
1650 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Accelerating Distributed DNN Training via Transport
Layer Scheduling

Qingyang Duan, Chao Peng, Zeqin Wang, Yuedong Xu , Shaoteng Liu, Jun Wu , Senior Member, IEEE,
and John C. S. Lui , Fellow, IEEE

Abstract—Communication scheduling is crucial to accelerate
the training of large deep learning models, in which the trans-
mission order of layer-wise deep neural network (DNN) tensors
is determined for a better computation-communication overlap.
Prior approaches adopt user-level tensor partitioning to enhance
the priority scheduling with finer granularity. However, a startup
time slot inserted before every tensor partition will neutralize this
scheduling gain. Tuning hyper-parameters for tensor partitioning
is difficult, especially when the network bandwidth is shared or
time-varying in multi-tenant clusters. In this article, we propose
Mercury, a simple transport layer scheduler that moves the priority
scheduling to the transport layer at the packet granularity. The
packets with the highest priority in the Mercury buffer will be
transmitted first. Mercury achieves the near-optimal overlapping
between communication and computation. It also leverages the
immediate aggregation at the transport layer to enable the full
overlapping of gradient push and pull. We implement Mercury in
MXNet and conduct comprehensive experiments on five popular
DNN models in various environments. Mercury can well adapt
to dynamic communication and computation resources. Experi-
ments show that Mercury accelerates the training by up to 130%
compared to the classical PS architecture, and 104% compared to
state-of-the-art tensor partitioning methods.

Index Terms—Computation-communication overlap, distri-
buted machine learning, parameter server, transport layer
scheduling.

I. INTRODUCTION

THE past decade has witnessed the tremendous success of
Deep Neural Networks (DNNs) in various applications,

such as natural language processing [1], [2], computer vision [3],
speech recognition [4], recommendation [5], [6] etc. With the

Manuscript received 19 July 2022; revised 30 January 2023; accepted 14
February 2023. Date of publication 28 February 2023; date of current version
4 April 2023. This work was supported in part by the Natural Science Foun-
dation of China under Grant 62072117, in part by the Key-Area Research and
Development Program of Guangdong Province under Grant 2020B010166003,
in part by the Shanghai Natural Science Foundation under Grant 22ZR1407000.
Recommended for acceptance by S. Wang. (Corresponding author: Yuedong
Xu.)

Qingyang Duan, Chao Peng, Zeqin Wang, and Yuedong Xu are with
the Department of Electronic Engineering, Fudan University, Shang-
hai 200437, China (e-mail: duanqy20@fudan.edu.cn; pchao321@163.com;
wangzeqin17@fudan.edu.cn; ydxu@fudan.edu.cn).

Shaoteng Liu is with the 2012 Lab, Huawei Technologies Co. Ltd., Shenzhen,
Guangdong 518129, China (e-mail: liushaoteng@huawei.com).

Jun Wu is with the School of Computer Science and Technology, Fudan
University, Shanghai 200437, China (e-mail: wujun@fudan.edu.cn).

John C. S. Lui is with the Computer Science & Engineering, The Chinese
University of Hong Kong,, Hong Kong (e-mail: cslui@cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TPDS.2023.3250462

growth of data volume and model size, distributed deep learning
is becoming the norm of modern machine learning systems.
To run various training tasks efficiently, large companies are
building shared multi-tenant GPU clusters with many GPU and
CPU machines. Parameter Server (PS) architecture [7] with
data parallelism is widely used in distributed DNN training
where data samples are distributed among a number of workers.
Each worker performs the local computation iteratively, while
synchronizes the results with the PSes at the end of every
iteration. However, network bandwidth is usually the bottleneck
of distributed DNN training [8], [9]. The transmission of model
gradients or parameters consumes a large proportion of training
time. Therefore, improving the communication efficiency is
essential to accelerate distributed DNN training.

DNN training procedure is generally characterized as a Di-
rected Acyclic Graph (DAG) in existing machine learning frame-
works, such as MXNet [10], PyTorch [11] and TensorFlow [12].
Each iteration at a worker consists of two layer-wise com-
putation operations (forward and backward propagation) and
two sequential communication operations (push and pull) in
which their interdependency is determined by the underlying
DAG. They consume different types of resources so that the
training time will be reduced if communication can overlap
with computation, and push can overlap with pull. The approach
of scheduling communication operations has been extensively
studied. Wait-free backpropagation (WFBP) [13], adopted by
prevalent DNN frameworks (e.g., MXNet), transmits the gradi-
ent tensor of a layer after the completion of its backward propa-
gation, resulting in a relatively low degree of such overlapping.
TicTac [14] derives the optimal transmission order of layer-wise
tensors through critical-path analysis on the underlying DAG.

Recently, tensor partitioning has been proposed to improve the
granularity of priority scheduling and pipelining, which delivers
a much better computation-communication overlap than the
baseline with intact tensors. P3 [15] segments DNN layers into
smaller slices and synchronizes them based on their priorities.
ByteScheduler [16], as a generic communication scheduler, is
framework agnostic and communication method-agnostic. It
adopts a Bayesian optimization approach to tune the partition
size for adapting to various training models and system configu-
rations. AutoByte [17] uses a meta-network learning approach to
search effective hyper-parameters at runtime for ByteScheduler.
BytePS [18] presents a unified communication architecture,
leveraging spare CPU and bandwidth resources in the cluster to
accelerate the DNN training. A multi-stage pipelining method

1045-9219 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

DUAN et al.: ACCELERATING DISTRIBUTED DNN TRAINING VIA TRANSPORT LAYER SCHEDULING 1651

is deployed with tensor partitioning that overlaps the processing
time of each optimization step. P3, ByteScheduler, AutoByte
and BytePS are all implemented above the message-based
communication library, which we refer to as user-level tensor
partitioning methods.

Though performant, these user-level tensor partitioning
methods can hardly achieve the near-optimal computation-
communication overlap in the presence of the nontrivial com-
munication stack-induced overhead. This overhead, termed as
startup time, is inserted before the push operation of every tensor
partition. The priority scheduling is more fine-grained if a tensor
is partitioned into a number of slices. However, more slices bring
higher total startup time, yielding poor bandwidth utilization.
The performance gain achieved by efficient priority scheduling
is neutralized accordingly. Meanwhile, the user-level tensor
partitioning methods can hardly adapt to dynamically changing
resources because the careful tuning of hyper-parameters is re-
quired to tackle different runtime environments. ByteScheduler
develops a Bayesian optimization approach to search the optimal
hyper-parameters (i.e., partition size and credit size), yet it is not
suitable in dynamic environments due to its minute-level search
time. More essentially, this dilemma is inherent in all user-level
tensor partitioning methods.

In this paper, we propose Mercury (meaning “fast”), a trans-
port layer scheduler to achieve near-optimal scheduling without
additional communication overhead. Mercury possesses three
merits. First, the system architecture of Mercury is simple.
Mercury comprises two major components, the packet-level
priority scheduler at the worker and the packet-level aggregator
at the PS. The priority queue is realized using multiple FIFO
queues in the transport layer where each queue corresponds to
a certain priority. The tensor packets with the highest priority
are transmitted first. The transport layer of the PS is in charge
of aggregating gradients in Mercury packets in a pipelining
manner. Second, Mercury is highly efficient. No tensor parti-
tioning is allowed in Mercury so that there is no throughput
penalty caused by the startup time. The priority scheduling
of tensors that facilitates the overlapping of computation and
communication is realized at nearly minimal granularity. Mean-
while, the aggregation at the packet level enables the nearly
perfect overlapping of push and pull. Third, Mercury provides a
generic transport layer distributed training acceleration method.
Only the point-to-point communication module of DNN frame-
works is modified, and other user-level acceleration techniques
(e.g., tensor fusion, compression, etc.) can be incorporated as
well.

We evaluate Mercury with extensive experiments under var-
ious runtime environments. Two recent user-level tensor parti-
tioning methods, ByteScheduler and BytePS, serve as our base-
lines. Experimental results across representative DNN models
demonstrate that in a static environment, Mercury outperforms
native PS architecture and user-level tensor partitioning methods
by up to 130% and 74%, respectively. Mercury can adapt well
to the dynamic bandwidth and the dynamic computing power,
i.e. outperforming native PS architecture by up to 129% and
user-level tensor partitioning methods by up to 104% in terms
of the training speed.

The rest of this paper is organized as follows. Section II
introduces the necessary background of distributed training and
communication scheduling. Section III reveals the weaknesses
of existing tensor partitioning methods. Section IV presents the
system architecture and the detailed design. Section V provides
the trace-driven analysis of the optimal training speedup. Sec-
tion VI evaluates the performance of Mercury in our testbed.
Section VII describes the related work, and Section VIII con-
cludes this paper.

II. BACKGROUND

In this section, we introduce the background of distributed
DNN training, in particular, the workflow of distributed training,
the communication bottleneck and the commonly-used commu-
nication scheduling strategies.

