
On Efficient Bandwidth Allocation for Traffic
Variability in Datacenters

Jian Guo1 Fangming Liu1 Xiaomeng Huang2 John C.S. Lui3 Mi Hu1 Qiao Gao1 Hai Jin1
1Key Laboratory of Services Computing Technology and System, Ministry of Education,

School of Computer Science and Technology, Huazhong University of Science and Technology.
2Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University.

3Department of Computer Science & Engineering, The Chinese University of Hong Kong.

Abstract—Datacenter networks suffer unpredictable perfor-
mance due to a lack of application level bandwidth guarantees.
A lot of attentions have been drawn to solve this problem such as
how to provide bandwidth guarantees for Virtualized Machines
(VMs), proportional bandwidth share among tenants, and high
network utilization under peak traffic. However, existing solutions
fail to cope with highly dynamic traffic in datacenter networks.
In this paper, we consider the effects of large numbers of short
flows and massive bursty traffic in the datacenter, and design a
novel distributed rate allocation algorithm based on the Logistic
model under the control-theoretic framework. The theoretical
analysis and experimental results using OpenFlow show that our
algorithm not only guarantees the bandwidth for VMs, but also
provides fast convergence to efficiency and fairness, and smooth
response to bursty traffic.

I. INTRODUCTION

Public cloud (e.g., [1]) has been increasingly popular
since it provides economical resources for deploying today’s
business in a wide area. Using a simple pay-as-you-go charg-
ing model, cloud providers are able to lease the resources
in the form of Virtualized Machines (VMs), with isolated
performance on CPU and memory. However, to the best of
our knowledge, current datacenters do not offer bandwidth
guarantee for tenants. The network performance between two
VMs can fluctuate significantly due to the interference of
network intensive applications on other VMs [2]–[4]. This
unpredictable performance leads to uncertainty in execution
times of jobs, which increases the risk of revenue loss to
tenants. As a result, providing performance guarantee for intra-
datacenter communication has received significant interest in
the networking research community. There is a general con-
sensus among researchers about the need for basic bandwidth
allocation requirements [5], such as bandwidth guarantee for
VMs, proportionally sharing bandwidth resource among ten-
ants and a high utilization of network resources.

However, previous measurement works (e.g., [6], [7]) re-
veal the characteristics of datacenter traffic. First, there are
large numbers of short flows in datacenter networks. Second,
short congestion periods are common across many links. Third,
the datacenter traffic has significant variability. These unique
characteristics make datacenter traffic remarkably different

The Corresponding Author is Fangming Liu (fmliu@hust.edu.cn). The re-
search was supported in part by a grant from National Basic Research Program
(973 program) under grant No.2014CB347800, by a grant from The National
Natural Science Foundation of China (NSFC) under grant No.61370232.

from any other network traffic. Hence, a practical bandwidth
allocation should not only achieve the basic requirements, but
also dynamically adapt to the traffic patterns in datacenters.
Specifically, we consider the following dynamic requirements:

• Handling of large nubmers of short flows: Short flows
may cause rate drops of other flows and reduce the link
utilization. However, some of the short flows are too
short to be rate-limited or controlled. The allocation
policy should try to avoid sharp drops even at the
presence of these short flows.

• Smooth adaption in short congestion periods: The
allocation should change smoothly when congestions
occur. If the rate-limit decreases the flows’ bandwidth
too sharply during congestions, the underlying TCP
flows will fluctuate and the network performance will
drop.

• Fast convergence on bandwidth allocation: The con-
vergence of allocation process should be as fast as
possible to keep pace with the significant variabilities
in traffic. Otherwise, the allocation process can not
converge to the result that satisfies the basic require-
ments.

However, designing a bandwidth allocation algorithm to
handle the dynamic nature of datacenter traffic is far more
difficult than just meeting the basic requirements. Previous
work using rate-limit is either static, or based on TCP-like
rate control, which deploys multiplicative decrease and makes
the throughputs of VMs fluctuating. If there are large number
of short flows or congestions, the rate control will become
unstable and the network utilization may decrease sharply, thus
making the bandwidth allocation hard to adapt to the highly
variable traffic in datacenters. For example, [8], [9] use static
or time-varying reservation for bandwidth guarantees. They
can not achieve high utilization due to traffic variability in
datacenters. [10]–[12] achieve work-conserving by using TCP-
like rate control for VMs. The drawback is that the rate-limit
fluctuates when congestions occur, leading to a remarkable
decrease of the utilization performance degradation under lots
of short flows.

In datacenters, the performance of cloud applications can
be guaranteed through shaping traffic at the VM-level. Based
on this method, the objective of this work is to design an
efficient VM bandwidth allocation algorithm capable of han-
dling highly dynamic traffic in datacenters. Unlike TCP-like
algorithm, our solution uses explicit bandwidth information978-1-4799-3360-0/14/$31.00 c� 2014 IEEE

of physical links to enforce accurate rate control for traffic
between VM-pairs, by taking advantage of the ability of
global monitoring in datacenters. Such design enables a stable
bandwidth allocation, and avoids the performance degradation
caused by frequent decreases in network throughputs. Our rate
control algorithm is inspired by the Logistic model (see Sec.
II-B for details), which has fast convergence speed and smooth
change rate. In the evaluation, it shows good adaptability to
traffic variabilities caused by large number of short flows.

In summary, the contributions of this paper are as follows:

• By considering the characteristics of datacenter net-
work traffic, we take the first attempt to present
the dynamic requirements of designing an efficient
bandwidth allocation algorithm in datacenters.

• We design a distributed rate control algorithm for
traffic between VMs based on the Logistic model, and
qualify various important properties of this algorithm
under the control-theoretic framework, for both the
basic requirements and the dynamic requirements.

• We implement a practical solution based on the Open-
Flow. With experiments and trace-driven simulations,
we show that the algorithm not only achieves band-
width guarantees and work-conserving allocations, but
also adapts to the highly variable traffic in datacenters.

II. MODEL AND DESIGN

A. Datacenter Network Model

Datacenter network. We begin by introducing the data-
center network model. We consider a virtualized datacenter,
where applications are running in VMs. Let K = {1, 2, ...,K}
be the set of K VMs in the datacenter. Since we aim at
guaranteeing bandwidth for applications at a VM-level, the
traffic path between a pair of VMs is viewed as a VM-flow,
where all traffic between this VM-pair counts as one flow. The
active VM-flows in datacenter networks constitute a subset
of directed VM-pairs, thus N ✓ {i

x!y

| x, y 2 K} where
VM-flow i is from VM x to y. We number them in order,
N = {1, 2, . . . , N}, and denote the rate of VM-pair i as v

i

(t),
i 2 N. The nodes (servers and switches) are connected by
physical links and we use M = {1, 2, ...,M} to denote the
set of M links across the datacenter network. Let C

l

be the
bandwidth of link l, l 2 M.

