
Multi-Player Multi-Armed Bandits with Finite Shareable Resources Arms:
Learning Algorithms & Applications∗

Xuchuang Wang1 , Hong Xie2 , John C.S. Lui1
1Department of Computer Science & Engineering, The Chinese University of Hong Kong

2College of Computer Science, Chongqing University, China
1{xcwang, cslui}@cse.cuhk.edu.hk, 2xiehong2018@foxmail.com

Abstract
Multi-player multi-armed bandits (MMAB) study
how decentralized players cooperatively play the
same multi-armed bandit so as to maximize their
total cumulative rewards. Existing MMAB models
mostly assume when more than one player pulls
the same arm, they either have a collision and ob-
tain zero rewards, or have no collision and gain
independent rewards, both of which are usually too
restrictive in practical scenarios. In this paper, we
propose an MMAB with shareable resources as an
extension to the collision and non-collision settings.
Each shareable arm has finite shareable resources
and a “per-load” reward random variable, both of
which are unknown to players. The reward from
a shareable arm is equal to the “per-load” reward
multiplied by the minimum between the number of
players pulling the arm and the arm’s maximal share-
able resources. We consider two types of feedback:
sharing demand information (SDI) and sharing de-
mand awareness (SDA), each of which provides
different signals of resource sharing. We design
the DPE-SDI and SIC-SDA algorithms to address
the shareable arm problem under these two cases
of feedback respectively and prove that both algo-
rithms have logarithmic regrets that are tight in the
number of rounds. We conduct simulations to vali-
date both algorithms’ performance and show their
utilities in wireless networking and edge computing.

1 Introduction
Multi-armed bandits (MAB) [Lai and Robbins, 1985] is a
canonical sequential decision making model for studying the
exploration-exploitation trade-off. In a stochastic MAB, a
player pulls one arm among K ∈ N+ arms per time slot
and receives this pulled arm’s reward generated by a random
variable. To maximize the total reward (i.e., minimize regret
which is the cumulative reward differences between the op-
timal arm and the chosen arms), the player needs to balance
between choosing arms with high uncertainty in their reward
means (exploration) and choosing the empirical good arms so
far (exploitation). Anantharam et al. [1987] considered the

∗A full technical version of this paper is available on arXiv.

multi-play MAB (MP-MAB) model in which the player can
pullM ∈ {2, . . . ,K − 1} arms fromK arms per time slot.
Recently, a decentralized multi-player multi-armed ban-

dits (MMAB) model was proposed [Liu and Zhao, 2010;
Anandkumar et al., 2011]. Instead of one player choosing
M arms as in MP-MAB, there areM players in MMAB, and
each player independently pulls one arm from K arms per
time slot. One particular feature of MMAB is how to define
the reward when several players choose the same arm at the
same time slot. One typical setting is that all of them get
zero reward, i.e., these players experience a collision, and this
model was motivated by the cognitive radio network applica-
tion [Jouini et al., 2009]. Another setting is that each player
gets an independent reward from the arm without influenc-
ing each other, i.e., the non-collision setting, which models
applications in a distributed system [Landgren et al., 2016].
However, to model many real world applications, we need

to consider that arms may have finite shareable resources (or
capacities), e.g., every channel (or arm) in a cognitive radio
network can support a finite traffic demand, instead of the
restrictive collision assumption. Similarly, an edge computing
node (or arm) in a distributed system can only serve a finite
number of tasks, and the over-simplified non-collision assump-
tion cannot be applied. More concretely, consider a cognitive
radio network consisting ofK channels (arms) andM users
(players). Each user chooses one channel to transmit infor-
mation per time slot. If the chosen channel is available, the
user can transmit his information. Some channels with high
(low) bandwidth can support larger (smaller) number of users
per time slot. To maximize the total transmission through-
put, some players can share these high-bandwidth channels.
But if too many users choose the same channel (i.e., chan-
nel competition occurs), then the channel can only transmit
information at its maximum capacity. Another example is,
in mobile edge computing, each edge computing node (arm)
may have multiple yet finite computing units (resources), and
thus can also be shared by multiple users (players). Simi-
lar scenarios also appear in many distributed systems, online
advertisement placements, and many other applications.
To realistically model many of these applications, we

