
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Generalized Contextual Bandits With Latent
Features: Algorithms and Applications
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Abstract— Contextual bandit is a popular sequential
decision-making framework to balance the exploration and
exploitation tradeoff in many applications such as recommender
systems, search engines, etc. Motivated by two important factors
in real-world applications: 1) latent contexts (or features) often
exist and 2) feedbacks often have humans in the loop leading
to human biases, we formulate a generalized contextual bandit
framework with latent contexts. Our proposed framework
includes a two-layer probabilistic interpretable model for the
feedbacks from human with latent features. We design a
GCL-PS algorithm for the proposed framework, which utilizes
posterior sampling to balance the exploration and exploitation
tradeoff. We prove a sublinear regret upper bound for GCL-PS,
and prove a lower bound for the proposed bandit framework
revealing insights on the optimality of GCL-PS. To further
improve the computational efficiency of GCL-PS, we propose
a Markov Chain Monte Carlo (MCMC) algorithm to generate
approximate samples, resulting in our GCL-PSMC algorithm.
We not only prove a sublinear Bayesian regret upper bound
for our GCL-PSMC algorithm, but also reveal insights into
the tradeoff between computational efficiency and sequential
decision accuracy. Finally, we apply the proposed framework to
hotel recommendations and news article recommendations, and
show its superior performance over a variety of baselines via
experiments on two public datasets.

Index Terms— Generalized contextual bandit, latent features,
Markov Chain Monte Carlo (MCMC), posterior sampling.

I. INTRODUCTION

SEQUENTIAL decision making is quite common in many
web or mobile applications. For example, video sites like

Youtube recommend several videos to users for each of their
video search. Online social networks (OSNs) like Facebook
send multiple advertisements to users on a per session basis.
News apps like Flipboard push news to users every hour.
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Recommender systems like IMDB recommend movies to users
per login. Each time when a keyword is entered, search
engines like Google select items to place on the first page. One
common nature of these sequential decision-making problems
is that the decision maker (e.g., IMDB, Youtube, etc.) needs
to infer users’ preference or tastes, etc., which are unknown
to the decision maker. To illustrate, consider the following
example.

Example 1: Consider a search engine in an E-commerce
system like Amazon, eBay, etc., and the search keyword is
“action movie.” For simplicity, consider two items denoted by
A and B . The keyword “action movie” is entered 100 times.
Users who enter the keyword are uniformly sampled from
the user population interested in action movies. Each time the
search engine needs to select one item from A or B to place on
the first page (for simplicity, assume the first page can place
only one item). Suppose that the true click rates of placing
A and B on the first page are 0.1 and 0.05, respectively,
which are unknown to the search engine. The objective is to
maximize the total number of clicks in these 100 searches of
“action movie”.

One challenge of the problem stated above is how to make
a balance between exploitation (i.e., place the item which
currently has the highest empirical average click rate on the
first page) and exploration (i.e., give the opportunity to the
item which was less frequently placed on the first page)
in each search of the keyword “action movie.” One typical
approach to address this challenge is via the upper confidence
bound (UCB) algorithm [1]. The idea of the UCB algorithm is
to place the item A (B) in the first (second) search of action
movie in the first page, then for the third to 100th search of
action movie, it selects the item with the largest index defined
as follows:

index(x) = EmRate(x) + Penalty(x) ∀x ∈ {A, B}.

Here, EmRate(x) denotes the current empirical average
click rate of item x ∈ {A, B}. The Penalty(x) denotes a penalty
for item x and it is decreasing in the number of times that an
item was placed on the first page. The purpose of Penalty(x)
is to give some opportunities (i.e., placing on the first page) to
the item which was rarely placed on the first page. However,
the UCB algorithm is not efficient when there are many items
to consider because it needs to give a sufficient number of
opportunities to each item in consideration (i.e., place it on
the first page). To illustrate, consider the following example.
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Example 2: Consider the same setting as in Example 1, but
we vary the number of items from 2 to 100. Furthermore, the
true click rate of each item i ∈ {1, . . . , 100} has a linear form
of xT

i θ , where xi ∈ Rd denotes the feature vector of item i
(each item has d features) and θ ∈ Rd denotes the collective
preference vector for the user population interested in action
movies. The xi is known to the search engine, while the θ
is unknown. The objective is to select items to maximize the
total number of clicks in 100 searches of action movie.

Using the above UCB algorithm, it will place each
of these 100 items one by one on the first page in
these 100 searches, implying poor decision making. One typi-
cal approach to fix this issue is via the LinUCB algorithm [2].
The algorithm takes advantage of the linear form xT

i θ of the
true click rate and learns about the preference vector θ . Once θ
is learned, the click rate of each item can be estimated as well.
However, in practice, there usually exists some unobserved or
latent features, under which the LinUCB algorithm may fail.
To illustrate, consider the following example.

Example 3: Consider the same setting as Example 2, but
each item i is associated with a latent feature yi ∈ R!, and yi
is associated with a preference vector ϑ ∈ R!. The true click
rate is xT

i θ + yT
i ϑ .

In Example 3, the LinUCB has a risk of making wrong
decisions because it only learns θ , while latent features are
quite common in real-world Web applications [3]. How to
make sequential decisions (e.g., place items) when there are
latent features? Wang et al. [3] also considered a contextual
bandit with latent feature, but their model considers only the
linear reward function. Zhou and Brunskill [4] proposed a
latent contextual bandit model, which associate each user with
a latent type. Lamprier et al. [5] proposed a latent contextual
bandit model that in each round the contextual vector of
each action is generated by a normal distribution. All these
work assume a linear reward function (or linear true click
rate in the above examples). However, in real-world Web
applications, the true click rate may not take the simple linear
form xT

i θ + yT
i ϑ , as there are humans in the loop leading to

human bias in the clicking behavior. How to formulate a more
realistic feedback model for Web applications? A number of
works considered nonlinear feedback models without latent
features [6]–[10], and they demonstrated that going beyond
the linear form makes it more challenging to make the right
decision as well even without latent features. One needs
to make a balance between the model complexity and the
mathematical or computational tractability of the model. To
address these challenges, we propose a generalized contex-
tual bandit framework with latent features. More importantly,
we develop efficient posterior sampling algorithms to balance
the exploration and exploitation tradeoff. One challenge in
the development of our framework is: It is computationally
expensive to generate samples from the posterior distribution.
Our contributions are the following.

1) We propose a two-layer probabilistic and interpretable
model for feedbacks from humans. In the first layer,
we model how an agent forms natural evaluation, which
offers a flexible way to capture human factors like
bias and latent features. In the second layer, we model

how an agent maps its natural evaluation to feedback
set specified by a Web application. Then we formulate
a generalized contextual bandit framework with latent
features and generalized linear reward functions.

2) We design a GCL-PS algorithm for the proposed frame-
work, which utilizes posterior sampling to balance the
exploration and exploitation tradeoff. We prove a sublin-
ear regret upper bound for GCL-PS, and prove a lower
bound for the proposed bandit framework revealing
insights into the optimality of GCL-PS. We show that
the GCL-PS algorithm has a high computational cost in
generating samples from the posterior distribution.

3) To improve the computational efficiency, we propose
an MCMC algorithm to generate approximate samples,
leading to our GCL-PSMC algorithm. We not only prove
that the GCL-PSMC achieves a sublinear Bayesian
regret upper bound, but also reveal insights on the
tradeoff between computational efficiency and sequential
decision accuracy. More importantly, this tradeoff guides
us to determine the stopping condition for the MCMC
algorithm.

4) We conduct extensive experiments on synthetic data to
evaluate the performance of the GCL-PSMC algorithm.
Experimental results validate the superior performance
of the GCL-PSMC algorithm over a variety of other
algorithms. We also apply our framework to hotel
recommendation and news article recommendation.
Experiments on two public datasets further confirm the
superior performance of the GCL-PSMC over a variety
of baselines.

