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Abstract—A quantum switch is one of the most fundamental
network elements for connecting different quantum devices.
In this paper, we explore the “optimal entanglement policy”
of a quantum switch under a scenario where the stored and
entangled qubits in the quantum switch may undergo a de-
coherence process. Finding an optimal entanglement policy is
important as it enables a quantum switch to make a judicious
basis measurement based on the number of existing link-level
entanglements to maximize the “weighted throughput”. We use a
Markov decision process framework to model the dynamics of
the quantum switch, and theoretically shows a threshold-based
property between bipartite and tripartite policies under a very
general class of weight functions with a weight parameter β.
Empirically, such a threshold-based property also holds for the
optimal entanglement policy. In particular, the quantum switch
should perform a bipartite or tripartite policy when β is below
a threshold β∗

B or above a threshold β∗
T , respectively. When

β∗
B < β < β∗

T , the quantum switch needs to perform a “threshold-
based and state-dependent entanglement policy”. We also extend
the work to allow a mixture of bipartite and tripartite policies. We
theoretically show similar threshold-related relationships between
mixed and bipartite/tripartite policies. We carry out extensive
numerical experiments to confirm that the optimal entanglement
policy has such structural property.

I. INTRODUCTION AND RELATED WORK

Quantum computing uses quantum physics principles, such
as superposition and entanglement [1], enabling quantum
computers to achieve far greater performance than classical
computers, with potentially transformative impacts in fields
such as communication [2]–[6], cryptography [7] and chemical
simulations [8]. A quantum network is a distributed infras-
tructure that connects different quantum devices to facilitate
the exchange of information [9]–[13]. Similar to the classical
Internet, a quantum network can harness the power of dis-
tributed quantum computation [14]–[16]. Among the different
quantum devices in a quantum network, one important device
is the quantum switch. The quantum switch first establishes
link-level entanglements between itself and its connected users.
Then, as these link-level entanglements emerge, the quantum
switch can perform bipartite basis measurements between pairs
of locally-held qubits or tripartite basis measurements among
triples of locally-held qubits, thereby generating bipartite or
tripartite end-to-end user entanglement. These entanglements
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are instrumental for various quantum computing operations,
including quantum key distribution [17]–[19] and beyond.

In this work, we are interested in policies that can maximize
the throughput for providing such bipartite and tripartite end-
to-end user entanglements. We define the bipartite/tripartite
entanglement throughput as the rate at which a quantum
switch provides bipartite/tripartite user entanglement under a
given policy. The “total throughput” of a quantum switch
is simply the sum of bipartite and tripartite entanglement
throughput. We further extend this concept to the “weighted
(total) throughput”, which is the weighted sum of bipartite
and tripartite entanglement throughput. One can easily adjust
these weights to reflect the relative importance of bipartite
and tripartite user entanglements for various applications [17],
[18], [20]. Our goal is then to find online policies that can
maximize the weighted throughput.

Due to the importance of the quantum switch in quantum
networks, researchers have made efforts to study its perfor-
mance. Authors in [21]–[23] used continuous-time Markov
chain (CTMC) and discrete-time Markov chain (DTMC) to
model the quantum switch and provide closed-form expres-
sions for the maximal generation rate of n-qubit end-to-end
user entanglement, which is referred to as the capacity Cn,
under various scenarios. However, these works assumed that
the quantum switch can only perform one type of basis mea-
surement. Hence, they did not address the question of how to
optimally decide between multiple types of user entanglements
(e.g., bipartite vs. tripartite). In contrast, [24] considered both
bipartite (n = 2) and tripartite (n = 3) entanglements for
users. It provided elegant expressions for both bipartite capac-
ity C2 and tripartite capacity C3, and showed that the complete
capacity region of the quantum switch is approximately equal
to the capacity region under a set of time-division multiplexing
(TDM) policies, as the number of connected users increases.
However, these TDM policies are mainly for characterizing
the capacity region, and do not provide an online decision
policy. In other words, they do not indicate how to control
the bipartite/tripartite entanglements to maximize the weighted
throughput. In the literature, online decision algorithms have
been proposed in [25]–[30] to determine an entanglement
policy which can stabilize the quantum switch. However, these
studies either did not consider decoherence [25], [29], or
imposed the restrictive assumption that qubits survive only
one unit of time in a discrete-time setting [26]–[28], [30].
As a result, they present an either overly optimistic or overly



pessimistic model that does not accurately reflect the real-
world behavior of quantum systems, leading to overestimation
or underestimation of performance, e.g., weighted throughput.

Thus, one open question is, what is the optimal entan-
glement policy which can maximize the weighted through-
put, when link-level entanglement decoherence exists in a
continuous-time setting? Specifically, we aim to answer the
following question in this work: Given the number of existing
link-level entanglements, which state-dependent entanglement
action should the quantum switch take to maximize the
weighted throughput? We answer this question by revealing
an important structure of the optimal entanglement policy
under the presence or absence of qubits decoherence. The
contributions of this work are as follows:

• We use a Markov decision process (MDP) framework
to model the dynamics of a quantum switch and the-
oretically prove the equivalence between the expected
average reward and the weighted throughput. Using the
relative value iteration algorithm, we empirically uncover
the “threshold-based structural property” of the optimal
entanglement policy, whether decoherence exists or not.

• We theoretically show the “threshold-based property”
between two special optimal entanglement policies under
a very general class of weight functions with a weight
parameter β. Specifically, we compare a bipartite policy
and tripartite policy under two settings, one with qubit
decoherence and one without. In both settings, we theo-
retically show that the tripartite policy achieves higher
weighted throughput than the bipartite policy when β
exceeds a threshold βBT , whereas the bipartite policy
is more advantageous when β is below the threshold
βBT . Extensive numerical experiments are performed to
substantiate our theoretical results.

• We combine the bipartite policy and the tripartite policy
to create a family of “mixed entanglement policies”. We
theoretically show that, for any specific mixed policy,
the threshold-based property also exists between the
mixed policy and the bipartite/tripartite policy. Numerical
experiment results validate our theoretical results on the
threshold-based phenomenon and the dynamic interplay
between the mixed policy and the bipartite/tripartite pol-
icy, with or without the presence of qubit decoherence.

II. SYSTEM MODEL AND FORMULATION

Model Description: As illustrated in Figure 1(a), we consider
a quantum switch connected to k ≥ 3 users. Each user
possesses a quantum device connected to the quantum switch
via a quantum channel/link. The quantum switch’s primary
role is to enable end-to-end entanglements among k users
through a two-phase process: Initially, link-level entanglements
are formed between the quantum switch and an individual
user via a quantum channel, as depicted in red in Figure
1(b). Each link-level entanglement forms a Bell state, which
utilizes two qubits: one within the quantum switch and the
other within the user’s quantum device. Subsequently, upon
generating 2 ≤ n ≤ k link-level entanglements across distinct

quantum channels (Figure 1(c)), the switch executes a quan-
tum swapping operation to establish n-qubit end-to-end user
entanglement (Figure 1(d)). This involves basis measurements
on the stored qubits within the switch: either a two-qubit Bell-
state measurement for n = 2 (Figure 1(e)), or an n-qubit GHZ-
state measurement for n ≥ 3, akin to Figure 1(f). Given the
prevalence of two-qubit and three-qubit entangled states in
quantum communication systems [31]–[33], we assume that
the quantum switch can perform either bipartite (n = 2) or
tripartite (n = 3) basis measurement.

Unlike a classical switch where events are deterministic
[34], the success of establishing the link-level entanglements
and subsequent basis measurements in a quantum switch
are probabilistic. Assuming homogeneous1 and statistically
independent links, the arrivals of attempts to establish link-
level entanglements on each channel are modeled as a Poisson
process2 with a mean rate τ , and each arrival achieves success
with probability p. Thus, the arrival process of successful
establishment of link-level entanglements on a channel is
represented as a Poisson process with a mean rate λ = pτ .
Furthermore, we assume that the execution rate of bipartite
basis measurements by the quantum switch is a Poisson
process characterized by a mean rate τ2, and with a successful
measurement probability of p2. As a result, this procedure’s
successful completion is modeled as a Poisson process with a
mean rate µ2 = p2τ2. The procedure for successful tripartite
basis measurements follows a similar pattern, with a mean rate
µ3 = p3τ3. Since performing a tripartite basis measurement
is more difficult than bipartite basis measurement [37], i.e.,
the successful probabilities and the attempting rates satisfies
p3 < p2 and τ3 < τ2, it is inherently easier for the quantum
switch to provide bipartite user-entanglement than tripartite
user-entanglement, i.e., µ3 < µ2.