A. Distributed DNN Training

Data Parallelism. The training of DNN models on a single
server is usually time inefficient with the growth of data volume.
A wise approach is to partition the data into multiple shards, each
of which is placed and computed at an individual worker. This
is called distributed training with data parallelism. All workers
iteratively train the local model and a minibatch of data samples
is used by a worker in each iteration. More precisely, the workers
conduct forward propagation (FP) to calculate the loss function,
and then conduct backward propagation (BP) to compute the
gradients. Bulk Synchronous Parallel (BSP) [19] scheme is
widely used to coordinate their collaborative training. They
synchronize the local gradients (or parameters) at the end of each
iteration to generate the global up-to-date model as the starting
point of the next iteration. Parameter server and all-reduce are
two important communication architectures where the former is
more frequently adopted.

Parameter Server Architecture. Some machines in the PS
architecture are logically categorized as “parameter servers
(PSes)” that maintain the global consensus of model parameters.
Each training iteration operates as follows: a) each worker com-
putes the local gradients (and averages gradients of local GPUs
if this worker contains multiple GPUs); b) each worker “pushes”
the gradients to the PSes; c) the PSes aggregate the gradients and
generate the global model parameters; d) each worker “pulls”
the global model parameters from the PSes (and broadcasts
them to local GPUs if this worker contains multiple GPUs).
The communication takes place only between the PSes and the
workers while the workers themselves do not communicate with
each other.

PS architecture has better performance than all-reduce be-
cause it can utilize extra CPU machines as PSes. Supposing
there are n GPU machines and n CPU machines and the model
size is S. In one iteration of PS architecture, each GPU (and
CPU) machine sends (and receives) S traffic to the network.
While using all-reduce, each GPU machine sends (and receives)
2(n− 1)S/n unit of traffic [18]. Thus PS architecture can be
more time-efficient.

Bottleneck of Distributed Training. The recent trend of dis-
tributed machine learning is to employ advanced hardware to

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

1652 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 1. Dependency DAG of distributed DNN training.

compute large DNN models, while the upgrading of network
bandwidth is rather slow. Hence, the ratio of communication
time to computation time becomes very high, throttling the
efficiency of distributed training. For instance, VGG-16 contains
about 135 million parameters at the size of 540 MB so that a
round of push-pull communication needs 0.864 s in a 10 Gbps
network, but a local iteration only takes 0.580 s in a NVIDIA
GTX 1080Ti GPU. This implies that the communication time
overwhelms the local computing time, encumbering the effi-
ciency of model training. Improving the network hardware can
relieve the problem of communication bottleneck. Considering
that the peak performance of new GPUs is increasing rapidly in
the past few years, we believe that reducing the model transmis-
sion time is a crucial challenge in the heart of distributed DNN
training.

B. Communication Scheduling

Computation-Communication Dependency Graph. The com-
putation and communication operations of DNNs can be mod-
eled as a DAG. Fig. 1 illustrates the layer-wise dependency of
operations in two consecutive iterations. Let fpi, bpi, pushi, and
pulli be the FP, BP, push and pull of layer i. FPs are executed
from the first layer to the last layer while BPs are executed in
an opposite direction. Hence, fpi relies on fpi−1 and pulli,
pulli relies on pushi, pushi relies on bpi, and bpi relies on
bpi+1 [16]. Without loss of generality, we can refer to all the
operations in Fig. 1 as one iteration. Note that bp and fp consume
computing resources, while push uses uplink bandwidth and
pull uses downlink bandwidth. Therefore, the training time can
be effectively reduced if the computation time overlaps with the
communication time, and the push time overlaps with the pull
time.

Let us illustrate the time usage of one iteration in Fig. 2 using a
three-layer DNN as an example. We make a few simplifications
for a better narrative: i) the gradients or parameters of one layer
are represented as one tensor; ii) the push (resp. pull) time
of a tensor is identical across workers; iii) the aggregation of
gradients in PSes accomplishes instantly. Denote by TSi the
ith tensor for i ∈ {1, 2, 3}. Different tensors may vary in size.
Without loss of generality, we suppose TS2 is larger than TS3,
and TS3 is larger than TS1.

WFBP is the default approach adopted by prevalent deep
learning frameworks (e.g., MXNet). The gradient tensor of
a layer is scheduled for transmission once its BP operation
completes. In Fig. 2(a), after bp3 is finished, the worker pushes

Fig. 2. An example showing one iteration time under different scheduling
strategies.

the TS3 gradient tensor to the PSes. The worker subsequently
pulls the TS3 parameter tensor and pushes the TS2 gradient
tensor, and so on and so forth. One can easily observe that WFBP
diminishes the opportunities of computation-communication
overlapping.

User-Level Tensor Partitioning Methods. From Fig. 1, we
can observe that tensors with smaller layer numbers should be
prioritized for transmission. A way to realize priority scheduling
is via tensor partitioning. In distributed DNN training, each
layer’s tensor can be subdivided into multiple smaller partitions
for fine-grained priority scheduling. In Fig. 2(b), the TS2 and
TS3 tensors are partitioned into four and three smaller pieces,
respectively. The tensor with a smaller index possesses a higher
scheduling priority. After two rounds of push3, the gradient
tensors TS2 are already available so that push2 can be sched-
uled. When push2 finishes, the gradient tensor TS1 is ready
so that the scheduler preempts to execute push1 while pausing
the remaining push2 and push3 operations. We will talk about
the startup time later. One can see that the priority scheduling
based on tensor partitioning can achieve better overlap between
computation and communication and between push and pull.

III. OBSERVATIONS AND OPPORTUNITIES

In this section, we show experimentally that the performance
of user-level tensor partitioning methods largely depends on the
careful tuning of hyper-parameters. We reveal their inefficiency
and discuss new opportunities of reducing model synchroniza-
tion time.

A. Inefficient Hyper-Parameter Tuning

In theory, the smallest partition size yields the best flexibility
of priority scheduling. However, we can not neglect the com-
munication overhead caused by tensor partitioning. Real-world
systems usually take extra time between delivering two nearby

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

DUAN et al.: ACCELERATING DISTRIBUTED DNN TRAINING VIA TRANSPORT LAYER SCHEDULING 1653

Fig. 3. Training VGG-16 and MobileNet in MXNet with ByteScheduler. The
training speed is normalized by the highest value in each scenario. The credit
size is tuned to be optimal in (a), and the partition size is tuned to be optimal
in (b).

tensor partitions in a stop-and-wait manner. We refer to this
extra time as startup time, as illustrated in Fig. 2(b). The startup
time is irrelevant to the size of the tensor partition. Though
extremely small (less than 1˜ms estimated in our testbed), we
cannot neglect the accumulation of startup time with many tensor
partitions. We will describe how the startup time is produced in
detail in Section IV-A. Here, we only focus on the performance
degradation caused by the startup time.

Partition Size Tuning. With a smaller partition size, each ten-
sor is sliced into more partitions in each iteration. More startup
slots are inserted in communication operations, which leads
to heavier communication overhead. Therefore, it is necessary
to configure a proper partition size beforehand to balance the
scheduling efficiency and communication overhead. To evaluate
the impact of the partition size and network bandwidth on
the training speed, we train VGG-16 and MobileNet [20] with
one worker and one PS interconnected by different bandwidth
settings. We use ByteScheduler, a state-of-the-art user-level
tensor partitioning method. In Fig. 3(a), one can observe that
each bandwidth setting has a near “optimal” partition size,
and the optimal sizes differ in different settings. If the par-
tition size remains the same, the speed degrades severely
when the bandwidth changes. For example, the normalized
speed degrades by 9% (or 32%) when the bandwidth decreases
from 10 Gbps to 1 Gbps (or 0.5 Gbps). Considering that the
training is usually conducted in shared clusters, the partition
size needs dynamic tuning to adapt to time-varying network
bandwidth.

Credit Size Tuning. To realize preemption, tensor partitions
are transmitted in a stop-and-wait manner. The worker sends

Fig. 4. Training VGG-16 in MXNet with ByteScheduler. (4 MB, 20 MB) is
the optimal hyper-parameter combination for training VGG-16 in a 10 Gbps
network and (0.4 MB, 1.6 MB) is that in a 0.5 Gbps network.

one partition to the underlying FIFO transmission queue (e.g.,
the queue in ZeroMQ). The destination PS sends back a message
notifying the completion of the partition’s transmission. After
receiving this acknowledgement message, the worker schedules
the next partition to the underlying transmission queue. In this
way, the preemption granularity is the partition size. However,
the startup time of the next partition cannot overlap with the
transmission time of the current partition, causing link under-
utilization. One possible approach to alleviate this problem is
via credit-based preemption. The credit size works as a sliding
window. Multiple tensor partitions are allowed to be delivered
concurrently to the underlying FIFO transmission queue. These
partitions are called unacknowledged partitions. The credit size
is the maximum allowed total size of unacknowledged partitions.
An unacknowledged partition is acknowledged after receiving
its completion message. The worker can schedule new user-level
partitions into the underlying transmission queue within the
limitation of the credit size. If the credit size is set equal to
the partition size, the credit-based preemption degenerates to
the stop-and-wait preemption. Usually, the credit size is set as
the multiple of the partition size.