The rate allocation based mechanism and VM placement
based mechanism are complementary to each other. Using the
hose model [5] for bandwidth guarantees, we can accomplish
VM placement through an existing approach (e.g., [8]). Hence,
we focus on how to allocate the bandwidth to achieve work-
conserving bandwidth sharing. Note that work-conserving in
network means that if a link is the bottleneck, this link should
be fully utilized.

Bandwidth requirements of VMs. Based on the hose
model, we specify a throughput B and a weight w for each VM
(Fig. 1(a)) to present the requirements of bandwidth guarantee
and proportional bandwidth share, respectively. Both B and w
are specified when a VM is created in the datacenter.

Bandwidth allocation model. As shown in Fig. 1(b), we
allocate the bandwidth to VM-flows on each link. Let P

l

denote

X Y Z

(Bx,wx) (By,wy) (Bz,wz)

Switch

VM …

(a) Hose model.

X … Y … Z …

Switch

Switch

VM

X ZX Y

…

(b) Bandwidth allocation model.

Fig. 1. System model: use hose model for bandwidth requirements of VMs,
and allocate bandwidth for VM-pairs on each link based on the requirements.

the set of VM-flows across link l, 8l 2 M, and L
i

denote the
set of links passed by VM-flow i, 8i 2 N. The guarantees and
weights of VMs can be partitioned into VM-flows’ guarantees
and weights. For VM-flow i (from VM x to VM y), suppose
Xr is the set of VMs receiving data from x, and Y s is the set
of VMs sending data to y. The weight can be set as

w
i

=

w
x

|Xr| +
w

y

|Y s| , (1)

where |Xr|(|Y s|) is the number of elements in Xr(Y s). This
way, the shared bandwidth of a tenant will be proportional to
the total weights of its VMs [5]. The bandwidth guarantee
of VM-flow i can be obtained by partitioning x’s and y’s
bandwidth guarantees based on their weights [13], thus

B
i

= min{B
x

w
y

P

X

r w
,B

y

w
x

P

Y

s w
}. (2)

We use the minimum in case that B
i

exceeds the link capacity.

B. Logistic Model for Objectives

Considering the dynamic nature of datacenter networks and
the shortcomings of previous solutions, our intuition is to use
a smooth but fast-growing function as the rate, with gradual
change rate at the beginning and around the equilibrium. This
is exactly the situation in ecology where the dynamics of
population x(t) is modeled by the Logistic model [14] as:

ẋ(t) = rx(1� x

C
), (3)

where r is the intrinsic rate of increase and C is the resources
capacity denoted by the number of organisms. Note that the
growth of population is proportion to the population itself, and
has an inverse correlation to the resources.

As shown in Fig. 2, a Logistic-like rate controller can
benefit the datacenter network from the following aspects: (i)
The rates of VM-flows can be controlled according to the avail-
able bandwidth, and maintain at the equilibrium (maximum
value) with no fluctuation. It can avoid severe decreases when
congestions occur. (ii) The rate has an exponential convergence
speed, which can quickly adapt to the highly variable traffic
demands in datacenters. (iii) With a slow start speed, the bursty
traffic caused by massive short flows can be flattened, and
traffic fluctuation on bottleneck links can be reduced.

C. Design of Rate Allocation Functions

However, the Logistical model can not be directly applied
to rate control of VM-flows, since it has a static upper bound
(i.e., C) while we need dynamic rate limits for VM-flows. To
achieve dynamic rate control in datacenters, the design should

C

t

x(t): throughput Smooth & no fluctuation:
Congestion awareness/ stable throughput

Fast convergence:
Adapt to dynamic traffic/ high utilization

Slow start:
Reduce the interference of short flows

Fig. 2. Key mechanisms and benefits of the proposed datacenter rate
control via the Logistic model.

Y1

X2X1

Y2

r1

r2r1

Link1 Link2

VM

Fig. 3. The design uses explicit
bandwidth information of links.

Notation Meaning
v
i

(t) rate of VM-flow i
L
i

set of links on VM-flow i
r
l

(t) rate factor of link l
C

l

capacity of link l
P
l

set of VM-flows across link l
er
i

(t) minimum rate factor in L
i

Fig. 4. Commonly used notations in this
paper.

consist of two aspects: an algorithm on the source VM to
control the rates of VM-flows, and an algorithm on the switch
to feedback the bandwidth information of links to the source
VM.

The design uses the explicit bandwidth information of
physical links to accurately control the VM-flows’ rates (Fig.
3). This is realizable because today’s datacenters are of cen-
tralized architectures, and they are designed with the ability to
perform global monitoring and management. Specifically, we
first define a rate factor for each link, whose differential is:

dr
l

(t)

dt
= �r

l

(t)

✓

1�
P

i2Pl
v
i

(t)

C
l

◆

, (4)

where
P

i2Pl
v
i

(t) represents the total throughput on link l.

Note that the rate factor increases if there is any available
bandwidth, and decreases when the allocated bandwidth ex-
ceeds the link capacity C

l

. It implies that there is a positive
correlation between r

l

(t) and the available bandwidth. Hence,
r
l

(t) can be used to dynamically limit the rates of VM-flows
across link l. Therefore, the rate v

i

of VM-flow i at the source
can be controlled by the rate factor er

i

from i’s bottleneck link.
We can express the differential of v

i

as:

dv
i

(t)

dt
= ↵v

i

(t) (ln er
i

(t)� ln v
i

(t)) , (5)

where er
i

(t) = min{r
l

(t) | l 2 L
i

}. Note that Eq. (5) is derived
by taking the logarithm of the original 1 � x

C

in the Logistic
model. The reason is that we can quickly adapt the rate of
VM-flow to the received rate factor within O(log log) time (as
we will prove in III-C) , thereby improving the convergence
speed.

Since the actual utilization of links can not achieve 100%

in real network based on TCP/UDP, we apply a ratio µ
to the capacity C

l

in our model. To achieve proportional
bandwidth share among VMs, we multiply the rate factor with
the corresponding weight. Thus, the rate control model in
datacenter networks can be summarized as:

8

>

>

>

>

<

>

>

>

>

:

dv
i

(t)

dt
= ↵v

i

(t) (ln er
i

(t)� ln v
i

(t)) , 8i 2 N
er
i

(t) = w
i

min{r
l

(t) | l 2 L
i

}
dr

l

(t)

dt
= �r

l

(t)

✓

1�
P

i2Pl
v
i

(t)

µC
l

◆

, 8l 2 M.

(6)

Remark: Note that v
i

and r
l

are coupled and form a
feedback system. The rate factor is limited by the physical
bandwidth and controlled by the throughput of VM-flows. The
rate of each VM-flow is limited and controlled by the rate
factor. Depending on the interaction between v

i

and r
l

, the

system will converge to an equilibrium where the bandwidth
is fully utilized. The convergence process corresponds to the
population dynamic of the Logistic model.

To understand the above model, we consider the following
simple example. When N VM-pairs share the same bottleneck
link with bandwidth C, the equilibrium of the system can be
derived from v̇(t) = ṙ(t) = 0. Thus we have:

v
i

= er
i

=

w
i

P

N

i=1

w
i

µC
l

= w
i

r
l

. (7)

The rates of VM-flows are in proportion to their respective
weights, and the bandwidth of this link is fully utilized. In the
following section, we qualify the properties in detail.