The remainder of this article is organized as follows.
Section II presents the related work. Section III presents
the model. Section IV presents the design and analysis of
algorithms. Sections V and VI presents the experiments on
synthetic data and real-world data, respectively. Section VII
concludes.

II. RELATED WORK

To the best of our knowledge, this is the first article to
study generalized contextual bandit with latent features and
generalized linear reward functions.

A. Contextual Bandit Model and Its Variants
Contextual bandit [2], [11] is a popular sequential decision

making framework to balance the exploration and exploitation
tradeoff in many applications such as recommender systems,
search engines, etc. A variety of contextual bandit variants
have been proposed. In the classical contextual bandit [2],
[11] the expected reward (i.e., reward function) of each action
is a linear function of the contexts and the preference vector.
Filippi et al. [6] extended the classical contextual bandit model
to consider a generalized linear reward function, which is
a nonlinear function of the linear reward in the classical
contextual bandit. Two notable instances of this generalized
linear reward function are: 1) the multinomial logistic con-
textual bandit [12], which instantiates the nonlinear function
with a multimodule logistic function and 2) logistic contex-
tual bandit [13], which instantiates the nonlinear function
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with a logistic function. Different from these variants of the
contextual bandit model, our model considers a generalized
reward function with latent features. The latent features would
introduce a variety of new challenges in designing the learn-
ing algorithm. Wang et al. [3] also considered a contextual
bandit with latent feature, but their model only considers the
linear reward function. Allowing a generalized linear reward
function introduces some nonlinearity in estimating model
parameters, making the problem much more challenging.
Krishnamurthy et al. [8] generalized the linear reward function
to a semi-parametric form, which was further studied in
Peng et al. [10]. Guan and Jiang [14] generalized the linear
reward function to a nonparametric form. For completeness,
let us summarize a variety of other notable variants. Zhou and
Brunskill [4] proposed a latent contextual bandit model, which
associates each user with a latent type. Lamprier et al. [5]
proposed a latent contextual bandit model that in each round
the contextual vector of each action is generated by a normal
distribution. Li et al. [15] incorporated friendship into the
classical contextual bandit. Zeng et al. [16] considered a time
varying user preference vector. Zhang et al. [17] extended
the classical contextual bandit to incorporate conversational
feedbacks. Lastly, clustering of bandits [18], [19] is also a
notable variant.

B. Contextual Bandit Algorithms
There are a number of contextual bandit variants and each

variant is associated with a number of algorithms tuned for
it. Here, we discuss two lines of contextual bandit algorithms
that are closely related to our work: 1) algorithms for con-
textual bandit with generalized linear reward function and
2) algorithms for contextual bandit with latent features (linear
reward). There are two main ideas, i.e., confidence bounds [20]
and sampling [21], in the design of algorithms for contextual
bandit with generalized linear reward function. There are a
variety of confidence bound based algorithms, and to the best
of our knowledge, the GLM-UCB proposed by Filippi et al. [6]
was the first one and performs well in practice [7], [22]. When
the generalized linear reward function is in a multinomial
logistic form, Oh and Iyengar [12] proposed UCB-MUL algo-
rithm, which refined the GLM-CB algorithm. It is unknown
whether GLM-UCB can achieve the optimal rate of regret.
Based on the idea of confidence bound, Li et al. [7] proposed
a SupCB-GLM algorithm and show that it achieves the optimal
rate in certain scenarios. Li et al. [7], Kveton et al. [9]: further
improved this algorithm by using a randomized maximum like-
lihood method to balance exploration vs. exploitation tradeoff.
When the generalized linear reward function is in a logistic
form, Dumitrascu et al. [13] proposed a Thompson sampling
algorithm for it. Russo and Van Roy [23] developed a general
posterior sampling framework for sequential decision making,
which is also applicable to the contextual bandit with gener-
alized linear reward. However, computational issues like how
to generate samples from the posterior distributions efficiently
are not covered in the framework. The confidence bounds and
sampling are also the main ideas in the design of algorithms
for contextual bandit with the latent feature. Note that the
following algorithms are tuned for the setting of linear reward.

Wang et al. developed the hLinUCB algorithm [3], which
generalized the LinUCB algorithm to deal with latent features.
Wang et al. further generalized the hLinUCB to obtain the
FactorUCB algorithm [24] to the setting that user preference
vector θ has a factorization form θ = #w. Lamprier et al. [5]
proposed the HiddenLinUCB. The HiddenLinUCB is tuned
for the setting that in each round the contextual vector of
each action is generated by a normal distribution with certain
parameters. To the best of our knowledge, there are no
sampling algorithms tuned for contextual bandit with the latent
feature. We summarize some sampling algorithms for learning
latent features in online collaborative filtering, which shares
a certain similarity with the contextual bandit with latent
features. Notable examples include [25]–[27]. Different from
the above algorithms, we design algorithms for a class of
generalized contextual bandit with latent features, and it has
a generalized linear reward function tuned for modeling the
user behavior in evaluating actions.

III. SEQUENTIAL DECISION MODEL

We first present a sequential decision framework. Then,
we present a generalized contextual bandits framework with
latent features and generalized linear reward functions. Finally,
we present a design space of sequential decision-making
algorithms and a metric to quantify the performance.

A. Sequential Decision Framework
Consider a sequential decision making problem, where a

decision maker makes decisions in a finite number of T ∈ N+
rounds. Let A ⊂ N+, where |A| < ∞, denote a set of finite
actions. For example, the decision maker can be a search
engine (or a news recommender system), and A can be a
set of items (or a set of news) in consideration. In round
t ∈ [T ] ! {1, . . . , T }, the decision maker is given a finite
set of choices At ⊆ A, and it needs to select one action
At ∈ At from it. Allowing At to change over time can
capture important factors such as the lifetime of some items
or some news. Once the decision maker takes the action At in
round t , it receives a reward (or feedback) of Rt (At) ∈ R,
where R ⊂ R. The reward metric R is defined by the
application. For example, for search engine applications, R !
{0, 1} models whether a user clicks (1) an item or not (0).
In news recommendation applications, R ! [0, 1] quantifies
the normalized time that a user spends reading a piece of
news. We consider the general case that At is a random
variable, capturing that the decision maker may randomize the
decisions. Furthermore, for each given action At , the reward
Rt (At) is a random variable capturing the uncertainty in user
behavior, i.e., clicking items, reading news, etc. We consider
a risk neutral decision maker, who aims to maximize the
expected cumulative reward E[∑T

t=1 Rt (At)].

B. Reward Model

1) Contexts Model: We focus on the case that the decisions
in these T rounds are made with the interactions to an agent.
In the search engine (or news recommendation) application,
the agent represents the whole population of users (or one
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single user). Each action a ∈ A is associated with a feature
vector xa ∈ Rd , which summarizes the observed context
between the action and the agent, where d ∈ N+. For example,
xa can be a summarization of the type of the action (e.g.,
item, news), or the age of the agent. Let ya ∈ R! denote
the unobserved/latent features or contexts, where ! ∈ N+. Let
θ ∈ Rd and ϑ ∈ R! denote the agent’s preference vector
associated with xa and ya, respectively. We like to emphasize
that xa,∀a ∈ A, are known to the decision maker, while the
ya,∀a ∈ A, θ and ϑ are unknown to the decision maker.