The network utilization is improved because the transmission
time of early tensor partitions overlaps with the startup time of
subsequent partitions. However, the priority-based scheduling
is undermined by a large credit for that the tensor partitions
delivered to the underlying queue cannot be preempted anymore.
In Fig. 3(b), we illustrate how the training speed is influenced by
the credit size across different bandwidth settings and different
DNN models. Different DNN models have different distribu-
tions of tensor size that affect the choice of optimal credit size.
Similarly, adaptive tuning of credit size is indispensable. We
further evaluate the impact of two hyper-parameters together
in Fig. 4. The optimal pair of partition size and credit size may
degrade the training speed by 40% when the network bandwidth
changes.

ByteScheduler utilizes a Bayesian optimization approach to
search for the optimal hyper-parameters (i.e., partition size
and credit size) at the beginning of the training. These hyper-
parameters remain fixed till the end of the training. This static
configuration approach can be extended to auto-tuning by trig-
gering the searching algorithm periodically. However, the search
time of Bayesian optimization is non-negligible, e.g., hundreds
of iterations (i.e., more than 10 minutes for training VGG-16 on
a 10 Gbps link).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

1654 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 5. Training VGG-16 with 2 workers and 2 PSes using MXNet. The
network bandwidth is 10 Gbps.

B. Insufficient Bandwidth Utilization

We hereby show that even a well-tuned ByteScheduler suffers
from inefficient bandwidth utilization in static network environ-
ments. Fig. 5(a) and (b) show the uplink and downlink through-
put of a worker with WFBP and ByteScheduler, respectively.
The throughput statistics are measured every 50 ms. WFBP is the
default tensor scheduler of MXNet. In Fig. 5(b), the partition size
and credit size for ByteScheduler are optimally tuned. Push and
pull operations are executed during t1. Compared with WFBP,
ByteScheduler has a shorter duration per iteration, signifying
its better training efficiency. However, the average network
throughput during t1 is only ∼ 73% even with the “optimal”
partition size and credit size. We can safely claim that the low
bandwidth utilization is caused by the startup time.

To verify whether this problem can be solved by tuning
hyper-parameters, we train the model under ByterScheduler with
different hyper-parameter combinations in a 10 Gbps network
with 2 workers and 2 PSes. Fig. 6 shows the trade-off between the
network throughput and normalized training speed. The training
speed is normalized by that of training with one GPU locally.
The network throughput is averaged over the uplink traffic when
push operations are executed. In order to analyze the impact of
partitioning independently, we set the credit size equal to the
partition size to bypass the credit-based preemption in scenario
1. In scenario 1, a larger partition size achieves higher bandwidth
utilization. But large partition size implies large preemption
granularity, leading to poor overlapping of computation and
communication. So from the training speed’s perspective, an
“optimal” partition size is ∼ 10 MB. In scenario 2, for each
experiment of a partition size, the credit size is tuned to maximize
the training speed. From the training speed’s perspective, an
“optimal” combination of partition size and credit size is (4 MB,
20 MB). We can see that the credit-based preemption improves

Fig. 6. Network throughput and training speed for ByteScheduler with differ-
ent partition sizes: credit size equal to partition size (scenario 1) and optimal
credit size (scenario 2).

Fig. 7. Potential scheduling granularity in a 10 Gbps network.

both bandwidth utilization and training speed. However, the
network bandwidth is still underutilized when both scenarios
reach the “optimal” point. This dilemma leaves a potential
improvement room for more efficient scheduling strategies.

C. Necessity of Transport Layer Scheduling

In light of the above observations, we argue that these prob-
lems are inherent in all user-level tensor partitioning methods.
A direct remedy is to develop better hyper-parameter tuning
algorithms, yet leaving the startup overhead unresolved. An
upper-layer solution can hardly achieve the optimal commu-
nication and computation overlapping without sacrificing the
bandwidth utilization.

The underlying transport layer is capable of more fine-grained
scheduling. To quantify the potential overhead of transport
layer operations, we implement a simple partitioning proto-
type over TCP to send a big tensor with FIFO transmission
scheduling. Fig. 7 shows the bandwidth utilization under the
10 Gbps network. Compared with ByteScheduler, this proto-
type can provide much smaller scheduling granularity (i.e.,
∼ 100 times smaller than ByteSchduler) and fully utilize the
bandwidth. Motivated by these findings, we design Mercury
that provides fine-grained scheduling at the transport layer, and
achieves near-optimal overlapping between computation and
communication.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

DUAN et al.: ACCELERATING DISTRIBUTED DNN TRAINING VIA TRANSPORT LAYER SCHEDULING 1655

IV. MERCURY DESIGN

In this section, we first present key ideas of Mercury design.
We then introduce the overview of system architecture and
describe the implementation of Mercury.

A. Key Ideas

Inspired by our observations in Section III, we attempt to
diagnose the root cause of startup time and come up with a set
of key ideas of mitigating its adverse impacts.

The Root Cause of Startup Time. Distributed training systems
adopt a similar communication stack. From top to bottom, the
communication stack includes 1) user code, 2) engine core, 3)
message-based communication libraries, and 4) transport layer
protocol (e.g., TCP or RDMA). User code encapsulates com-
putation, push and pull operations and their associated tensors
into operators. Engine core determines the execution order of
communication and computation operators according to their
dependencies. It also schedules independent operators to be
executed in parallel if possible. The message-based communi-
cation libraries usually consist of RPC, ZeroMQ, MPI, NVIDIA
NCCL [21] and so on. They transmit tensors in a FIFO manner.

User-level tensor partitioning methods conduct slicing and
scheduling in user code. More specifically, a push operator of
a large tensor is partitioned into multiple operators (i.e., each
is responsible for a tensor partition). These operators will be
held in user code waiting for scheduling to the communication
stack. Therefore, the startup time consists of 1) message-level
acknowledgement delay of the last tensor partition, 2) scheduler
delay (i.e., the time to choose the tensor partition with the highest
priority), 3) engine core scheduling delay, and 4) message-
based communication library pre-processing delay (e.g., RPC
serialization, ZeroMQ queuing) chronologically. When the PS
finishes receiving the data of a tensor partition, it sends an
acknowledgement message to the worker. Then the worker
knows that the transmission of this tensor partition finishes
and schedules the next one or updates the credit window. This
message-level acknowledgement delay is non-negligible. The
scheduler delay is expected to be the smallest while the other
three delays are notable for the startup time.

Key idea 1: Startup time minimization. In Mercury, a tensor
(or a push operator) is delivered to the underlying transport layer
directly as soon as the corresponding BP operation completes.
Tensor partitioning does not exist at user code so that no startup
time is inserted into push operations. Our proposal avoids the
excessive startup time intervals caused by tensor partitioning at
user code.

Key idea 2: Transport layer scheduling. Mercury implements
the priority scheduling at the transport layer by configuring
multiple transmission queues. The Mercury packets of the ith

tensor are stored at the ith FIFO queue, and those with the
highest priority are always transmitted first. Compared with
user-level tensor partitioning methods, the priority scheduling
and the preemption are put into effect at the packet granularity.
The tensor of each layer has its unique priority by default, and
multiple tensors can share the same priority when the number
of layers is too large. Mercury’s scheduling mechanism has to

be carefully designed so that the overhead to choose the packet
with the highest priority does not impair the throughput.

Key idea 3: Immediate PS aggregation. Mercury provides the
immediate PS aggregation that guarantees the near-optimal over-
lapping of push and pull in the absence of tensor partitioning. The
PS aggregates the gradients contained in a Mercury packet upon
its arrival, and sends them back in a packet once the aggregation
on all workers’ gradients accomplishes. In another word, the pull
operation is triggered at the packet granularity. The aggregation
happens at the transport layer to avoid extra processing delay
of the user-level communication stack. The computing logic
of the aggregation has to be as simple as possible to reduce
the processing time of each packet. Thus, we propose that the
PS only sums up local gradients, and let optimizers (e.g., SGD
or Adam) execute at the workers’ GPUs. This speeds up the
computation of optimizers and reduces the CPU load in PSes.
This also makes Mercury a generic scheduler that supports
almost all training algorithms.

Illustration of Potential Benefits. The time usage of our design,
Mercury (meaning fast), is illustrated in Fig. 2(c). Preemption
happens immediately after bp2 and bp1 finish. The push and
pull operations are expected to be fully overlapped, which will
be justified by experimental results in Section VI. There are no
extra startup time slots in push operations. which means that the
network bandwidth is fully utilized. The iteration time reduction
in Mercury mainly comes from the more fine-grained priority
scheduling and the higher bandwidth utilization.

B. Architecture Overview

Mercury has different designs in the worker and the PS. Fig. 8
shows the interactions between worker nodes and PS nodes dur-
ing the training. Worker Computing Engine and PS Computing
Engine are high-level training abstractions implemented by cur-
rent deep learning frameworks. Worker Computing Engine per-
forms BP and FP iteratively on GPUs and averages their gradient
tensors (i.e., through local NVLink or PCIe). PS Computing
Engine supports gradient or parameter synchronization. They
deliver control messages by Message-level Communication Li-
brary to maintain connections and convey commands. Mercury
Worker and Mercury PS only transmit gradient tensors between
worker nodes and PS nodes. They are the two key components of
Mercury’s design. Traditional deep learning frameworks trans-
mit all traffic using the message-level communication library.
We distinguish the traffic into control messages and gradient
tensors so that Mercury Worker and Mercury PS can perform
different operations on them.

