestion or the number of services) of
cloudlet CLi. The cost due to congestions should be non-
decreasing with the congestion levels. We adopt a propor-
tional congestion model, following existing studies in [10],
[18]. Let si be the set of services with instances cached in
cloudlet CLi. The total service caching cost for the services
in si that are cached in CLi can be calculated by

aijsijþ
X

SVq;l2si

cinsq;l ; (1)

where ai is a given constant that captures the influence of
congestion of a service on service caching costs. Note that
the derivation technique in the later section does not rely on
the assumption of the proportional cost model. Instead, it
relies only on the non-decreasing cost with congestion lev-
els. Therefore, the proportional congestion cost model can
be easily extended to other more complicated non-decreas-
ing cost models.

Recall that service SVq;l is temporarily cached at a cloud-
let, and its original instance is maintained in the remote
cloud. However, to ensure the seamless service transition
between the cached and original service instances, the proc-
essed data of the cached instance needs to be updated and
synchronized to its original instance in the remote cloud.
The cost incurred by such updates is mainly due to the
bandwidth resource consumption of cloudlet CLi. Recall

that each network service provider is assigned with an
amount of bq & rq;l bandwidth resource. Hence, there is a
fixed bandwidth consumption cost for each network service
provider spq in cloudlet CLi, referred to as cbdwq;i . In addition,
the bandwidth consumption cost is affected by other net-
work service providers using the bandwidth resource of
CLi, i.e., the congestion of cloudlet CLi. The total update
cost of all cached instances in si is calculated as

bijsijþ jsij & cbdwq;i ; (2)

where bi is a given constant that captures the impact of con-
gestion of bandwidth resource of CLi on the cost. Notice
that the specific synchronization methods of such updat-
ing/synchronization depend on specific services. We thus
consider that the design of synchronization methods is
beyond the scope of this paper.

3.4 Hierarchical Service Markets
As shown in Fig. 1, the infrastructure provider of the hierar-
chical service market has full control of its resources of the
MEC network. Its actions can have influence on the behav-
iors of other players in the service market. We thus can con-
sider it as a leader in the market. The hierarchical service
market usually has both large-scale and small-scale network
service providers with diverse resource demands.

Large-scale network service providers have different net-
work services serving a large number of users. Such net-
work service providers usually have high demands from
users. They thus prefer to have bulk-lease contracts with the
infrastructure provider to lower their operational cost. The
infrastructure provider thus can coordinate them as long as
requirements in the bulk-lease contracts are met. Therefore,
the network service providers with bulk-lease contracts are
referred to as coordinated network service providers.

Small-scale start-ups offer services for a relative small
group of users, and usually lease computing resources on-
demand to process their requests instantly. Since small-scale
network service providers just entered the market, they usu-
ally observe the behaviors of coordinated network service
providers to make their own strategies. As such, their
behaviors (by increasing or reducing and withholding of a
specific type of services) are normally affected by the coor-
dinated network service providers. We refer to them as fol-
lowers. Since they are interested in their own revenues, we
refer to such network service providers as selfish network ser-
vice providers. Let S be the set of coordinated network ser-
vice providers. NnS then denotes the set of selfish network
service providers.

3.5 Stackelberg Congestion Game and its PoA
In the hierarchical service market of an MEC network, we
consider a Stackelberg congestion game, where the leader is
the infrastructure provider while the followers are the net-
work service providers. In particular, the infrastructure pro-
vider leads and guides the behaviors of network service
market by coordinating large-scale network service pro-
viders. As congestions of cloudlets play a vital role in the
cost of service caching, this will indirectly lead the small-
scale network service providers, even though they selfishly
minimize their own costs. Without loss of generality, we
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consider a symmetric Stackelberg where the strategy space
of each network service provider is identical. The Stackel-
berg game is denoted by GðN; CL; ðslÞspl2N; ðciÞCLi2CLÞ,
where sl 2 2jCLj n f;g is the strategy space of each network
service provider, and ci is a non-negative and non-decreas-
ing cost function associated with caching services in each
cloudlet CLi. Then, ci ¼

P
SVq;l2si cq;l;i. Denote by cqðsqÞ the

cost of network service provider spq with strategy space sq,
then

cqðsqÞ ¼
X

CLi2sq

X

SVq;l2Sq

xq;l;i & cq;l;i; (3)

where xq;l;i is a binary indicator variable showing whether
spq chooses CLi to cache an instance of its service SVq;l.

A Stackelberg strategy is an algorithm that chooses a sub-
set of players and assigns them a prescribed strategy with
the purpose of mitigating the detrimental effect of selfish
behaviors of the remaining uncoordinated players.

To measure inefficiency caused by the selfishness of net-
work service providers, we adopt a popular metric called
the Price of Anarchy (PoA). It is defined as the proportion
between the worst social utility from a Nash equilibrium (no
players have incentives to deviate from their current strate-
gies) and the optimal social utility in which players are not
selfish, not necessarily from a Nash equilibrium.

3.6 Problem Definition
We consider anMECnetworkG ¼ ðCL [ DC; EÞmanaged by
an infrastructure provider. Its resources are shared by both
large-scale (coordinated) and small-scale (selfish) network
service providers. We consider that large-scale network ser-
vice providers all prefer to have bulk contracts. Small-scale
network service providers prefer on-demand leases. We fur-
ther assume that such preferences does not change within a
time horizon T . It must be mentioned that the network ser-
vice providers’ preference may change. For example, each
coordinated network service provider will have a chance of
deciding whether to continue their contracts when the con-
tracts expire. On the other hand, a selfish network service
provider may prefer a bulk-lease contract when its request
rate increases dramatically. Once such preference changes,
the strategy adjustment of the market will start in the begin-
ning of a coming time horizon T . We define the following
optimization problems in time horizon T .

Problem 1. Assuming that the request rate of each service
SVq;l provided by network service provider spq 2 N is given,
the service caching problem in an MEC network of a service
market is to cache the services of theN network service pro-
viders, by selecting and coordinating a subset of network
service providers from N , and allowing the rest of network
service providers to perform selfishly, such that the social
cost is minimized, subject to the computing and bandwidth
resource capacities on each cloudlet of the MEC network,
where the social cost is defined as the cost of all network ser-
vice providers inN , i.e.,

P
spq2N cqðsqÞ.

Problem 2. In real life scenarios, a network service pro-
vider spq may not know the request rate of its service SVq;l

requested by its user. Given a set of coordinated network
service providers and a set of selfish network service pro-
vider, the service caching problem with request rate uncertainty

thus is to adaptively cache the services of the N network
service providers with uncertain information of request rate
of each service, such that the social cost of the mobile service
market is minimized while no players have incentives to
deviate from their current strategies, subject to both com-
puting and bandwidth resource capacities on each cloudlet.

All the symbols used in this paper are listed in Table 1.

4 AN EFFICIENT MECHANISM FOR THE

SERVICE CACHING PROBLEM

We now devise an efficient mechanism for the service cach-
ing problem, based on a novel Stackelberg game. We first
propose a novel strategy called approximation-restricted in
the mechanism design of a Stackelberg game, such that the
performance of the proposed mechanism is not far from the
social optimum when not all players are selfish. We then
devise an approximation algorithm with an approximation
ratio for the service caching problem with non-selfish play-
ers. Based on the approximation strategy and the approxi-
mation algorithm, we propose a Stackelberg strategy for the
service caching problem with the consideration of both non-
selfish and selfish players.