After a link-level entanglement is successfully created,
but before it is consumed by either bipartite or tripartite
basis measurement, the corresponding qubits are preserved in
quantum memories. In this work, we assume that each link
only has one buffer3, i.e., B = 1, meaning a maximum of one
link-level entanglement can be stored per link. Due to environ-
mental susceptibility of stored qubits, these entanglements will
undergo decoherence, resulting in low fidelity and rendering
them useless for user connections. We model the time interval
to discard a link-level entanglement with low fidelity as a
random variable following an exponential distribution with
mean 1/α. Since the value of α depends on the lifetime of
stored qubits, we refer to α as decoherence-associated memory
cut-off rate [24] or simply the decoherence rate, where α = 0
implies the scenario of no decoherence. In this work, we do
not study how decoherence and basis measurements affect
the fidelity of resulting user entanglements. Instead, we focus

1Links are homogeneous/heterogeneous if the arrival rates of link-level
entanglement on each link are the same/different.

2Using Poisson processes to model the dynamics of a quantum switch offer
benefits in incorporating the stochastic occurrences of qubit decoherence [23],
[24], [35] and aligns with the Markov property required in MDPs [36].

3Assuming B = 1 reflects the current technological constraints in quantum
memory [38]. For B > 1, it is in our future work.
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Fig. 1: Dynamics of a quantum switch. (a) The quantum
switch connects k users via separate and homogeneous
links. Initially, no link-level entanglement exists. (b) A link-
level entanglement is generated on one of the k links (solid
line), with one qubit stored in the quantum switch and the
other at the user’s device. (c) Over time, three link-level en-
tanglements are generated on three different links. (d) The
quantum switch can perform either bipartite or tripartite
basis measurements. (e) If a bipartite basis measurement
is successfully performed, the quantum switch provides a
bipartite end-to-end user entanglement for 2 users (in red
icon). (f) If a tripartite basis measurement is successfully
performed, the quantum switch provides a tripartite end-
to-end user entanglement for 3 users (in red icon).

on their effects on the structure of the optimal entanglement
policy and the weighted throughput of the quantum switch.
MDP Formulation: As the network accrues link-level en-
tanglements across various quantum channels, the quantum
switch faces a strategic decision: (1) wait for a new link-
level entanglement arrival, or (2) perform bipartite basis
measurement, or (3) perform tripartite basis measurement.
For instance, with two existing link-level entanglements, the
quantum switch can choose to wait for a new link-level
entanglement arrival to perform tripartite basis measurement
which connects three users. However, this incurs delay due
to the waiting of a new link-level entanglement and may
inherently lower success probability of tripartite basis mea-
surement compared to bipartite basis measurements. Moreover,
such waiting may increase the chance that the entangled links
become useless in the presence of qubit decoherence.

To find the right decision between bipartite and tripartite
basis measurements in maximizing the weighted throughput,
we use the theory of MDP [39]–[42] to model the dynamics
of the quantum switch and explore the optimal entanglement
policy to establish end-to-end user entanglements enabling the
quantum switch to achieve maximal weighted throughput. Our
MDP formulation of the quantum switch is as follows:
• State: The state of the quantum switch is defined by the
number of existing link-level entanglements. Formally, its state
space is S = {S0, S1, · · · , Sk} for k connected users, where
state Si indicates that there are 0 ≤ i ≤ k existing link-level
entanglements.

• Action: The action space is defined as A = {A0, A2, A3},
where A0 corresponds to the quantum switch’s decision of
not doing any basis measurement but wait for further link-
level entanglement arrivals. A2 corresponds to performing
the bipartite basis measurements. Besides, A3 corresponds to
performing the tripartite basis measurements.
• Reward: For action A0, the reward r(Si, A0), 0 ≤ i ≤
k, is set to zero, as the quantum switch’s inaction yields no
generation of user entanglement. For action A2, we define
the reward r(Si, A2) = wBµ21{i ≥ 2}, where wB > 0 is
the weight assigned to the bipartite entanglement throughput,
indicating the importance of the bipartite user entanglement to
the overall system performance. The reward of A3 is defined
as r(Si, A3) = wTµ31{i ≥ 3}, where wT > 0 is the weight
assigned to the tripartite entanglement throughput.
• Transition probability matrix: Following the dynamics
of a quantum switch, one can construct a |S|-by-|S| transition
rate matrix Qa for each action a ∈ A. Given Qa as a rate
matrix under consistent action a across all states s ∈ S, one
can use the uniformization technique [43] [44] to transform
the CTMC to a DTMC with a transition probability matrix
P a = I + 1

ρQ
a. Here, ρ is the uniformization rate parameter

exceeding or equal to the maximum absolute diagonal value of
Qa for every action a ∈ A. Consequently, the MDP’s transi-
tion probability matrix P is derived as P(Sj |Si, a) = P a(i, j),
representing the probability that the switch change from state
Si to Sj under action a. See the Appendix A for the detailed
construction of the transition probability matrix P.

To simplify notations, we define the expectation operator
Pπ
t ,∀t ∈ N, which satisfies Pπ

0 = I and Pπ
t+1 = PπPπ

t ,
where Pπ(i, j) = P(Sj |Si, π(Si)), 0 ≤ i, j ≤ k. When
the operator Pπ applies to a function f(i), it satisfies
Pπf(i) =

∑k
j=0 P

π(i, j)f(j), 0 ≤ i ≤ k. Besides, we denote
r(Si, π(Si)) as rπ(i), 0 ≤ i ≤ k, for simplicity. For a given
policy π : S → A, let V π

N (i) denotes the total expected reward
over N ≥ 0 periods under the policy π, starting from state
Si. Initially, V π

0 (i) = 0 for every 0 ≤ i ≤ k. Formally,
∀0 ≤ i ≤ k,N ≥ 1, it holds that

V π
N (i) = rπ(i) + PπV π

N−1(i) =

N−1∑
t=0

Pπ
t r

π(i). (1)

Then gπ(i) = lim
N→∞

1
N V π

N (i) is the expected average reward
of the policy π starting from state Si. If the policy π induces an
irreducible Markov chain with finite states, then the expected
average reward gπ is the same for all initial states satisfying

gπ = lim
N→∞

1

N

N−1∑
t=0

k∑
j=0

Pπ
t (i, j)r

π(j) =

k∑
j=0

Π(j)rπ(j), (2)

where Π is the stationary distribution on S , and Π(j) repre-
sents the average fraction of time staying in state Sj [36].
• Optimization goal: Based on the definition of the reward,
the expected average reward gπ can be written as

gπ = wB

∑
π(Sj)=A2

Π(j)µ2 + wT

∑
π(Sj)=A3

Π(j)µ3, (3)

= wBC
π
B + wTC

π
T , (4)
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where Cπ
B and Cπ

T are bipartite and tripartite entanglement
throughput under the policy π, respectively. Note that when
wB = 1 and wT = 1, gπ represents the total throughput of
the quantum switch. Our optimization goal is to determine the
optimal policy π that maximizes the weighted throughput gπ .
Mathematically, it can be written as

max
π

gπ = lim
N→∞

1

N
V π
N (i). (5)

For this optimization goal, we can obtain the optimal policy
by using the relative value iteration algorithm [36].

III. THEORETICAL ANALYSIS

A. Bipartite Policy vs. Tripartite policy

As described in Section II, the quantum switch needs to
make a strategic decision in selecting the appropriate basis
measurement to maximize the weighted throughput, given the
current number of link-level entanglements. In this section, we
first prove the existence of a threshold-based criterion which
governs the choice between bipartite and tripartite policies,
with or without presence of qubit decoherence.