III. ANALYSIS VIA CONTROL-THEORETIC FRAMEWORK

In this section, we analyze the rate control model via the
control-theoretic framework, and provide insights on how its
properties benefit datacenter network sharing.

A. Stability of Equilibrium

Since the differential equations in Eq.(6) form a nonlinear
system, we use the Lyapunov stability theory to prove its sta-
bility. For the nonzero equilibrium of the system, let M0 ✓ M
be the set of bottleneck links. We have:

Theorem 1. For v
i

, r
l

2 (0,1], where i 2 N, l 2 M0, the
system formulated by Eq. (6) is locally asymptotically stable
irrespective of capacities of bottleneck links and communica-
tion pattern of VMs.

Proof: We begin the proof with substitution. Let '
i

(t) =
ln v

i

(t) and �
l

(t) = ln r
l

(t), then Eq. (6) can be derived as
8

>

>

>

>

<

>

>

>

>

:

d'
i

(t)

dt
= ↵(e�

i

(t)� '
i

(t)),

e�
i

(t) = lnw
i

+min{�
l

(t) | l 2 L
i

},
d�

l

(t)

dt
= �

✓

1�
P

i2Pl
exp{'

i

(t)}
µC

l

◆

.

(8)

Let f
l

('(t)) denote the function of '(t) = {'
i

(t) | i 2
P
l

}, and d�l(t)

dt

= �f
l

('(t)). Suppose @Fl
@'i

= f
l

('). To apply
the Lyapunov stability theory, we first construct a positive
function. For all i 2 N and l 2 M, we define

V ('(t),�(t)) = ↵
X

i2N

1

2

⇣

e�
i

(t)� '
i

(t)
⌘

2

+ �
X

l2M0

F
l

('(t)).

We have the partial differential of V on '
i

(t) and �
l

(t).

@V

@'
i

= � ↵(e�
i

(t)� '
i

(t))� �
X

l2Li

f
l

('(t)),

@V

@�
l

= ↵
X

i2P

⇤
l

(

e�
i

(t)� '
i

(t)),

where P ⇤
l

✓ P
l

is set of VM-flows bottlenecked on link l, i.e.,
e�
i

(t) = lnw
i

+

e�
l

(t). Then we can derive the differential of
V on time variable t.
dV

dt
=

X

i2N

@V

@'
i

d'
i

dt
+

X

l2M0

@V

@�
l

d�
l

dt

=

X

i2N

✓

� ↵(e�
i

� '
i

)� �
X

l2Li

f
l

(')

◆

(↵(e�
i

� '
i

))

+

X

l2M0

↵�f
l

(')
X

i2P

⇤
l

(

e�
i

� '
i

)

= �N↵2

(

e�
i

(t)� '
i

(t))2.

Note that '0
i

(t) = �0
i

(t) = 0 is the equilibrium of
the system in Eq. (8). The function V is positive and the
differential of V is negative except for the equilibrium. Hence,
function V is a Lyapunov-candidate-function of the system and
the equilibrium is proven to be locally asymptotically stable.

Insight: For VM-flows with given initial rates (> 0), they
will converge to an equilibrium under the control of our model.
The convergence depends on neither the link bandwidth in
datacenters, nor the placement and communication patterns
of VMs. The rate control for each VM-flow is completely
independent, and can easily be scaled up via a distributed
implementation. The following discussion is based on the fact
that the system is asymptotically stable.

B. Achieving Efficiency and Fairness

Let A
l

=

P

i2Pl
v
i

be the aggregate rate of link l. Thus the
utilization of a physical link can be represented by u

l

=

Al
Cl

.
The link becomes a bottleneck when it reaches its maximum
utilization, which is u

l

= µ in our model. Eq. (5) indicates
that the bottleneck of a VM-flow is the set of physical links in
its path, whose rate factor is equal to the rate of this VM-flow.
Let L⇤

i

be the set of bottleneck links of VM-flow i, then we
have L⇤

i

= {l | v
i

= w
i

r
l

}.

Theorem 2. In a multiple-bottleneck topology where N VM-
flows share M links, if there exists a unique equilibrium, then
the rates of VM-flows allocated by the algorithm in Eq. (6)
achieve the weighted max-min fairness.

Proof: To decouple the weight from the rate for VM-
flows, we first define a normalized rate x

i

for each VM-flow,
such that v

i

= w
i

x
i

.

Suppose all rates of VM-flows have reached the equi-
librium, then there should exist at least one bottleneck in
the topology. Let L⇤

b

✓ M denote the non-empty subset of
bottleneck links, where L⇤

b

= {l | u
l

= µ}. Thus, all physical
links in L⇤

b

have reached the maximum utilization.

Since the rates of VM-flows are stable, each of them
should pass through at least one bottleneck link, and by setting
x0
i

(t) = 0, we obtain the equilibrium rate of VM-flow i as
x
i

= min

l2Li rl(t). Consider a bottleneck link l 2 L⇤
b

. Let
P ⇤
l

✓ P
l

be the subset of VM-flows that has a bottleneck link
l, thus

P ⇤
l

= {i | x
i

(t) = r
l

(t), L
i

\ P
l

6= ?}. (9)

It means that such VM-flows not only pass through link l, but
have a rate x

i

equal to r
l

.

For any bottleneck link l 2 L⇤
b

, if there exists a path j 2
P
l

�P ⇤
l

6= ?, whose bottleneck links do not consist of this link,
thus l /2 L⇤

j

. There must be another bottleneck link k 2 L⇤
j

,
such that x

j

= r
k

. Since r
k

is the minimum rate factor on link
j, we have r

k

 r
m

for any other link m 2 L
j

along its path.
Meanwhile, as link l is not the bottleneck of VM-flow j, the
rate factor should satisfy r

k

6= r
l

. Hence, we have x
j

< x
i

,
which means that the VM-flows which are bottlenecked on
link l must have the same maximum rate among all VM-flows
across link l.

If we attempt to increase the rate of a VM-flow, we should
decrease the rates of other VM-flows across its bottleneck
link. However, this happens if and only if we decrease the
rates of other VM-flows whose rates are equal to or less than
this flow, which is exactly the definition of max-min fairness.
In addition, if we organize the rates of all VM-flows in an
increasing order { er

1

, er
2

, . . . , er
n

}, we can remove the VM-
flows with the lowest rates from the network and reduce the
capacity of their corresponding links by the sum of these rates.
The process can be repeated until there is no link/flow left.
Hence, the normalized rates of VM-flows solve a hierarchy
of optimization problems within each of them the minimal
allocation is maximized, which is exactly the definition of
max-min fairness. Finally, we conclude that the rate allocation
v
i

= w
i

x
i

is weighted max-min fairness.

Insight: Our model can fully allocate the bandwidth of
a bottleneck link to the VM-flows across it. This allocation
result is a proportional sharing among VM-flows according
to their weights. It indicates that the model meets the static
requirements of work-conserving and network proportionality
[5] in datacenter networks . For bandwidth guarantee, we will
introduce a threshold based method in Sec. IV.