4.1 Approximation-Restricted Strategy
To avoid the performance degradation due to selfishness, a
feasible method is to coordinate a subset of network service
providers with near-optimal solutions, and then influence
the small-scale network service providers (i.e., followers).
We thus design a Stackelberg strategy with a guaranteed
performance gap from the social optimum. The infrastruc-
ture provider of the MEC network then can find a subset of
network service providers and coordinate them to avoid
significant performance deviation caused by the rest of net-
work service providers.

To guarantee the performance of the proposed mecha-
nism, we focus on the optimal-restricted Stackelberg strategy.
A Stackelberg strategy is optimal-restricted if the strategy
assigned to the coordinated players coincides with the one
they adopt in the social optimum solution OPT . However,
the social optimum solution cannot be obtained in polyno-
mial time due to the NP-Hardness of the problem. We thus
find an approximate solution for the problem when all play-
ers are coordinated to approach the social optimum OPT .
Then, we use the obtained approximate solution OPT 0 to
guide the strategies of the coordinated players. We refer to
this method as an approximation-restricted strategy.

Our idea is to design an approximation algorithm with
an approximation ratio for the service caching problem in
an MEC network with non-selfish network service pro-
viders. In the following, we reduce the problem to a general-
ized assignment problem (GAP) [36].

For the sake of clarity, we first describe the GAP prob-
lem [36]. Given n items and m knapsacks, each item itmj

can be assigned to a knapsack bini at a cost of cij. The weight
of the item is wij if it is assigned to knapsack bini. The accu-
mulative weight of all items assigned to bini cannot exceed
its capacity CAPi. The objective of the GAP problem is to
assign as many items as possible to the m knapsacks such
that the assignment cost is minimized.
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4.2 An Approximation Algorithm for the Problem
With Non-Selfish Players

We reduce the service caching problem in an MEC network
with non-selfish players to the GAP problem. The main dif-
ference between them lies in the cost model. The cost of
caching an instance of service in a cloudlet is related to the
‘congestion’ of the cloudlet, i.e., the number of cached ser-
vice instances. However, in the GAP problem the cost of
assigning an item to a knapsack only depends on the item
itself. We thus need to map the congestion-aware cost
model to the flat cost model in the GAP problem.

Our basic strategy is to split each cloudlet into a set of vir-
tual cloudlets, with each virtual cloudlet being restricted to
cache a single service instance only. The rationale behind is

to ignore the ‘congestion’ in the cost model first, and con-
sider it later. Specifically, let amax and bmax be the maximum
demands of computing and bandwidth resources of a ser-
vice SVq;l, i.e., amax ¼ argmaxq;lðaq & rq;lÞ and bmax ¼
argmaxq;lðbq & rq;lÞ. Similarly, amin ¼ argminq;lðaq & rq;lÞ and
bmin ¼ argmaxq;lðbq & rq;lÞ be the minimum demands of com-
puting and bandwidth resources of a service. We further
assume that amax

amin
and amax

amin
usually are fixed constants. Note

that such ratios depend on the number of service types,
which can be obtained from historical information of serv-
ices. We then split each cloudlet CLi into ni ¼
min

!"
CðCLiÞ=amax

#
;
"
BðCLiÞ=bmax

#$
virtual cloudlets with

each virtual cloudlet being able to cache a single service SVl.
Let fCL01;i; . . . ; CL0k;i; . . . ; CL0ni;ig be the set of virtual

TABLE 1
Symbols

Symbols Meaning

G ¼ ðCL [ DC; EÞ an MEC network with a set CL of cloudlets, a set DC of remote clouds deployed in CL and a set of links E
that interconnect the cloudlets and data centers

CLi a cloudlet in CL
CðCLiÞ and BðCLiÞ the computing and bandwidth resource capacities of cloudlet CLi

N and S a set of network service providers N and a set of coordinated network service providers S
spq and Sq the qth network service provider inN that offers a set of services Sq

SVq;l and rq;l service SVq;l and its request rate rq;l
aq and bq the amount of computing and bandwidth resources that are assigned to each unit of request rate rq;l
cinsq;l the cost of instantiating an instance of service SVq;l of network service provider spq
cbdwq;i a fixed bandwidth consumption cost for each network service provider spq in the cloudlet CLi

si a set of services that have instances cached in cloudlet CLi

ai and bi given constants that captures the influence of congestion on service caching and bandwidth costs of CLi,
respectively

cqðsqÞ the cost of network service provider spq with strategy space sq

xq;l;i a binary indicator variable showing whether spq chooses CLi to cache an instance of its service SVq;l

T a finite time horizon
n,m, itmj, bini, cij a GAP problem that contain n items andm knapsacks, each item itmj can be assigned to a knapsack bini

at a cost of cij
wij and CAPi the weight of the item if it is assigned to knapsack bini with capacity CAPi

amax and amin the maximum and minimum demands of computing resources of a service SVq;l

bmax and bmin the maximum and minimum demands of bandwidth resources of a service SVq;l

ni and CL0k;i the number of virtual cloudlets in each cloudlet ðCLiÞ and CL0k;i is a virtual cloudlet of cloudlet CLi

n0max the number of services that each virtual cloudlet maximally can cache
! the percentage of the network service providers that are coordinated by the leader in the hierarchical

service market
C, OPT and C0 the optimal cost due to algorithm Appro, the optimal cost and the social cost with non-selfish network

service providers
z the obtained approximation solution due to algorithm Appro
s and f any approximation-restricted Stackelberg caching of services and the worst pure NE induced by s
v the service caching that leads to the worst cost due to selfish behavior of the rest ð1( !ÞjN j network

service providers
Ns the set of coordinated network service providers determining the approximation-restricted Stackelberg

strategy
yq;l;i an indicator variable that shows whether service SVq;l is cached in cloudlet CLi

Eðcq;l;iÞ and Eðrq;lÞ the expected cost and request rates of each service SVq;l

n the fixed number of virtual cloudlets that each cloudlet is divided in algorithm Appro_ADA
z) a fractional solution z) of the LP
zq;l;i;k and z)q;l;i;k the real-valued variable and fractional solution showing the probability that service SVq;l is assigned to

index k of virtual cloudlets
jSij the number of services that are randomly assigned to CLi

z0 and z0q;l;i;k the fractional solution obtained by solving LP and the probability of assigning service SVq;l

y) and z) the optimal solution to the ILP and the optimal solution to integral version of LP
y)q;l;i;k and s)q;l;r the indicator variables that show whether service SVq;l is admitted by virtual cloudlet CL0i;k of bsi in

solution y) and SVq;l has request rate of r
Xq;l the random variable indicating the most recent service
Co the amount of computing resource occupied by the services that are admitted in the previous rounds

with index smaller than k
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cloudlets for cloudlet CLi. Each virtual cloudlet CL0k has a
capacity maxfamax; bmaxg such that any service in N can be
cached in it.

We now reduce the problem into the GAP problem, by
considering each virtual cloudlet as a knapsack, with its
capacity being set to maxfamax; bmaxg. Clearly, each virtual
cloudlet maximally can cache

n0max ¼ max
nmaxfamax; bmaxg

amin
;
maxfamax; bmaxg

bmin

o
: (4)

services in N . The cost of caching a service SVq;l in virtual
cloudlet CL0k;i is set to ai þ bi þ cinsq;l þ cbdwq;i ; which means
that the contribution of other services in CL0k;i is not consid-
ered. That is, the cost of using resource by SVq;l in virtual
cloudlet CL0k;i solely depends on the service itself and the
location of CLi.