Mercury Worker performs the packet-level priority schedul-
ing without throughput penalty. When a local gradient tensor
produced by Worker Computing Engine is delivered to Mercury
Worker, it is subdivided into Mercury packets. Mercury Worker
assigns a priority to every Mercury packet according to the
tensor’s layer number. The packets with the highest priority will
always be sent first. Mercury Worker also receives packets from
Mercury PS. These packets are merged to form global gradient
tensors that will be fed to Worker Computing Engine afterwards.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

1656 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 8. System architecture.

Mercury PS performs the immediate packet-level gradient
aggregation. As described before in Key idea 3, the aggregation
happens inside Mercury PS. PS Computing Engine does not
conduct any computation to gradients. This is necessary to
reduce the processing delay of tensors at the packet granularity.

C. System Components

Mercury Worker. As shown in Fig. 8, Mercury Worker con-
sists of four modules: 1) Sending Buffer that contains multiple
Mercury packet queues; 2) Worker Sender that extracts packets
one by one from Sending Buffer; 3) Transport Library where
the real transmission happens; 4) Tensor Constructor that col-
lects received Mercury packets and constructs gradient tensors.
Mercury Worker provides push and pull transmission service for
deep learning frameworks.

The number of queues in Sending Buffer equals the number of
supported scheduling priorities. Usually, the number of packets
is much larger than that of scheduling priorities. To reduce
the time complexity of extracting a packet, we use a group of
FIFO queues instead of a single heap priority queue. Each FIFO
queue has a unique priority. When a tensor is passed to Sending
Buffer, it is divided into Mercury packets stored in a FIFO queue
corresponding to its priority. In this way, the time complexity of
extracting a packet with the highest priority is O(N) where N
is the number of queues.

Before the training begins, the user code notifies Sending
Buffer to initialize the number of Mercury packet queues. We
find that most DNN models have a small number of tensors (no
more than 260 for our tested models). Therefore, we assign every
tensor with a Mercury packet queue in our implementation. An
assignment algorithm can be developed to balance the trade-off
between the scheduling efficiency and the time complexity when
the DNN model has too many tensors.

The structure of a Mercury packet is shown in Fig. 9. The
Mercury packet header indicates its address (tensor ID, offset)
and priority. The payload of each Mercury packet contains
consecutive gradients in one tensor. No gradient is split across
two packets and no packet is across two tensors. If we use 3 long
integers (i.e., 24B) for the Mercury header, the header is only ∼

Fig. 9. Mercury packet structure.

0.1% the size of the Mercury packet (e.g., 30 KB). The overhead
of the header can be ignored. To avoid the memory copy, each
Mercury packet in the FIFO queue of Sending Buffer contains
only a header other than real data.

Worker Sender constantly extracts Mercury packets (i.e., only
the headers) with the highest priority from Sending Buffer.
Then Worker Sender finds data from the original tensor and
transmits the header and data to the corresponding PS using
the transport library. Transport Library executes multiplexing
and demultiplexing operations. It encapsulates a Mercury packet
to multiple transport library packets (e.g., TCP packets) for
sending data and does the reversed procedure while receiving
data. Memory copy only happens inside the transport library
just as we use the transport library directly without Mercury. It’s
better to set the Mercury packet size asn× Spkt withSpkt as the
size of a transport library packet (e.g., TCP maximum segment
size). Usingn as 1 increases the burden of the scheduling system.
Here, n is set to 10 ∼ 20 in our implementation.

Mercury PS. As shown in Fig. 8, Mercury PS consists of four
modules: 1) Transport Library that works the same way as in
Mercury Worker; 2) Aggregator that aggregates gradient packets
and buffers unready packets; 3) Ready Queue that stores ready
gradient packets (i.e., global gradient packets); 4) PS Sender that
transmits global gradient packets to all workers.

When receiving a Mercury packet, Aggregator checks its
header and adds gradient values to the corresponding packet
(i.e., the packet with the same header) in Packet Pool. If no
corresponding packet is found, the received packet will be put
into Packet Pool. If a packet in Packet Pool is added for M
times (M is the number of workers), it will be pushed to
Ready Queue. PS Sender constantly extracts packets from Ready
Queue, constructs M copies for each ready packet and transmits
them to all workers respectively.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

DUAN et al.: ACCELERATING DISTRIBUTED DNN TRAINING VIA TRANSPORT LAYER SCHEDULING 1657

Aggregator, Ready Queue and PS Sender process Mercury
packets in a pipelining manner. Summing up gradients is fast in
CPUs. We measure the performance of our Aggregator imple-
mentation in one of our physical servers. The highest processing
speed is ∼ 2600 Gbps for FP32 precision, much higher than the
widely-used NIC speed. Therefore, the packet-level aggregation
will not be a bottleneck. The size of a Mercury packet is often
much smaller than that of a tensor. Therefore, our design of
Mercury PS obtains the near-perfect overlapping of uplink and
downlink transmissions. From the worker’s perspective, push
and pull are fully overlapped for each layer. We will show that
this design does not impair bandwidth utilization later on.

D. Implementation

We implement Mercury based on TCP using C++. Mercury
is integrated with MXNet, a deep learning framework support-
ing an efficient PS architecture. The implementation includes
∼3000 LoC in total, among which ∼2700 LoC is written in
C++ for Mercury and the rest is python plugins for MXNet.
MXNet utilizes ps-lite [22] as its underlying PS architecture
library, which is in charge of connection establishment and data
transmission. The main modification is based on the component
Van, an abstraction of point-to-point communication in ps-lite.
The default transmission service in Van is based on ZeroMQ. In
the current implementation of ps-lite, the push, pull and some
control functions call communication APIs in Van to trans-
mit tensors or messages. We derive two components, namely
ZMQ_Van and Mercury_Van. The former adopts the default
transmission implementation to transmit control messages, and
the latter transmits tensors. Mercury_Van works as Mercury
Worker for worker nodes, or Mercury PS for PS nodes. We
make no modifications to the code of iterative training and all
APIs in the communication stack remain the same as before.
We add plugins to the user code of worker. One of them will
notify Mercury_Van the number of tensors (i.e., the number
of scheduling priorities) at the beginning of the training. We
also add plugins to the user code of PS to conduct necessary
initializations for Mercury_Van.

It is easy to integrate Mercury with other deep learning
frameworks supporting the PS architecture, such as TensorFlow
and PyTorch. Like ps-lite, their PS architecture implementations
maintain the communication relations of all nodes and are usu-
ally built on top of point-to-point communication libraries. To
implement Mercury for these frameworks, we only need to add
Mercury as one of their point-to-point communication libraries,
just like the modification for ps-lite. All-reduce architecture [23]
can also benefit from the priority scheduling of Mercury.

V. MODEL AND TRACE-DRIVEN ANALYSIS

In this section, we model the time usage of one iteration in dis-
tributed DNN training under scheduling policies. The potential
benefits of Mercury are illustrated by conducting trace-driven
analysis using our models.

TABLE I
NOTATIONS

A. Modeling Iteration Time

We focus on the paradigm that the optimizer (e.g., SGD,
Adam) is executed in workers. For the convenience of modeling,
we assume that:

1) All computation operations form a chain (i.e., no compu-
tation operations are executed in parallel in one GPU).

2) There is no hardware heterogeneity (GPUs, CPUs and
NICs) across workers and PSes.

3) The aggregation is instantaneous.
Assumption 1 is typically true for deep learning frameworks

and most DNN models. Some special models like Transformer
have a part of complicated dataflow subgraph. The model as a
whole can be treated as a chain in general. With Assumption
2, a PS receives the same gradient from all workers at the
same time. Assumption 3 indicates that the aggregation time
is ignored. Simply summing local gradients is much faster than
other computations.

The frequently used variables are listed in Table I. The model
takes B,L, Sl, tlbp, t

l
fp and tlupd as inputs. We regard bpL as the

start of one iteration and fpL as the end. We denote the start
timestamp of bpL as 0. We first present general equations that
will be used later on.

The push and pull operation of layer l are calculated as follows

tlpush =
Sl

B
. (1)

tlpull =
Sl

B
. (2)

Backward propagations are independent of communication,
so the timestamp of finishing bpl is

τ lbp =
∑L

i=l
tibp. (3)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

1658 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Algorithm 1: Simulated Scheduling of Mercury.

The forward propagation of layer l relies on fpl−1 and updl,
while updl relies on pulll. In real training, fpl−1 and updl can
both be scheduled ahead of another one. The optimizer’s execu-
tion time is usually much smaller than the forward propagation.
We focus on communication scheduling but not computation
scheduling. To simplify the model, we assume that updl is
always executed after fpl−1. Based on the above assumption,
we can equivalently redefine the prerequisites of fpl as: 1) fpl

relies on updl; 2) updl relies on fpl−1 and pulll. Therefore, the
timestamp of finishing fpl is

τ lfp =

{
τ lpull + tlupd + tlfp, l = 1;
max{τ lpull, τ l−1

fp }+ tlupd + tlfp, 2 ≤ l ≤ L.
(4)

Finally, the iteration time can be represented by

titer = τLfp. (5)

Based on the above equations, we can see that titer is mainly
decided by τ lpull. Different scheduling policies have different
communication patterns, producing different τ lpull. We model
τ lpull under scheduling policies as below.