Specifically, we are interested in conditions when using
purely bipartite or tripartite basis measurements is a better
choice. If a policy always uses bipartite basis measurement
whenever there is a minimum of two link-level entanglements.
we refer to it as the bipartite policy πB , defined mathemat-
ically as πB(Si) = A01{0 ≤ i ≤ 1} + A21{2 ≤ i ≤ k}.
The reward for each state Si under the bipartite policy πB is
defined as rB(i) = r(Si, π

B(Si)) = wBµ21{2 ≤ i ≤ k}. The
transition dynamics under the bipartite policy are illustrated
in Figure 2. Let PB denotes the transition probability matrix
of the Markov chain under policy πB . For brevity, the total
expected reward V πB

N (i) under policy πB , as per Eq.1, is
denoted as V B

N (i), 0 ≤ i ≤ k, while the expected average
reward gπ

B

defined in Eq.2 is denoted as gB . Since bipartite
policy πB induces an irreducible Markov chain with finite
states, gB must exist [36].

𝑆$ 𝑆% 𝑆& 𝑆' 𝑆()% 𝑆(…𝑘λ (𝑘 − 1)λ (𝑘 − 2)λ λ

𝜇%
𝛼 2𝛼 3𝛼 𝑘𝛼

𝑆()&
2λ

(𝑘 − 1)𝛼
𝜇%𝜇%

Fig. 2: The transition rate diagram of the Markov chain
determined by the bipartite policy πB .

Moreover, we consider another policy, termed as the tri-
partite policy πT , wherein the quantum switch always uses
tripartite basis measurement whenever there are no fewer than
three link-level entanglements. Formally, this policy can be
expressed as πT (Si) = A01{0 ≤ i ≤ 2} + A31{3 ≤ i ≤
k}. Accordingly, the reward under policy πT is rT (i) =
r(Si, π

T (Si)) = wTµ31{3 ≤ i ≤ k}. The Markov chain
governed by πT is defined by a transition probability matrix
PT = PA3 , obtained from the original uniformization tech-
nique. The total expected reward V T

N (i) = V πT

N (i) and the
expected average reward gT of the policy πT are defined in
accordance to Eq.1 and Eq.2 for all 0 ≤ i ≤ k, respectively.

𝑆$ 𝑆% 𝑆& 𝑆' 𝑆()% 𝑆(…𝑘λ (𝑘 − 1)λ (𝑘 − 2)λ λ

𝛼 2𝛼 3𝛼 𝑘𝛼
𝑆()&

2λ

(𝑘 − 1)𝛼

𝜇&𝜇&

𝑆(
(𝑘 − 2)𝛼

3λ

Fig. 3: The transition rate diagram of the Markov chain
determined by the tripartite policy πT .

Since the Markov chain with finite states induced by the
tripartite policy πT is irreducible, gT must exist.

In order to analyze how varying the emphasis on bipartite
and tripartite user entanglement affects the weighted through-
put, we consider the weights to be a family of weight functions
with a weight parameter β ∈ (−∞,+∞), defined as wB = ηβ

and wT = (η + ∆)β where η ∈ (1,+∞) and ∆ ∈ (0,+∞).
Note that this form of weight functions offers convenience in
obtaining optimal policies under different scenarios. By simply
adjusting the weight parameter such that β > 0 or β < 0, we
can obtain the optimal policies for cases where wT > wB or
wT < wB , respectively. When β = 0, optimal policies of the
optimization goal (5) maximize the total throughput.

Theorem 1. Suppose the weight functions satisfy wB = ηβ ,
wT = (η + ∆)β , where η > 1 and ∆ > 0 are constants,
ρ > max{ max

0≤i≤k
|QB(i, i)|, max

0≤i≤k
|QT (i, i)|} and deocherence

rate α ≥ 0. If there exists constants cB , cT ∈ (0, 1] which
satisfies

∑k
j=2 P

B
t (i, j) ≥ cB and

∑k
j=3 P

T
t (i, j) ≥ cT for

every t ≥ 0 and 0 ≤ i ≤ k, there must exist a threshold

βBT ∈ [− log η
η+∆

(
cBµ3

µ2
), log η

η+∆
(
cTµ3

µ2
)]

such that gB > gT when β < βBT , and gB < gT when
β > βBT .

Proof sketch.4 For any N ≥ 0, we can deduce that V B
N (i)−

V T
N (i) = (η +∆)βfN

i (β), where

fN
i (β) = aNi (

η

η +∆
)β − bNi , aNi = µ2

N−1∑
t=0

k∑
j=2

PB
t (i, j)

and bNi = µ3

∑N−1
t=0

∑k
j=3 P

T
t (i, j). By the induction on N ≥

4, aNi and bNi are strictly positive for all 0 ≤ i ≤ k. Note that
fN
i (β) is monotonically decreasing in R and fN

i (β) = 0,
when it holds that

β = βBT
i (N) = log η

η+∆
(bNi /aNi ).

Hence, we must have V B
N (i) > V T

N (i) when β < βBT
i (N),

and V B
N (i) < V T

N (i) when β > βBT
i (N). If there ex-

ists constants cB , cT ∈ (0, 1] such that
∑k

j=2 P
B
t (i, j) ≥

cB and
∑k

j=3 P
T
t (i, j) ≥ cT hold for every t ≥ 0 and

0 ≤ i ≤ k, then {βBT
i (N)}∞N=4 is a bounded series

which must have a convergent subsequence {βBT
i (Nj)}∞j=1

satisfying that

lim
j→∞

βBT
i (Nj) = βBT ∈ [− log η

η+∆
(
cBµ3

µ2
), log η

η+∆
(
cTµ3

µ2
)].

Since bipartite and tripartite policies induce irreducible
Markov chains with finite states, then gB = lim

j→∞
1
Nj

V B
Nj

(i)

4Due to page limit, we can only present the proof sketch.
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and gT = lim
j→∞

1
Nj

V T
Nj

(i) hold. Therefore, when β < βBT ,

we have gB > gT , while when β > βBT , we have gB < gT .
Remark: Theorem 1 explains how the weights wB and wT af-
fect the weighted throughput of bipartite and tripartite policies
based on a weight parameter β in a family of weight functions.
Specifically, it shows that, irrespective of the presence or
absence of qubit decoherence, when the weights wB and wT

are exponential functions, e.g., wB = 2β and wT = 3β , with
a weight parameter β, as long as the transition probabilities of
the bipartite and tripartite policies have non-zero lower bounds
cB and cT , respectively, one can find a threshold βBT such that
the tripartite policy yields a superior weighted throughput than
the bipartite policy when β is greater than the threshold βBT ,
while the bipartite policy outperforms the tripartite policy in
the weighted throughput when β falls below βBT .

B. Mixed Policy vs. Bipartite and Tripartite Policies

While we restrict to bipartite or tripartite policy in Section
III-A, here we further extend our model to allow the possibility
that the quantum switch can probabilistically select between
the bipartite action πB(Si) and the tripartite action πT (Si) in
each state Si.