We then solve the GAP problem by adopting the approxi-
mation algorithm in [36]. The obtained solution assigns each
service to a virtual cloudlet. However, this is not a feasible
solution to the original service caching problem. To obtain a
feasible solution, we assign all the services that are assigned
in the virtual cloudlets in fCL01;i; . . . ; CL0k;i; . . . ; CL0ni;ig to
cloudlet CLi. The detailed steps of the proposed algorithm
are described in algorithm 1, which is referred to as algo-
rithm Appro.

Algorithm 1. Appro

Input: An MEC network G and a number of network service
providers wishing to cache their services in G.

Output: A cloudlet to cache each service SVq;l of each network
service provider spq.

1: Split each cloudlet into a set of ni virtual cloudlets, with each
virtual cloudlet having the ability of caching only a limited
number of services;

2: Consider each virtual cloudlet as a knapsack in the GAP
problem [36], and use the cost function that does not incor-
porate the ‘congestion’, i.e., ai þ bi þ cinsq;l þ cbdwq;i ;

3: Invoke the approximation algorithm for the GAP problem
in [36];

4: Move all the network service providers that are assigned to vir-
tual cloudlets in fCL01;i; . . . ; CL0k;i; . . . ; CL0ni;ig to cloudletCLi;

4.3 The Stackelberg Strategy of the
Proposed Mechanism

We describe the Stackelberg strategy to deliver an approxi-
mate solution for the service caching problem with non-self-
ish network service providers. Specifically, we coordinate a
subset of network service providers in N by assigning strat-
egies in the approximate solution to them. We allow the
uncoordinated network service providers to selfishly select
cloudlets that would minimize their costs.

Let ! be the percentage of the network service pro-
viders that are coordinated by the leader in the mobile
service market (i.e., the infrastructure provider), where
the 0 < ! < 1. The proposed Stackelberg strategy has
two steps. In the first step, a number of b!jN jc network
service providers are selected to be coordinated by the
infrastructure provider. Since the services of network
service providers have different resource demands, they

have different impacts on the social cost. To enlarge the
influence of coordinated network service providers, we
select b!jNjc network service providers that incur the
highest costs of caching their services. We refer to this
strategy as Largest Cost First (LCF). The second step of
the Stackelberg game is to allow the rest network service
providers to selfishly select cloudlets that incur the low-
est costs for them. The proposed Stackelberg strategy is
shown in algorithm 2, which is called LCF.

Algorithm 2. LCF

Input: An MEC network G and a number of network service
providers wishing to cache their services in the cloudlets of
the cloud.

Output: A cloudlet to cache each service SVl of each network
service provider.

1: Find an approximate solution of the service caching problem
in an MEC network with non-selfish players according to
algorithm Appro;

2: Find a number !jNj of network service providers with the
maximum cost of caching their services in a cloudlet of the
MEC network;

3: Let Ns be the set of such coordinated network service
providers;

4: for each network service provider spq 2 Ns do
5: Use the location in the approximate solution to cache its

services in Sq;
6: for each network service provider spq 2 N nNs do
7: Use the location that could incur a minimum cost for each of

its service SVq;l 2 Sq;

4.4 Analysis
The rest is to analyze the performance of the proposed algo-
rithms Appro and LCF in the following.

Lemma 1. The solution obtained by algorithm Appro is feasible
for the service caching problem in an MEC network with non-
selfish network service providers, assuming that the resource
capacities are far greater than the maximum resource demands
of any service of service providers inN .

Proof. The solution feasibility of algorithm Appro is to show
that each service SVl of network service provider is cached
into a cloudlet while the computing and bandwidth capac-
ities of each cloudletCðCLiÞ andBðCLiÞ can bemet.

In algorithm Appro, each cloudlet CLi is divided into
a set of virtual cloudlets, i.e., fCL01;i; . . . ; CL0k;i; . . . ;
CL0ni;ig. The services of network service providers in N
then are assigned to those virtual cloudlets, using the
approximate solution to the GAP problem. A feasible
solution then is obtained, by assigning all the services
that are assigned to virtual cloudlets in fCL01;i; . . . ; CL0k;i;
. . . ; CL0ni;ig to cloudlet CLi. Therefore, each service is
cached to a single cloudlet only.

We now show that both computing and bandwidth
capacities of cloudlets are met. For the computing capac-
ity constraint CðCLiÞ of cloudlet CLi, each cloudlet is
divided into a number of virtual cloudlets according to
the maximum demand (either computing or bandwidth)
of a service. This guarantees that each virtual cloudlet
has enough resource to cache a service. Considering that
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each knapsack in the GAP problem has its capacity is not
violated by any feasible solution, the capacity of each vir-
tual cloudlet is not violated too. Having obtaining the
solution due to algorithm in [36], we move the services
cached into virtual cloudlet CL0k;i to cloudlet CLi. Since
the computing capacity of CL0k;i is not violated, the com-
puting capacity of each cloudlet CLi is not violated. Simi-
lar derivation can be performed for the bandwidth
capacity of each cloudlet CLi. The solution thus is
feasible. tu

Lemma 2. Given an MEC network G and a set of non-selfish
network service providers, there is an approximation algorithm,
i.e., Appro, for the service caching problem with non-selfish
network service providers. Its approximation ratio is 2 & d & k,
where d ¼ CðCLiÞ

amax
and k ¼ BðCLiÞ

bmax
.

Proof. We analyze the approximation ratio of the proposed
algorithm Appro as follows.

Denote by C0 the obtained social cost for the problem
with non-selfish network service providers under cost
function ai þ bi þ cinsq;l þ cbdwq;i for caching service SVq;l in
cloudlet CLi. Let OPT 0 be the optimal cost. Similarly, let
C be the social cost due to algorithm Appro and let
OPT be the optimal cost for the service caching problem
in a two-tiered MEC network. The approximation ratio
of algorithm in [36] for the GAP problem is 2. This
means

C0=OPT 0 ¼ 2: (5)

We then find the relationship between the social cost
C0 under the cost function ai þ bi þ cinsq;l þ cbdwq;i and the
social cost under the cost function in the original prob-
lem. It must be mentioned that the social cost C0 does not
include the cost due to ‘congestion’ of a cloudlet. After
invoking the approximation algorithm due to [36], there
are at most n0max services that are assigned to each virtual
cloudlet CL0k;i, since the capacity of each virtual cloudlet
is set to maxfamax; bmaxg. Recall that there are at most ni

virtual cloudlets for each cloudlet CLi. All the services
assigned to these ni virtual cloudlets will be moved to a
single cloudlet CLi. The cost due to such movement
increases as it increases the congestion of cloudlet CLi.
There are at most ni & n0max services involving in the
movement, that is

C %
X

CLi2CL
ðni & n0max & ðai þ biÞ þ cinsq;l þ cbdwq;i Þ

¼ ni & n0max &
X

CLi2CL
ai þ bi þ

cinsq;l þ cbdwq;i

ni & n0max

 !