B. Modeling Scheduling Policies

WFBP. As shown in Fig. 2(a), the two prerequisites for the
push operation of layer l are: 1) the BP of layer l has finished;
2) the push operation of layer l + 1 has finished. Therefore, the
timestamp of finishing pushl is

τ lpush =

{
τ lbp + tlpush, l = L;

max{τ lbp, τ
l+1
push}+ tlpush, 1 ≤ l ≤ L− 1.

(6)

The aggregation time is ignored since simply summing up
local gradients is fast. Thus, the timestamp to finish pulll is

τ lpull = τ lpush + tlpull. (7)

Mercury. We assume that the Mercury packet size is in-
finitesimal since most tensors are overwhelmingly larger than a
Mercury packet. For example, a tensor in VGG-16 is ∼400 MB,
while Mercury packet size is∼16 KB. This assumption indicates
that: 1) preemption happens immediately; 2) push and pull are
fully overlapped. Then, we have

τ lpull = τ lpush. (8)

Priority scheduling and immediate preemption make it hard to
express τ lpush as a close-form function. Therefore, to calculate
τ lpush with Mercury, we introduce Algorithm 1 running in a
dynamic manner to simulate the scheduling of push operations.
Buf is an abstraction of tensor buffer to store tensors ready to
be “pushed”. t̂push[l] is the remaining time needed to finish the
push operation of layer l at a certain timestamp. It equals 0 after
the push operation finishes. The algorithm first initializes Buf
and t̂push (Line 1-3), which are updated dynamically. τnow is
the current timestamp. Line 4-10 simulates the events after the
BP of layer l is finished. Since the tensor of layer l is ready,
the algorithm adds l into Buf (Line 6). Then the time period
tbp[l − 1] (i.e., tl−1

bp) is consumed to transmit tensors (Line 10).
In function CONSUME, the tensor with a smaller layer num-

ber has a higher priority to consume the time frame (Line 14). If
a push operation is finished, the layer number will be excluded
from Buf (Line 19) and the finish timestamp will be recorded
(Line 20).

Theorem 1. Mercury obtains the minimum iteration time,
given the following assumptions:

1) Mercury packet size is infinitely small.
2) All computation operations form a chain (i.e., no parallel

computation operations).
3) The DNN engine operates at the work-conserving mode

(i.e., tensor fusion of nearby layers is not incorporated).
4) The aggregation is instantaneous.
5) The optimizer is executed in workers.
Theorem 1 shows that Mercury turns out to be optimal

with ideal assumptions. It can be proved by induction on τ lfp.
The detailed proof is provided in the Appendix, which can
be found on the Computer Society Digital Library at http:
//doi.ieeecomputersociety.org/10.1109/TPDS.2023.3250462.

Mercury W/O Preemption. We disable priority scheduling for
breakdown analysis. Specifically, Mercury packets are transmit-
ted in a FIFO way. In this way, preemption in Mercury Worker
is not allowed but Mercury PS can still perform the immediate

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

DUAN et al.: ACCELERATING DISTRIBUTED DNN TRAINING VIA TRANSPORT LAYER SCHEDULING 1659

Fig. 10. Layered time usage with NVIDIA GTX 3090 24 GB GPU supposing
the network bandwidth is 20 Gbps.

packet-level gradient aggregation. Mercury W/O Preemption
can only benefit from push and pull overlapping. As for the
model implementation, we only need to change Line 14 in
Algorithm 1. For Mercury W/O Preemption, l should be popped
out of Buf in a FIFO way.

Oracle. We define toracle as the iteration time of training with
one GPU locally. Then, we have

toracle =
∑L

i=l
(tibp + tiupd + tifp). (9)

toracle is always less or equal to titer under any communi-
cation scheduling policies. If a scheduling policy can hide all
communication time by the computation time, its titer is equal
to toracle.

C. Trace-Driven Analysis

To illustrate how the distributed training may benefit from
the scheduling policies, we analyze the theoretical performance
gain based on our models. Fig. 10 shows the distribution of
computation (BP, FP) time and communication time of different
layers of VGG-16 and BERT-Base. The communication time
is calculated by dividing the size of each layer’s tensor by
the bandwidth (20 Gbps). The computation time is measured
when training locally using a NVIDIA GTX 3090 24 GB
GPU. BERT-Base has too many layers. For the illustration in
Fig. 10(b), we merge these layers into simple 14 layers. Taking
above measured results as inputs to our models, we show the
normalized speed in Fig. 11. The normalized speed is defined
by the ratio of toracle to titer of different scheduling policies.
We can see that Mercury is superior to WFBP over a large
bandwidth range. BERT-Base has large tensors in the first few
layers (i.e., embedding layers). So it is hard for BERT-Base to
reach the best scalability even with high bandwidth. VGG-16
and most other classification DNN models have large tensors in
the last few layers (i.e., fully connected layers), making it easier
to reach the best scalability. Fig. 12 shows the minimum required

Fig. 11. The potential scheduling efficiency of schedulers with NVIDIA GTX
3090 24 GB GPU.

Fig. 12. Minimum required bandwidth to reach the best scalability of different
schedulers with different GPUs. The smaller, the better. .

TABLE II
MODEL DETAILS IN EXPERIMENTS

bandwidth to reach the best scalability. The minimum required
bandwidth is defined as the minimum bandwidth to obtain
toracle/titer > 0.90 for BERT-Base or toracle/titer > 0.99 for
other DNN models. The model configurations can be found in
Table II. In general, Mercury reduces the required bandwidth
to reach the best scalability by up to ∼ 50%. A faster GPU
requires higher bandwidth to obtain good scalability. In today’s
GPU clusters, the training may be conducted on GPUs faster than
NVIDIA GTX 3090 GPU. Besides, the available bandwidth is
usually shared by multiple distributed machine learning jobs
in multi-tenant clusters. Therefore, it is beneficial to deploy
Mercury for distributed training jobs in GPU clusters.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

1660 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

VI. EVALUATION

In this section, we evaluate the acceleration ratio of Mercury
on our cluster using the distributed training workloads of popular
DNN models.

A. Methodology

Testbed Setup. Our testbed has eight physical servers. Each
server has one 8-core Intel Xeon W2140b CPU at 3.20 GHz
and 32 GB of DDR4 RAM. Four servers are equipped with one
NVIDIA GTX 1080Ti 11 GB GPU as worker nodes, while the
other four servers will run as PS nodes. Each server is connected
to the switch using one Mellanox ConnectX-3 NIC, providing a
10 Gbps Ethernet. The OS is Ubuntu 18.04 with Linux kernel 5.4.
The deep learning framework is MXNet-1.5.0 with CUDA-9.0
and cuDNN-7.1.3.

When DNN models are trained with only GPU machines and
no extra CPU machines are provided, PSes can only be colocated
with workers. Thus in one iteration, each GPU machine sends
(resp. receives) 2(n− 1)S/n units of traffic to (resp. from) the
network withS as the model size andn as the number of workers.
This is the same traffic volume as that of training with the all-
reduce architecture. So the training speed is similar under these
two architectures. This training scenario degrades the potential
benefits of PS architecture. Prior work [18] shows that when
there are extra CPU machines for PS architecture, the bandwidth
is utilized twice more efficiently than all-reduce. Large-scale
clusters [24], [25] host an enormous pool of CPUs and network
bandwidth apart from GPUs. GPUs are extremely expensive
compared with CPUs and network bandwidth. For example,
using AWS, renting GPU machines costs ∼100 times the price
of renting CPU machines. For training with PS architecture,
just a little more spending can bring up to 100% improvement.
Therefore, in our experiments, we focus on the scenario where
CPU machines (i.e., PSes) are as many as GPU machines (i.e.,
workers).

For communication of multiple GPUs in the same machine,
PCIe links and NVLink are less likely the communication bot-
tleneck than NIC. We focus on the scheduling of inter-machine
communication in our experiments.

Baselines. We compare Mercury with the following commu-
nication scheduling methods.

1) Linear-Scaling: This pseudo approach calculates the ideal
speedup [13], [16], [18] that multiplies the training speed
at a single worker by the number of workers.

2) Native-PS: MXNet adopts WFBP as its default scheduling
method for PS architecture.

3) ByteScheduler: ByteScheduler is the state-of-the-art user-
level tensor partitioning method. The partition size and
credit size are tuned automatically for better performance.

4) BytePS: For inter-machine communication, BytePS de-
velops a traffic load assignment strategy to prevent a
bottleneck node from slowing down the training system.
It incorporates the idea of user-level tensor partitioning
and priority scheduling for better pipelining, but hyper-
parameters for tensor partitioning are fixed.