C. Reward Model
Given xa, ya, θ and ϑ , we consider a two-layer model for

the reward (or feedback) generation process. In the first layer,
after the decision maker decides an action a in round t , the
agent forms its natural evaluation of the action a, modeled by

Vt(a) ! xT
a θ + yT

a ϑ + εt,a ∀a ∈ At (1)

where εt,a ∈ R denotes a random variable with E[εt,a] = 0.
Higher evaluation Vt(a) implies that the agent is more positive
about the action. Note that the evaluation Vt(a) is unknown
to the decision maker. The random variable εt,a captures
the noise or uncertainty caused by human factors such as
bias in the evaluation. We consider the case that εt,a across
different rounds t and different actions a are independent.
Furthermore, for a given action a, the noise εt,a across different
rounds t are identically distributed. Let f (ε, σa) denote the
probability density function of the noise εt,a , where σa denotes
the standard deviation of εt,a . The standard deviation σa is
unknown to the decision maker. For simplicity, we denote
a collection of all the unknown model parameters as $ !
[Y , θ ,ϑ, σ ], where Y ! [ y1, . . . , y|A|] denotes a matrix of the
latent features for all actions, and σ ! [σ1, . . . , σ|A|] denotes
a vector of the standard deviations of the agent’s evaluation
for all the actions.

In the second layer, the agent maps its natural evaluation
Vt(a) to the reward metric R. We use the function gt : R→ R
to model this mapping process. Namely, the reward under
action At is Rt (At) = gt(Vt(At)). The reward Rt (At) is known
to the decision maker. Recall that the reward Rt (At) is the
agent’s feedback. For example, for search engine applications,
a reward (or feedback) is whether an agent clicks (1) an item
or not (0). In news recommendation applications, a reward
(or feedback) is the degree that an agent likes an item. We
assume that gt is an increasing function to capture that a
higher evaluation Vt(At) leads to a larger reward or more
positive feedback Rt (At). Furthermore, the mapping function
gt is allowed to vary over rounds, which captures the evolution
of the expertise or leniency in providing feedbacks, etc., of the
agent. For example, consider R = [0, 1], one instance of gt

is the sigmoid function, that is,

gt(V (At)) = 1
1 + exp(−γt V (At))

(2)

where γt ∈ R+ models the leniency of the agent in
providing feedbacks. Larger γt means that the agent is
more lenient. Finally, given the unknown model parameters

$ = [Y , θ ,ϑ, σ ], the expected reward for action a is defined
as

R̄t (a; $) ! E[Rt (a)|$] =
∫

R
f (ε, σa)gt

(
xT

a θ + yT
a ϑ + ε

)
dε.

Namely, the expected reward R̄t(a) is in a generalized linear
form and contains latent features. Note that R̄t (a) is unknown
to the decision maker because σa, θ , etc., are unknown.

D. Sequential Decision Making Algorithms

1) Design Space of Sequential Decision Making Algorithms:
Recall that in each round t after the decision is made, the
action At , the reward Rt(At), and the observed context xt

are known to the decision maker. Let Ht denote the decision
history up to decision round t , which is defined as

Ht !
{[

A1, x A1 , R1(A1)
]
, . . . ,

[
At , x At , Rt (At)

]}
.

In decision round t , the decision maker knows only the
decision history up to round t − 1. Thus, we consider a
design space of history-dependent sequential decision making
algorithms, which prescribe each decision history Ht−1 to a
probability distribution over the actions At . We use a general
probability distribution D(Ht−1) over At to represent a gen-
eral history-dependent sequential decision making algorithm.
Namely, the action At is generated from the distribution
D(Ht−1), At ∼ D(Ht−1). This type of decision algorithm
captures that the decision maker may randomize its actions.
The deterministic case is a special case that the distribution
D(Ht ) concentrates on one action with zero variance.

2) Performance Metric: Recall that we consider a risk
neutral decision maker. Thus, we define the following regret
function to quantify the performance of a history-dependent
sequential decision making algorithm with probabilistic
representation D

RT (D; $) !
T∑

t=1

max
a∈At

R̄t(a; $)

−E
[

T∑

t=1

Rt (At)
∣∣∣$, At ∼ D(Ht−1)

]

(3)

where $ = [Y , θ ,ϑ, σ ] denotes a collection of all unknown
model parameters.

The decision maker may have some prior knowledge on
the latent features Y , preference vector (θ,ϑ) and the standard
deviation σ of the agent’s valuations for each action. Formally,
we model the prior knowledge as the prior distributions over
these unknown parameters, denoted by p(ya), p(σa),∀a ∈ A
and p(θ ,ϑ). We focus on the case that the latent feature vec-
tors ya,∀a ∈ A, preference vector (θ ,ϑ), and standard devi-
ation σa,∀a ∈ A are independently generated from their own
prior distributions, i.e., p($) = p(θ ,ϑ)

∏
a∈A p(ya)p(σa),

where p($) denotes the joint prior distribution over the
unknown model parameters $ = [Y , θ ,ϑ, σ ]. We formally
define the Bayesian regret to quantify the performance of a
history-dependent sequential decision-making algorithm with
prior knowledge as

RBay
T (D) !

∫
RT (D; $)p($)d$.
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Algorithm 1 GCL-PS (Generalized Contextual Bandit With
Latent Feature via Posterior Sampling)
1: Initialize H0 = ∅
2: Notations: the samples of unknown parameters in round t

Y t !
[

y1,t , . . . , y|A|,t
]
, σ t !

[
σ1,t , . . . , σ|A|,t

]

θ t !
[
θ1,t , . . . , θd,t

]
,ϑ t !

[
ϑ1,t , . . . ,ϑ!,t

]
,

$ t ! [Y t , θ t ,ϑ t , σ t ].

3: for t = 1, 2, 3, . . . , T do
4: $ t ∼ p($|Ht−1) derived in (4)
5: Select action by At ← arg maxa∈At R̄t (a; $t)
6: Observe reward Rt(At)
7: Update history Ht ← Ht−1 ∪ {[At , x At , Rt (At)]}
8: end for

The objective of the decision maker is to design a
history-dependent sequential decision-making algorithm so as
to attain a Bayesian regret as small as possible.

IV. ALGORITHMS AND REGRET ANALYSIS

We first design a GCL-PS algorithm for the generalized con-
textual bandit framework formulated in Section III. We prove
both upper and lower Bayesian bounds for GCL-PS and
also show that it may have a high computational complexity.
Then, we design GCL-PSMC algorithm which improves the
computational efficiency of GCL-PS via MCMC.

A. GCL-PS Algorithm and Computational Complexity

We first present the design of the GCL-PS algorithm. Then
we prove the sublinear upper bound for the Bayesian regret of
the GCL-PS algorithm, as well as use an example to illustrate
high computational complexity of the GCL-PS algorithm.

1) Algorithm Design: Given a decision history Ht up to
round t , let p($|Ht) denote the posterior distribution of the
unknown model parameters $ = [Y , θ ,ϑ, σ ]. In the following
lemma, we derive a closed-form formula for this posterior
distribution.

Lemma 1: Given the decision history Ht up to round t , the
posterior distribution p($|Ht ) can be derived as

p($|Ht ) = 1
Z

[

p(θ ,ϑ)
∏

a∈A
p
(

ya

)
p(σa)

]

×



t−1∏

τ=1

∏

a∈Aτ

[
f
(
g−1

τ (Rτ (a))− xT
aθ − yT

a ϑ, σa
)] {Aτ =a}



 (4)

where Z denotes the normalizing factor and it is independent
of the unknown model parameters Y , θ ,ϑ and σ .

a) All proofs are presented in supplementary file:
Lemma 1 states a closed-form formula for us to generate
samples from the posterior distribution p($|Ht). Based on
Lemma 1, Algorithm 1 outlines a posterior sampling algorithm
to solve the generalized contextual bandit learning problem
formulated in Section III. The idea of Algorithm 1 is as
follows. In each round t , we first generate samples of the
unknown model parameters using the posterior distribution

derived in (4). Then we input these samples into our model to
estimate the expected reward of each action, based on which
we select the action with the largest estimated reward. After
the decision maker takes the selected action to the agent, it will
observe a reward from the agent. Finally, the decision maker
updates the decision history to include the observed reward.
After this update, the decision goes into round t + 1.