Clearly, it can be seen that ni > 1 and n0max > 1. We
then have

C < nin
0
max

X

CLi2CL
ðai þ bi þ cinsq;l þ cbdwq;i Þ ¼ ni & n0max & C

0:

Assuming that CðCLiÞ
amax

and BðCLiÞ
bmax

are small constants, let
CðCLiÞ
amax

¼ d and BðCLiÞ
bmax

¼ k. We have C < d & k & C0 ¼ 2 & d & k &

OPT 0, due to Eq. (5). Since OPT considers the congestion

of each cloudlet, we have OPT 0 < OPT , which means
that C < 2 & d & k &OPT . The approximation ratio of the
proposed algorithm Appro thus is 2 & d & k. tu

We analyze the performance of the proposed Stackelberg
strategy LCF, by stating the main results as follows.

Lemma 3. Given an MEC network G and a set of network
service providers, assuming that some network service pro-
viders can be coordinated by the infrastructure provider of
G while some other network service providers behave self-
ishly, there exists a Stackelberg game, i.e., LCF, which can
achieve at least one Nash equilibrium (NE) of the proposed
game.

Proof. The proposed Stackelberg game deals with a set of
coordinated service providers and another set of selfish
service providers. Recall that the coordinated service pro-
viders follow the decisions made by algorithm Appro,
and their decisions will not be affected by the selfish net-
work service providers. We only need to show that a NE
could be achieved for the selfish network service pro-
viders. Recall that the cost of caching a service SVq;l in
cloudlet CLi is calculated by ai þ bi þ cinsq;l þ cbdwq;i , which is
an affine function. Following existing results in [30], an
affine congestion game admits at least one NE. This con-
cludes the proof. tu

We establish the PoA of the proposed Stackelberg game
under the LCF strategy in the following theorem.

Theorem 1. Given an MEC network G and a set of network ser-
vice providers, assuming that some network service providers
can be coordinated by the infrastructure provider of G while
some other network service providers behave selfishly, we then
have the PoA of the proposed strategy is 2dk

1(v ð
1
4v þ 1( !Þ with

v 2 ð0; 1Þ, where d ¼ CðCLiÞ
amax

and k ¼ BðCLiÞ
bmax

.

Proof. Let z be the obtained approximation solution due
to algorithm Appro, let s be any approximation-
restricted Stackelberg caching of services of an MEC
network, and let v be the service caching that leads to
the worst cost due to selfish behavior of the rest ð1(
!ÞjNj network service providers. Denote by Ns the set
of coordinated network service providers determining
the approximation-restricted Stackelberg strategy. Let
f be the worst pure NE induced by s. We then know
that v ¼ sþ f.

Recall that f is a NE with respect to the cost function
aijsijþ bijsijþ cinsq;l þ cbdwq;i for each of the ð1( !ÞjN j net-
work service providers. We have

ðafðq;lÞ þ bvðq;lÞÞjsvðq;lÞjþ cinsq;l þ cbdwq;vðq;lÞ

< azðq;lÞjszðq;lÞ þ 1jþ bzðq;lÞjszðq;lÞ þ 1jþ cinsq;l þ cbdwq;zðq;lÞ; (6)

where vðq; lÞ and zðq; lÞ are the cloudlets that are used to
cache service SVq;l of network service provider spq of the
NE and the approximate solution due to algorithm
Appro.

If we sum up the inequalities (6) for all uncoordinated
network service providers in N nNs, we have
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X

spl2NnNs

ðavðq;lÞ þ bvðq;lÞÞjsvðq;lÞjþ cinsq;l þ cbdwq;vðq;lÞ

<
X

spl2NnNs

ðazðq;lÞ þ bzðq;lÞÞjszðq;lÞ þ 1jþ cinsq;l þ cbdwq;zðq;lÞ:

We use si;v to denote the number of services that are
assigned to cloudlet CLi of the service caching
that leads to the worst cost due to selfish behavior
of the rest ð1( !ÞjNj network service providers. We
have

X

CLi2CL
si;v

%
ðai þ biÞjsi;vj þ cinsq;l þ cbdwq;i

&

<
X

CLi2CL
ðsi;z ( si;sÞ

%
ðai þ biÞjsi;v þ 1j þ cinsq;l þ cbdwq;i

&
:

Adding the cost si;s

%
ðai þ biÞsi;v þ cinsq;l þ cbdwq;i

&
of coordi-

nated players to both sides of the above inequality, we
obtain

CðvÞ ¼
X

CLi2CL
ðsi;f þ si;sÞ &

%
ðai þ biÞsi;v þ cinsq;l þ cbdwq;i

&

<
X

CLi2CL

%
ðai þ biÞsi;vsi;z þ cinsq;l si;z þ cbdwq;i si;z

þ ðsi;z ( si;sÞðai þ biÞ
&
: (7)

Given the inequality xy % vx2 þ 1
4v y

2 that is valid for all
x; y 2 R and v 2 ð0; 1Þ, we then derive the following
inequality

X

CLi2CL

%
ðai þ biÞsi;vsi;z þ cinsq;l si;z þ cbdwq;i si;z

&

< v
X

CLi2CL
ðai þ biÞðsi;vÞ2 þ

1

4v

X

CLi2CL
ðai þ biÞðsi;zÞ2

þ
X

CLi2CL
ðcinsq;l þ cbdwq;i Þsi;z

¼ vCðvÞ ( v
X

CLi2CL
ðcinsq;l þ cbdwq;i Þðsi;vÞ

þ 1=ð4vÞ
X

CLi2CL
ðai þ biÞðsi;zÞ2 þ

X

CLi2CL
ðcinsq;l þ cbdwq;i Þsi;z

¼ vCðvÞ þ 1=ð4vÞ & vCðzÞ þ
X

CLi2CL
ðcinsq;l þ cbdwq;i Þsi;z

(
%
vþ 1=ð4vÞ

& X

CLi2CL
ðcinsq;l þ cbdwq;i Þsi;s

( 1=ð4vÞ
X

CLi2CL
ðcinsq;l þ cbdwq;i Þðsi;z ( si;sÞ; since si;v * si;s

% vCðvÞ þ 1=ð4vÞCðzÞ
þ ð1( 1=ð4vÞÞ

X

CLi2CL
ðcinsq;l þ cbdwq;i Þðsi;z ( si;sÞ;

since v + 1/(4v) * 1. (8)

Combining inequalities (7) and (8), we have

ð1( vÞCðvÞ (9)

% 1

4v
CðzÞ þ ð1( 1

4v
Þ
X

CLi2CL
ðcinsq;l þ cbdwq;i Þðsi;z ( si;sÞ

þ
X

CLi2CL
ðsi;z ( si;sÞðai þ biÞ:

% 1=ð4vÞCðzÞ þ
X

CLi2CL
ðcinsq;l þ cbdwq;i Þðsi;z ( si;sÞ

þ
X

CLi2CL
ðai þ biÞðsi;z ( si;sÞ

% 1=ð4vÞCðzÞ þ
X

CLi2CL

%
ðai þ biÞðsi;z ( si;sÞ2

þ ðcinsq;l þ cbdwq;i Þðsi;z ( si;sÞ
&
;

since ðsi;z ( si;sÞ % ðsi;z ( si;sÞ2 for non-negative integers

% 1=ð4vÞCðzÞ þ
X

CLi2CL

%
ðai þ biÞsi;z þ ðcinsq;l þ cbdwq;i Þ

&

ðsi;z ( si;sÞ; since ðsi;z ( si;sÞ2 % si;zðsi;z ( si;sÞ
% 1=ð4vÞCðzÞ þ ð1( !ÞCðzÞ ¼ ð1=ð4vÞ þ 1( !ÞCðzÞ
% 2dkð1=ð4vÞ þ 1( !ÞOPT; due to Lemma 2 .