C. Rate of Convergence

Convergence to efficiency: We first propose a function to
quantify the network utilization.

Definition 1. Given a constant � 2 (0, 1]. When n VM-flows
are sharing a single bottleneck link l, the resource allocation
is called � efficiency if there exists time t

�

, for t > t
�

h(t) =

P

n

i=1

v
i

(t)

µC
l

� �. (10)

Let t = 0 be the start time where v
i

(0) = v
0

⌧ µC
l

(v
0

is
much less than µC

l

), and the minimum t
�

when the system
converges to � efficiency is called the time of convergence to
efficiency, thus h(T

�

) = �.

The efficiency definition describes the utilization of the
congested link when the system converges to the equilibrium.

To qualify the time of convergence to efficiency, we consider
a scenario where n homogeneous VM-flows are sharing the
same bottleneck link with C

l

capacity. Since we aim at solving
the upper bound of the convergence time, two cases should be
considered, for v and r, respectively.

In the first case, we qualify the time for each VM-flow
to converge to a constant feedback r = µC

l

/n (the value in
equilibrium) for each VM-flow. Let t

v

denote the convergence
time of v

i

(t). Hence, the differential equation of v
i

(t) can be
derived as

v0
i

(t) = ↵v
i

(t)(ln er
i

(t)� ln v
i

(t)) (11)

where er
i

(t) = µC
l

/n � v
0

. Obviously, v
i

(t) is monotone
increasing. With Definition 1, we have v

i

(t
v

) = �µC
l

/n when
the system converges to � efficiency. Given the initial and
convergent point, the convergence time t

v

can be solved as

t
v

=

1

↵
ln

ln (nv
0

/µC
l

)

ln�
. (12)

In the second case, we assume that the rate of each VM-
flow v

i

(t) is equal to the feedback r
l

(t) along its path. Let
t
r

denote the convergence time of r
l

(t) and the differential of
r
l

(t) can be derived as

r0
l

(t) = �r
l

(t)

✓

1�
P

i2Pl
v
i

(t)

µC
l

◆

, (13)

where v
i

(t) = r
l

(t). Similarly, r
l

(t) is monotone increasing.
With the initial and convergent values of r

l

(t), we obtain the
convergence time t

r

, such that

t
r

=

1

�
ln

✓

(

µC
l

nv
0

� 1)

�

1� �

◆

. (14)

Finally, we can derive the upper bound of the time of
convergence to � efficiency.

Proposition 1. Given n VM-flows across the same bottleneck
link, the time of convergence to � efficiency satisfies:

T
�

< t
r

+ t
v

, (15)

where t
v

and t
r

is given by Eq. (12) and Eq. (14), respectively.

Convergence to fairness: We start with defining a fairness
function.

Definition 2. Given a constant ⇢ 2 (0, 1], when n VM-flows
are sharing a single bottleneck l, the resource allocation is
called ⇢ fairness if there exists time t

⇢

, for t > t
⇢

g(t) =
x
j

(t)

x
k

(t)
� ⇢, (16)

where x
j

(t) = (min

n

i=1

v
i

)/w
j

and x
k

(t) = (max

n

i=1

v
i

)/w
k

.
Let t = 0 be the start time where v

i

(0) = µC
l

/n, and the
minimum time t

⇢

that the system converges to ⇢ efficiency, is
called the time of convergence to fairness, thus g(T

⇢

) = ⇢.

The fairness definition describes the gap between the
maximum and minimum normalized rates. To obtain the time
of convergence to fairness, we assume that the rates of n
homogeneous VM-flows have reached the equilibrium at the
shared bottleneck with C

l

capacity before another VM-flow

v
j

joins in. The new VM-flow has an initial rate such that
v
j

(0) = v
0

⌧ µC
l

. Hence, the fairness function g(t) has
an initial value g(0) = nv

0

/µC
l

⌧ 1, which indicates that
the system deviates from fairness after v

j

joins in. Since
g(t) = v

j

(t)/v
i

(t) (based on Definition 2), the derivative of
g(t) can be derived as

g0(t) = �↵g(t) ln g(t). (17)

Thus g(t) is monotone increasing as g(t) 1. Formally, Eq.
(17) can be derived as (ln ln g(t))0 = �↵. With the initial
and the convergence value of g(t), we can solve Eq. (17) and
obtain the time of convergence to fairness.

Proposition 2. Given n VM-flows across the same bottleneck
link at a stable state, the time of convergence to ⇢ fairness
with a new VM-flow satisfies the following equation

T
⇢

=

1

↵
ln

ln (nv
0

/µC
l

)

ln ⇢
. (18)

Insight: Definition 1 and 2 correspond to two common
scenarios in datacenters: the utilization of a link suddenly
peaks with the arrival of many flows, and a highly utilized
link becomes congested as a new flow joins in. The burstiness
of traffic and the short inter-arrival time of flows (average at
15ms [6]) require swift response of the rate control. Our model
has O(log log n) convergence time on the accuracy factors �
and ⇢, for both convergence to efficiency and fairness. Hence,
it is suitable for datacenter traffic.

D. Steady State Characteristics

The performance of the system in the neighborhood of
steady state is characterized in this section. Similar to Sec. III,
we consider an equilibrium where n VM-flows are sharing a
single bottleneck l.

In the control theory, a nonlinear system can be considered
linear about the equilibrium for small changes �v and �r [15].
By using the state space approach (Sec. 2.3 in [15]), we can
obtain a linear approximation of the system in Eq. (6), which
can be further analyzed by Laplace transform.

Let v(t) denote the rate vector of VM-flows, thus v(t) =
[v

1

(t), v
2

(t), . . . , v
n

(t)], and r(t) be the rate factor of the
bottleneck link. Based on Eq. (6), we define F

i

(v, r)(i =

1, 2, . . . , n) and H(v, r) as the functions of v(t) and r(t):

F
i

(v, r) = ↵v
i

(t)(lnw
i

r(t)� ln v
i

(t)),

H(v, r) = �r(t)(1�
P

i2Pl
v
i

(t)

µC
l

).
(19)

Suppose O(v⇤, r⇤) is the operating point, where v⇤
i

= w
i

r⇤

and r⇤ = µC/
P

n

i=1

w
i

. Let �v
i

= v
i

� v⇤
i

and �r = r � r⇤

be the small changes of state. The linear differential equations
for �v

i

and �r should satisfy:

�v̇
i

=

n

X

j=1

✓

@F
i

@v
j

�

�

�

�

(v⇤
,r

⇤
)

�v
j

◆

+

@F
i

@r

�

�

�

�

(v⇤
,r

⇤
)

�r, (20)

�ṙ =

n

X

j=1

✓

@H

@v
j

�

�

�

�

(v⇤
,r

⇤
)

�v
j

◆

+

@H

@r

�

�

�

�

(v⇤
,r

⇤
)

�r. (21)

By solving the partial differential in the above equations at
point O, we can obtain

@F
i

@v
j

�

�

�

�

(v⇤
,r

⇤
)

=

⇢

0, i 6= j

� ↵, i = j
,
@F

i

@r

�

�

�

�

(v⇤
,r

⇤
)

= ↵w
i

,

@H

@v
j

�

�

�

�

(v⇤
,r

⇤
)

=

�
P

n

j=1

w
j

,
@H

@r

�

�

�

�

(v⇤
,r

⇤
)

= 0.