5) Mercury W/O Preemption: This method is introduced in
Section V-B. Our purpose is to analyze the contribution of
each Mercury component to the acceleration ratio.

Benchmark DNN Models. We evaluate Mercury’s perfor-
mance with four widely used image classification models: VGG-
16, VGG-19, AlexNet [26] and ResNet-50, and one language
processing Transformer model, BERT-Base [2]. The details of
the training models are shown in Table II. The batch size is the
number of images or sentences processed at each iteration per
GPU. The input size is the resolution of input images for CNN
models, and is the length of input sentences for Transformer
models. Workers and PSes are on different physical servers, and
the number of workers is equal to the number of PSes.

Metrics. We adopt the training speed (samples per second)
as the main performance metric. All the speed magnitudes are
measured over 100 iterations after a warm-up. The warm-up is
long enough for ByteScheduler’s tuning algorithm to find proper
hyper-parameters. We also measure network throughput while
training.

B. Optimization Under Static Resources

Speedup of Different DNN Models. We evaluate the perfor-
mance improvements achieved by Mercury when training with
different numbers of workers. Fig. 13 shows the training speeds
of different schemes under the 10 Gbps network with the number
of workers ranging from 2 to 4. In general, Mercury delivers
the best performance for all benchmark DNN models. Mercury
outperforms Native-PS, BytePS and ByteScheduler by up to
130%, 74% and 40% respectively. For breakdown analysis,
Mercury outperforms Mercury W/O Preemption by up to 15%.
We also find that Mercury achieves better speedups in VGG-16
and VGG-19 than in AlexNet and BERT-Base. This is because
of their different ratios of communication time over computation
time. From Fig. 13(e), we observe that Mercury has a very
gentle speedup for ResNet-50. The reason is that the 10 Gbps
bandwidth is enough for ResNet-50 with WFBP. It is consistent
with Fig. 12 in Section V-C.

Deep Dive Into Mercury. We measure the worker’s uplink and
downlink throughput when training VGG-16 and the results are
shown in Fig. 14. We also illustrate the execution time of BP,
FP and push time at an iteration in Fig. 15 by using MXNet
Profiler. One can see that Mercury can hide all communication
time and the GPU is always busy, while some idle time appears
in Mercury W/O Preemption. In Fig. 14, the speedup of Mercury
W/O Preemption over Native-PS mainly comes from the overlap
of uplink and downlink transmissions. The speedup of Mercury
over Mercury W/O Preemption comes from the better overlap
of computation and communication. The network bandwidth is
fully utilized by both Mercury and Mercury W/O Preemption,
indicating that our design eliminates unnecessary startup time.

We show the CPU utilization of different schedulers in Fig. 16.
The CPU utilization is calculated by multiplying the iteration
time and the CPU utilization per second. Then it’s normalized
by the value of Native-PS. User-level tensor partitioning meth-
ods consume more CPU resources than Mercury. Compared to
Native-PS, Mercury speeds up the training by up to 104% with

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

DUAN et al.: ACCELERATING DISTRIBUTED DNN TRAINING VIA TRANSPORT LAYER SCHEDULING 1661

Fig. 13. Training DNN models under the 10 Gbps network. The numbers in the first (second) parentheses are speedup percentages of Mercury over BytePS
(ByteScheduler).

Fig. 14. Training VGG-16 with 2 workers and 2 PSes using MXNet. The
network bandwidth is 10 Gbps.

Fig. 15. Execution timeline of one iteration in MXNet.

Fig. 16. Normalized CPU utilization per iteration when training VGG-16 with
4 workers and 4 PSes.

the cost of only 23% (and 9%) extra CPU computing resources
on workers (and PSes).

C. Optimization Under Dynamic Resources

Speedup of Different DNN Models. Mercury can further
speed up the training in a dynamic environment. We limit the
maximum bandwidth of servers dynamically using the Linux
WonderShaper tool. Figs. 18 and 19 show the performance

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

1662 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Fig. 17. The effect of Mercury packet size on the training speed when training
VGG-16 and AlexNet with 2 workers and 2 PSes.

under two dynamic scenarios. In Fig. 18, Mercury outperforms
Native-PS, BytePS and ByteScheduler by up to 85%, 74% and
41% respectively. In Fig. 19, Mercury outperforms Native-PS,
BytePS and ByteScheduler by up to 129%, 99% and 104%
respectively. We can see that Mercury’s speedup over the user-
level tensor partitioning methods is higher than that in static
network environments. For ResNet-50, Mercury can accelerate
its training speed by up to 20% in these scenarios. The user-level
tensor partitioning methods are hard to adapt to highly dynamic
changing bandwidth since the well-tuned hyper-parameters in
one bandwidth setting may operate poorly in another setting.
For example, ByteScheduler (BytePS) outperforms Native-PS
by up to 76.5% (79.8%) in Fig. 13(c), while only 7.3% (9.9%)
in Fig. 19(c).

Hyper-Parameter Tuning Analysis. Mercury is robust to the
changing bandwidth. We measure how the Mercury packet size
affects the training performance. Fig. 17 shows the results of
a big model VGG-16 and a small model AlexNet. Other DNN
models have similar results. Mercury has suboptimal perfor-
mance only when the packet size is supper small (i.e., ≤ 8 KB)
or super big (i.e., ≥ 1 MB). The former causes bandwidth un-
derutilization and the latter leads to big preemption granularity
for tensor scheduling. When the packet size is between 16 KB
to 256 KB, the training speed is always optimal for different
bandwidth settings. In our implementation, the Mercury packet
size is fixed to ∼ 30 KB. In ByteScheduler’s experiments for
these scenarios, its “optimal” partition size is 1 ∼ 10 MB.
The big partition size undermines the scheduling efficiency of
ByteScheduler.

Multiple Jobs Sharing the Cluster. We further evaluate the
training speed when multiple distributed training jobs share the
computation and communication resources. In each scenario of
Fig. 20, the same 4 workers and 4 PSes are utilized for all
jobs. The training speed is normalized by that of Native-PS.
In Fig. 20(a), (b), and (c), we set the batch size of VGG-16,
VGG-19 and BERT-Base to 16 because of the GPU memory
limitation. In general, Mercury outperforms other methods.
In Fig. 20(b), Mercury outperforms Native-PS, BytePS and
ByteScheduler by up to ∼ 100%, ∼ 38% and ∼ 48% for both
jobs. In Fig. 20(d), Mercury only improves the training speed of
VGG-16 with Cifar10 and does not harm the speed of the other
2 jobs. ByteScheduler obtains a higher speed than Mercury for
AlexNet, but with the cost of reducing the speed of the other
2 jobs significantly. It is interesting that the job with a higher
bandwidth requirement (e.g., VGG-16 in Fig. 20(a) or VGG-16
with Cifar10 in Fig. 20(d)) may benefit more from Mercury in a

shared cluster. We leave it as future work to combine Mercury
with job scheduling.

D. Optimization Under Heterogeneous Resources

Mercury can also be applied to heterogeneous training sys-
tems. With heterogeneous GPU workers like Fig. 21(a), gradient
tensors in faster GPU workers are produced and transmitted to
PSes earlier. The bottleneck is the computation and communi-
cation of tensors in slow workers. Mercury still performs better
on scheduling the communication of slow workers than other
schedulers. In Fig. 21(a), Mercury outperforms Native-PS and
BytePS by up to 93% and 37% for VGG-19. For BERT-Base,
Mercury outperforms Native-PS and BytePS by up to 26%
and 14% respectively. For ResNet-50, all schedulers achieve
no better performance than Native-PS. Because 10 Gbps is
enough for WFBP to reach the best scalability on ResNet-50
with both types of GPU, as shown in Fig. 12. When training with
no-balanced links, the bottleneck is the communication in links
with heavy traffic. Compared to other schedulers, Mercury still
performs better on scheduling the communication of bottleneck
links. In Fig. 21(b), workers and PSes are not in a perfect load
balancing. Obviously, Mercury outperforms other methods for
all DNN models.

VII. RELATED WORK

DNN Training Frameworks. To facilitate the computation
operations (e.g., forward propagation, backward propagation),
DNN compilers and libraries have been proposed from both
industry and academia, including MKL [27], cuDNN [28],
XLA [29], TVM [30] and TensorRT [31].

Communication Scheduling. Communication scheduling ap-
proaches accelerate distributed DNN training by overlap-
ping computation and communication. Poseidon [13] exploited
WFBP to hide the communication time by backward propa-
gations. TicTac [14] delivered the optimal transmission order
of DNN tensors through critical-path analysis on the depen-
dency graph. Tensor partitioning is an important technique to
improve the efficiency of communication scheduling. P3 [15]
sliced tensors into small pieces to perform fine-grained priority
scheduling. ByteScheduler [16] proposed a Bayesian optimiza-
tion approach to tune hyper-parameters of tensor partitioning
for better performance across different system configurations.
AutoByte [17] presented a real-time method that searches the
optimal hyper-parameters as the training environments dynami-
cally change. AutoByte used a meta-network to predict speedups
under specific configurations. Considering the internal topology
of a multiple-GPU machine, BytePS [18] developed an optimal
intra-machine communication strategy and adopts tensor parti-
tioning for better pipelining. Tensor fusion [32], [33], [34] re-
duced communication time by merging nearby small tensors into
a large one. ASC-WFBP [34] leveraged simultaneous commu-
nications to extend the design space of tensor fusion. iPart [35]
proposed to partition the sequential execution of communication
and computation with various sizes. We proposed a transport
layer based communication scheduling approach [36].