We first introduce a new (mixed) action, denoted as A4,
into our action space A. This action allows the quantum
switch to choose πB(Si) for a fraction fi of the time and
πT (Si) for the remaining fraction 1 − fi for state Si, where
fi ∈ (0, 1), 0 ≤ i ≤ k. We allow the mix parameters fi
varying across states to enhance the generalizability of our
framework. Since A4 contributes differently to the throughput
in various states due to varying mix parameters fi in state
Si, 0 ≤ i ≤ k, we assign a state-dependent weight to A4.
Specifically, the reward of action A4 is defined as r(Si, A4) =
wM,2(f2µ2)1{i = 2}+wM,i(fiµ2+(1−fi)µ3)1{3 ≤ i ≤ k},
where wM,i > 0 represents the weight assigned to the mixed-
type user entanglement for state Si

5. Under this extended
setting with the action space A = {A0, A2, A3, A4}, the
expected average reward can be written as

gπ = w⃗π
B · C⃗π

B + w⃗π
T · C⃗π

T , (6)

where w⃗π
B and w⃗π

T are state-dependent weight vectors satisfy-
ing w⃗π

B(i) = wB1{π(Si) = A2}+wM,ifi1{π(Si) = A4} and
w⃗π

T (i) = wT 1{π(Si) = A3} + wM,i(1 − fi)1{π(Si) = A4},
while C⃗π

B and C⃗π
T are bipartite and tripartite entanglement

throughput vectors, satisfying C⃗π
B(i) = Π(i)µ2 and C⃗π

T (i) =
Π(i)µ3, which are the bipartite and tripartite entanglement
throughput in state Si under the policy π, 0 ≤ i ≤ k,
respectively. Compared with Eq.4, Eq.6 serves as a more
general expression of the weighted throughput of a quantum
switch under the policy π. This generalization is achieved
by assigning state-dependent weights to the bipartite and
tripartite entanglement throughput, offering greater flexibility
for customizations. Note that when wB = 1, wT = 1 and

5Note that our use of a different weight parameter wM,i represents a
significant departure from the use of mixed policies in classical MDP theory,
and thus existing results on the optimality of deterministic vs. mixed policies
[36] do not directly apply.

wM,i = 1, 2 ≤ i ≤ k, gπ represents the total throughput of the
quantum switch. Our optimization goal in this extended setting
remains to determine the optimal policy π that maximizes the
weighted throughput gπ defined in Eq.6.

Based on the definition of the mixed action A4, the mixed
policy πM is defined as πM (Si) = A01{0 ≤ i ≤ 1} +
A41{2 ≤ i ≤ k} = A01{0 ≤ i ≤ 1} + (f2A2 + (1 −
f2)A0)1{i = 2}+(fiA2+(1−fi)A3)1{3 ≤ i ≤ k}. A specific
mix vector f⃗ = (f0, . . . , fk) determines a unique mixed policy
πM . The reward for πM is given by rM (i) = wM,2f2µ21{i =
2} + wM,i(fiµ2 + (1 − fi)µ3)1{3 ≤ i ≤ k}. The transition
probability matrix PM for the Markov chain under πM ,
depicted in Figure 4, is derived through uniformization of the
transition rate matrix QM , with a uniform rate ρ. The matrix
QM is constructed to satisfy QM (i, j) = fiQ

B(i, j) + (1 −
fi)Q

T (i, j) for all 0 ≤ i, j ≤ k. Also, the total expected
reward V πM

N (i) for state Si, 0 ≤ i ≤ k, under πM can
be expressed as V M

N (i) adhering to Eq.1. Since any mixed
policy with the mix vector f⃗ always induces an irreducible
Markov chain with finite states, the expected average reward
gM = gπ

M

must exist.

𝑆$ 𝑆% 𝑆& 𝑆' 𝑆()% 𝑆(…𝑘λ (𝑘 − 1)λ (𝑘 − 2)λ λ

𝑓&𝜇%
𝛼 2𝛼 3𝛼 𝑘𝛼

𝑆()&
2λ

(𝑘 − 1)𝛼
𝑓-𝜇%𝑓%𝜇%

(1 − 𝑓&)𝜇&

Fig. 4: The transition rate diagram of the Markov chain
determined by the mixed policy πM .

In order to simulate different relationships between bipartite,
tripartite and mixed-type user entanglement, we consider the
weights of mixed-mode basis measurement to be a function of
both η and ∆, similar to wB and wT , with a weight parameter
β ∈ (−∞,+∞), defined as wM,i = (fiη + (1 − fi)(η +
∆))β for all 2 ≤ i ≤ k. However, wM,i incorporates the mix
parameter fi, allowing the weight to vary depending on the
specific mixed-mode basis measurement being considered.

For each unique mixed policy, we carry out a comparative
analysis with both the bipartite and tripartite policies, irrespec-
tive of whether the stored qubits go through decoherence or
not. Let us first compare the mixed policy against the bipartite
policy, Theorem 2 states that when the weight parameters wM,i

of the mixed-mode basis measurement follow exponential
functions, with certain constraints on the transition probability
matrix PB and PM , a mixed policy, defined by a vector f⃗ , is
superior to a bipartite policy in the weighted throughput when
the weight parameter β is greater than a threshold βBM , while
the situation reverses if β is smaller than the threshold βBM .
Therefore, one can conclude that incorporating the tripartite
policy into a mixed strategy enables the mixed policy becomes
advantageous in achieving higher weighted throughput as β
increases, while the straightforward approach of the bipartite
policy is preferable in the scenario when one put higher weight
on bipartite user entanglement.

Theorem 2. Suppose wB = ηβ , wM,i = (fiη + (1− fi)(η +
∆))β for 2 ≤ i ≤ k, where η > 1 and ∆ > 0 are
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constants, ρ > max{ max
0≤i≤k

|QB(i, i)|, max
0≤i≤k

|QM (i, i)|} and

decoherence rate α ≥ 0. If there exists a constant cBM > 0
such that

N−1∑
t=0

k∑
j=2

PM
t (i, j)fj(

η + (1− fj)∆

η
)cBM ≥ N

and
N−1∑
t=0

k∑
j=2

(PB
t (i, j)− PM

t (i, j)) > 0

hold for 0 ≤ i ≤ k and for all N ≥ 3. Then there must exist
a threshold βBM = βBM (f⃗) ∈ [0, cBM ] such that gB > gM

if β < βBM , and gB < gM if β > βBM .

Proof sketch. For any N ≥ 0, we can deduce that V B
N (i) −

V M
N (i) = ηβfN

i (β), where

fN
i (β) = aNi −

k∑
j=2

cNi,j(
η + (1− fj)∆

η
)β ,

cNi,2 =
∑N−1

t=0 PM
t (i, 2)f2µ2, cNi,j =

∑N−1
t=0 PM

t (i, j)(fjµ2 +

(1 − fj)µ3), 3 ≤ j ≤ k, aNi = µ2

∑N−1
t=0

∑k
j=2 P

B
t (i, j).

Specifically, we can know that aNi and cNi,j are strictly positive
for all 2 ≤ j ≤ k and 0 ≤ i ≤ k by the induction on N ≥ 3.
If there exists a constant cBM > 0 satisfies that

N−1∑
t=0

k∑
j=2

PM
t (i, j)fj(

η + (1− fj)∆

η
)cBM ≥ N

and
N−1∑
t=0

k∑
j=2

(PB
t (s, j)− PM

t (i, j)) > 0

hold for 0 ≤ i ≤ k and for all N ≥ 3, then fN
i (0) > 0 and

fN
i (cBM ) < 0. Since fN

i (β) is a monotonically decreasing
function in R, there must exists a threshold βBM

i (N) ∈
[0, cBM ] such that V B

N (i) > V M
N (i) when β < βBM

i (N)
and V B

N (i) < V M
N (i) when β > βBM

i (N). For any 0 ≤
i ≤ k, {βBM

i (N)}∞N=3 is a bounded series, so it must
have a convergent subsequence {βBM

i (Nj)}∞j=1 satisfying that
lim
j→∞

βBM
i (Nj) = βBM ∈ [0, cBM ]. Since bipartite and mixed

policies induce irreducible Markov chains with finite states,
then gB = lim

j→∞
1
Nj

V B
Nj

(i) and gM = lim
j→∞

1
Nj

V M
Nj

(i) hold.

Then we have gB > gM when β < βBM and gB < gM when
β > βBM .

Furthermore, we can compare the mixed policy with the
tripartite policy. Theorem 3 states that under certain constraints
on the transition probabilities of the mixed and tripartite
policies, the weighted throughput of a specific mixed policy
will be inferior to a tripartite policy if the weight parameter
β surpasses a threshold βMT . This reflects the increasing
weighted throughput of exclusively using tripartite basis mea-
surements as β increases. Conversely, if β < βMT , the mixed
policy is superior to the tripartite policy, suggesting the value
of incorporating bipartite basis measurements.