2) Algorithm Analysis: The next theorem states an upper
bound for the Bayesian regret of Algorithm 1.

Theorem 1: Suppose εt,a is sub-Gaussian with variance
proxy ξt,a , i.e., E[exp(cεt,a)] ≤ exp(c2ξ2

t,a/2),∀c ∈ R. Sup-
pose the function gt is ζt ∈ R+ Lipschitz and the dimension
of latent feature is at least 1, i.e., ! ≥ 1. Suppose the
observed features are bounded, i.e., ‖xa‖ ≤ L,∀a ∈ A.
Define notation ξmax ! maxa∈A,τ≤T ξτ,a and define notation
*(R) ! maxR − minR. The Bayesian regret upper bound
of Algorithm 1 can be derived as

RBay
T (DGCL−PS)≤

√
2T (d+|A|) log(1+T (L+1)/(d+|A|))[

2 max
τ≤T

ζτ

(
ξmax

√
(d + |A|) log

(
T + T 2(L + 1)

))

+E$∼p($)





√√√√
d∑

i=1

θ2
i +

∑

a∈A

(
yT

a ϑ
)2



 + *(R)





where DGCL−PS denotes Algorithm 1.
Theorem 1 states that the attractive property of the Bayesian

regret of Algorithm 1 is sublinear in the number of rounds T
with an order of (T )1/2 ln T . This implies that the average
regret of Algorithm 1 per round converges to zero as the
number of rounds T goes to infinity. Furthermore, the regret
upper bound reveals the impact of model parameters on the
learning speed. In particular, the regret upper bound increases
linearly in ζt implying that the learning speed increases in the
smoothness of gt . The regret upper bound increases linearly
in ξmax, i.e., the learning speed decreases as the tail of the
distribution of noise εt,a becomes heavier. Lastly, the regret
upper bound is nearly linear in d + |A|. This implies that
when the number of arms is large, the GCL-PS may suffer a
slow learning speed. To answer whether we can eliminate this
dependency on |A|, we also derive regret lower bound in the
following theorem.

Theorem 2: For any algorithm D, there is an instance of
the generalized contextual bandits with the latent feature
model such that the Bayesian regret satisfies RBay

T (D) ≥
+((T |A|)1/2).

Theorem 2 states that for any algorithm D, there is an
instance of the model such that the regret is at least in the
order of (T |A|)1/2. In other words, in general, we cannot
design a decision algorithm such that its regret is independent
of |A|. Furthermore, when the number of arms |A| is large,
no algorithm can eliminate the risk of slow learning speed.

Although Algorithm 1 has a nice Bayesian regret upper
bound, it is computationally expensive to implement in gen-
eral. This is because step 4 of Algorithm 1, i.e., generating
samples from the posterior distribution p($|Ht−1) derived
in (4), is computationally expensive in general. To illustrate,
consider the following simple case. Assume that the noise εt,a
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follows a Gaussian distribution, i.e., f (ε, σa) is the probability
density function of a Gaussian distribution N (0, σ 2

a ). The
prior distribution for ya and (θ ,ϑ) are an !-dimensional
and a (d + !)-dimensional Gaussian distribution, respectively,
i.e., p(ya) and p(θ ,ϑ) are the probability density function
of N (0, I !×!) and N (0, I (d+!)×(d+!)), respectively. The prior
distribution for σa is an inverse gamma distribution, i.e.,
p(σa) is the probability density function of Inv-Gamma(1, 1).
Plugging these probability density functions into (4), one can
obtain a refined posterior distribution as

p($|Ht)=



t−1∏

τ=1

1
√

2πσ 2
Aτ

exp

(

−
g−1

τ (Rτ (Aτ ))−xT
Aτ

θ− yT
Aτ

ϑ

2σ 2
Aτ

)



×
[

∏

a∈A

1

(2π)!/2 exp
(
− yT

a ya

2

)
βα

/(α)

(
1
σa

)2

exp
(
− 1

σa

)]

×
[

1

(2π)(d+!)/2 exp

(

−θT θ + ϑT ϑ

2

)]
1
Z

. (5)

To the best of our knowledge, there is no computation-
ally efficient algorithm to generate exact samples from this
posterior distribution derived in (5). To overcome this issue,
we next develop an MCMC algorithm to generate approximate
samples from the general posterior distribution, improving the
computational efficiency at a slight sacrifice of the sequential
decision accuracy.

B. MCMC to Improve Efficiency

We first present a general GCL-PSMC algorithm, which
uses a MCMC algorithm to generate approximate samples
from the posterior distribution p($|Ht). We not only derive
a Bayesian regret upper bound for the GCL-PSMC algorithm,
but also reveal insights on how the approximate samples may
influence the regret. Finally, we present an instance of the
GCL-PSMC algorithm with Gaussian distributions, in which
sampling efficiency can be further improved.

1) General GCL-PSMC Algorithm: Algorithm 2 outlines
the design of the GCL-PSMC algorithm. The difference
between Algorithm 2 and Algorithm 1 is that it uses an MCMC
algorithm, i.e., a three-stage Gibbs sampler, to generate
approximate samples from the posterior distribution p($|Ht).
The idea of the three-stage Gibbs sampler is as follows.
The unknown model parameters that we aim to sample can
be categorized into three groups, i.e., the latent feature Y ,
preference vector (θ ,ϑ) and the standard deviation σ of the
agent’s valuations associated with each action. Furthermore,
(4) implies that the conditional posterior distribution of ya
(given θ ,ϑ and σ ) across different actions a are independent.
This independence across actions also holds for the conditional
posterior distribution of σa (given θ ,ϑ and Y ). Lastly, the pref-
erence vector (θ ,ϑ) appears in a linear form given Y and σ .
Based on these observations, we design a three-stage Gibbs
sampler (i.e., step 5–10 of Algorithm 2). Each iteration of the
three-stage Gibbs sampler consists of the following: 1) in the
first stage, we sample the preference vector (θ ,ϑ) using its
condition posterior distribution given the latest samples of Y
and σ ; 2) in the second stage, we sample the standard deviation

Algorithm 2 GCL-PSMC (GCL-PS With MCMC)
1: Initialize: H0 = ∅; ya,0 ∼ p(ya),∀a ∈ A; σa,0 ∼

p(σa),∀a ∈ A; (θ0,ϑ0) ∼ p(θ ,ϑ);
2: Notation: $ t denotes the sample of the unknown model

parameters generated in round t as defined in Algorithm 1.
We define the samples generated by the n-th iteration of
the MCMC as

Y (n) !
[

y(n)
1 , . . . , y(n)

|A|
]
, σ (n) !

[
σ (n)

1 , . . . , σ (n)
|A|

]

θ (n) !
[
θ (n)

1 , . . . , θ (n)
d

]
,ϑ (n) !

[
ϑ (n)

1 , . . . ,ϑ (n)
!

]
.