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

DUAN et al.: ACCELERATING DISTRIBUTED DNN TRAINING VIA TRANSPORT LAYER SCHEDULING 1663

Fig. 18. Training DNN models when the network bandwidth varies randomly between 6 Gbps and 10 Gbps every 5 seconds. The numbers in the first (second)
parentheses are speedup percentages of Mercury over BytePS (ByteScheduler).

Fig. 19. Training DNN models when the network bandwidth varies randomly between 1 Gbps and 10 Gbps every 5 seconds.

Fig. 20. Four scenarios of training multiple DNN models simultaneously.

Fig. 21. Training models (a) with heterogeneous GPU workers and (b) without load balancing.

Communication Compression. Compressing the gradients or
model parameters before transmission is an effective approach
to reduce the communication overhead of distributed DNN
training. There exist two popular compression methods, quan-
tization [37], [38], [39] and sparsification [40], [41], [42].
Quantization reduces the precision of each variable by limiting
the number of bits or the code-book mapping. Sparsification
reduces the number of transmitted variables by selecting only

relatively important ones. In terms of compression effective-
ness, the sparsification approaches are more effective especially
at the late stage of training since most of the gradients are
sufficiently close to zero. Sparsification and quantization are
two orthogonal approaches that are superimposed to further
improve the compression capability [43], [44], [45]. Gener-
ally, these compression techniques can work with Mercury in
parallel.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

1664 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Alternative Communication Structures. BSP pursues the per-
fect model synchronization in every training round. In realistic
clusters, the GPU load and the traffic volume of a worker can be
time-varying, and the computing powers of different GPUs are
usually different. Hence, the fast workers have to wait for the
slow ones that are usually deemed as stragglers. Asynchronous
Parallel (ASP) [46] allowed a worker to proceed the model
training without waiting for the arrival of the synchronized
global model. Stale Synchronous Parallel (SSP) [47], [48] in-
troduced a latency threshold to avoid excessive staleness. The
fast workers can lead the slow ones by a margin, and have to wait
for them if this threshold is reached. DS-Sync [49] presented a
novel divide-and-shuffle approach to synchronize parameters in
a bottleneck-free manner. Classic ring-based all-reduce cannot
adapt to the specific network topology of data center networks
(DCN). Some works proposed new all-reduce architectures like
hierarchical all-reduce [50] and tree-based all-reduce [51]. As an
underlying scheduler, Mercury can potentially accelerate these
new communication architectures.

In-Network Solutions. The communication link between
workers and PSes is usually the bottleneck of distributed train-
ing. The temporary congestion at the network switches might
create the straggler problem, and the traffic passing through them
are usually redundant. CEFS [52] and Geryon [53] implemented
priority scheduling based on RDMA and commodity switches
to perform in-network flow scheduling. Multiple flows with
different priorities between PSes and workers are used to transfer
gradients and parameters separately. In-network aggregation ap-
proaches [54], [55], [56], [57] have been proposed to aggregate
gradients using programmable switches to avoid intense bursts
of traffic among workers. SwitchML [56] presented a rack-scale
architecture where a single switch centrally aggregates model
updates for associated workers. To deal with heavy contention
for limited switch resources across multiple tenants, ATP [57]
developed a decentralized, dynamic and best-effort aggregation
mechanism, enabling distributed training jobs to fall back to
end-host aggregation if necessary.

VIII. CONCLUSION

In distributed DNN training with data parallelism, tensor par-
titioning improves the efficiency of communication scheduling.
While it brings communication overhead, resulting in low band-
width utilization and hard hyper-parameter tuning, especially
under dynamic environments. In this paper, we propose Mercury,
a scheduler to exploit the scheduling ability above the transport
layer to improve the communication efficiency. At the worker
side, Mercury provides priority scheduling at the packet granu-
larity. At the parameter server side, Mercury supports immediate
aggregation at the packet granularity. We formulate theoretic
models of iteration time and analyze the potential speedup based
on collected traces. Mercury is implemented in MXNet and
evaluated on a testbed with eight servers. Extensive experiments
show that Mercury significantly outperforms the existing tensor
partitioning methods by more efficient scheduling and better
bandwidth utilization.

REFERENCES

[1] D. He, H. Lu, Y. Xia, T. Qin, L. Wang, and T.-Y. Liu, “Decoding with
value networks for neural machine translation,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 177–186.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proc. Annu. Meeting Assoc. Comput. Linguistics: Hum. Lang. Technol.,
2019, pp. 4171–4186.

[3] S. Qiao, Z. Zhang, W. Shen, B. Wang, and A. Yuille, “Gradually updated
neural networks for large-scale image recognition,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 4188–4197.

[4] D. Amodei et al., “Deep speech 2: End-to-end speech recognition in english
and mandarin,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 173–182.

[5] J. Wang, P. Huang, H. Zhao, Z. Zhang, B. Zhao, and D. L. Lee, “Billion-
scale commodity embedding for e-commerce recommendation in alibaba,”
in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2018,
pp. 839–848.

[6] S. J. Chen et al., “Improving recommendation quality in Google drive,” in
Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2020,
pp. 2900–2908.

[7] M. Li et al., “Scaling distributed machine learning with the parameter
server,” in Proc. USENIX Conf. Operating Syst. Des. Implementation,
2014, pp. 583–598.

[8] Z. Zhang, C. Chang, H. Lin, Y. Wang, R. Arora, and X. Jin, “Is network
the bottleneck of distributed training?,” in Proc. Workshop Netw. Meets AI
ML, 2020, pp. 8–13.

[9] S. Shi, Z. Tang, X. Chu, C. Liu, W. Wang, and B. Li, “A quantitative survey
of communication optimizations in distributed deep learning,” IEEE Netw.,
vol. 35, no. 3, pp. 230–237, May/Jun. 2021.

[10] T. Chen et al., “MXNet: A flexible and efficient machine learning library
for heterogeneous distributed systems,” 2015, arXiv:1512.01274.

[11] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 8026–
8037.

[12] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. USENIX Conf. Operating Syst. Des. Implementation, 2016,
pp. 265–283.

[13] H. Zhang et al., “Poseidon: An efficient communication architecture for
distributed deep learning on GPU clusters,” in Proc. USENIX Conf. Usenix
Annu. Tech. Conf., 2017, pp. 181–193.

[14] S. H. Hashemi, S. A. Jyothi, and R. H. Campbell, “TicTac: Accelerating
distributed deep learning with communication scheduling,” in Proc. 2nd
SysML Conf., 2019, pp. 418–430.

[15] A. Jayarajan, J. Wei, G. Gibson, A. Fedorova, and G. Pekhimenko,
“Priority-based parameter propagation for distributed DNN training,” in
Proc. 2nd SysML Conf., 2019, pp. 132–145.

[16] Y. Peng et al., “A generic communication scheduler for distributed DNN
training acceleration,” in Proc. 27th ACM Symp. Operating Syst. Princ.,
2019, pp. 16–29.

[17] Y. Ma, H. Wang, Y. Zhang, and K. Chen, “Automatic config-
uration for optimal communication scheduling in DNN training,”
2022, arXiv:2112.13509.

[18] Y. Jiang, Y. Zhu, C. Lan, B. Yi, Y. Cui, and C. Guo, “A unified architecture
for accelerating distributed DNN training in heterogeneous GPU/CPU
clusters,” in Proc. 14th USENIX Symp. Operating Syst. Des. Implementa-
tion, 2020, pp. 463–479.

[19] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, pp. 103–111, 1990.

[20] A. G. Howard et al., “MobileNets: Efficient convolutional neural networks
for mobile vision applications,” 2017, arXiv:1704.04861.

[21] NVIDIA NCCL, 2022. [Online]. Available: https://developer.nvidia.com/
nccl

[22] ps-lite, 2022. [Online]. Available: https://github.com/dmlc/ps-lite
[23] A. Sergeev and M. Del Balso, “Horovod: Fast and easy distributed deep

learning in tensorflow,” 2018, arXiv:1802.05799.
[24] Q. Weng et al., “MLaaS in the wild: Workload analysis and scheduling

in large-scale heterogeneous GPU clusters,” in Proc. 19th USENIX Symp.
Networked Syst. Des. Implementation, 2022, pp. 945–960.

[25] W. Xiao et al., “AntMan: Dynamic scaling on GPU clusters for deep learn-
ing,” in Proc. 14th USENIX Symp. Operating Syst. Des. Implementation,
2020, pp. 533–548.