Thus, the linear system can be derived as
8

>

<

>

:

�v̇
i

= �↵�v
i

+ ↵w
i

�r, i 2 N,

�ṙ = �
n

X

i=1

�v
i

P

n

j=1

w
j

.
(22)

Note that in the neighbourhood of O, each rate �v
i

can
be denoted as �v

i

= w
i

�v, where �v belongs to the same
domain with �v

i

. By replacing v
i

with w
i

�v in Eq. (22), we
find that all the equations for �v̇

i

can be derived as a group
of linearly dependent equations. Hence, the linear system can
be simplified as

⇢

�v̇ = �↵�v + ↵�r,

�ṙ = ��v.
(23)

By using the Laplace transform for the system, the open
loop transfer function can be obtained as follows

G(s) =
�

s
· ↵

s+ ↵
, (24)

which is a second-order system. Fig. 5 shows the block
diagram of closed loop system, and the damping ratio can
be derived as ⇣ =

1

2

p

↵/�.

To solve the relationship between ↵ and �, we first consider
the stability of the system. Note that when s = j!, the phase
satisfies

\G(j!) = �⇡ + arctan

↵

!
✓ (�⇡,�⇡

2

), (25)

thus the system is natively stable. We then consider the
response of the system (Sec. 5.3 in [15]): (i) the swiftness
of response, and (ii) the closeness of the response to the
desired response. Generally, ⇣ is set as a value from 0.5 to
1. As ⇣ decreases, the system becomes more swift while the
overshoot of rate becomes larger. Since they are contradictory
requirements, a compromise must be obtained.

Insight: The characteristics of steady state imply the
situation where steady long flows suffer interferences from
large numbers of short flows, congestions, inaccurate rate
enforcement, etc. When small changes occur in the system, we
want the rate to swiftly respond to the changes and converge to
another equilibrium. However, this will increase the overshoot
of rate, and cause strenuous variation to the rate of VM-flow.
To smooth the overshoot as well as to maintain the ability of
quick recovery, we use ⇣ = 0.5, thus ↵ = �.

IV. ALGORITHMS DESIGN IN DATACENTERS

Let us now map our theory to a practical algorithm that
can be implemented in datacenter networks.

Δv(t)

Δr(t)

-
α

s + α

β�

s

(a) Block diagram of closed loop.

���

�

��

0
DJ
QL
WX
GH
��G
%�

���� ��� ��� ���
����

���

3K
DV
H�
�G
HJ
�

%RGH�'LDJUDP

)UHTXHQF\���UDG�V�

(b) Bode diagram (↵ = 2, � = 1).

Fig. 5. The block diagram and the Bode diagram of closed loop for second-
order system.

A. Discretization on Time Series

As shown by the design goal in Sec. II, the rate control for
each VM-pair is distributed and suitable for execution in VMs.
The main issue is how to discretize the continuous functions
into equivalent approximate recursions.

We use ⌧
v

and ⌧
r

as the time interval to update v(t) and
r(t), respectively. This way, the time variables can be denoted
as k⌧

v

and k⌧
r

, where k 2 {0, 1, 2, . . .} is the update rounds.
For brevity, we use v(k) and r(k) to represent v(k⌧

v

) and
r(k⌧

r

). The continuous functions are then transformed into
time-discrete functions. The approximation can be derived as:

d ln v(t)

dt
⇡ ln v(k + 1)� ln v(k)

⌧
v

, (26)

and the same is true for r(t).

Substituting Eq. (26) into Eq. (6) and replacing the time
continuous functions with v(k) and r(k) yield recursion
{v(k)} and {r(k)} as

8

>

<

>

:

v(k + 1) = v(k)1�↵⌧v
�

w
i

r(ek
r

)

�

↵⌧v ,

r(k + 1) = r(k) exp

✓

�⌧
r

(1�
P

v(ek
v

)

µC
)

◆

.
(27)

Since the updates of v(k) and r(k) are asynchronous,
each with their respective cycles, we use ek

r

to represent the
corresponding rate factor when controlling the rates of VM-
flows. Similarly, ek

v

is the exact rate that can be measured by
a switch. Considering the delay ⌧

d

of receiving rate factors for
a VM-flow, we have ek

r

= bk⌧v�⌧d
⌧r

c and ek
v

= bk⌧r
⌧v

c.

In fact, in the implementation, v(ek
v

) and r(ek
r

) can be
obtained without the knowledge of ek

v

and ek
r

. The VM’s rate
controller can use the latest received rate factor, and the switch
only needs to count the throughput on each link.

B. Algorithm Design

On providing bandwidth guarantees for VM-flows, we set
the bandwidth guarantee as a lower bound for the rate limit of
each VM-flow. Specifically, when the rates of VM-flows in the
recursions (Eq. (27)) are lower than the bandwidth guarantees,
their rate limits will still be the guaranteed bandwidth. Thus,
the rate limit is represented as

vmax

i

= max{B
i

, v
i

(k)}. (28)

Algorithm 1 Update bandwidth guarantees on VM x

Input: Set of connected VMs: V = ?
Sum of weights for VMs in V: S = 0

VM’s bandwidth guarantee and weight: (B, w)
Output: Bandwidth guarantees for VM-flows on x: B

x!i

1: function UpdateGuarantee(weight w)
2: for i 2 V do
3: B

x!i

= B
x

wi
S

4: end for
5: end function
6: function OnEstablishConnection(VM i)
7: V = V [i
8: S = S + w

i

9: UpdateGuarantee(w)
10: end function
11: function OnCloseConnection(VM i)
12: V = V� i
13: S = S � w

i

14: UpdateGuarantee(w)
15: end function

Note that if the VM-flow’s traffic demand is larger than the
bandwidth guarantee, it will at least be ensured with the guar-
anteed bandwidth. If the VM-flow’s traffic demand is lower
than the bandwidth guarantee, the underutilized guarantee will
be shared among VM-flows whose traffic demands exceed
the guarantees. This way, the algorithm provides bandwidth
guarantees for VMs, and maintains work-conserving.

The design of the Logistic based Rate Controller (LRC)
consists of two major parts:

Bandwidth guarantee assignment. In datacenters, not
only the allocated rate but also bandwidth guarantees for VM-
flows can be variable. When a VM establishes a connection to
another VM, or closes the connection to a VM, the bandwidth
guarantees of VM-flows should be updated. The algorithm for
updating bandwidth guarantees is shown in Algorithm 1. The
bandwidth guarantee for VM-flow x ! i is updated in function
UpdateGuarantee. The update is triggered by two events: (i)
connect to a new VM, (ii) disconnect from a VM. Specifically,
when VM x establishes connections to VM i which has no
connection with x, the OnEstablishConnection function will
be called and i is then added to the set of connecting VMs.
In the end, the algorithm updates the bandwidth guarantees
for all VM-flows on VM x. The OnCloseConnection function,
which is called when VM x closes the connection to a VM,
has a similar process.