Theorem 3. Suppose wT = (η + ∆)β , wM,i = (fiη + (1 −
fi)(η + ∆))β for 2 ≤ i ≤ k, where η > 1 and ∆ > 0 are
constants, ρ > max{ max

0≤i≤k
|QM (i, i)|, max

0≤i≤k
|QT (i, i)|} and

decoherence rate α ≥ 0. If there exists a constant cMT > 0
such that

N−1∑
t=0

k∑
j=3

PT
t (i, j) ≥ N

µ2

µ3
max
2≤j≤k

{(η + (1− fj)∆

η +∆
)cMT }

and
N−1∑
t=0

k∑
j=2

PM
t (i, j)fjµ2 ≥ Nµ3

hold for 0 ≤ i ≤ k and for all N ≥ 4, then there exists a
threshold βMT = βMT (f⃗) ∈ [0, cMT ] such that gM > gT

when β < βMT , and gM < gT when β > βMT .

Proof sketch. For any N ≥ 0, we can deduce that V M
N (i)−

V T
N (i) = (η +∆)βfN

i (β), where

fN
i (β) =

k∑
j=2

cNi,j(
η + (1− fj)∆

η +∆
)β − bNi ,

cNi,2 =
∑N−1

t=0 PM
t (i, 2)f2µ2, cNi,j =

∑N−1
t=0 PM

t (i, j)(fjµ2 +

(1 − fj)µ3), 3 ≤ j ≤ k, and bNi =
∑N−1

t=0

∑k
j=3 P

T
t (i, j)µ3.

Specifically, we can know that cNi,j > 0 and bNi > 0 for all
2 ≤ j ≤ k and 0 ≤ i ≤ k by the induction on N ≥ 4. If there
exists a constant cMT > 0 such that

N−1∑
t=0

k∑
j=3

PT
t (i, j) ≥ N

µ2

µ3
max
2≤j≤k

{(η + (1− fj)∆

η +∆
)cMT }

and
N−1∑
t=0

k∑
j=2

PM
t (i, j)fjµ2 ≥ Nµ3

hold for 0 ≤ i ≤ k and all N ≥ 4, then we have fN
i (0) > 0

and fN
i (cMT ) < 0. Since fN

i (β) is a monotonically decreas-
ing function in R, there must exist a threshold βMT

i (N) ∈
[0, cMT ] such that V M

N (i) > V T
N (i) when β < βMT

i (N) and
V M
N (i) < V T

N (i) when β > βMT
i (N). Note that, for any

0 ≤ i ≤ k, {βMT
i (N)}∞N=4 is a bounded series. Then it must

have a convergent subsequence {βMT
i (Nj)}∞j=1 satisfying that

lim
j→∞

βMT
i (Nj) = βMT ∈ [0, cMT ]. Since tripartite and mixed

policies induce irreducible Markov chains with finite states,
then gT = lim

j→∞
1
Nj

V T
Nj

(i) and gM = lim
j→∞

1
Nj

V M
Nj

(i) hold.

Hence, we have gM < gT when β > βMT and gM > gT

when β < βMT .
Remark: Different from Theorem 1, which contrasts two
specific policies, Theorem 2 and 3 broaden the analysis to
compare bipartite and tripartite policies against an infinite
spectrum of mixed policies, each specified by a vector f⃗ .
Collectively, Theorems 1, 2, and 3 imply that the optimal en-
tanglement policy of the quantum switch can be easily adapted
in response to the weight configuration of the system. These
insights enable decision-makers to make simple decisions on
actions based on current dynamics, thereby enhancing network
throughput.
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IV. NUMERICAL EXPERIMENTS

In this section, we conduct experiments to substantiate our
theoretical analysis on the dynamics between the bipartite and
tripartite policies, as well as the interplay between bipartite,
tripartite and mixed policies in the presence and/or absence
of decoherence. In these experiments, we obtain the optimal
entanglement policy by employing the relative value iteration
algorithm [36] within the MDP framework6, with the aim of
maximizing the weighted throughput. Then, we show that the
optimal entanglement policy exhibits a threshold-based and
state-dependent property.
Experimental Setup: We consider a quantum switch serving
k = 8 users with a buffer size B = 1. For a stable system, the
new link-level entanglement arrival rate is lower than the basis
measurement rates [45]. Besides, the quantum switch more
easily performs bipartite basis measurement than tripartite
basis measurement [37], i.e., µ3 < µ2. We set λ = 6 as the
link-level entanglement arrival rate for each link. The mean
times to successfully perform bipartite and tripartite basis mea-
surements are 1/µ2 = 1/15 and 1/µ3 = 1/12. For the weight
functions, we set wB = 2β , wT = 3β and wM,i = (3 − fi)

β

for 2 ≤ i ≤ k. If decoherence exists, the decoherence rate
is set to α = 2.5. The fraction vector in the mixed policy
is set as f⃗ = (1, 1, 0.95, 0.78, 0.25, 0.96, 0.35, 0.65, 0.78). We
use a convergence threshold of ϵ = 10−3 in the relative value
iteration algorithm.
Experiment 1: Existence of thresholds between bipartite,
tripartite and mixed policies: We intend to reveal (a) the
existence of thresholds βBT , βBM and βMT in Theorem 1,
2 and 3, respectively, and (b) the relationship between the
optimal policy and the bipartite, mixed and tripartite policies.

For bipartite, tripartite and mixed policies, we obtain the
expected average rewards gB , gT and gM under different β.
Here, we consider the range of β in (−1, 2). We also obtain
g∗, which is the expected average reward of the optimal policy.
As shown in Figure 5(a), the curves of the gB (in orange) and
gT (in red) have a distinct intersection at βBT ≈ 1. When
β < βBT , the expected average reward gB of the bipartite
policy is higher than that of the tripartite policy gT , while the
situation reverses when β > βBT , which validates Theorem 1.
When β < βBT , the expected average reward of the optimal
policy g∗ is closer to the bipartite policy gB than the tripartite
policy gT . Therefore, bipartite action πB(s) will be applied
to most states as the optimal action in this range of β. We
validate this in Experiment 2, where we present the optimal
state-dependent policies in TABLE I. In the first 4 rows in
TABLE I, when β ∈ (−5, 0.753), the optimal actions for most
states are A2. Similarly, when β > βBT , the value of gT

is closer to that of g∗, indicating tripartite action πT (s) is
applied to most states as the optimal action. From TABLE
I, we see that as β increases, A3 will gradually become the
dominant action, and the optimal entanglement policy becomes
the tripartite policy when β > 2.413.

6For the implementation of the relative value iteration algorithm, we refer
to the code in https://pymdptoolbox.readthedocs.io/en/latest/.

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Weight Parameter β

0

10

20

30

40

50

60

W
ei

gh
te

d
T

hr
ou

gh
pu

t
g
π

Optimal Policy

Bipartite Policy

Tripartite Policy

(a) λ = 6, α = 0

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Weight Parameter β

0

10

20

30

40

50

60

W
ei

gh
te

d
T

hr
ou

gh
pu

t
g
π

Optimal Policy

Bipartite Policy

Tripartite Policy

(b) λ = 6, α = 2.5

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Weight Parameter β

0

10

20

30

40

50

60

W
ei

gh
te

d
T

hr
ou

gh
pu

t
g
π

Optimal Policy

Bipartite Policy

Tripartite Policy

Mixed Policy

(c) λ = 6, α = 0

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

Weight Parameter β

0

10

20

30

40

50

60

W
ei

gh
te

d
T

hr
ou

gh
pu

t
g
π

Optimal Policy

Bipartite Policy

Tripartite Policy

Mixed Policy

(d) λ = 6, α = 2.5

Fig. 5: The expected average reward gπ with different
values of weight parameter β under different policies.

We also incorporate a mixed policy into the MDP frame-
work and obtain the values of gM under different values of β
as depicted in Figure 5(c). First, we observe that the expected
rewards of the tripartite policy gT (in red) and the mixed policy
gM (in purple) intersect when β = βMT ≈ 1.2 ∈ (1, 1.5). In
particular, when β < βMT , the expected reward of the mixed
policy gM is higher than that of the tripartite policy gM ,
and the situation changes when β > βMT , which validates
Theorem 3. Similarly, we observe the intersection of the
expected reward of the bipartite policy (in orange) and the
mixed policy (in purple) when β = βBM ≈ 0.8 ∈ (0.5, 1)
in Figure 5(c), which validates Theorem 2. Moreover, one
can see βBM < βBT < βMT , the expected reward of the
mixed policy and the bipartite policy are closer to the optimal
policy when β is small, which indicates that the actions of
the mixed policy and bipartite policy are more likely to be the
optimal actions in this range of β. However, as β increases,
the expected reward of the tripartite policy is closer to that
of the optimal policy than the other two policies, indicating
that most actions in the optimal policy are tripartite actions.
TABLE III provides support for our claims, which shows that
A2 and A4 are dominant actions when β is small, while A3

gradually replaces A2 and A4 as β increases and finally, the
optimal policy becomes the tripartite policy when β > 2.678.