3: $0 ← [Y 0, θ 0,ϑ0, σ 0]
4: for t = 1, 2, 3, . . . , T do
5: Initialize MCMC: [Y (0), θ (0),ϑ (0), σ (0)]← $ t−1

6: for n = 1, 2, 3, . . . , N do
7: [θ (n),ϑ (n)]∼p(θ,ϑ |Y = Y (n−1), σ = σ (n−1),Ht−1)
8: σ (n)

a ∼p(σa|Y = Y (n−1),θ = θ (n),ϑ = ϑ (n),Ht−1),∀a
9: y(n)

a ∼p(ya|σ = σ (n), θ = θ (n),ϑ = ϑ (n),Ht−1),∀a
10: end for
11: $ t ← (Y (N), θ (N),ϑ (N), σ (N))
12: Select action by At ← arg maxa∈At R̄(a; $t)
13: Observe reward Rt(At )
14: Update history Ht ← Ht−1 ∪ [At, x At , Rt (At)]
15: end for

σ using its condition posterior distribution given the latest
samples of θ ,ϑ and Y ; and 3) in the third stage, we sample the
latent feature Y using its condition posterior distribution given
the latest samples of θ ,ϑ and σ . We like to point out that we
use the samples of Y , θ ,ϑ, σ from the previous decision round
as the initial point of this three-stage Gibbs sampler (i.e., step 5
of Algorithm 2). The intuition is that in each decision round,
we only use one reward to update the posterior distribution.
This means that the posterior distributions in two consecutive
rounds do not differ a lot. Thus, the samples of Y , θ ,ϑ, σ
in last round are not far from the stationary distribution (i.e.,
posterior distribution) in current round.

The following theorem states that under mild assumptions
on the model, the three-stage Gibbs sampler described in
the step 5–10 of Algorithm 2 converges to the stationary
distribution, which is the same as p(Y , θ ,ϑ, σ |Ht).

Theorem 3: Suppose f (ε, σa) is continuous and positive on
R, i.e., f (ε, σa) > 0,∀ε ∈ R. Suppose gt is continuously
increasing in R and it is an injective function from R to
R. Suppose the density functions of the prior distributions
have supports equal the domain of the model parameters.
Then, the three-stage Gibbs sampler described in step 5–10
of Algorithm 2, converges to p(Y , θ ,ϑ, σ |Ht ) as N goes to
infinity.

Theorem 3 states that the three-stage sampler in Algorithm 2
can generate samples following a distribution arbitrarily close
to the posterior distribution p($|Ht) when the number of
iterations N is sufficiently large. Intuitively, the condition in
Theorem 3 identifies some well-behaved distributions in the
sense that they are continuous and have positive values on
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the domain of the unknown model parameters. The Gaussian
example in Section IV-A satisfies these conditions.

Theorem 4: Consider the same conditions as Theorem 1.
Let p(N)

t (·) denote the probability distribution of the samples
generated by the three-stage sampler in Algorithm 2 with N
iterations. If p(N)

t (·) satisfies

‖p(N)
t (·)− p(·|Ht−1)‖T V ≤ η/

√
t

where ‖·‖T V denotes the total variation distance and p(·|Ht−1)
denotes the posterior distribution, Algorithm 2 has a Bayesian
regret of

RBay
T (DGCL-PSMC) ≤ RBay

T (DGCL-PS) + 2 max
r∈R

|r |
√

T η

where DGCL−PSMC represents Algorithm 2.
Theorem 4 states that the GCL-PSMC can achieve the

same order of sublinear Bayesian regret in T , if the samples
generated from the three-stage Gibbs sampler of Algorithm 2
approximate the posterior distribution well. Furthermore,
it provides a connection between the Bayesian regret and the
“accuracy” of the approximate samples. This helps us to attain
different tradeoffs between regret and computational cost in
generating accurate approximate samples. More importantly,
this tradeoff guides us to determine the stopping condition
for the MCMC algorithm. The following corollary states the
number rounds N for simulating the Markov chain such that
the Bayesian regret upper bound of GCL-PSMC is sublinear.

Corollary 1: Suppose the Markov chain associated with
Algorithm 2 is uniform ergodic, i.e., ‖p(N)

t (·)− p(·|Ht−1)‖ ≤
cρN , where c > 0 and ρ ∈ (0, 1). By setting N = −(0.5 ln t +
ln c)/ ln ρ in decision round t , we have

RBay
T (DGCL-PSMC) ≤ RBay

T (DGCL-PS) + max
r∈R

|r |
√

T .

Corollary 1 states that when the Markov chain associated
with Algorithm 2 is uniform ergodic, the number rounds N for
simulating the Markov chain is in an order of ln t . When the
uniform ergodicity of the Markov chain is difficult to establish,
one can use Theorem 4 to select appropriate η, and then for
each selected η use convergence diagnose methods [28] to
determine the stopping condition of simulating the Markov
chain. In the following, we use an instance of the GCL-PSMC
algorithm to show that it can be implemented efficiently.

2) Instance of the GCL-PSMC With Gaussians: We con-
sider the following instance of our model with Gaussians.

Instance 1: Consider the instance of the model with: 1) the
prior of the latent feature and preference vector follow
Gaussian distributions, i.e., p(ya) is the density function of
N (νa,'a) and p(θ,ϑ) is the density function of N (µ,()
respectively; 2) the prior of the noise follows a Gaussian
distribution, i.e., f (ε, σa) is the density function of N (0, σ 2

a );
and 3) the prior of the variance σ 2

a follows an inverse
Gamma distribution, i.e., p(σ 2

a ) is the density function of
Inv-Gamma(α,β).

Given Instance 1, we formally derive the conditional poste-
rior distribution in Algorithm 2 in the following lemma.

Lemma 2: Consider Instance 1. The p(ya|σ , θ ,ϑ,Ht ) fol-
lows N (νa,t(θ ,ϑ, σ ),'a,t (θ,ϑ, σ )), where

'a,t (θ ,ϑ, σ ) =
(
'−1

a + na,t−1σ
−2
a ϑϑT )−1

νa,t(θ ,ϑ, σ ) = 'a,t(θ ,ϑ, σ )
(
'−1

a νa

+ϑσ−2
a

(
t−1∑

τ=1

{Aτ =a}g−1
τ (Rτ (Aτ ))−na,t−1θ

T xa

))

.

The p(θ ,ϑ |Y , σ ,Ht ) follows N (µt(Y , σ ),(t(Y , σ )),
where

(t(Y , σ ) =
(

(−1 +
∑

a∈A
na,t−1σ

−2
a

[
xT

a , yT
a

]T [
xT

a , yT
a

]
)−1

µt (Y , σ ) = (t (Y , σ )
(
(−1µ

+
∑

a∈A

[
xT

a , yT
a

]T
σ−2

a

t−1∑

τ=1

{Aτ =a}g−1
τ (Rτ (Aτ ))

)

.

The p(σ 2
a |Y , θ ,ϑ,Ht ) follows Inv-Gamma(αt ,βt (Y , θ ,

ϑ)):

βt (Y ,θ ,ϑ) = β +
∑t−1

τ=1 {Aτ =a}
[
g−1

τ (Rτ (Aτ ))−xT
a θ− yT

a ϑ
]2

2
αt = α + na,t−1/2

where na,t−1 denotes the number of rounds that action a was
selected in the first t − 1 rounds.

Lemma 2 provides the closed-form formula for the
conditional posterior distributions in Algorithm 2 under
Instance 1. These conditional posterior distributions follow
either Gaussian distributions or inverse Gamma distributions.
More importantly, these conditional posterior distribution can
be efficiently sampled. Thus, we can efficiently implement
Algorithm 2 under Instance 1.

V. EXPERIMENTS ON SYNTHETIC DATA

We conduct experiments on synthetic data to evaluate
the performance of GCL-PSMC. We not only compare
GCL-PSMC with five baselines but also study the impact of
various model parameters on the performance of GCL-PSMC.

A. Experiment Settings

1) Synthetic Data: We set the total number of decision
rounds to T = 2000. We consider a total number of |A| = 40
actions and in each round they are all presented to the decision
maker, i.e., At = A,∀t ∈ [T ]. We use a normal distribution
with variance σ 2

a = 1 to simulate the noise of the agent’s
evaluation described in (1), i.e., f (ε, σa) is the density function
of N (ε, 1). We consider one typical instance of the mapping
function gt(V ) = 1/[1 + exp(−V )],∀t ∈ [T ], which is the
well-known sigmoid function. Unless we explicitly vary the
dimension of features, we consider the default choice, i.e.,
dimensions for the observed and latent feature are d = 5 and
! = 5 respectively. Without loss of generality, we consider
that the observed feature and the associated preference vector
lie in xa ∈ [0, 1]d, θ ∈ [0, 1]d ; the latent feature and the
associated preference vector lie in ya ∈ [0, L]!,ϑ ∈ [0, L]!,
where L ∈ R+. Unless we vary L explicitly, we set L = 2
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by default, representing that the latent feature has a slightly
stronger effect on the reward than the observed feature. In the
regret computation part, we will show how we select the
feature vector xa, ya and the preference vector θ ,ϑ .