(10)

The PoA of the proposed approximation-restricted Stack-
elberg strategy thus is 2dk

1(v ð
1
4v þ 1( !Þ. tu

5 ALGORITHM FOR THE SERVICE CACHING

PROBLEM WITH REQUEST RATE UNCERTAINTY

In this section, we propose algorithms for the service cach-
ing problem with request rate uncertainty in an MEC
network.

5.1 Overview
To harness the performance degradation due to request
rate uncertainty, we adaptively admit the services of all
coordinated network service providers instead of admit-
ting them at once. Specifically, although the request rates
are uncertain, we still can obtain the historical informa-
tion, such as the expected request rate of each type of
services. By adopting the similar design rationale of
algorithms Appro and LCF, we propose an approxima-
tion algorithm for the problem with non-selfish network
service providers, and then devise another algorithm
with both selfish and non-selfish network service pro-
viders. However, given that the request rates are uncer-
tain, we adopt a randomized rounding method to obtain
an approximate solution. Further, the uncertain request
rates require fully adaptive algorithms to address the
unexpected changes of the network. We then propose
another adaptive algorithm to enable dynamic changes
of request rates of different services, based on the pro-
posed randomized rounding method.

5.2 Approximation Algorithm for the ProblemWith
Request Rate Uncertainties and Non-Selfish
Network Service Providers

We first formulate the service caching problem with request
rate uncertainty into an Integer Linear Program (ILP). Recall
that the problem is to minimize the expected cost of caching
the services of all network service providers into the MEC
network. Let yq;l;i be an indicator variable that shows
whether service SVq;l is cached in cloudlet CLi. Denote by
Eðcq;l;iÞ the expected cost of assigning service SVq;l to
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cloudlet CLi, and let Eðrq;lÞ be the expected request rates of
each service SVq;l. The problem thus can be formulated by

ILP: min
XN

q¼1

X

SVq;l2Sq

yq;l;i & Eðcq;l;iÞ; (11)

subject to
X

CLi2CL
yq;l;i % 1; 8 SVq;l (12)

XN

q¼1

XSq

l¼1

yq;l;i & aq & Eðrq;lÞ& % CðCLiÞ; 8 CLi (13)

XN

q¼1

XSq

l¼1

yq;l;i & bq & Eðrq;lÞ& % BðCLiÞ; 8 CLi (14)

yq;l;i 2 f0; 1g; (15)

where Constraint (12) means that each service SVq;l can only
be assigned to a single cloudlet in CL. Constraints (13) and
(14) say that the computing and bandwidth capacities of
each cloudlet CLi cannot be violated. Constraint (15) makes
sure yq;l;i is a binary indicator variable.

To obtain an approximate solution to the service caching
problem, we adopt a randomized rounding method. Specifi-
cally, we first propose a feasible relaxation to the ILP. We
then obtain a fractional solution to the relaxed linear pro-
gram, based on which we finally devise the approximation
algorithm.

LP relaxation. To have a feasible relaxation to the ILP, we
first divide each cloudlet into virtual cloudlets, with each
virtual cloudlet representing a portion of the computing
resource of the cloudlet. We then index the virtual cloudlets
of each cloudlet, where two virtual cloudlets with the conse-
cutive portions of computing resource of the cloudlet are
assigned to consecutive indexes. Let n be the number of vir-
tual cloudlets that each cloudlet is divided. Unlike algo-
rithm Appro, we here assume that n is a given parameter.
Each virtual cloudlet CL0k;i thus has an amount bCðCLiÞ

n c of
computing resource, and an amount bBðCLiÞ

n c of bandwidth
resource. Note that for each virtual cloudlet CL0k;i, k natu-
rally becomes its index.

We relax the ILP, denoted by LP. Specifically, let zq;l;i;k be a
real-valued variable showing the probability that service SVq;l

is assigned to index k of virtual cloudlets. The objective is then

LP: min
XN

q¼1

X

SVq;l2Sq

zq;l;i;kEðai þ bi þ cinsq;l þ cbdwq;i Þ; (16)

subject to
X

CLi2CL

Xn

k¼1

zq;l;i;k % 1; 8 SVq;l (17)

XN

q¼1

XSq

l¼1

Xk

k0¼1

zq;l;i;k0 & aq & E
'
min

(
rq;l;

CðCLiÞ
n & aq

)*

% 2 & k & bðCðCLiÞÞ=nc; for each CL0i;k (18)

XN

q¼1

XSq

l¼1

Xk

k0¼1

zq;l;i;k0 & bq & E
'
min

(
rq;l;

BðCLiÞ
n & bq

)*

% 2 & k & bBðCLiÞ=nc; for each CL0i;k (19)

0 % zq;l;i;k % 1: (20)

Randomized Rounding. Given the relaxation of ILP, we can
obtain a fractional solution z) of the LP. We treat each z)q;l;i;k
of the fractional solution as a probability of assigning ser-
vice SVq;l to the kth virtual cloudlet of CLi. Based on these
probabilities, we then assign the services to virtual cloudlets
randomly. There may be multiple services to be assigned to
a single cloudlet. We adaptively admit the services that are
randomly assigned to each index k of virtual cloudlets. Spe-
cifically, for kth virtual cloudlet of CLi, there may be multi-
ple services that are randomly assigned to it. These services
may not fit into it due to its capacity constraints. The reason
is that the request rate of each service is not known before
its admission. However, after the admission of each service,
it may reveal its demand information to the system. We
thus adaptively admit the assigned services one-by-one in
each cloudlet according to the revealed information of each
service. That is, we admit the services that are assigned to
each cloudlet CLi in n iterations. Let jSij be the number of
services that are randomly assigned to CLi. For each itera-
tion k (i.e., 1 % k % n), we consider the kth service with the
smallest expected request rates. The service is admitted to
CLi if and only if the servcies that are already admitted to
CLi occupy no more than k & bCðCLiÞ

n c amount of computing
resource and k & bBðCLiÞ

n c amount of bandwidth resource.
Detailed steps of the proposed approximation algorithm are
shown in algorithm 3, which is referred to as algorithm
Appro_ADA.

Algorithm 3. Appro_ADA

Input: An MEC network G ¼ ðCL [ DC; EÞ and a number of
network service providers wishing to cache their services in
the cloudlets of the cloud.

Output: A cloudlet to cache each service SVl of each network
service provider.

1: Obtain a fraction solution y by solving the LP;
2: Assign service SVq;l of network service provider spq ran-

domly to the kth virtual cloudlet CL0k;i of cloudlet CLi with
probability zq;l;i;k;

3: for k 1; . . . ; n do
4: for each cloudlet CLi 2 CL do
5: Consider the service SVq;l with the kth smallest expected

request rate rq;l;
6: if the services admitted so far in CLi occupy at most k &
bCðCLiÞ

n c( 2Eðrq;l & aqÞ amount of computing resource and k &
bBðCLiÞ

n c( 2Eðrq;l & bqÞ amount of bandwidth resource then
7: Admit SVq;l to cloudlet CLi;
8: else
9: Re-assign service SVq;l of network service provider

spq randomly to the k0th virtual cloudlet CL0k0 ;i0 of
cloudlet CLi0 with probability zq;l;i0 ;k0 , where k0 * k
and i0 6¼ i;
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5.3 The Stackelberg Strategy for the Service
Caching Problem With Request Rate
Uncertainty

Given algorithm Appro_ADA, we now remove the
assumption of non-selfish network service providers. It
must be mentioned that the request rate of each service is
not known in advance. However, request rate is usually a
primary metric to determine the scale of network service
providers. Some network service providers may prefer to
behave selfishly when they have small request rates of
their services. On the other hand, some large-scale net-
work service providers can be coordinated. When the
request rate of each service is not known, we may not
known the percentage ! of network service providers that
can be coordinated. As such, we need to dynamically
learn the percentage !. We thus propose a "(greedy adap-
tive Stackelberg strategy to adaptively learn a proper
value of !, by dynamically deviating from its optimal
decision in each learning step.