[26] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

DUAN et al.: ACCELERATING DISTRIBUTED DNN TRAINING VIA TRANSPORT LAYER SCHEDULING 1665

[27] MKL Intel, 2022. [Online]. Available: https://software.intel.com/en-us/
mkl

[28] NVIDIA cuDNN, 2022. [Online]. Available: https://developer.nvidia.
com/cudnn

[29] XLA, 2022. [Online]. Available: https://www.tensorflow.org/xla
[30] T. Chen et al., “{TVM }: An automated { End-to-End} optimizing com-

piler for deep learning,” in Proc. 13th USENIX Symp. Operating Syst. Des.
Implementation, 2018, pp. 578–594.

[31] NVIDIA TensorRT. [Online]. Available: https://devblogs.nvidia.com/
deploying-deep-learning-nvidia-tensorrt/

[32] S. Shi, X. Chu, and B. Li, “MG-WFBP: Efficient data communication for
distributed synchronous SGD algorithms,” in Proc. IEEE Conf. Comput.
Commun., 2019, pp. 172–180.

[33] S. Shi, X. Chu, and B. Li, “MG-WFBP: Merging gradients wisely for ef-
ficient communication in distributed deep learning,” IEEE Trans. Parallel
Distrib. Syst., vol. 21, no. 8, pp. 1903–1917, Aug. 2021.

[34] S. Shi, X. Chu, and B. Li, “Exploiting simultaneous communications to
accelerate data parallel distributed deep learning,” in Proc. IEEE Conf.
Comput. Commun., 2021, pp. 1–10.

[35] S. Wang, A. Pi, X. Zhou, J. Wang, and C.-Z. Xu, “Overlapping com-
munication with computation in parameter server for scalable DL train-
ing,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 9, pp. 2144–2159,
Sep. 2021.

[36] Q. Duan, Z. Wang, Y. Xu, S. Liu, and J. Wu, “Mercury: A simple transport
layer scheduler to accelerate distributed DNN training,” in Proc. IEEE
Conf. Comput. Commun., 2022, pp. 350–359.

[37] W. Wen et al., “TernGrad: Ternary gradients to reduce communication in
distributed deep learning,” in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1508–1518.

[38] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1709–1720.

[39] Y. Yu, J. Wu, and L. Huang, “Double quantization for communication-
efficient distributed optimization,” in Proc. Adv. Neural Inf. Process. Syst.,
2019, pp. 4438–4449.

[40] S. Shi et al., “A distributed synchronous SGD algorithm with global top-k
sparsification for low bandwidth networks,” in Proc. IEEE 39th Int. Conf.
Distrib. Comput. Syst., 2019, pp. 2238–2247.

[41] C.-Y. Chen et al., “ScaleCom: Scalable sparsified gradient compression
for communication-efficient distributed training,” in Proc. Adv. Neural
Inf. Process. Syst., 2020, pp. 13551–13563.

[42] S. Shi et al., “Communication-efficient distributed deep learning with
merged gradient sparsification on GPUs,” in Proc. IEEE Conf. Comput.
Commun., 2020, pp. 406–415.

[43] D. Basu, D. Data, C. Karakus, and S. Diggavi, “Qsparse-local-SGD:
Distributed SGD with quantization, sparsification and local computations,”
in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 14695–14706.

[44] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-i.i.d data,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400–3413, Sep. 2020.

[45] K. Hu, C. Wu, and E. Zhu, “HGC: Hybrid gradient compression in
distributed deep learning,” in Proc. Int. Conf. Artif. Intell. Secur., 2021,
pp. 15–27.

[46] F. Niu, B. Recht, C. Ré, and S. J. Wright, “Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent,” 2011, arXiv:1106.5730.

[47] Q. Ho et al., “More effective distributed ML via a stale synchronous
parallel parameter server,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 1223–1231.

[48] C. Chen, W. Wang, and B. Li, “Round-robin synchronization: Mitigating
communication bottlenecks in parameter servers,” in Proc. IEEE Conf.
Comput. Commun., 2019, pp. 532–540.

[49] W. Wang, C. Zhang, L. Yang, K. Chen, and K. Tan, “Addressing network
bottlenecks with divide-and-shuffle synchronization for distributed dnn
training,” in Proc. IEEE Conf. Comput. Commun., 2022, pp. 320–329.

[50] M. Cho, U. Finkler, and D. Kung, “BlueConnect: Novel hierarchical all-
reduce on multi-tired network for deep learning,” in Proc. 2nd SysML
Conf., 2019, pp. 241–251.

[51] X. Wan, H. Zhang, H. Wang, S. Hu, J. Zhang, and K. Chen, “Rat-resilient
allreduce tree for distributed machine learning,” in Proc. 4th Asia-Pacific
Workshop Netw., 2020, pp. 52–57.

[52] S. Wang, D. Li, J. Zhang, and W. Lin, “CEFS: Compute-efficient flow
scheduling for iterative synchronous applications,” in Proc. 16th Int. Conf.
Emerg. Netw. EXperiments Technol., 2020, pp. 136–148.

[53] S. Wang, D. Li, and J. Geng, “Geryon: Accelerating distributed CNN
training by network-level flow scheduling,” in Proc. IEEE Conf. Comput.
Commun., 2020, pp. 1678–1687.

[54] L. Luo, M. Liu, J. Nelson, L. Ceze, A. Phanishayee, and A. Krishnamurthy,
“Motivating in-network aggregation for distributed deep neural network
training,” in Proc. Workshop Approx. Comput. Across Stack, 2017.

[55] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, “In-network
computation is a dumb idea whose time has come,” in Proc. 16th ACM
Workshop Hot Topics Netw., 2017, pp. 150–156.

[56] A. Sapio et al., “Scaling distributed machine learning with in-network ag-
gregation,” in Proc. USENIX Conf. Networked Syst. Des. Implementation,
2021, pp. 785–808.

[57] C. Lao et al., “ATP: In-network aggregation for multi-tenant learning,”
in Proc. USENIX Conf. Networked Syst. Des. Implementation, 2021,
pp. 741–761.

Qingyang Duan received the bachelor’s degree from
the School of Information Science and Technology,
Fudan University, in 2020. He is currently working
toward the master’s degree with the School of Infor-
mation Science and Technology, Fudan University.
His research interests include computer network sys-
tems and distributed machine learning.

Chao Peng received the bachelor’s degree from the
School of Information Science and Technology, Fu-
dan University, in 2022. He is currently working to-
ward the master’s degree with the School of Informa-
tion Science and Technology, Fudan University. His
research interests include computer network systems
and distributed machine learning.

Zeqin Wang received the bachelor’s degree from
the School of Information Science and Technology,
Fudan University, in 2021. He is currently working
toward the master’s degree with the School of Infor-
mation Science and Technology, Fudan University.
His research interests include distributed machine
learning and communication network.

Yuedong Xu received the BS degree from Anhui Uni-
versity, the MS degree from the Huazhong University
of Science and Technology, and the PhD degree from
the Chinese University of Hong Kong. From 2009
to 2012, he held a postdoctoral position with INRIA
Sophia Antipolis and Université d’Avignon, France.
He is a professor with the School of Information
Science and Technology, Fudan University, China.
He has published nearly 20 conference and journal
papers in premium vents such as CoNEXT, Mobisys,
Mobihoc, Infocom and IEEE/ACM Transactions on

Networking. His research interests include performance evaluation, optimiza-
tion, machine learning and economic analysis of communication networks and
mobile computing.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

1666 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 5, MAY 2023

Shaoteng Liu received the BS and MS degrees in
microelectronics from Fudan University, Shanghai,
China, and the PhD degree in computer system from
the KTH Royal Institute of Technology, Sweden.
He served as a technical expert in Huawei. His re-
search interests include electronic systems, networks-
on-chip, network coding, optimization, and machine
learning. He has published several papers in DATE,
NoCS, Infocom, TVLSI and so on.

Jun Wu (Senior Member, IEEE) received the BS
degree in information engineering and the MS degree
in communication and electronic system from Xidian
University, in 1993 and 1996, respectively, and the
PhD degree in signal and information processing from
the Beijing University of Posts and Telecommuni-
cations, in 1999. He is a professor with the School
of Computer Science, Fudan University. He was a
professor with the Department of Computer Science
and Technology, Tongji University. His research in-
terests include wireless network, machine learning,

and signal processing.

John C. S. Lui (Fellow, IEEE) received the PhD
degree in computer science from the University of
California at Los Angeles, CA, USA, in 1992. He
is currently the Choh-Ming Li chair professor with
the Department of Computer Science and Engi-
neering, Chinese University of Hong Kong, Hong
Kong. His research interests include machine learn-
ing, online learning (e.g., multiarmed bandit, rein-
forcement learning), network science, future inter-
net architectures and protocols, network economics,
network/system security, and large scale storage sys-

tems. He was the recipient of Departmental Teaching awards and the CUHK
Vice-Chancellor’s Exemplary Teaching Award. He was also the co-recipient of
the Best Paper Award in the IFIP WG 7.3 Performance 2005, IEEE/IFIP NOMS
2006, SIMPLEX 2013, and ACM RecSys 2017. From 2011 to 2015, he was the
past chair of the ACM SIGMETRICS. He is an elected member of the IFIP WG
7.3, fellow of ACM, senior research fellow of the Croucher Foundation.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 08,2023 at 10:07:58 UTC from IEEE Xplore. Restrictions apply.