2) Baselines and Metrics: To the best of our knowledge, this
is the first article that studies the generalized contextual bandit
with latent features. We aim to reveal fundamental understand-
ings on the impact of the latent feature and nonlinearity of the
reward function on the regret. Thus, we compare our algorithm
with the following five algorithms.

1) GCL-LIN: It is an adaption of the LinUCB [2] to our
model. GCL-LIN uses the same method as LinUCB to
learn the preference parameter θ using x Aτ as feature
vector and g−1

τ (Rτ (Aτ )) as reward. For each estimated
preference parameter θ t , GCL-LIN estimates the average
reward for each arm a as E[gt(xT

a θ t +εt,a)] (the method
of calculating this expectation will be specified later).
GCL-LIN uses the same penalty term as the LinUCB to
do exploration. The GCL-LIN algorithm only uses the
observed feature to select actions.

2) GLM-TSL [9]: It is one of the latest algorithms for con-
textual bandit with generalized linear model. Different
from the UCB method or Thompson sampling method,
it uses the randomized maximum likelihood method to
balance exploration vs. exploitation tradeoff. Note that
it does not consider latent features. We implement this
algorithm only use the observed features and the known
function gt .

3) UCB-GLM [7]: it is one of the latest UCB based
algorithms with provable optimality guarantee in the
sense that it matches the minimax lower bound. Note
that it does not consider latent features. We implement
this algorithm by only using the observed features and
the known function gt . Comparison to these algorithms
reveals the impact of the latent feature on regret.

4) hLinUCB [3]: It is one of the representative confidence
bound-based algorithms for contextual bandit (linear
reward function) with latent features. We set its parame-
ters according to this article [3]. This algorithm assumes
a linear reward function in selecting actions. Comparison
to this algorithm reveals the impact of nonlinearity of the
reward function on the regret.

5) TS-ICF [27]: It is a Thompson sampling algorithm,
which is shown to have a good performance in learning
the latent features in matrix factorization scenarios.
Note that the contextual bandit is like conducting the
matrix factorization for one user. Based on this, we tune
this algorithm to our setting. Note that this algorithm
considers a linear reward function. Comparison to this
algorithm further reveals the impact of nonlinearity of
the reward function on the regret of sampling-based
sequential decision-making algorithms.

For all the above algorithms in comparison, we focus on
the setting that the variance of the agent’s evaluation σ 2

a is
known to the algorithm. The reasons are as follows. The
regret of the confidence-based algorithms like GCL-LIN and
hLinUCB, is sensitive to prior knowledge on the variance σ 2

a
(e.g., upper bound of it). Mis-specifying a prior knowledge

on the variance would lead to over exploration (large regret)
or under exploration (diverge). Thus, one way to conduct
fair comparison is to let all these algorithms in compari-
son know the variance. Then one can computer the mean
E[gt(xT

a θ t + εt,a)] for GCL-LIN via integration or Monte
Carlo simulation. We further set the prior distribution for the
GCL-PSMC as p(ya) = N (0, I), p(θ,ϑ) = N (0, I). As the
variance is known, then in the sampling based algorithms like
GCL-PSMC, there is no need to sample the variance. We just
set it to be the given variance. We aim to compare the regret
of each algorithm described above as defined in (3).

3) Regret Computation: We aim to compare the regret
of each algorithm as defined in (3). Equation (3) states
that the regret varies with the parameters xa, ya, θ and ϑ
of the model. In practice, different applications may have
different parameters. Note that in the synthetic data, we select
a parameter space of (X, Y , θ ,ϑ) ∈ 2 ! [0, 1]d×|A| ×
[0, L]!×|A| × [0, 1]d × [0, L]!, where X ! [x1, . . . , x|A|] and
Y ! [ y1, . . . , y|A|]. Instead of selecting some instances of
these parameters to study, we aim to compute the average of
the cumulative regret over the whole parameter space

R̄T (D) !
∫

2
RT (D; $)dµ(X, Y , θ ,ϑ) (6)

where $ = [Y , θ ,ϑ, σ ], σ = 1 as set in the synthetic data, and
µ(X, Y , θ ,ϑ) denotes a Lebesgue measure (i.e., the “weight”
associated with each selection of parameter (X, Y , θ ,ϑ) is
equal) over the parameter space 2. Recall that D represents a
probabilistic representation of an algorithm. As implied by a
result in [23], the average cumulative regret R̄T (D) connects
to the Bayesian regret as follows:

R̄T (D) ≤ O

(
RBay

T (D)

max(X,Y ,θ ,ϑ)∈2
[

p(θ ,ϑ)
∏

a∈A p
(

ya

)]
)

. (7)

Inequality (7) implies that if the Bayesian regret RBay
T (D)

is sublinear, the average cumulative regret is also sublinear.
Note that in the synthetic data we select a parameter space of
xa ∈ [0, 1]d, θ ∈ [0, 1]d, ya ∈ [0, L]! and ϑ ∈ [0, L]!. We use
Monte Carlo simulation to estimate the average cumulative
regret R̄T (D) over the whole parameter space. We consider
M rounds of simulation. In each round of the simulation,
we generate parameters xa, ya, θ and ϑ uniformly at random
from the parameter space 2. Then we use these samples of
the parameters to simulate the model, i.e., generate synthetic
data. We run the algorithm on the simulated model, to evaluate
its regret. Through this, we obtain one sample of the regret.
Finally, we use the sample average as an estimator of the
average cumulative regret over the whole parameter space.
We set the number of simulation rounds to be M = 1000.

B. Impact of the Number of Iterations N
Recall that N denotes the number of iterations for the

MCMC to generate approximate samples for the posterior
distribution. We study the impact of N on the regret of
the GCL-PSMC. We set the dimension of the observed and
latent feature as d = 5 and ! = 5 respectively. Fig. 1(a)
shows the regret of GCL-PSMC algorithm, where N varies
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Fig. 1. Impact of the simulation rounds N on the average cumulative regret
and standard deviation of regret of GCL-PSMC. (a) Average cumulative regret.
(b) Standard deviation of regret.

from 10 to 500. The horizontal axis represents the time or
decision rounds and the vertical axis shows the average
cumulative regret over the whole parameter space defined
in (6). Fig. 1(a) shows that the average cumulative regret
of the GCL-PSMC algorithm increases in T and the average
cumulative regret quickly gets flat. This further validates the
sublinear regret upper bound derived in Theorem 4. As the
number of iterations N that simulates the Markov chain for
approximating the posterior distribution increases, the average
cumulative regret of the GCL-PSMC varies slightly. This
shows that our GCL-PSMC is highly efficient requiring a
small number of iterations for simulating the Markov chain to
approximate the posterior distribution. One reason for this high
efficiency is that the GCL-PSMC algorithm uses the samples
of Y , θ ,ϑ in the last decision round as the initial point of
the Markov chain in current decision round. Note that in each
decision round, we only use one reward to update the posterior
distribution. This means that the posterior distributions in two
consecutive decision rounds do not differ a lot. Thus, the
samples of Y , θ ,ϑ in last decision round are not far from
the stationary distribution (i.e., posterior distribution) in the
current round. Fig. 1(b) shows the standard deviation of regret.
One can observe that the standard deviation is comparable with
the average regret. This implies that the variation of regret is
not large. Based on Fig. 1(a), we set N = 50 for GCL-PSMC
in later experiments.