Next, let us examine the effect of the decoherence on
the threshold-based entanglement policy. We notice that the
existence of decoherence will have a negative effect on taking
tripartite action as the optimal action. Indeed, as α increases,
the quantum switch will adopt a conservative strategy and
prefer the bipartite action. Specifically, in Figure 5(a) and
5(b), one can observe that the value of βBT corresponding to
the intersection of the curves of bipartite policy and tripartite
policy under α = 2.5 is higher than that of α = 0. This
reveals that under decoherence, it requires higher value of β
to allow the A3 to be more advantageous than the A2. Since
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we present the optimal state-dependent policies in TABLE I.
In the first 4 rows in TABLE I, we can see that when β ∈
(−5, 0.753), the optimal actions for most states are usually A2.
Similarly, when β > βBT , the value of gT is closer to that of
g∗, indicating that more states will probably choose tripartite
action πT (s) as the optimal action. From TABLE I, we can
see that as β keeps increasing, A3 will gradually become the
dominant action and the optimal policy completely becomes
the tripartite policy when β > 2.413.

We also incorporate a mixed policy into the MDP frame-
work and obtain the values of gM under different values
of β as depicted in Figure 6(d). First, we can observe that
the expected average rewards of the tripartite policy gT (in
red) and the mixed policy gM (in purple) intersect when
β = βMT ≈ 1.2 ∈ (1, 1.5). In particular, when β < βMT ,
the expected average reward of the mixed policy gM is higher
than that of the tripartite policy gM , and the situation changes
when β > βMT , which validates Theorem 3. Similarly, we
can observe the intersection of the expected average reward
of the bipartite policy (in orange) and the mixed policy (in
purple) when β = βBM ≈ 0.8 ∈ (0.5, 1) in Figure 6(d),
which validates Theorem 2. Moreover, we can also observe
that βBM < βBT < βMT , the expected average reward of the
mixed policy and the bipartite policy are closer to the optimal
policy when β is small, which indicates that the actions of
the mixed policy and bipartite policy are more likely to be the
optimal actions in this range of β. However, as β increases, the
expected average reward of the tripartite policy is closer to that
of the optimal policy than the other two policies, indicating
that most actions in the optimal policy are tripartite actions.
TABLE III provides strong support for our claims, which
shows that A2 and A4 are dominant when β is small, while A3

gradually replaces A2 and A4 as β increases and finally, the
optimal policy becomes the tripartite policy when β > 2.678.

Next, let us examine the effect of the arrival rate of link-level
entanglement λ and the decoherence rate α on the threshold-
based entanglement policy. By comparing the Figure 6(a) and
6(b), we can see that under the same value of β, the values
of gB , gT and gM increase as the arrival rate λ increases.
More importantly, the threshold βBT becomes smaller under
a higher arrival rate of link-level entanglement, indicating
that tripartite policy becomes superior to bipartite policy with
smaller β. This situation occurs because a high arrival rate
λ allows the quantum switch to have sufficient link-level
entanglements to obtain a higher expected average reward by
performing tripartite basis measurements more frequently than
performing the bipartite basis measurements. Similar compar-
ison also applies to the Figure 6(d) and Figure 6(e) where the
mixed policy is involved and the thresholds βBM and βMT

are smaller in the case of λ = 10. Therefore, one can conclude
that the increase of the arrival rate of link-level entanglements
has a positive effect on enabling the quantum switch to take
more risk and to choose the tripartite action to achieve a
higher weighted throughput. On the contrary, the increase of
the decoherence rate α will have a negative effect on taking
tripartite action as the optimal action. Indeed, as α increases,

Range of β
Optimal Policy

S0 S1 S2 S3 S4 S5 S6 S7 S8

(−5.000, 0.673) A0 A0 A2 A2 A2 A2 A2 A2 A2

(0.674, 0.681) A0 A0 A2 A2 A2 A2 A2 A2 A3

(0.682, 0.747) A0 A0 A2 A2 A2 A2 A2 A3 A3

(0.748, 0.753) A0 A0 A2 A2 A2 A3 A2 A3 A3

(0.754, 0.823) A0 A0 A2 A2 A2 A3 A3 A3 A3

(0.824, 0.955) A0 A0 A2 A3 A2 A3 A3 A3 A3

(0.956, 2.412) A0 A0 A2 A3 A3 A3 A3 A3 A3

(2.413, 5.000) A0 A0 A0 A3 A3 A3 A3 A3 A3

the quantum switch will adopt a conservative strategy and
prefer the bipartite action. Specifically, in Figure 6(a) and
6(c), we can observe that the value of βBT corresponding to
the intersection of the curves of bipartite policy and tripartite
policy under α = 2.5 is higher than that of α = 0. This reveals
that under decoherence, it requires higher value of β

TABLE I: Optimal policies in different ranges of β when
the decoherence rate is α = 0.

to allow
the tripartite action to be more advantageous than the bipartite
action. Since performing tripartite basis measurement takes
longer time than bipartite basis measurement (µ2 > µ3), it is
not profitable for the quantum switch to adopt tripartite policy
due to the risk of losing existing link-level entanglements
with the same value of β. TABLE II also justifies that with
decoherence, the quantum switch prefers the bipartite action
unless the weight parameter β is sufficiently large. Similar
phenomenon also holds when the mixed policy is involved,
by comparing Figure 6(d) and Figure 6(f), which is supported
by the comparison between TABLE III and TABLE IV.
Experiment 2. Existence of a threshold-based optimal
policy and its dynamics: In Experiment 1, we focus on
comparing bipartite, tripartite, and mixed policies. In Exper-
iment 2, we will further look into the optimal entanglement
policy derived from the relative value iteration algorithm, and
empirically reveal its structure. Specifically, in this experiment,
(1) we aim to reveal that the optimal entanglement policy
changes from the bipartite policy πB to tripartite policy πT

as β increases from a purely bipartite region to a purely
tripartite region, and to identify the optimal entanglement
policies between two regions. (2) Furthermore, we aim to show
that, even in the range where purely bipartite/tripartite policies
are not optimal, the actions of the optimal entanglement policy
at each state Sj will change from the bipartite action πB(Sj)
to tripartite action πT (Sj) as the weight parameter β exceeds
certain threshold. The experimental results are illustrated in
TABLE I and TABLE II.

In this experiment, the MDP model consists of 9 states (k+
1) and three possible actions: A0, A2 and A3. We consider a
larger range of weight parameter β ∈ (−5, 5) than Experiment
1. TABLE I presents the optimal policies when there is no
decoherence (α = 0) while TABLE II illustrates the optimal
policies when there is decoherence (α = 2.5).

Note that TABLE I and TABLE II are consistent with
Theorem 1 in the sense that as β becomes small or large, the
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TABLE I: Optimal policies in different ranges of β when
the decoherence rate is α = 0.