The proposed Stackelberg strategy consists of two steps.
In the first step, we select b!jNjc network service providers
that incur the highest expected cost of caching their services.
We refer this strategy as the Largest Expected Cost First
(LECF). The second step of the Stackelberg game is to allow
the rest network service providers to selfishly select cloud-
lets that incur the lowest cost for them. With probability ",
the algorithm randomly selects a network service provider.
The proposed Stackelberg strategy is shown in algorithm 4,
which is referred to as LECF.

Algorithm 4. LECF

Input: An MEC network G and a number of network service
providers wishing to cache their services in the cloudlets of
the MEC network.

Output: A cloudlet to cache each service SVl of each network
service provider.

1: Find an approximate solution of the service caching problem
in an MEC network with non-selfish players according to
algorithm Appro_ADA;

2: for q 1 & & & !jN j do
3: Either find a network service providers with the qth maxi-

mum expected cost of caching their services in a cloudlet
of the MEC network with probability 1( ", or select a net-
work service provider randomly with probability ";

4: Let Ns be the set of such coordinated network service
providers;

5: for each network service provider spq 2 Ns do
6: Use the location in the approximate solution to cache its

services in Sq;
7: for each network service provider spq 2 N nNs do
8: Use the location that could incur a minimum expected cost

for each of its service SVq;l 2 Sq.

5.4 Algorithm Analysis
We show the feasibility and performance of the proposed
algorithm Appro_ADA.

Lemma 4. The solution obtained by algorithm Appro_ADA is
feasible to the service caching problem with request rate
uncertainty.

Proof. The solution feasibility of the proposed approxima-
tion algorithm is to show that both computing and band-
width resources of the MEC network G are met by the
solution delivered by algorithm Appro_ADA.

Let z0 be the fractional solution obtained by solving
LP. Constraints (18) and (19) show that z0 ensures that
the demand of the admitted services by the kth virtual
cloudlet is no greater than 2 times of the accumulative
capacity of the previous k virtual cloudlets, i.e., 2 & k &
bCðCLiÞ

n c and 2 & k & bBðCLiÞ
n c. We know that the computing

and bandwidth resources may be violated by the fraction
solution. However, in algorithm Appro_ADA, we further
consider fractional solution z0q;l;i;k as a probability of
assigning service SVq;l.

To ensure that both computing and bandwidth
resources of each CLi are met, we admit service SVq;l that
is randomly assigned to CLi as long as the services
admitted so far occupy at most k & bCðCLiÞ

n c computing
resource of cloudlet CLi. After the admission of service
SVq;l, the resource capacities however may be violated,
because each service only reveals its real demand once
admitted. This means service SVq;l is the only service
whose demand causes the violation of the computing
capacity of CLi.

To show the probability of violating the computing
capacity by the admission of SVq;l, we use Co to denote
the amount of computing resource occupied by the serv-
ices that are admitted in the previous rounds with index
smaller than k. Showing the probability thus is to show
PrðkbCðCLiÞ=nc( Co % rq;l & aqÞ, i.e.,

PrðkbCðCLiÞ=nc( Co % rq;l & aqÞ
% Pr½Eðrq;l & aqÞ=ðkbCðCLiÞ=nc( CoÞ,
% 1=2; due to Constraint (18); (21)

following the Markov’s inequality and the admission
policy shown in Step (6). tu

Theorem 2. Given an MEC network G and a set of non-selfish
network service providers, assuming that the network service
providers can be coordinated by the infrastructure provider of
G and the request rate rq;l of each service SVq;l of network ser-
vice provider spq is not known in advance, there is an approxi-
mation algorithm, i.e., Appro_ADA, for the service caching
problem with request rate uncertainty. The approximation ratio
of the obtained solution by algorithm Appro_ADA is 2 & d & k,
where d ¼ CðCLiÞ=amax and k ¼ BðCLiÞ=bmax.

Proof. We show the approximation ratio of the proposed
algorithm Appro_ADA as follows. We denote by y) the
optimal solution to the ILP, i.e., the service caching prob-
lem with request rate uncertainty and non-selfish net-
work service providers. Let z) be the optimal solution to
integral version of LP, that is when zq;l;i;k 2 f0; 1g. We
know that z) % 2 & d & k & y), due to Lemma 2.

The rest is to show that LP is a feasible relaxation of
ILP. To this end, we need to show that solution y) meets
the constraints of (17), (18), and (19). Clearly, y) meets
constraints (17) because yq;l;i ¼

Pn
k¼1 zq;l;i;k. To show that

y) also meets constraint (18) and (19), we consider some
virtual cloudlet k of cloudlet CLi and a choice of
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cloudlets in the optimal solution y). Recall that the
request rate of each service SVq;l is not known in advance.
The optimal solution y) thus is a randomized policy.
Consider a run of the optimal solution, we use y)q;l;i;k and
s)q;l;r to denote the indicator variables that show whether
service SVq;l is admitted by virtual cloudlet CL0i;k of bsi in
solution y) and SVq;l has request rate of r, respectively.
Let Xq;l be the random variable indicating the most
recent service that is assigned to the virtual cloudlets
with index smaller than k.

Considering that each service SVq;l occupies an
amount of computing resource of each cloudlet CLi, ser-
vice Xq;l in y) is the only service that may have its
demanded computing resource exceeds that of virtual
cloudlet CL0i;k. This means that

X

SVq;l 6¼Xq;l

X

k0%k

X

r&aq%CðCLiÞ
y)q;l;i;ks

)
q;l;rr %

k & CðCLiÞ
n & aq

: (22)

If we include service Xq;l in inequality (22) and trun-
cating its request rate by k&CðCLiÞ

n&aq , we can get

X

SVq;l2S

X

k0%k

Xrmax

r¼1

y)q;l;i;k & s
)
q;l;r &min

(
r;
k & CðCLiÞ

n & aq

)

% ð2 & k & CðCLiÞÞ=ðn & aqÞ: (23)

Recall that we consider algorithms that admit a ser-
vice before knowing its request rate. Obviously, y)q;l;i;k
and s)q;l;r are independent variables. We then can re-write
the LHS of the above inequality as

X

SVq;l2S

X

k0%k

Xrmax

r¼1

y)q;l;i;k & s
)
q;l;r &minfr; k & CðCLiÞ

n & aq
g

¼
X

SVq;l2S

X

k0%k

Pr½y)q;l;i;k ¼ 1,
Xrmax

r¼1

Pr½s)q;l;r ¼ 1,

&minfr; ðk & CðCLiÞÞðn & aqÞg
¼
X

SVq;l2S

X

k0%k

y)q;l;i;kEðminfr; ðk & CðCLiÞÞ=ðn & aqÞgÞ;

where Pr½Y , denotes the probability that event Y is true.
Constraint (18) is met by the optimal solution y). Simi-
larly, we can also show that constraint (19) is also met.
Therefore, LP is a feasible relaxation of ILP. We thus
have z0 % z) % 2 & d & k & y). tu

6 EXPERIMENTS

We evaluate the performance of the proposed algorithms by
both simulations and implementations in a real test-bed.