Rate control. According to Eq. (28), the rate control for
each VM-flow relies on the output (bandwidth guarantee) of
Algorithm 1 and the distributed recursions in Eq. (27). The
update for rate of VM-flow x ! i can be accomplished in a
cooperative manner as shown in Algorithm 2. On one hand, the
receiver (VM i) periodically sends a trace packet to the sender
(VM x), with a time interval ⌧

v

. The switch updates the link
factors with the measured aggregate rate based on Eq. (27)
every ⌧

r

. On the other hand, after receiving a trace packet, the
switch will update the rate factor if the packet passes through
a link with a lower rate factor. This way, when the packet
arrives at the sender, the rate factor will be the smallest one
along its path. For the sender, the OnReceivePkt function will

Algorithm 2 Rate control for VM-flow x ! i

Input: Parameter settings: ↵, �, ⌧
v

, ⌧
r

, µ
Bandwidth guarantee for VM-flow x ! i: B

x!i

Output: Rate limit on VM-flow: v
x!i

1: function OnReceivePkt(Packet pkt, receiver i)
2: v

x!i

= v1�↵⌧v
x!i

⇤ (w
x!i

⇤ pkt.r)↵⌧v
3: v

max

= max {B
x!i

, v
i

(k)}
4: Set rate limit v

max

to VM-flow x ! i
5: end function //sender
6: function Feedback(time ⌧

v

, sender x)
7: Sleep for ⌧

v

8: Feedback Packet pkt to sender x
9: end function //receiver

10: function UpdateLinkFactor(time ⌧
r

, link l)
11: Sleep for ⌧

r

12: Get aggregate rate V
l

for link l

13: r
l

= r
l

⇤ exp
n

�⌧
r

(1� Vl
µCl

)

o

14: end function //switch
15: function UpdatePacket(Packet pkt, link l)
16: if r

l

< pkt.r then
17: pkt.r = r

l

18: end if
19: Send packet out
20: end function //switch

be called each time it receives a trace packet. The function
updates the rate of VM-flow, and enforces the rate limit to
VM-flow x ! i. Note that the algorithm involves operations
in switches. However, as hardwares in datacenter are highly
customized and the operation is simple (a switch only needs
to attach the same information to few control messages), it can
be easily achieved.

C. Parameters and Tradeoffs

In this section, we discuss how to balance the tradeoffs in
implementation with the parameters.

VM parameters, B and w. These two parameters deter-
mine the bandwidth allocation result for each VM-pair. By
tuning the guaranteed bandwidths and weights, cloud providers
are able to flexibly balance the tradeoff between bandwidth
guarantee and proportional sharing.

Time parameters, ⌧
v

and ⌧
r

. The time parameters are used
to control the frequency of updating the rate of VM-flows
and rate factor of links. One can improve the precision of
bandwidth allocation by using very small ⌧

v

and ⌧
r

, however
such improvement will certainly bring about large overhead to
the servers and networks. As our algorithm has an exponential
order of convergence speed, the interval of updating rate can
be larger than the TCP RTT in datacenters, which has an order
of magnitude of 1ms. In datacenters, the inter-arrivals of 70%
TCP flows from/to servers are periodic at about 15ms [6]. To
keep pace with the variation caused by new flows, we choose
the same order of magnitude (tens of ms) to for ⌧

v

. For the
switches, we use a larger time period for ⌧

r

(hundreds of ms)
to reduce the overhead.

Convergence parameters, ↵ and �. The convergence
parameters have an effect on the rate of convergence. Ac-
cording to Proposition 1 and 2, the time of convergence

to fairness/efficiency is inversely proportional to ↵ and �.
However, whereas increasing ↵ and � can significantly reduce
the convergence time, it will also cause a large overshoot when
the rate approaches the equilibrium. In the simulations, we find
that there exists a tradeoff between the convergence speed and
the smoothness of VM-flow’s rate. The principle of choosing
the numerical values for ↵ and � is to use the maximum value
while keeping the overshoot under an acceptable ratio, in case
of fluctuations. In our evaluations, we use ↵ = � = 2s�1.

V. PERFORMANCE EVALUATION

We aim at answering two questions in the evaluations: (i)
Whether LRC can achieve the basic requirements as specified
in Sec. I? (ii) How does LRC perform under dynamic traffic
comparing with other rate control algorithms?

A. Achieving the Basic Requirements

To validate that LRC can achieve the basic requirements
in datacenter networks, we implement an OpenFlow based
prototype for LRC. The prototype updates the rate factors in
an OpenFlow controller, and uses Traffic Control (TC) tool to
limit the rate of each VM-flow in a Linux based OS.

The experiments focus on the bandwidth allocation on a
bottleneck link, where VM X and Y compete for the limited
bandwidth (like Fig. 3). In our testbed, the link capacity is
1Gbps, and the observed throughput can maximumly reach
at about 900Mbps. Hence, we set µC = 900. For time
parameters, we use ⌧

r

= 100ms and ⌧
v

= 50ms. For ↵ and �,
we both use 2s�1. The experiments can be divided into three
groups, each targeting at one aspect of the requirements.

Bandwidth guarantee: In this experiment, X and Y ,
both with 450Mbps bandwidth guarantee, are sending data to
different remote VMs which have the same guarantee. Fig. 6
plots the throughput of X while increasing the number of TCP
flows of Y . With no guarantee, the throughput of X decreases
sharply since Y has more flows than X . With LRC, the rate
of X stays around 450Mbps irrespective of the flow-level
competition. This indicates that the traffic of Y is rate limited,
and LRC can provide application layer bandwidth guarantees
for VMs by limiting other aggressive VM-flows.

Work-conserving: As LRC guarantees bandwidth for
VMs, another question is whether LRC will share the spare
bandwidth from underutilized guarantees among unsatisfied
VM-flows. The results are shown in Fig. 7. In this example,
X with one TCP flow competes with TCP/UDP background
traffic of Y . Both X and Y have 450Mbps guarantees, and we
plot the throughput of X with an increasing traffic of Y from
0 to 900Mbps. As Fig. 7 shows, when the rate of Y is below
450Mpbs, the rate limit of X is above 450Mbps. The total
throughput on the link, which is around 900Mbps, indicates
that X utilizes the spared bandwidth and the allocation is
work-conserving. Note that X’s throughput maintains at about
450Mbps. It validates that LRC guarantees the bandwidth of
X in spite of the interference of TCP/UDP background traffic.

Proportional share: We assign weights to VMs such that
the weight ratio of X’s VM-flow to Y ’s VM-flow varies from
1 : 2 to 1 : 8. Table I presents the throughputs of VM X
and Y . When the weights of VM-flows are close to each other

0 1 20 40 80
0

200

400

600

800

1000

Number of TCP flows in Y

T
h

ro
u

g
h

p
u

t
o

f
X

 (
M

b
p

s)

No guarantee
LRC

Fig. 6. Throughput of X
(450Mbps guarantee) with different
number of TCP flows of Y .