Range of β
Optimal Policy

S0 S1 S2 S3 S4 S5 S6 S7 S8

(−5.000, 0.661) A0 A0 A2 A2 A2 A2 A2 A2 A2

(0.662, 0.676) A0 A0 A2 A2 A2 A2 A2 A2 A3

(0.677, 0.734) A0 A0 A2 A2 A2 A2 A2 A3 A3

(0.735, 0.735) A0 A0 A2 A2 A2 A2 A3 A3 A3

(0.736, 0.789) A0 A0 A2 A2 A2 A3 A3 A3 A3

(0.790, 0.941) A0 A0 A2 A3 A2 A3 A3 A3 A3

(0.942, 2.731) A0 A0 A2 A3 A3 A3 A3 A3 A3

(2.732, 5.000) A0 A0 A0 A3 A3 A3 A3 A3 A3

TABLE II: Optimal policies in different ranges of β when
the decoherence rate is α = 2.5.

performing tripartite basis measurement takes longer time than
bipartite basis measurement (µ2 > µ3), it is not profitable for
the quantum switch to adopt tripartite policy. TABLE II also
justifies that with decoherence, the quantum switch prefers
A2 unless the weight parameter β is sufficiently large. Similar
phenomenon also holds when the mixed policy is involved, by
comparing Figure 5(c) and Figure 5(d), which is supported by
the comparison between TABLE III and TABLE IV.
Experiment 2. Existence of a threshold-based optimal
policy and its dynamics: We will further examine the optimal
entanglement policy derived from the relative value iteration
algorithm, and empirically reveal its structure. Specifically,
we aim to (1) reveal that the optimal entanglement policy
changes from the bipartite policy πB to tripartite policy πT

as β increases from a purely bipartite region to a purely
tripartite region, and to identify the optimal entanglement
policies between two regions; (2) show that, even in the
range where πB and πT are not optimal, the actions of the
optimal entanglement policy at each state Si will change from
the bipartite action πB(Si) to tripartite action πT (Si) as the
weight parameter β exceeds an empirical threshold β̃BT

Si
.

In this experiment, we consider a larger range of weight
parameter β ∈ (−5, 5). TABLE I and II present the optimal
policies when decoherence exists or not. Observe that TABLE
I and II are consistent with Theorem 1 because as β becomes
small or large, the optimal entanglement policy eventually
becomes the bipartite policy or the tripartite policy, whether
decoherence exists or not. We denote the region where the
optimal entanglement policy is the tripartite policy for all
β ≥ β∗

T as the “purely tripartite region”. Similarly, we denote

the region where the optimal policy is the bipartite policy for
all β ≤ β∗

B as the “purely bipartite region”. In TABLE I,
the interval (2.413, 5) is the “purely tripartite region” (high-
lighted in red). Besides, the “purely bipartite region” exists
when β ∈ (−5, 0.673) (highlighted in green). Knowing this
threshold structure benefits the decision-making. For instance,
for a given β′, we can obtain the optimal entanglement policy
through the relative value iteration algorithm [36]. If the
optimal entanglement policy is the bipartite policy, it remains
so for β < β′; if the tripartite policy is optimal, it also holds
for β > β′. For the weight parameters between β∗

B and β∗
T ,

we can use the relative value iteration algorithm to efficiently
determine the optimal entanglement policy.

The above two tables also shows that even for the range of
β where neither πB nor πT are optimal, there is a tendency
for the optimal entanglement action of a given state Sj to
shift from bipartite action to tripartite action as β increases.
For instance, the optimal entanglement action for state S3

(highlighted in blue) in TABLE I transits from A2 to A3 as
β evolves from (−5, 0.823) to (0.824, 5). Hence, there exists
a threshold β̃BT

S3
for state S3 such that the tripartite action

will be used at state S3 for β ≥ β̃BT
S3

. From TABLE I, such
a threshold for state S3 lies in (0.823, 0.824). Note that the
thresholds β̃BT

Sj
with respect to different states Sj may be

different, which creates a gap between the purely tripartite
region and the purely bipartite region. This new insight reveals
that the shift in the optimal entanglement action for each state
Si from πB(Si) to πT (Si) triggers the transition of the optimal
entanglement policy from πB to πT .

Experiment 3. Existence of Threshold-based Optimal Pol-
icy under the Mixed Policy Setting: To further explore
optimal entanglement policies of the quantum switch, we
include a mixed policy, introducing an additional action A4.
Utilizing the relative value iteration algorithm, we determine
the optimal entanglement policy across a spectrum of β values
within (−5, 5). The findings, as presented in TABLE III
and TABLE IV, show the optimal actions in the absence or
presence of decoherence, respectively. Recall that Theorem
2 and 3 formally specify the dynamics between the mixed,
bipartite, and tripartite policies. In particular, a threshold phe-
nomenon is revealed that governs their interplay, irrespective
of the presence or absence of decoherence. TABLE III offers
an illustration of this dynamic, indicating that there is a
progressive shift in the quantum switch’s optimal entanglement
policy: from a bipartite to a mixed, and eventually, to a
tripartite policy, as the weight parameter β increases. For
instance, state S6 initially favors action A2, and transits to
A4 within the β interval of (0.7, 0.8), and finally settling on
action A3 as β further increases. From TABLE III, when β
is sufficiently large, one can observe the existence of a purely
tripartite region (2.7, 5), indicating that the quantum switch
should follow tripartite policy if the weight of A3 is much
greater than the weights of A4 and A2 . One can also observe
the existence of a purely bipartite region (−5,−0.8) when one
put a relatively higher weight on A2 than that of A3 and A4.
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Similar transitions of optimal entanglement actions under the
decoherence effect are shown in TABLE IV.

Range of β
Optimal Policy

S0 S1 S2 S3 S4 S5 S6 S7 S8

(−5.000, 0.661) A0 A0 A2 A2 A2 A2 A2 A2 A2

(0.662, 0.676) A0 A0 A2 A2 A2 A2 A2 A2 A3

(0.677, 0.734) A0 A0 A2 A2 A2 A2 A2 A3 A3

(0.735, 0.735) A0 A0 A2 A2 A2 A2 A3 A3 A3

(0.736, 0.789) A0 A0 A2 A2 A2 A3 A3 A3 A3

(0.790, 0.941) A0 A0 A2 A3 A2 A3 A3 A3 A3

(0.942, 2.731) A0 A0 A2 A3 A3 A3 A3 A3 A3

(2.732, 5.000) A0 A0 A0 A3 A3 A3 A3 A3 A3

TABLE II: Optimal policies in different ranges of β when
the decoherence rate is α = 2.5.

where the optimal entanglement policy is the tripartite policy
for all β ≥ β∗

T as the “purely tripartite region”. Similarly, we
denote the region where the optimal entanglement policy is the
bipartite policy for all β ≤ β∗

B as the “purely bipartite region”.
In TABLE I, the interval (2.413, 5) is the “purely tripartite
region” (highlighted in red). Furthermore, the “purely bipartite
region” exists when β ∈ (−5, 0.673) (highlighted in green).
Knowing this threshold structure benefits the decision-making.
For instance, for a given β′, we can obtain the optimal entan-
glement policy through the relative value iteration algorithm
[35]. If the optimal entanglement policy is the bipartite policy,
it remains so for β < β′; if the tripartite policy is optimal, it
also holds for β > β′. For the weight parameters between β∗

B

and β∗
T , we can use the relative value iteration algorithm to

efficiently determine the optimal entanglement policy.
The above two tables also shows that even for the range of

β where neither πB nor πT are optimal, there is a tendency
for the optimal entanglement action of a given state Sj to
shift from bipartite action to tripartite action as β increases.
For instance, the optimal entanglement action for state S3

(highlighted in blue) in TABLE I transits from A2 to A3 as
β evolves from (−5, 0.823) to (0.824, 5). Hence, there exists
a threshold β̃BT

S3
for state S3 such that the tripartite action

will be used at state S3 for β ≥ β̃BT
S3

. From TABLE I, such
a threshold for state S3 lies in (0.823, 0.824). Note that the
thresholds β̃BT

Sj
with respect to different states Sj may be

different, which creates a gap between the purely tripartite
region and the purely bipartite region. This new insight reveals
that the shift in the optimal entanglement action for each state
from πB(s) to πT (s) triggers the transition of the optimal
entanglement policy from πB to πT .
Experiment 3. Existence of Threshold-based Optimal Pol-
icy under the Mixed Policy Setting: To further explore
optimal entanglement policies of the quantum switch, we
include a mixed policy, introducing an additional action A4.
Utilizing the relative value iteration algorithm, we determine
the optimal entanglement policy across a spectrum of β values
within (−5, 5). The findings, as presented in TABLE III
and TABLE IV, show the optimal actions in the absence or
presence of decoherence, respectively. Recall that Theorem
2 and 3 formally specify the dynamics between the mixed,
bipartite, and tripartite policies. In particular, a threshold phe-
nomenon is revealed that governs their interplay, irrespective

of the presence or absence of decoherence. TABLE III offers
an illustration of this dynamic, indicating that there is a
progressive shift in the quantum switch’s optimal entanglement
policy: from a bipartite to a mixed, and eventually, to a
tripartite policy, as the weight parameter β increases. For
instance, state S6 initially favors action A2, and transits to
A4 within the β interval of (0.7, 0.8), and finally settling on
action A3 as β further increases. From TABLE III, when β
is sufficiently large, one can observe the existence of a purely
tripartite region (2.7, 5), indicating that the quantum switch
should follow tripartite policy if the weight of A3 is much
greater than the weights of A4 and A2 . One can also observe
the existence of a purely bipartite region (−5,−0.8) when one
put a relatively higher weight on A2 than that of A3 and A4.
Similar transitions of optimal entanglement actions under the
decoherence effect are shown in TABLE IV.

