
A Control-Theoretic and Online Learning Approach
to Self-Tuning Queue Management

Jiancheng Ye∗, Kechao Cai†, Dong Lin∗, Jiarong Li‡, Jianfei He§, and John C.S. Lui¶
∗Network Technology Lab and Hong Kong Research Center, Huawei Technologies Co., Ltd.
†School of Electronics and Communication Engineering, Sun Yat-Sen University, China

‡Department of Electrical Engineering, Tsinghua University, China
§Department of Computer Science, The City University of Hong Kong

¶Department of Computer Science and Engineering, The Chinese University of Hong Kong
Email: {yejiancheng, lindong10}@huawei.com, caikch3@mail.sysu.edu.cn, jr-li16@tsinghua.org.cn,

jianfeihe2-c@my.cityu.edu.hk, cslui@cse.cuhk.edu.hk

Abstract—There is a growing trend that network applications
not only require higher throughput, but also impose stricter
delay requirements. The current Internet congestion control,
which is driven by active queue management (AQM) algorithms
interacting with the Transmission Control Protocol (TCP), has
been playing an important role in supporting network appli-
cations. However, it still exhibits many open issues. Most of
AQM algorithms only deploy a single-queue structure that cannot
differentiate flows and easily leads to unfairness. Moreover, the
parameter settings of AQM are often static, making them difficult
to adapt to the dynamic network environments. In this paper,
we propose a general framework for designing “self-tuning”
queue management (SQM), which is adaptive to the changing
environments and provides fair congestion control among flows.
We first present a general architecture of SQM with fair queueing
and propose a general fluid model to analyze it. To adapt to
the stochastic environments, we formulate a stochastic network
utility maximization (SNUM) problem, and utilize online convex
optimization (OCO) and control theory to develop a distributed
SQM algorithm which can self-tune different queue weights
and control parameters. Numerical and packet-level simulation
results show that our SQM algorithm significantly improves
queueing delay and fairness among flows.

I. INTRODUCTION

There has been a growing trend that network applications
such as augmented reality (AR), virtual reality (VR), and
interactive gaming require higher throughput, while impos-
ing stricter end-to-end delay requirements. However, it is
challenging to simultaneously satisfy these two requirements.
When network flows with large size (i.e., elephant flows)
compete with each other for limited link bandwidths, network
congestion usually occurs, leading to increasing queueing
delay and reduced network throughput due to packet loss.
Thus, congestion control is crucial for the performance of
network applications. In the Internet, the Transmission Control
Protocol (TCP) primarily interacts with active queue manage-
ment (AQM) algorithms to achieve congestion control [1].

Although research on congestion control driven by TCP
and AQM has been active for more than two decades, there
still exist many open and fundamental issues. Specifically, as
the key to addressing the bufferbloat problem [2], the current

AQM policies have the following issues. Firstly, existing
AQM algorithms (such as RED [3], CoDel [4], and PIE [5])
mostly deploy a single queue in the router buffer such that
all arriving packets from different flows have to share this
single queue’s resource. However, a single queue generally
cannot differentiate flows and protect conservative flows from
being affected by aggressive ones, which in turn leads to
unfairness. For example, [6] showed that a FAST TCP [7]
flow may acquire much larger portion of link bandwidth than
a TCP Reno [8] flow if they share the same bottleneck link.
SFQ-CoDel [9] uses multiple queues for monitoring different
flows, but each queue is simply managed by the original
CoDel algorithm which may have stability issues when using
the fixed default parameter settings [10]. Secondly, a large
number of existing works on AQM just analyzed a single-
bottleneck network topology. There are only few related works
that investigate more general multi-bottleneck scenarios, such
as [11] and [12]. Thus, it is important to develop a general
model and conduct detailed analysis for AQM algorithms man-
aging multiple queues in multi-bottleneck networks. Thirdly,
the parameter settings of existing AQM algorithms are often
static, making them difficult to adapt to the dynamic network
environments, which may further lead to system instability
(see Section V-B). In fact, automating the parameter tuning of
AQM has been emphasized by the Internet engineering task
force (IETF) in RFC 7567 [13], but it is still an open problem.

To address the aforementioned issues and facilitate adaptive
and fair congestion control, we first propose a general archi-
tecture of a “self-tuning” queue management (SQM) scheme.
SQM maps elephant TCP flows to different queues, each of
which is managed by an independent AQM algorithm with
self-tuning capabilities. Scheduling across different queues can
be performed by the weighted fair queueing (WFQ) [14] or
deficit round robin (DRR) [15] with tunable queue weights.
We then propose a general fluid model to analyze the interac-
tions between TCP and SQM in a multi-bottleneck network.
In order to adapt to the dynamic network environments, we
further formulate a stochastic network utility maximization
(SNUM) problem for the TCP/SQM system, and apply online
convex optimization (OCO) [16] techniques to tackle it. Based978-1-6654-6824-4/22/$31.00 c©2022 IEEE

on the solution to the SNUM and the stability analysis of the
TCP/SQM system, we develop a novel SQM algorithm which
can dynamically self-tune different queue weights and control
parameters in a distributed manner.

Contributions: In this paper, we propose a general frame-
work to design and analyze SQM schemes, which can facilitate
adaptive and fair congestion control on the Internet so as to
improve queueing delay and fairness among flows. To fill the
aforementioned gaps, we make the following contributions:
• We first present a general architecture of SQM equipped

with adaptive fair queueing so as to dynamically regulate
different flows. We then propose a general fluid model to
describe the interactions between TCP flows and SQM in
a general network setting with multiple bottleneck routers
and multiple queues in each router.