0 300 600 900
0

200

400

600

800

1000

Background traffic (Mbps)

T
h

ro
u

g
h

p
u

t
o

f
X

 (
M

b
p

s)

TCP(X)
UDP(X)
TCP(X+Y)

Fig. 7. Throughput of X with
increasing throughput of Y (both
450Mbps guarantees).

TABLE I. Rate of X and Y with different weight ratios

Weight of w
X

: w
Y

1:1 1:2 1:4 1:8
Throughput of X (Mbps) 441.0 306.9 190.5 112.9
Throughput of Y (Mbps) 444.1 580.2 687.9 747.9
Ratio of v

X

: v
Y

1:1.01 1:1.89 1:3.61 1:6.62

(weight ratio < 2), the rates are proportional to their respective
weights. However, the ratio of rates deviates from the weight
ratio, when the latter (w

X

: w
Y

) grows larger. We trace the
logs of received rate factors, and find that the cause is in the
measurement error of link throughput in our testbed. The error
brought by the received rate factor is non-uniformly magnified
by the weights.

B. Performance on Dynamic Requirements

To precisely qualify the dynamic of rate limit in bandwidth
allocation process, we simulate the algorithms and record the
rates of VM-flows within each iteration. We compare LRC
with a typical TCP-like rate control algorithm presented in
[11], which is based on TPC-CUBIC [16]. Since [11] uses
bandwidth guarantees as the weights of VMs, we decouple
the guarantee from the weight so as to compare it with LRC.
In the simulations, the link capacity is set as 900Mbps, and
the rate allocation period is the same for TCP-like algorithm
and LRC, both at 15ms. Particularly, we set ↵ = � = 2s�1,
⌧
r

= 100ms, ⌧
v

= 50ms, similar to the experimental settings.

Convergence and congestions: Firstly, we characterize the
convergence process under congestions on a single bottleneck.

In the first case, VM X has a guarantee of 600Mbps. When
t = 15s, a VM-flow (no guarantee) from Y joins in. Fig. 8
shows the dynamic of rate limit from 0 to 30s. Both LRC
and the TCP-like algorithms have fast convergence speed to
high utilization (4s) and fairness (3s). LRC is smooth during
the whole period. However, in the TCP-like algorithm, when
the VM-flow from Y joins in, the rate limit for X becomes
fluctuating until it gets below the guarantee, and the rate
limit for Y keeps fluctuating. The fluctuation leads to frequent
changes of the rate-limit on underlying TCP flows, and may
deteriorate the performance of the transport layer.

In the second case, both X and Y have no guarantees
and the weight ratio w

X

:w
Y

is set as 1:2 (the same on the
receiver). As Fig. 9 shows, LRC has a similar behavior as the
previous simulation — fast convergence and smooth rate limit.
However, the TCP-like algorithm not only becomes fluctuating
when Y joins in, but also has an rate ratio (2.8:1).

0 10 20 30
0

200

400

600

800

1000

Time (second)

R
a
te

−
lim

it
(M

b
p
s)

V
x

max V
y

max V
x

(a) TCP-like

0 10 20 30
0

200

400

600

800

1000

Time (second)

R
a
te

−
lim

it
(M

b
p
s)

V
x V

y

max V
x

max

(b) LRC

Fig. 8. Rate-limit of VMs with B
X

= 600Mbps, B
Y

= 0 and the same
weight. (vmax

X

= max{v
X

, B
X

} and v
X

is the rate-limit of the algorithms)

0 10 20 30
0

200

400

600

800

1000

Time (second)

R
a
te

−
lim

it
(M

b
p
s)

V
x

V
y

(a) TCP-like

0 10 20 30
0

200

400

600

800

1000

Time (second)

R
a
te

−
lim

it
(M

b
p
s)

V
x

V
x

(b) LRC

Fig. 9. Rate-limit of VMs with w
X

: w
Y

= 1 : 2 and no guarantees. (v
X

and v
Y

are the calculated rate-limits of the algorithms)

One may question why the rate-limit in the TCP-like
algorithm becomes more fluctuating when Y joins in. The
reason is that TCP-like algorithms use multiplicative decrease
when congestion occurs. In addition, in [11], the increment
of rate has an inverse correlation with the rate (the authors
call it as rate-caution). As a result, the VM-flow with small
rate using rate-caution will be more aggressive than that using
the original TPC-CUBIC protocol, thus fluctuations are more
frequent when Y joins in. On the contrary, our algorithm
applies a smooth rate limit to VMs, and will not decline the
rate of TCP flows.

Frequent short flows: In this simulation, we evaluate
the algorithms under frequent short flows. We consider the
situation where VM X is sending long flows with a guarantee
of 450Mbps, and has fully utilized the bottleneck link. We
generate two groups of short flows randomly, one group with 5

flows/s, the other with 20 flows/s. The short flows pass through
the bottleneck link of X from 15

ths to 60

ths. We test LRC and
the TCP-like algorithm, each with 5 flows/s and 15 flows/s.
Fig. 10 shows the rate limit of X . The TCP-like algorithm
suffers severe drops in rate limit. As the average speed of short
flows is very low (17.4Mbps for 5 flows/s and 66.2Mbps for
20 flows/s), the network bandwidth is wasted since the TCP-
like algorithm enforces fluctuant limitations for the VM-flows.
However, our algorithm is less sensitive to short flows. Even
with 20 flows per seconds, the rate limit can stay flat and the
decrement is about the average rate of all short flows. Such
observations validate that LRC has advantages over the TCP-
like algorithm under frequent short flows. Hence, we believe
LRC is more suitable for datacenter environment.

Performance with Mapreduce workloads: To verify the
performance of LRC under datacenter traffic, we simulate a
cluster with 600 servers, and run the Mapreduce workload
traces [7] collected from the same number of servers in

0 15 30 45 60
0

200

400

600

800

1000

Time (second)

R
a
te

−
lim

it
(M

b
p
s)

TCP−like LRC

(a) 5 short flows per sec.

0 15 30 45 60
0

200

400

600

800

1000

Time (second)

R
a
te

−
lim

it
(M

b
p
s)

TCP−like LRC

(b) 20 short flows per sec.

Fig. 10. Rate-limit of X (450Mbps guarantee) with arrival of short flows at
15

ths: 5 flows/s at average 17.4Mbps and 20 flows/s at average 66.2Mbps.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time (second)

F
ra

ct
io

n
 o

f
jo

b
s

LRC
Reservation
No guarantee

(a) Full bisection bandwidth.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Time (second)

F
ra

ct
io

n
 o

f
jo

b
s

LRC
Reservation
No guarantee

(b) 4⇥ oversubscription.

Fig. 11. The CDF of shuffle time for LRC, reservation and best effort manner.