propose the Multi-Player Multi-Armed Bandits with Finite
Shareable Resources Arms (MMAB-SA) model. It introduces
the shareable arms setting into MMAB as an extension to the
collision and non-collision formulations. This setting not only
allows several players to share an arm, but their rewards are
dependent and limited by the arm’s total shareable resources
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(quasi-collision). Formally, each arm is associated with both a
“per-load” reward random variable Xk and a finite resources
capacitymk ∈ N+. When ak players choose arm k, they ac-
quire a total reward which is equal to min{ak,mk}Xk: if the
number of players pulling the arm does not exceed the arm’s
shareable resource capacity, i.e., ak ! mk, then only ak out of
thesemk resources are utilized, e.g., one unit of resources will
be given to each player; or otherwise, all mk resources would
be utilized. The reward Xk can model whether a channel is
available or not, or the instantaneous computing power of an
edge node, etc. Note that both the “per-load” reward mean
µk := E[Xk] and the resourcesmk are unknown to players.

When sharing an arm, players not only observe their reward
attained from the arm, but also some addition feedback about
the degree of competition. In some applications, the arm can
interact with players. For example, in a mobile edge comput-
ing system, an arm models a computing node. When serving
players, the computing node can give players feedback about
its loading condition. One type of feedback is the number
of players who are sharing the arm in the current time slot,
i.e., ak. We call this kind of feedback as “Sharing Demand
Information” (SDI). For some other applications, an arm can
only provide some limited forms of feedback. Take a cognitive
radio network as an example. Here, an arm corresponding to a
wireless channel cannot send its loading information to users.
Users can only sense whether there exists any sharing of the
channel by other players or not, i.e., 1{ak > 1}. We name
this type of feedback as “Sharing Demand Awareness” (SDA).
Note that the SDI feedback is more informative than SDA,
since knowing ak determines 1{ak > 1}. In SDA, on the
other hand, each player only needs to procure 1-bit feedback
information, which is easier to realize in practice.
Recently, several algorithms for MMAB were proposed,

e.g., in [Rosenski et al., 2016; Besson and Kaufmann, 2018;
Boursier and Perchet, 2019; Wang et al., 2020]. However,
none of them can address MMAB-SA. The reason is that the
unknown resource capacity of each arm and the sharing mech-
anism complicate the decentralized learning problem: (1)
learn resources capacities while sharing arms: instead of
avoiding collisions for maximizing total reward as in MMAB,
players in our setting often have to play the same arm not
only to gain higher rewards, but also to infer the appropri-
ate number of players to pull the arm since it depends on
the arm’s resources mk; (2) information extraction while
sharing arms: instead of taking infrequent collisions only as
signals in MMAB (e.g., [Wang et al., 2020]), players in our
setting needs to extract information from the collision events
of arm sharing. None of the known MMAB algorithms can ad-
dress these two challenges. For the first challenge, we propose
decentralized algorithms that can explore (learn) arm’s maxi-
mum resources capacities and exploit (share) good arms while
addressing the classic exploration-exploitation trade-off. For
the second challenge, we design two types of communications
(and their corresponding algorithms) to extract information
from the degree of resource sharing under the SDI and SDA
feedback respectively. Our contributions are as follows:
• We propose the MMAB-SA model which significantly ex-
pands the application scope of MMAB. It allows several
players to share an arm with finite resources. We propose

the SDI and SDA feedback mechanisms, both of which can
be mapped nicely to many real world applications.

• We design the Decentralized Parsimonious Exploration
for SDI (DPE-SDI) algorithm and the Synchronization
Involved Communication for SDA (SIC-SDA) algorithm
to address MMAB-SA under the SDI and SDA feedback
respectively. In MMAB-SA, apart from estimating arm’s
reward means µk, players also need to estimate arms’ re-
sources capacity mk. This new estimation task and the
shareable arm setting requires more information exchange
between players than MMAB. To address the issue, we de-
vise two different communication protocols for DPE-SDI
and SIC-SDA algorithms. We also rigorously prove that
both algorithms have logarithmic regrets that are tight in
term of time horizon.