6.1 Parameter Settings
We use GT-ITM [53] to generate the topology of a two-tiered
MEC network with its size varying from 50 to 400 switch
nodes. 30% of the switch nodes are attached with cloudlets
and 5 datacenters are deployed into the network. We also
use a real network topology AS1755 [25]. The number of
VMs provided by each cloudlet is randomly generated from
[15, 30]. The bandwidth resource of all system is randomly
drawn from the range of [800, 1000] Mbps. The costs of
transmitting and processing 1 GB of data are set within
[$0.05, $0.12] and [$0.15, $0.22], respectively, following typi-
cal charges in Amazon EC2 and S3 [4], [5]. The request rate
of each service is varied from 50 to 200 requests per time
unit, and the traffic volume of each service is randomly
drawn from ½1000; 2000, Megabytes [7]. The values for ai

and bi of each cloudlet CLi are randomly drawn in the
range of ½0; 1,. The data volume of consistency updating
from a cached instance to the original instance of a service is
set to 10% of the service’s data volume. The running time of
each algorithm is obtained based on a machine with a
3.70GHz Intel i7 Hexa-core CPU and 16 GiB RAM. Unless
otherwise specified, these parameters will be adopted in the
default setting. The parameter settings are also shown in
Table 2.

We compare the proposed mechanisms LCF and LECF

with the following algorithms:

! Optimal-restricted solution: Recall that we adopt algo-
rithm Appro in LCF to find an approximate solution
to the service caching problem in an MEC network
with non-selfish network service providers. Instead,
in an optimal-restricted solution, we adopt the fol-
lowing optimal solution OPT in step 1 of algorithm
LCF, which is referred to as algorithm LCF-OPT.
Recall that xq;l;i is an indicator variable that shows
whether service SVq;l is cached into cloudlet CLi. We
then have

OPT: min
XN

q¼1

X

SVq;l2Sq

xq;l;i & cq;l;i; (24)

subject to
X

CLi2CL
xq;l;i % 1; 8 SVq;l (25)

XN

q¼1

XSq

l¼1

xq;l;iaqrq;l % CðCLiÞ; 8 CLi (26)

XN

q¼1

XSq

l¼1

xq;l;ibqrq;l % BðCLiÞ; 8 CLi (27)

xq;l;i 2 f0; 1g; (28)

where Constraint (25) means that service SVq;l can
only be assigned to a single cloudlet in CL.

TABLE 2
Parameter Settings

parameter value

datacenters 5
switch nodes [50,100]
# of VMs [15, 30]
bandwidth resource [800, 1000] Mbps
costs of transmitting 1 GB data [$0.05, $0.12]
costs of processing 1 GB data [$0.15, $0.22]
request rate [50,200]
traffic volume [1000,2000]
a and b [0, 1]
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Constraints (26) and (27) say that the computing and
bandwidth capacities of cloudlet CLi cannot be vio-
lated. Constraint (28) makes sure xq;l;i is a binary
indicator variable.

! The optimal solution to the service caching problem with
request rate uncertainty:We also compare the perfor-
mance of algorithm LECF against the exact solution
with expected costs and request rates, shown in ILP,
which is referred to as LECF-OPT. It must be men-
tioned that the real costs and requests can not be
obtained in advance. As such, LECF-OPT is an esti-
mation of the optimal solution to the service caching
problem with uncertain request rates.

! Service caching without data updating: The third bench-
mark is the algorithm in [45], which provides effi-
cient solution to the problem of service caching in
MEC networks. One difference of this study from
ours is that we consider a two-tier MEC network
that jointly considers task offloading, service cach-
ing, and data updating. The data updating however
is not considered in [45]. In addition, since the algo-
rithm in [45] does not consider the mobile service
market with multiple network service providers, we

consider that each network service provider runs the
algorithm in [45], without communicating with each
other. For simplicity, we refer such joint offloading
and caching algorithms as JoOffloadCache.

! A greedy algorithm: the fourth benchmark is a greedy
algorithm [38], in which each network service pro-
vider considers offloading and service placement/
cache separately. Specifically, the algorithm simply
selects the cloudlets for each request that could
achieve an optimal offloading cost. Based on the
assignment, services are instantiated in the cloudlets
with their requests (or nearby cloudlets). This algo-
rithm is referred to as OffloadCache.

Note that LCF-OPT and LECF-OPT may not be obtained
for large problem sizes. In such cases, we use the relaxed
versions of LCF-OPT and LECF-OPT as the estimated opti-
mal solutions. This estimation is conservative because the
relaxed solutions are much lower than the optimal ones.

6.2 Simulations
We first evalauted the performance of the proposed algo-
rithms LCF and LECFwith algorithms LCF-OPT and LECF-

OPT. The results are shown in Fig. 2, from which we can see
that algorithms LCF and LECF both have high social costs
compared with algorithms LCF-OPT and LECF-OPT. Spe-
cifically, algorithm LCF has a higher gap from the optimal
solution LCF-OPT while algorithm LECF has a lower gap,
because LECF benefits from the randomized rounding tech-
nology of algorithm LECF. The running times of algorithms
LCF, LECF, LCF-OPT and LECF-OPT are shown in Fig. 2b.
Algorithms LCF and LECF have extremely smaller running
times than their optimal solutions LCF-OPT and LECF-OPT.

We then evaluated performance of the proposed algo-
rithms LCF and LECF against those of JoOffloadCache

Fig. 2. Algorithm performance comparing with the optimal solution.

Fig. 3. Algorithm performance in GT-ITM generated networks with sizes varied from 50 to 400.

Fig. 4. The impact of (1( !) on the algorithm performance with size 200.
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and OffloadCache, by varying the network size from 50 to
400 with a number of 100 network service providers and fix-
ing ð1( !Þ to 0.3. Fig. 3 shows the results in terms of the
social cost of all network service providers, the social cost of
selfish network service providers, the social cost of coordi-
nated network service providers, and the running times.
From Fig. 3a, we can see that algorithms LCF and LECF con-
sistently deliver the lower social costs than those of algo-
rithms JoOffloadCache and OffloadCache, while
algorithm OffloadCache has the highest social cost. The
reason is that algorithms LCF and LECF coordinate a num-
ber of coordinated network service providers to avoid sig-
nificant performance degradation, while algorithms
JoOffloadCache and OffloadCache allow each network
service provider to make decisions selfishly. In addition,
algorithms LECF and LCF optimize the data uploading cost
that is ignored by the rest two algorithms. Notice that the
cost of LECF first decreases when the network size grows
from 50 to 100, because that LECF can adapt request rates to
improve computing resource utilization. It then increases
afterwards when the network size is larger than 100. The
reason is that a larger network usually means longer trans-
mission paths, which incurs higher transmission costs.
From Figs. 3b and 3c, we can see that the social cost reduc-
tion is mainly by coordinated network service providers.
The running times of algorithms LECF, LCF, JoOffloadC-
ache, and OffloadCache are shown in Fig. 3d. It can be
seen that algorithms LCF and LECF have slightly higher
running times than those of JoOffloadCache, and
OffloadCache.