Facebook production datacenter. The workload used in our
simulation consists of up to 1000 jobs, with a maximum
shuffle size of 667.1GB and a minimum of 0. We consider
full bisection bandwidth and 4⇥ oversubscription network
topologies with 40 racks and 5 aggregate switches. In the
simulation, we compare LRC with static reservation and best-
effort (no guarantee) bandwidth sharing. Since each server
hosts 4 VMs and has 1Gbps bandwidth, the bandwidth guar-
antees for each VM in LRC and reservation policy are set as
250Mbps and 62.5Mbps, for full bisection bandwidth and 4⇥
oversubscription, respectively.

Fig. 11 shows the CDF of shuffling time. With equal
bandwidth guarantee, LRC’s shuffle times are the same as
the shuffle times in the reservation policy for small jobs. For
large jobs, the shuffle phase in LRC is faster than that in the
reservation policy and the speedup is more obvious in 4⇥
oversubscription. This fits in with our expectation, since LRC
ensures a lower bound bandwidth equivalent to the reserved
bandwidth, and utilizes the spared bandwidth at the same time.
In comparison with the best effort manner, LRC is faster for
small jobs and a bit behind for large jobs. The reason is that
when the rate of shuffle is less than the guaranteed bandwidth,
LRC can guarantee the rate, whereas in the best effort manner,
it needs to compete with the flows of other shuffle phase. This
shows the effectiveness of bandwidth guarantees for small jobs
in LRC. The drawback of LRC for large jobs comes from that
LRC makes the underlying TCP flows less aggressive when the
rate approaches the maximum. However, LRC still achieves
96% performance of the best effort manner, which validates
the high network utilization of LRC.

VI. RELATED WORK

Towards achieving predictable network performance for
cloud applications, researchers have proposed numbers of
approaches to share bandwidth in datacenter networks. The

main ideas in these works are two fold: The first idea focuses
on VM allocation in datacenters, such as [8], [9]. Oktopus [8]
uses VM placement to provide bandwidth guarantees. They
both enforce static rate limits to reserve bandwidth for VMs.
While these policies can provide predicable performance for
VMs, they ignore the dynamic feature of datacenter traffic,
thus they can hardly achieve high network utilization. Proteus
[9] proposes a time varying reservation policy based on the
bandwidth requirements of specific Mapreduce applications.
However, the solution is limited to a few application types.

The other idea for sharing datacenter network is to allocate
bandwidth for VMs after their placement by enforcing dynamic
rate limit. Faircloud [5] presents the basic bandwidth require-
ments of bandwidth allocation problem and proposes three
kinds of sharing policies. NetShare [17] achieves proportional
bandwidth sharing among different VMs by using weighted
fair queues. The policies in the above proposals need the
support of per-VM queue in switches for rate control. This
means they are hard to be scaled, due to the limited queues
supported by each port at switches. The configuration is also
complicated, as the communication patterns among VMs are
changing. [10]–[12] leverage end-based rate limit to achieve
work-conserving bandwidth allocation for VMs. Seawall [12]
and ElasticSwitch [11] use TCP-CUBIC based rate control,
and have fluctuations under bursty traffic when the rate limit
is beyond the guarantee. ElasticSwitch also needs to number
the packets for each destination in the switch, which is more
complicated than our solution. EyeQ [10] uses a variant of
RCP. EyeQ assumes a congestion free core and the rate control
algorithm only has a linear convergence speed. [13], [18]
develops a game theoretical allocation strategy that can flex-
ibly balance the guarantee-proportionality tradeoff. The main
drawback is its relying on precise traffic demand prediction.
Finally, [19] applies the Logistic model in congestion control
algorithms at the transport layer in the Internet, while our work
use it for rate limits of VMs.

VII. CONCLUSION

Traffic in data centers are highly dynamic and bursty due
to massive number of short flows. Previous work on band-
width allocation for datacenters are not appropriate since rate
limiting traffic is ineffective and causes system performance
degradation. We propose using the Logistic model under the
control theoretic framework, and present a practical distributed
bandwidth allocation algorithm. Unlike previous proposals,
our solution provides a stable and fast-convergent allocation
process, which meets the basic and dynamic requirements of
sharing datacenter networks. We demonstrate our algorithms in
the OpenFlow based implementation and show its effectiveness
in coping with traffic variability in datacenters, hence giving
public cloud providers an additional performance guarantee
features to users.

REFERENCES

[1] Amazon elastic compute cloud. [Online]. http://aws.amazon.com
[2] F. Xu, F. Liu, L. Liu, B. Li, and B. Li, “iaware: Making live migration

of virtual machines interference-aware in the cloud,” IEEE Transactions
on Computers (TC), 2013.

[3] F. Xu, F. Liu, H. Jin, C. Wu, X. Liu, and B. He, “Managing performance
overhead of virtual machines in cloud computing: A survey, state of art
and future directions,” Proceedings of the IEEE, 2013.

[4] Z. Zhou, F. Liu, H. Jin, B. Li, B. Li, and H. Jiang, “On arbitrating the
power-performance tradeoff in saas clouds,” in IEEE INFOCOM, 2013.

[5] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: Sharing the network in cloud computing,” in
ACM SIGCOMM, 2012.

[6] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
nature of data center traffic: measurements & analysis,” in ACM IMC,
2009.

[7] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing
in big data systems: a cross-industry study of mapreduce workloads,”
in VLDB, 2012.

[8] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in ACM SIGCOMM, 2011.

[9] D. Xie, N. Ding, Y. Hu, and R. Kompella, “The only constant is change:
incorporating time-varying network reservations in data centers,” in
ACM SIGCOMM, 2012.

[10] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, C. Kim, and
A. Greenberg, “Eyeq: practical network performance isolation at the
edge,” in USENIX NSDI, 2013.

[11] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos, “Elasticswitch: Practicalwork-conserving bandwidth guarantees
for cloud computing,” in ACM SIGCOMM, 2013.

[12] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing
the data center network,” in USENIX NSDI, 2011.

[13] J. Guo, F. Liu, D. Zeng, J. C. Lui, and H. Jin, “A cooperative game
based allocation for sharing data center networks,” in IEEE INFOCOM,
2013.

[14] J. D. Murray, Mathematical biology. springer, 2002.
[15] R. Dorf and R. H. Bishop, Modern Control Systems. Prentice-Hall,

2007.
[16] S. Ha, I. Rhee, and L. Xu, “Cubic: a new tcp-friendly high-speed tcp

variant,” ACM SIGOPS Operating Systems Review, 2008.
[17] T. Lam and G. Varghese, “Netshare: Virtualizing bandwidth within the

cloud,” UCSD, Tech. Rep., 2009.
[18] J. Guo, F. Liu, H. Tang, Y. Lian, H. Jin, and J. C. Lui, “Falloc: Fair

network bandwidth allocation in iaas datacenters via a bargaining game
approach,” in IEEE ICNP, 2013.

[19] X. Huang, C. Lin, F. Ren, G. Yang, P. D. Ungsunan, and Y. Wang, “Im-
proving the convergence and stability of congestion control algorithm,”
in IEEE ICNP, 2007.

http://aws.amazon.com