• We conduct simulations to validate and compare the perfor-
mance of DPE-SDI and SIC-SDA, and apply them in edge
computing and wireless networking scenarios respectively.

2 Related Work

Our work falls into the research line of multi-player multi-
armed bandits (MMAB) first studied by [Liu and Zhao, 2010;
Anandkumar et al., 2011]. Recently, Rosenski et al. [2016]
proposed the musical chair algorithm which can distribute
players to different arms. Utilizing collisions, Boursier and
Perchet [2019] introduced a communication protocol be-
tween players. DPE1 [Wang et al., 2020] was the first al-
gorithm achieving the optimal regret bound. However, ap-
plying above algorithms to MMAB-SA would result in poor
performance (i.e., linear regrets) because of the two chal-
lenges stated in Section 1’s last paragraph (before contri-
butions). Besides the collision setting, the non-collision
MMABmodel was also studied, e.g., in [Landgren et al., 2016;
Martı́nez-Rubio et al., 2019]. However, their algorithms re-
lied on the independent reward assumption and thus were not
applicable in our dependent rewards of shareable arm setting.

There were several variants of MMAB. One variant consid-
ered the heterogenous reward setting in which players face dif-
ferent reward environments in pulling arms, e.g., [Kalathil et
al., 2014; Bistritz and Leshem, 2018; Mehrabian et al., 2020;
Shi et al., 2021]. Another variant of MMAB models took
game theoretical results, e.g., Nash equilibrium, into consider-
ation. For example, Boursier and Perchet [2020] considered
selfish players who might deceive other players and race to
occupy the best arms for their own good. Liu et al. [2020]
and Sankararaman et al. [2021] studied the two-sided markets
in MMAB, i.e., both arms and players have preference for
choosing each other. Lastly, Magesh and Veeravalli [2021]
considered a variant that when the number of players selecting
an arm exceeds a threshold, all player receive zero reward,
while our model has no such threshold. This is an important
difference because this threshold can be utilized to communi-
cate and coordinate. Different from above variants, our model
introduces finite shareable resources arms into MMAB.
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3 Model Formulation
3.1 The Decision Model
Consider K ∈N+ arms and M ∈N+ (M <K) players (the
condition relaxation is discussed in Appendix B.1). The arm
k∈ [K] :={1, 2, . . . ,K} is associated with (mk, Xk), where
mk∈N+ (mk!M) denotes its maximal shareable resources
capacity, while Xk is a random variable with support in [0, 1]
to model the arm’s “per-load” stochastic reward. Denote the
reward mean as µk := E[Xk]. Without loss of generality,
assume these reward means have a descending order µ1 >
µ2>. . .>µK . Reward means µk (including their order) and
resource capacitiesmk are all unknown to players.

Consider a finite time horizon with length T ∈ N+. In each
time slot t ∈ {1, 2, . . . , T}, each player i ∈ {1, 2, . . . ,M}
selects one arm to pull. Let at := (a1,t, a2,t, . . . , aK,t) de-
note the assignment profile of players, where ak,t denotes the
number of players pulling arm k at time slot t. The assignment
profile satisfies

∑K
k=1 ak,t = M , capturing that no players are

idle in any given time slots. When ak,t players share the arm
k at time slots t, the total reward they obtain from arm k is

Rk,t := min{ak,t,mk}Xk,t,

where the scaler factor min{ak,t,mk} describes the amount
of resources of arm k utilized by ak,t players. In other words,
when ak,t ! mk, they utilize ak,t resources, e.g., each player
can enjoy one unit of resources; while if ak,t > mk, all mk

resources of the arm k are shared by ak,t players. We focus on
maximizing all players’ total reward and how the reward Rk,t

distributed among ak,t players is not of interest in this work.
The expected reward of an assignment profile at is the

summation of each arms’ reward, which can be expressed as

f(at) = E
[∑K

k=1
Rk,t

]
=

∑K

k=1
min{ak,t,mk}µk.