Range of β
Optimal Policy

S0 S1 S2 S3 S4 S5 S6 S7 S8

(−5.000,−0.800) A0 A0 A2 A2 A2 A2 A2 A2 A2

(−0.700, 0.500) A0 A0 A4 A2 A2 A2 A2 A2 A2

(0.600, 0.600) A0 A0 A4 A2 A2 A4 A2 A4 A4

(0.700, 0.700) A0 A0 A4 A4 A2 A4 A4 A4 A4

(0.800, 0.800) A0 A0 A4 A4 A2 A3 A4 A3 A3

(0.900, 0.900) A0 A0 A4 A3 A2 A3 A3 A3 A3

(1.000, 1.100) A0 A0 A4 A3 A4 A3 A3 A3 A3

(1.200, 2.600) A0 A0 A4 A3 A3 A3 A3 A3 A3

(2.700, 5.000) A0 A0 A0 A3 A3 A3 A3 A3 A3

TABLE III: Optimal policies in different ranges of β when
α = 0 after incorporating the mixed policy into MDP.

Range of β
Optimal Policy

S0 S1 S2 S3 S4 S5 S6 S7 S8

(−5.000,−0.700) A0 A0 A2 A2 A2 A2 A2 A2 A2

(−0.600, 0.500) A0 A0 A4 A2 A2 A2 A2 A2 A2

(0.600, 0.600) A0 A0 A4 A2 A2 A4 A2 A4 A4

(0.700, 0.700) A0 A0 A4 A4 A2 A4 A4 A4 A4

(0.800, 0.800) A0 A0 A4 A4 A2 A3 A4 A3 A3

(0.900, 1.100) A0 A0 A4 A3 A4 A3 A3 A3 A3

(1.200, 3.000) A0 A0 A4 A3 A3 A3 A3 A3 A3

(3.100, 5.000) A0 A0 A0 A3 A3 A3 A3 A3 A3

TABLE IV: Optimal policies in different ranges of β when
α = 2.5 after incorporating the mixed policy into MDP.

Experiment 4. Comparing optimal entanglement policy
with TDM policy and Max-weight scheduling policy:
[17] proposed a simple time division multiplexing (TDM)
policy, which performs bipartite basis measurement for a fixed
fraction of time fB and tripartite basis measurement for the
remaining fraction of time fT = 1−fB , with fB ∈ (0, 1). This
policy can approximate the entire capacity region of a quantum
switch. Authors in [18]–[22] propose different algorithms to
stabilize the quantum switch. Since [18], [20], [22] consider
the quantum switch only provides bipartite user entanglement
and [21] violates our assumption on the buffer size B = 1, the
most closely related work is [19], which proposed an online
decision algorithm based on the Max-Weight scheduling policy
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TABLE III: Optimal policies in different ranges of β when
α = 0 after incorporating the mixed policy into MDP.

Range of β
Optimal Policy

S0 S1 S2 S3 S4 S5 S6 S7 S8

(−5.000,−0.700) A0 A0 A2 A2 A2 A2 A2 A2 A2

(−0.600, 0.500) A0 A0 A4 A2 A2 A2 A2 A2 A2

(0.600, 0.600) A0 A0 A4 A2 A2 A4 A2 A4 A4

(0.700, 0.700) A0 A0 A4 A4 A2 A4 A4 A4 A4

(0.800, 0.800) A0 A0 A4 A4 A2 A3 A4 A3 A3

(0.900, 1.100) A0 A0 A4 A3 A4 A3 A3 A3 A3

(1.200, 3.000) A0 A0 A4 A3 A3 A3 A3 A3 A3

(3.100, 5.000) A0 A0 A0 A3 A3 A3 A3 A3 A3

TABLE IV: Optimal policies in different ranges of β when
α = 2.5 after incorporating the mixed policy into MDP.

V. CONCLUSION

In this work, we explore the optimal entanglement policies
that maximize the weighted throughput of a quantum switch
by examining its structural properties based on existing link-
level entanglements. We use an MDP framework to model
the dynamics of the quantum switch and theoretically prove
the equivalence between the expected average reward and the
weighted throughput. Based on the MDP formulation, we
theoretically unveil the threshold-based relationships among
three special entanglement policies: bipartite policy, tripartite
policy, and mixed policy within a family of weight functions
with a weight parameter β. Our theoretical analysis establishes
that the tripartite policy outperforms the bipartite policy in
weighted throughput when the weight parameter β exceeds
a threshold βBT . Conversely, the bipartite policy is superior
to the tripartite policy when β falls below βBT . We ex-
tend this analysis to a family of mixed policies—a hybrid
of bipartite and tripartite policies—and reveal a threshold-
based relationship between any specific mixed policy and
the bipartite/tripartite policies. Empirically, we validate our
theoretical insights by showing the dynamics between the
bipartite, mixed and tripartite policies, and reveal the existence
of a threshold-based optimal entanglement policy. Notably, we
also find that decoherence enables the quantum switch to adopt
a conservative strategy to avoid the risk of losing existing
link-level entanglements, preferring to perform bipartite basis

measurements as soon as possible instead of waiting for the
tripartite basis measurements.

APPENDIX

We first construct the transition rate matrix Qa with re-
spect to each action a ∈ A , where Qa(i, j) represents
the transition rate from state Si to state Sj under action a.
For action A0, a state Si will transit to Si+1 at a rate of
(k − i)λ due to the arrival of new link-level entanglement,
0 ≤ i ≤ k − 1. In addition, a state Si can transit to state
Si−1 at a rate of iα due to the decoherence effect, where
1 ≤ i ≤ k. Hence, the transition rate matrix of action A0 is:

QA0(i, j) =


−∑

j ̸=i Q
A0(i, j), j = i, i = 0, 1 · · · , k

(k − i)λ, j = i+ 1, i = 0, · · · , k − 1

iα, j = i− 1, i = 1, · · · , k
0, otherwise.

(7)
We derive the transition rate matrices QA2 and QA3 sim-

ilarly. The only differences between QA0 , QA2 and QA3 are
the additional transition rates QA2(i, i − 2) = µ2, 2 ≤ i ≤ k,
and QA3(i, i − 3) = µ3, 3 ≤ i ≤ k, due to the bipartite
and tripartite basis measurements, respectively. We consider
an action A4 which allows the quantum switch to proba-
bilistically perform bipartite basis measurement and tripartite
basis measurement. Specifically, when the quantum switch
is in state Si, it adopts the action from the bipartite policy
πB(Si) for a fraction fi of the time, and adopts the action
from the tripartite policy πT (Si) for the remaining fraction
(1 − fi) , where 0 ≤ i ≤ k. Therefore, QA4 satisfy that
QA4(i, j) = fiQ

A2(i, j)+(1−fi)Q
A3(i, j), for all 0 ≤ i, j ≤

k. By applying the uniformization technique on each transition
rate matrix, we can obtain the transition probability matrix of
action a as P a = I + Qa

ρ , where ρ is an uniformization rate
parameter and it satisfies ρ ≥ max

a∈A
{ max
0≤i≤k

|Qa(i, i)|}.
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