C. Impact of Total Number of Dimensions

For all the algorithms described in Section V-A, we compare
their average cumulative regret defined in (6). The total
number of actions is fixed to |A| = 40. We consider two
selection of dimensions, i.e., the dimensions for the observed
and latent feature are d = 5 and ! = 5, respectively and
d = 10 and ! = 10, respectively, in order to reveal the
impact of total dimensions on the regret. Fig. 2(a) shows the
average cumulative regret of six algorithms in consideration
when the dimensions for the observed and latent feature are
d = 5, ! = 5. One can observe that the average cumulative
regret curve of GCL-PSMC lies at the bottom. In other
words, GCL-PSMC has a smaller average cumulative regret
than five baseline algorithms in consideration. The GCL-LIN,
UCB-GLM and GLM-TSL (all of them ignore latent fea-
tures) have significantly larger average cumulative regrets than
GCL-PSMC. This implies that ignoring the latent feature
would lead the algorithm to make poor decisions, and justifies
the importance of taking latent features into consideration. The

Fig. 2. Impact of number of total dimensions on the average cumulative regret
and standard deviation of regret. (a) Dimension d = ! = 5. (b) Dimension
d = ! = 5. (c) Dimension d = ! = 10. (d) Dimension d = ! = 10.

hLinUCB and TS-ICF (both of them ignore the nonlinearity
in the reward) also has a significantly larger regret than
GCL-PSMC. This implies that ignoring the nonlinearity of
reward would also lead the algorithm to make poor decisions,
and justifies the importance of taking the nonlinearity of
reward into consideration. Fig. 2(b) shows that the standard
deviation of the regret of GCL-PSMC is drastically smaller
than the other five comparison baselines. This implies that
GCL-PSMC is more stable, i.e., the regret of GCL-PSMC has
a smaller variation than the other five comparison baselines.
Fig. 2(c) and (d) shows similar observations when we increase
the dimensions for the observed and latent feature to d =
10 and ! = 10 respectively. Namely, the above statements
hold when the observed and latent features have different
dimensions.

D. Impact of Latent Features

1) Impact of the Range of Latent Features: We fix the
dimension of observed and latent feature to d = 5 and ! = 5,
respectively. Note that the range of the latent feature and
the associated preference vector lie in ya ∈ [0, L]!,ϑ ∈
[0, L]!, where L ∈ R+. We vary the range L of the
latent feature and the associated preference vector from 0.5
to 4 to study its impact on the average cumulative regret.
Fig. 3(a), (c), (e), and (g) shows the average cumulative regret
of six algorithms in consideration. One can observe that
when L = 0.5, i.e., the range of latent feature is small,
UCB-GLM has the smallest regret and GCL-PSMC has the
second smallest regret. Namely, when latent features are in
a small range and thus has a small impact on the reward,
UCB-GLM can outperform our GCL-PSMC. One reason is
that GCL-PSMC uses MCMC to approximate the posterior
distribution, and this approximation reduces exploration effi-
ciency of the GCL-PSMC algorithm. When the range L of
the latent feature is larger or equal to 1, latent features play
an important role in the reward and GCL-PSMC has the
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Fig. 3. Impact of the range L of latent features on the average cumulative
regret and standard deviation of regret. (a) Range of latent feature L = 0.5.
(b) Range of latent feature L = 0.5. (c) Range of latent feature L = 1.
(d) Range of latent feature L = 1. (e) Range of latent feature L = 2. (f) Range
of latent feature L = 2. (g) Range of latent feature L = 4. (h) Range of latent
feature L = 4.

smallest regret. In this setting, the GCL-LIN, UCB-GLM and
GLM-TSL (all of them ignore latent features), as well as
hLinUCB and TS-ICF (both of them ignore the nonlinear-
ity in the reward) can have significantly larger regret than
GCL-PSMC. This result further justifies that ignoring the
latent feature or nonlinearity of reward would lead the algo-
rithm to make poor decisions. Fig. 3(b), (d), (f), and (h) shows
that the standard deviation of the regret of GCL-PSMC is
significantly smaller than the other five comparison baselines.
This implies that GCL-PSMC is more stable, i.e., the regret
of GCL-PSMC has a smaller variation than the other five
comparison baselines.

2) Impact of the Dimension of the Latent Feature: We
vary the dimension of the latent feature ! from 5 to 7 and
we keep the total dimension d + ! = 10. Fig. 4(a) and (c)
shows the regret of six algorithms in comparison. Again, one
can observe that GCL-PSMC always has the smallest regret

Fig. 4. Impact of the dimension ! of the latent feature on the average
cumulative regret and standard deviation of regret. (a) Dimension of latent
feature !=5. (b) Dimension of latent feature !=5. (c) Dimension of latent
feature !=7. (d) Dimension of latent feature !=7.

among these six algorithms. The GCL-LIN, UCB-GLM and
GLM-TSL (all of them ignore latent features), as well as
hLinUCB and TS-ICF (both of them ignore the nonlinearity in
the reward) have significantly larger regrets than GCL-PSMC.
This result further justifies that ignoring the latent feature
or nonlinearity of reward would lead the algorithm to make
poor decisions and confirms the superior performance of
GCL-PSMC. Fig. 4(b) and (d) shows that the standard devi-
ation of the regret of GCL-PSMC is significantly smaller
than the other five comparison baselines. This implies that
GCL-PSMC is more stable, i.e., the regret of GCL-PSMC has
a smaller variation than the other five comparison baselines.

VI. APPLICATIONS

We apply the proposed contextual bandit framework to hotel
recommendations and news article recommendations. Exper-
iments on two public datasets further validate the superior
performance of GCL-PSMC.

A. Application to Hotel Recommendation
1) Tripadvisor Dataset: We use a public Tripadvisor

dataset.1 The dataset contains ratings and reviews assigned
by users to hotels. Each rating or review contains the ID of
the user and the ID of the hotel. The user not only gives an
overall rating to a hotel but also gives a rating to seven aspects
of a hotel.

2) Experiment Setting: We use the average rating of seven
aspects of a hotel as the observed feature vector of a hotel.
Namely, the observed feature vector has a dimension of d = 7.
Each user gives ratings to at most tens of hotels. We select
two of them to study: 1) Jerri_Blank who assigns ratings
to 16 hotels, and 2) trevostar who assigns ratings to 13 hotels.
We denote Jerri_Blank and trevostar as user A and B. For each
selected user, we apply our framework to recommend hotel to

1http://times.cs.uiuc.edu/%7Ewang296/Data/
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him. The action or arm set A for each selected user is the set
of hotels he has rated. Note that under the mapping function
gt(V ) = g(V ) = 1/[1+exp(−V )]. Each rating r of a selected
user to hotel a ∈ A is used to recover the true evaluation

xT
a θ + yT

a ϑ = g−1(r/6). (8)

We divide the rating r by 6 to make r/6 ∈ (0, 1) as
r ∈ {1, . . . , 5}. Note that it is unknown to the decision maker.
For each round t , we randomly select ten hotels from the
set of hotels A that a user has rated as At . Then we apply
our framework to recommend a hotel from At . Once a hotel
is recommended, we use our model to generate feedback
with the true evaluation as that derived in (8). We evaluate
six algorithms as described in Section V. In the evaluation,
we consider the dimension of latent features as ! = 3 (or
! = 8) such that the total dimension is 10 (or 15). For the
unspecified parameters, we set them like that in Section V.
We consider the same baselines as that in Section V.