Hence, the optimal assignment profile a∗ for maximizing per
time slot’s reward would be exactly m1 number of players
choosing arm 1,m2 players choosing arm 2, and so on, until
all players are assigned. This profile can be expressed as

a∗ :=
(
m1,m2, . . . ,mL−1,M −

∑L−1

k=1
mk, 0, . . . , 0

)
,

where L := min{l :
∑l

k=1 mk " M} denotes the least fa-
vored arm index among the optimal assignment profile. We
call selected arms in the optimal profile a∗ as optimal arms,
and the remaining as sub-optimal arms. Note that a∗ is un-
known to players because µk andmk are unknown.

3.2 Online Learning Problem
When pulling arm k, a player not only observes arm k’s reward,
but also some additional feedback on the degree of competition
on this arm. We consider two types of feedback: Sharing
demand information (SDI): at time slot t, players who pull
arm k can also observe the number of players ak,t that selects
the arm k; Sharing demand awareness (SDA): at time slot t,
players who pull arm k only know whether the arm is shared
by others or not, i.e., 1{ak,t > 1}. We note that the SDI
feedback is more informative than SDA because knowing ak,t
directly implies 1{ak,t > 1}. But SDA is easier to implement

since the player only needs to procure 1-bit information per
time. Note that players cannot freely communicate with each
other and they can only infer the environment from feedback.
We aim to design decentralized algorithms for players to

select arms and our objective is to maximize the total reward
of all players. In each time slot, the algorithm prescribes an
arm for each player given the player’s feedback up to time slot
t, which together forms an assignment profile denoted by at.
We define regret to quantify the performance of an algorithm
when comparing with the optimal profile a∗,

E[Reg(T)] =
∑T

t=1
(f(a∗)− f(at)) .

A smaller regret implies that an algorithm achieves a larger
reward, or a reward which is closer to the optimal profile’s.

4 Decentralized Parsimonious Exploration for
the SDI Feedback Algorithm

We begin with the high-level idea of the DPE-SDI algorithm,
and then present the detailed design of its several phases. Fi-
nally, we show DPE-SDI has a O(log(T )) sub-linear regret.

4.1 Overview of the Design
DPE-SDI employs a leader-follower structure: one player
is the leader, and the rest M − 1 players are followers. The
leader takes the responsibility of collecting observations (both
rewards and SDI feedback) itself and updates its informa-
tion (e.g., empirical optimal arms) to followers. Followers
do not need to communicate anything to the leader, i.e., they
only receive information. DPE-SDI consists of three phases:
initialization phase, exploration-exploitation phase and com-
munication phase. The initialization phase (line 2) detects the
number of playersM and assigns ranks to players. The player
with rank 1 becomes the leader. After the initialization phase,
DPE-SDI runs the exploration-exploitation phase repeatedly
and, when necessary, runs the communication phase in which
the leader updates followers’ information. The exploration-
exploitation phase (line 4) conducts exploitation such that the
followers exploit empirical optimal arms, and three types of
explorations: (1) parsimonious exploration, where the leader
parsimoniously explores empirical sub-optimal arms; (2) in-
dividual exploration, where the leader individually explores
empirical optimal arms; and (3) united exploration, where all
players pull the same arms for estimating their maximum re-
sources capacities mk. When it ends, the leader updates its es-
timated parameters (line 7 in Algorithm 1). In communication
phase, the leader sends his updated parameters to followers
(line 9) and followers receive them (line 11). After communi-
cation, the algorithm goes back to the exploration-exploitation
phase (line 4). Algorithm 1 outlines the DPE-SDI algorithm.
Notations. We use i to denote each player’s rank. Denote
the empirical optimal arm set as St, the empirical least fa-
vored arm index as Lt, and the parsimonious exploration
arm set as Et (define later). We also denote the lower and
upper confidence bounds of arms’ shareable resources as
ml

t := (ml
1,t, . . . ,m

l
K,t) and mu

t := (mu
1,t, . . . ,m

u
K,t). We

summarize the information that leader sends to followers as
Υt := (St,Lt,ml

t,m
u
t ). Arms’ useful statistics (e.g., empiri-

cal means) are aggregated as Λt (define later).
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Algorithm 1 DPE-SDI
1: Initialization: Et ← [K],Υt = (St,Lt,ml

t,m
u
t ) ←

([K], 1, (1, . . . , 1)T , (K, . . . ,K)T ), and Λt ← ∅.
! Initialization phase

2: (i,M)← DPE-SDI.Init()
3: while t ! T do

! Exploration-exploitation phase
4: Λt ← DPE-SDI.Explo(i,M, Et,Υt,Λt)
5: Υpre ← Υt ! Record previous info.