We finally study the impact of the ratio of the number of
selfish network service providers and the total number of
network service providers, i.e., ð1( !Þ, by fixing the net-
work size to 200 and varying the value of ð1( !Þ from 0 to
1. Results are shown in Fig. 4. From Fig. 4a, we can see that
the social cost of all network service providers by algorithm
LCF and LECF increases with the growth of ð1( !Þ. The rea-
son is that with the increase of selfish players, less network
service providers can be coordinated by the approximation
solution obtained due to algorithm Appro. This can also be
evidenced by Figs. 4b and 4c, where the social cost of selfish
network service providers increases while the social cost of
coordinated network service providers decreases, with the
growth of ð1( !Þ. We can also see from Fig. 4a that the
social cost by LECF is smaller than algorithms JoOffloadC-
ache and OffloadCache until ð1( !Þ is increased to 0.8.
This is due to a relative high percentage of selfish network
service providers. Also, algorithms JoOffloadCache and
OffloadCache do not consider selfishness of network ser-
vice providers at all. The running times of the algorithms
are shown in Fig. 4d, from which we can see that the run-
ning times of algorithms LCF and LECF keep decreasing
with the growth of ð1( !Þ. The reason behind is that LCF
and LECF adopts approximation-restricted strategy to
obtain a near-optimal solution by adopting an approxima-
tion algorithm Appro. As ð1( !Þ grows, less network ser-
vice providers can be coordinated, and this means that the
problem size of Appro becomes smaller, thereby reducing
the time due to Appro.

6.3 Implementations in a Test-Bed
Testbed Settings. We build a test-bed consisting of both an
underlay with hardware switches and an overlay with

Fig. 5. A test-bed with both hardware switches and virtual resources.

Fig. 6. Performance in the testbed with both physical underlay and virtual
overlay, where Total, UnSelfish, and Selfish are used to denote the
social costs of all, coordinated, and selfish network service providers,
respectively.

Fig. 7. The impact of (1( !) and the number of requests in the test-bed,
where Total, UnSelfish, and Selfish are used to denote the social
costs of all, coordinated, and selfish network service providers,
respectively.
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virtual switches, as shown in Fig. 5. The physical underlay
consists of five Huawei S5720-32C-HI-24S-AC switches in
two on-campus buildings. Each switch is connected to at
least two switches. There are also five servers with i7-8700
CPU and 16G RAM. Netconf and SNMP protocols are used
to manage the switches and the links interconnecting them.
The underlay can be seen as a resource pool with computing
and bandwidth resources which can be used to build over-
lay networks. We use VXLAN to virtualize these switches
and servers, by building an overlay that spans the hardware
in the two buildings. Specifically, we virtualize an overlay
network with a number of Open vSwitch (OVS) [23] nodes
and VMs. The overlay network is built following the real
topology AS1755. Its OVS nodes and VMs are controlled by
a Ryu [35] controller. The proposed algorithms are imple-
mented as Ryu applications. All the rest settings are the
same as those of the simulations in the previous subsection.

Performance Results. We investigated the performance of
the algorithms in the test-bed, by fixing ð1( !Þ to 0.3. The
results are shown in Fig. 6, where Total, UnSelfish, and
Selfish denote the social costs of all, coordinated, and self-
ish network service providers, respectively. From Fig. 6a,
we can see that algorithm LECF has the lowest social cost
among algorithms LCF, JoOffloadCache and OffloadC-

ache. The running times of the comparison algorithms are
shown in Fig. 6b.

We then study the impact of various parameters on the
performance of algorithms LCF, LECF, JoOffloadCache

and OffloadCache in the test-bed. Figs. 7a and 7b show the
impact of 1( !, from which we can see that the social costs
of algorithm LECF and LCF increase with the growth of
(1( !). This is because the higher percentage of selfish net-
work service providers worsens the social optimum, consid-
ering that each network service provider only cares about its
own cost instead of the social cost. From the Fig. 7c, we can
see that a higher number of requests means a higher social
cost. Fig. 7d depicts the impact of the amount of update
data between cloudlets and remote clouds on the algorithm
performance. It can be seen that a larger amount of to-be-
updated data incurs a higher social cost due to the higher
bandwidth consumption.

We finally investigate the impact of maximum values of
computing resource demands, i.e., amax, on the performance
of algorithms LCF, LECF, JoOffloadCache and OffloadC-

ache in the test-bed. Fig. 8a shows the impact of amax, from
which we can see that the obtained cost is increasing with

the growth of amax. The rationale behind is that in the Stack-
elberg game each cloudlet is partitioned into ni ð¼
fbCðCLiÞ

amax
c; bBðCLiÞ

bmax
cgÞ virtual cloudlets, and the number n of

virtual cloudlets is decreasing if amax grows. This means
that the algorithm has a higher probability to reject some
requests in the adjustment procedure. Also, this verifies the
correctness of Lemma 2. In addition, we also study the
impact of the number of virtual cloudlets on performance of
algorithm LECF, by varying n from 10 to 40. Fig. 8b shows
the impact of n, from which we can see that the obtained
cost fluctuates with the growth of n, and reaching the lowest
cost when n ¼ 30.

7 CONCLUSION AND FUTURE WORK

In this paper, we investigated the service caching problem
in a two-tiered MEC network for a mobile service market. If
the request rate of each service is given, we developed an
approximation-restricted optimization framework that can
guarantee stable yet near-optimal operations of the service
market in the MEC network. Within the framework, we
devised an approximation algorithm with an approxima-
tion ratio for the problem with non-selfish players. We also
designed an efficient, stable Stackelberg congestion game
with a provable Price of Anarchy (PoA). Otherwise if the
request rate of each service is unknown, we considered the
problem with request rate uncertainty by devising an
approximation algorithm and a Stackelberg game. We
finally evaluated the performance of the proposed algo-
rithms and mechanism by simulations and experiments in a
real test-bed. Results showed that the proposed mecha-
nisms obtain a social cost which is 9.2% lower than the ones
by existing approaches.

The future potential studies built upon the work in this
paper include: (1) the cost of service caching is determined
by the congestion levels of cloudlets, As different cloudlets
may have time-varying impacts of congestions on service
caching costs, which further is determined by the behaviors
of cached service instances. That is, how to capture the
dynamics of ai on the congestion cost is challenging and
worth further exploration. (2) The data freshness of AI
applications plays a vital role in guaranteeing the prediction
performance. For example, in an application of real-time
object recognition, a moving object needs to be identified as
soon as possible. How to consider such responsiveness
requirement of services by analyzing the most fresh data is
a fundamental challenge in the two-tiered MEC network;
and (3) the resources in MEC networks are provisioned in
an agile way, such that the cost of service provisioning can
be further reduced. A promising way is to adopt finer-
grained resource allocation in serverless edge computing
(SEC). As such, we will investigate fundamental methods
and technologies that enable the hierarchical service market
of an agile and low-cost MEC environment.

ACKNOWLEDGMENTS

We appreciate the three anonymous referees and the
associate editor for their constructive comments and
valuable suggestions, which helped us improve the qual-
ity and presentation of the paper greatly.

Fig. 8. Results of the impact of maximum demands of computing and
bandwidth resource demand in the test-bed.
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