3) Experiment Results: Fig. 5(a), (c), (e) and (g) shows
the average cumulative regret of six algorithms in consid-
eration, when we use them to recommend hotels to user
A and B respectively. One can observe that the average
cumulative regret curve of GCL-PSMC lies in the bottom.
This means that the GCL-PSMC algorithm has the smallest
the average cumulative regret among these six algorithms
in comparison. Furthermore, the average cumulative regret
of GCL-PSMC is around ten, while each of the other five
baseline algorithms has an average cumulative regret at least
one hundred, except the GLM-TSL algorithm. The average
cumulative regret of the GLM-TSL is around fifty, i.e., around
fives time that of GCL-PSMC. Namely, GCL-PSMC can make
significantly more accurate recommendations than all these
five baselines. Furthermore, the average cumulative regret
curve of GCL-PSMC is flat. This implies the convergence
of GCL-PSMC. Namely, it quickly can lean a user’s true
preference and makes accurate recommendations. In summary,
the above results justify the importance of taking latent fea-
tures as well as the nonlinearity of reward into considerations
in the recommendation tasks. They also justify the superior
performance of GCL-PSMC. Fig. 5(b) and (d) shows that the
standard deviation of GCL-PSMC, GCL-LIN, and UCB-GLM
are similar, and they are drastically smaller than the other
three comparison baselines. Fig. 5(f) and (h) shows, that
the standard deviation of GCL-PSMC and UCB-GLM are
similar, and they are drastically smaller than the other four
comparison baselines. This implies that GCL-PSMC is roughly
the most stable one, i.e., the regret of GCL-PSMC has nearly
the smallest variation among six algorithms in consideration.
Taking the average regret into consideration, Fig. 5(b) and (d)
also shows that the average regret of GCL-PSMC plus three
times its standard deviation is smaller than the average regret
of UCB-GLM, GCL-LIN, hLinUCB and TS-ICF minus three
times their own standard deviation. Namely, we have pretty
high confidence that the regret of GCL-PSMC is smaller
than that of UCB-GLM, GCL-LIN, hLinUCB, and TS-ICF.
However, for the GLM-TSL, we do not have such high
confidence, as its average regret is close to GCL-PSMC and

Fig. 5. Recommending hotels to users in Tripadvisor. (a) Latent dimension
! = 3 (user A). (b) Latent dimension ! = 3 (user A). (c) Latent dimension ! =
8 (user A). (d) Latent dimension ! = 8 (user A). (e) Latent dimension ! = 3
(user B). (f) Latent dimension ! = 3 (user B). (g) Latent dimension ! = 8
(user B). (h) Latent dimension ! = 8 (user B).

its standard deviation is not small. Similar observations can
be observed in Fig. 5(f) and (h).

B. Application to News Recommendation
1) Dataset: We use a public dataset released by the Yahoo

Webscope program.2 This is a widely used benchmark dataset
in testing the performance of bandit algorithms [3], [11], [22].
This dataset was collected in May 2009 from the Yahoo Today
Module on Yahoo! Front Page. It contains a total number of
45 811 883 users’ visits in a 10-day period. Each time when a
user visits the Yahoo Today Module, the system randomly
selects a news article from a pool of 20 candidate news
articles to recommend. Then the user may or may not click the
recommended news article. The dataset contains users’ click
logs in each visit. In particular, each visit of a user corresponds

2https://webscope.sandbox.yahoo.com/
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to one item in the dataset. Each item contains a list of the IDs
of 20 candidate news articles in the pool, the feature vector
of each candidate news article (each feature vector is of six
dimensions), the ID of the recommended news article, and the
outcome indicating whether a user clicks (1) the recommended
article or not (0). Note that the news article pool changes over
time. Due to privacy considerations, the data item does not
contain the ID information of the user.

2) Experiment Setting: As each data item does not contain
the ID information of the user, we do not know which data
item corresponds to which user. We thus use the data to
simulate the scenario of recommending news articles to the
whole user population. In other words, we treat the whole
user population as a superuser. The objective of a learning
algorithm is to attain a high average click rate over the whole
user population, or a high click rate from the super user. Each
visit of a user to the Yahoo Today Module corresponds to
generating a user sample from the user population to visit
the Yahoo Today Module. If a user clicks (or does not click)
the recommended news article, we treat it as the superuser
clicks (or does not click) the recommended news article. We
use the policy evaluation developed in [22] to evaluate the
click rate of an algorithm from the dataset. The idea is that
given a recommendation of a news article by an algorithm
(e.g., GCL-PSMC), we search the dataset from old to new
to see whether there is a recommendation of the same news
article. If we find one, then we use the corresponding click
outcome as the reward for the algorithm. Then, we discard
all the data items older than the matched data item. With
the reward, the algorithm updates its parameters and then
makes another round of recommendations. We repeat the same
process over the remaining data items. The click rate of the
algorithm is the average reward from the matched data item
in the recommendation process.

We set the dimension of observed features as d = 6
in consistent with the data. We set the dimension of latent
features as ! = 4 making d + ! = 10 and ! = 9 making
d + ! = 15. We evaluate six algorithms as described in
Section V. Note that under the mapping function gt(V ) =
1/[1 + exp(−V )], the outcome 0 in the dataset corresponds
to V = −∞ and the outcome 1 in the dataset corresponds to
V = +∞. Thus, for GCL-PSMC, we feed it with the mapping
function gt(V ) = 2/[1 + exp(−V )]− 0.5.

3) Experimental Results: Fig. 6(a) and (c) shows the click
rate of six algorithms in comparison. For each algorithm in
comparison, we set its parameters as that in Section V. The
horizontal axes of Fig. 6(a) and (c) represent the number
of recommendation rounds made by each algorithm. And
the vertical axis shows the average click rate up to that
time slot. One can observe that when T is less than 800,
GCL-PSMC has almost the highest click rate among these
six algorithms in comparison. This implies that GCL-PSMC
has a fast learning speed in the early stage. When T is large
than 800, GCL-PSMC has the second highest average click
rate and hLinUCB has the highest average click rate but it is
comparable to GCL-PSMC. One reason is that GCL-PSMC
uses MCMC to approximate the posterior distribution, and
this approximation reduces the long-term accuracy of the

Fig. 6. Click rate evaluated from a Yahoo! dataset. (a) Latent dimension
! = 4. (b) Latent dimension ! = 4. (c) Latent dimension ! = 9. (d) Latent
dimension ! = 9.

GCL-PSMC algorithm. The average click rate becomes stable,
as the number of rounds T gets larger. This shows the conver-
gence of the GCL-PSMC algorithm. The above results further
validate the superior performance of our GCL-PSMC for new
article recommendations. Fig. 6(b) and (d) shows the standard
deviation of the click rate. One can observe that hLinUCB and
GCL-PSMC have nearly the same standard deviation. Namely,
these two algorithms are comparable stable. GCL-LIN and
GLM-TSL have smaller standard deviation than GCL-PSMC,
but their click rate is significantly smaller than GCL-PSMC.
It is difficult to assure a high confidence comparison on the
click rate, as the standard deviation is not small compared with
the average click rate gap.

VII. CONCLUSION

This article presents a generalized contextual bandit frame-
work with the latent feature. We develop a GCL-PS algorithm,
which uses a posterior sampling algorithm to balance the
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exploration and exploitation tradeoff for the proposed frame-
work. We prove a sublinear Bayesian regret upper bound for
GCL-PS and prove a lower bound for the proposed framework,
revealing insights on the optimality of GCL-PS. To improve
the computational efficiency of the GCL-PS, we propose a
Markov Chain Monte Carlo (MCMC) algorithm to generate
approximate samples, leading to the GCL-PSMC algorithm.
We not only prove a sublinear regret upper bound for the
GCL-PSMC algorithm, but also reveal insights on the trade-
off between computational efficiency and sequential decision
accuracy. We conduct extensive experiments on synthetic data
and two public datasets to show the superior performance of
the GCL-PSMC algorithm over a variety of baselines.
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