! Communication phase
! Leader performs update and sends info. to followers.

6: if i = 1 then
7: (Et,Υt)← DPE-SDI.Update(Λt,Υt)
8: ifΥt &= Υpre then
9: DPE-SDI.CommSend(Υt,Υpre)

! Followers receive leader’s update info.
10: else if i &= 1 and leader informs then
11: Υt ← DPE-SDI.CommRece(Υpre)

4.2 Initialization Phase
Our initialization phase, consisting of two steps: rally and
orthogonalization, is simpler and more effective than the pre-
vious ones in MMAB, e.g., [Wang et al., 2020], due to the
advantage of the SDI feedback. The feedback of the rally step
— all players pull arm 1 at time slot 1— is equal to the number
of players M . Knowing M , we then orthogonalize M players
to M arms (i.e., each player individual chooses an arm) and
the player’s orthogonalized arm index is set as its rank. We
provide the phase’s details in Appendix B.1.

4.3 Exploration-Exploitation Phase
The exploration-exploitation phase consists of exploitation
(followers), individual exploration (leader), parsimonious ex-
ploration (leader), and united exploration (all players). Ex-
ploitation and parsimonious/individual exploration are done in
parallel, in which followers exploit the empirical optimal arms
while the leader at times deviates to explore empirical sub-
optimal ones. Denote â∗

t := (â∗1,t, . . . , â
∗
K,t) as the empirical

optimal assignment profile at time t. Given â∗
t , the empirical

optimal arm set St is {k : â∗k,t > 0}. Note that the leader
does not need to transmit the profile â∗

t to followers, because
followers can recover â∗

t from St,Lt,ml
t (Algorithm 2’s

line 2): â∗k,t is equal toml
k,t when k is in St but not equal to

Lt, and the â∗Lt,t
is equal toM −

∑
k∈St,k $=Lt

ml
k,t. Next, we

illustrate the phase’s four components respectively.
Exploitation. Players exploit arms according to the empir-
ical optimal profile â∗

t , and they play the empirical optimal
arms in turn. To illustrate, we take (i+ t) (mod M) as their
circulating ranks for choosing arms in time slot t. Note that
several players may share the same arm, e.g., when â∗k,t > 1
for some k. To realize this, we apply a rotation rule (Algo-
rithm 2’s line 4): at time slot t, player with rank i plays arm j
such that

∑j
n=1 â

∗
n,t " (i+ t) (modM) >

∑j−1
n=1 â

∗
n,t. That

means players with a circulating rank greater than
∑j−1

n=1 â
∗
n,t

and no greater than
∑j

n=1 â
∗
n,t choose arm j.

Individual exploration. Individual exploration (IE) hap-
pens when the explored arm’s resource capacity is not ex-
ceeded by the number of players pulling the arm, i.e, ak,t !
mk. The simplest case of IE is that an arm is played by one
player, but it also includes cases that several players share
an arm. The leader’s actions during the exploitation and par-
simonious exploration can all be regarded as IEs because
ak,t ! ml

k,t. Divided by ak,t, IE’s rewards can be used to
estimate the reward mean µ̂k,t := SIE

k,t/τk,t, where S
IE
k,t is the

total IE’s reward feedback (divided by ak,t) up to time slot t,
and τk,t is the total times of IE for arm k up to time slot t.
Parsimonious exploration. Denote uk,t as the KL-UCB
index of arm k at time slot t [Cappé et al., 2013]: uk,t =
sup{q " 0 : τk,t kl(µ̂k,t, q) ! f(t)}, where f(t) = log(t) +
4 log log(t). The parsimonious exploration arm set Et consists
of empirical sub-optimal arms whose KL-UCB indexes are
larger than the least favored arm Lt’s empirical mean, i.e.,
Et := {k : uk,t " µ̂Lt,t, â

∗
k,t = 0}. When the leader is

supposed to play the least favored arm Lt for exploitation
(also IE), with a probability of 0.5, he will uniformly choose
an arm from Et to explore; or otherwise, the leader exploits
the arm Lt. This parsimonious exploration idea was first made
in [Combes et al., 2015] for learning-to-rank algorithms and
was further utilized by [Wang et al., 2020] in MMAB.
United exploration. United exploration (UE) refers to all
M players rallying on an arm so as to acquire a sample of
mkXk, i.e., the reward when the arm’s resources are fully
utilized. Collecting this kind of observation is crucial in es-
timating an arm’s shareable resources capacity mk (see Ap-
pendix B.2). Let S ′

t := {k ∈ St : ml
k,t &= mu

k,t} denote the set
of empirical optimal arms whose resource capacities have not
been learnt. In one round of exploration-exploitation phase,
all M players unitedly explore each arm in S ′

t once. Denote
SUE
k,t as the total reward of arm k in UE up to time t, ιk,t as the

total times of UE for arm k up to time t, and thus the empirical
mean estimate of E[mkXk] is ν̂k,t := SUE

k,t/ιk,t. The output
statistics Λt consists of each arm’s IE’s total reward SIE

t :=
(SIE

1,t, . . . , S
IE
K,t), IE times τt := (τ1,t, . . . , τK,t), and their UE

counterparts: SUE
t := (SUE

1,t , . . . , S
UE
K,t), ιt := (ι1,t, . . . , ιK,t).

Algorithm 2 outlines the exploration-exploitation phase. Af-
ter the phase, the leader updatesΥt via DPE-SDI.Update.
Its detailed procedure is deferred to Appendix B.2.

4.4 Communication Phase
After updatingΥt = (St,Lt,ml

t,m
u
t ), if there are parameter

changes, leader will initialize a round of communication to
update followers’Υt. For simplicity, we illustrate the commu-
nication as six steps.
• Initial step: leader signals followers to communicate.
• 2nd step: notify followers arms to be removed from St.
• 3rd step: notify followers arms to be added in St.
• 4th step: notify followers the least favored arm Lt.
• 5th step: update followers’ resources’ lower boundsml

t.
• 6th step: update followers’ resources’ upper boundsmu

t .
The detailed updates of these steps (including conditions and
pseudo-codes) and some potential improvements are presented
in Appendix B.3.
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Algorithm 2 DPE-SDI.Explo(i,M, Et,Υt,Λt)

1: Output: Λt := (SIE
t ,SUE

t , τt, ιt)
2: â∗

t ← Recover(St,Lt,ml
t)

3: forM times do
4: jt ← Rotate(i,M, â∗

t , t)
! Parsimonious exploration by leader

5: if i = 1 then
6: if Et &= ∅ and jt = Lt then
7: w.p. 1/2, Play arm l ∼ Et uniformly
8: w.p. 1/2, Play arm jt

! Individual exploration by leader
9: else Play arm jt

10: SIE
k,t ← SIE

k,t + rk,t/â∗k,t, τk,t ← τk,t + 1
! Exploitation by followers

11: else if i &= 1 then Play arm jt
12: t← t+ 1.

! United exploration by all players
13: S ′

t ← {k ∈ St : ml
k,t &= mu

k,t}.
14: for k ∈ S ′

t do
15: All players pull arm k.
16: if i = 1 then SUE

k,t ← SUE
k,t + rk,t; ιk,t ← ιk,t + 1

17: t← t+ 1

4.5 Regret Bound of DPE-SDI
In the following theorem, we state a regret upper bound for
DPE-SDI algorithm. Its proof is presented in Appendix D.
Theorem 1. For any given set of parameters K,M,µ,m
and 0 < δ < min1!k!K−1(µk − µk+1)/2, the regret of
DPE-SDI is upper bounded as follows:

E[Reg(T)] !
∑K

k=L+1

(µL − µk)(log T + 4 log(log T ))

kl(µk + δ, µL − δ)

+
∑M

k=1
49wkm

2
kµ

−2
k log T (1)

+588KMm2
Mµ−2

M log T+156M3K3(4+δ2)

where wk := f(a∗) + µ1 − (mk + 1)µk is the highest cost of
one round of IE and UE.
Eq.(1)’s first two terms correspond to parsimonious explo-

ration and united exploration of the exploration-exploitation
phase respectively. The last two terms cover the cost of initial-
ization phase, communication phase, exploiting sub-optimal
arms, and falsely estimating resources. Note that DPE-SDI’s
O(log T ) regret is tight in term of T , as it matches MMAB’s
regret lower bound Ω(log T ) [Anantharam et al., 1987].

5 Synchronization Involved Communication
for the SDA Feedback Algorithm

Recall that in DPE-SDI.CommSend’s initial step, the leader
signals followers to start communication via abnormally de-
viating the empirical optimal assignment â∗

t . That is, leader
sticks to an arm such that the number of players (leader pluses
followers) pulling the arm ak,t is greater than the expected.
While under the SDI feedback followers can sense the increase
of ak,t, in the SDA’s 1{ak,t>1} = 1 feedback followers may

fail. Not being able to sense the difference makes the com-
munication protocol devised for DPE-SDI not applicable to
the SDA feedback. To address this issue, we propose the
SIC-SDA algorithm with a phase-based communication pro-
tocol. Because it is phase-based, communications start and
end at a pre-defined scheme and do not need initial steps.
The SIC-SDA algorithm consists of four phases: initial-

ization phase, exploration phase, communication phase, and
exploitation phase. The objective of initialization phase is
to probe the total number of players M and assign ranks to
players. After the initialization phase, SIC-SDA runs the ex-
ploration phase and communication phase iteratively (i.e., in a
loop). In the loop, whenever an optimal arm is identified with
high confidence, SIC-SDA will assign players to exploit the
arm’s resources. In other words, these players leave the loop
and execute exploitation phase so to zoom in on the optimal
arm. As the algorithm runs, players in the two-phase loop will
gradually enter the exploitation phase. Due the limited space,
we defer the SIC-SDA algorithm’s detail and its O(log T )
regret proof to Appendix C and E respectively.

6 Simulations & Applications
6.1 Synthetic Data Simulations
We consider an environment with 9 arms and 6 players, which
is the common simulation setting in MMAB literatures [Bour-
sier and Perchet, 2019; Wang et al., 2020]. The “per-load”
reward random variables follow the Bernoulli distribution.
Their reward means are a random permutation of a decreas-
ing array. The array starts from 0.9 and each successor is
smaller than its predecessor by ∆, e.g., when ∆ = 0.025,
it is [0.90, 0.875, 0.85, 0.825, 0.80, 0.775, 0.75.0.725, 0.70].
These 9 arms’ resource capacities are [3, 2, 4, 2, 1, 5, 2, 1, 3].
For each experiment, we calculate average and standard
variance (as shaded region) over 50 simulations. Except
DPE-SDI and SIC-SDA, we also apply the SIC-SDA algo-
rithm to the SDI feedback setting and call this as SIC-SDI.
Figure 1 compares these three algorithms’ performance

for different ∆s. First, the DPE-SDI algorithm has a much
smaller regret than the other two. The intuition is that
DPE-SDI is based on KL-UCB which is theoretically better
than elimination utilized by SIC-SDA and SIC-SDI [Cappé
et al., 2013]. Second, we compare DPE-SDI and SIC-SDI
under the same SDI feedback. When ∆ becomes smaller,
the gap between DPE-SDI’s regret and SIC-SDI’s also be-
comes smaller. This observation implies that when optimal
arms are difficult to identify (e.g., ∆ = 0.001), the efficacy of
both algorithms is similar. Lastly, we note that the SIC-SDI
algorithm outperforms SIC-SDA, which is consistent with
the fact that the SDI feedback is more informative than SDA.

6.2 Real World Applications
We consider two scenarios: (1) an edge computing system for
SDA and (2) a 5G/4G wireless networking system for SDI.
Edge computing. The edge computing system Precog [Dro-
lia et al., 2017] was designed for image processing. Its edge
nodes contain mobile devices and personal desktop computers,
which fits the SDA setting. According to their specifications,
we consider 7 edge computing nodes (arms):
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(a) ∆ = 0.001 (b) ∆ = 0.012

(c) ∆ = 0.025 (d) ∆ = 0.037

Figure 1: Synthetic data simulations

CPU Speed (GHz) 1.5 2.1 1.2 2.5 2.0 1.3 2.6
# of CPU Cores 3 2 4 2 1 2 3

To scale the CPU speed as “pre-load” reward mean in [0, 1],
we divide them by 3. The number of CPU cores corresponds
to arms’ shareable resource capacitiesmk. We assume there
are 6 parallel tasks (players) in the system.
5G & 4G network. 5G started to serve consumers from
2019 and will coexist with 4G for a long time. When a smart-
phone uses wireless service, it needs to choose between 5G
and 4G networks. The smartphone only has the SDI feedback
as it doesn’t know the exact number of users using a partic-
ular base station. Narayanan et al. [2020] measured the 5G
performance on smartphone and compared it with 4G. We
pick the 8 parallel TCP connections as our typical setting, in
which the 5G’s throughput (THR) is around 8 times higher
than 4G’s, and 4G’s round-trip time (RTT) latency is around
4 times slower than 5G’s. From [Narayanan et al., 2020]’s
experimental results, we consider an environment consisting
of two 5G base stations (underlined) and eighteen 4G base
stations (20 arms) and 18 smartphones (18 players):

RTT (100ms) 1.2 1.1 4.2 4.0 4.5 3.5 5.0 4.2 5.5 3.9
THR (100Mbps) 9.2 8.1 1.2 1.2 1.4 1.1 1.3 1.2 1.1 1.4
RTT (100ms) 4.8 5.5 3.7 4.7 3.2 5.1 4.4 5.3 4.9 4.1

THR (100Mbps) 1.0 1.1 1.2 1.0 1.3 1.2 1.0 1.1 1.3 1.2

We use their RTT latencies’ reciprocals as arms’ “per-load”
reward means and their THR’s integer rounding as arms’ max-
imal resource capacities.
We apply the DPE-SDI and SIC-SDA algorithms to

solve these two scenarios respectively. We also implement
two heuristic policies according to each player’s own ob-
servations: the Highest-Reward policy in which players

(a) Edge computing (SDI): Regret (b) Cumulative CPU usage

(c) 5G/4G network (SDA): Regret (d) Total throughput

Figure 2: Real world data simulations

choose the arm with highest empirical reward mean, and the
Idlest-Arm policy in which players select the arm that
is most infrequently shared with others. Figure 2a and 2b
show that in the edge computing scenario, DPE-SDI outper-
forms other two heuristic policies. In Figure 2c and 2d for the
5G/4G wireless networking scenario, when time slot is small,
the Highest-Reward policy is better than SIC-SDA. Be-
cause the policy can detect two powerful 5G base stations
immediately and utilize them from the very beginning. But
in the long run, the SIC-SDA algorithm will find the optimal
profile and finally can outperform both heuristic policies.

7 Conclusion
We propose a novel multi-player multi-armed bandits model in
which several players can share an arm, and their total reward
is the arm’s “per-load” reward multiplied by the minimum
between the number of players selecting the arm and the arm’s
maximum shareable resources. Under the SDI and SDA feed-
back respectively, we design the DPE-SDI and SIC-SDA
algorithms coordinating decentralized players to explore arms’
reward means and capacities, exploit the empirical optimal al-
location profile, and communicate with each other. Especially,
DPE-SDI has a simpler initialization phase than the previous
algorithms’ in MMAB due to the SDI feedback. We prove that
both algorithms achieve the logarithmic regrets that are tight in
term of time horizon. We also compare these two algorithms’
performance using synthetic and real world data and show
their utilities in wireless networking and edge computing.
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