• We conduct equilibrium and stability analysis for the
general TCP/SQM system. Specifically, we derive suf-
ficient conditions for the existence and uniqueness of an
equilibrium point in the system. Furthermore, we derive
sufficient conditions for the local asymptotic stability of
each SQM subsystem with feedback delays.

• To capture the dynamic nature of the network environ-
ments, we formulate a SNUM problem for the TCP/SQM
system. The SNUM extends the classic (static) NUM [17]
to stochastic environments. We then apply OCO tech-
niques and develop an online gradient descent (OGD)-
based algorithm to solve the SNUM. Moreover, based
on the solution to the SNUM and the derived stability
conditions, we propose a distributed SQM algorithm
which can self-tune different queue weights and control
parameters. To the best of our knowledge, this is the first
work that applies OCO to the self-tuning of AQM.

• We perform both numerical and packet-level simulations,
which verify our analysis and show that our SQM algo-
rithm significantly improves queueing delay and fairness
among flows, compared to existing AQM algorithms.

The rest of the paper is organized as follows. Section II
presents a general architecture of SQM and a corresponding
general model for the TCP/SQM system. In Section III, we
conduct equilibrium and stability analysis for the TCP/SQM
system. Section IV first formulates a SNUM problem for the
TCP/SQM system and develops an OGD-based algorithm to
solve it, and then further proposes our SQM algorithm. In Sec-
tion V, we present both numerical and packet-level simulation
results. Finally, we conclude the paper in Section VI.

II. SYSTEM DESIGN AND MODEL

In this section, we propose a general architecture of SQM,
and develop a fluid model for a general TCP/SQM system.

A. General Architecture of SQM

A general architecture of SQM is depicted in Fig. 1. It
consists of a classifying & mapping component and a queue
management component. Due to space limitation, we focus
on the queue management component, while the classifying
& mapping component can utilize existing algorithms for

Fig. 1: A general architecture of a self-tuning queue manage-
ment (SQM) scheme, where the queue weights Qil and the
control parameters of an AQM algorithm managing a queue
can be tuned dynamically based on the network condition.

flow classification, such as ElephantTrap [18], HeavyKeeper
[19], and hashing. Since a single-queue structure commonly
used by existing AQM algorithms cannot differentiate flows
and provide differentiated management, SQM utilizes a multi-
queue structure where each queue serves a single flow and
is managed by an independent AQM algorithm. Scheduling
across different queues can be performed by WFQ [14] or
DRR [15], according to the queue weights. Due to the dynamic
nature of network environments, an AQM algorithm with fixed
parameter settings cannot effectively adapt to the changing
environments. Therefore, SQM enables self-tuning for both the
control parameters of the AQM algorithms managing different
queues and the queue weights in WFQ or DRR, so as to
improve the system stability and performance.

The specific procedures of SQM can be described as fol-
lows. When flows arrive at a SQM-enabled router, they will
first be classified and mapped to different queues based on
their properties. Note that SQM mainly aims to control and
manage long-lived TCP flows (i.e., elephant flows, especially
aggressive ones) since they occupy the majority of the network
traffic. Short-lived flows (i.e., mice flows) can be handled by a
reserved queue with a reserved output rate and default queue
management policy, say, drop-tail or CoDel. The classification
and mapping for different flows can be done by using existing
algorithms. If the number of classified flows exceeds the
maximum number of queues (supported by specific hardware)
denoted by (K + 1), only the top-K flows need to be mapped
to individual queues and the rest can be handled by the
aforementioned reserved queue. After the classification and
mapping, each queue can at most contain one elephant flow.
An independent self-tuning AQM algorithm is then used to
manage the packets for each queue. Finally, WFQ or DRR
with adaptive queue weights is utilized to perform scheduling
across different queues.

B. General Fluid Model for TCP/SQM System

In this subsection, we develop a general fluid model to
describe the interactions between long-lived TCP flows and
SQM routers in a general network setting. To be consistent
with our subsequent formulation of SNUM problem, the total
time under consideration is composed of a number of periods
indexed by an integer t, where t = 1, 2, ...,T . In a period t, we
use τ to denote a time instant within that period.

Let us formally define the fluid model which describes
the dynamics of a general TCP/SQM system in a period t.
Specifically, let Nt (τ) be the number of TCP flows at time τ
in period t and Lt be the number of bottleneck links in period t
in the network. Let At (i) be the set of bottleneck links that
flow i traverses in period t, and Bt (l) be the set of flows that
pass through link l in period t. The rate of TCP flow i at time τ
in period t is denoted by xi,t (τ). We use Ui,t (xi,t) to denote a
utility function for TCP flow i in terms of its rate in period t,
and choose the widely used α-fair utility function [20] defined
as follows (note that our model can be easily extended to a
weighted α-fair utility function):

Ui,t (xi,t) =

{
log xi,t, α = 1,
(1 − α)−1x1−α

i,t , α , 1, α ≥ 0.
(1)

Note that α-fair utility function can cover many fairness
policies. For example, it corresponds to maximum throughput
when α = 0, to proportional fairness when α = 1, and can
achieve max-min fairness when α → ∞ [21]. Moreover, it
also includes a number of TCP algorithms as special cases,
such as FAST TCP [7], TCP Vegas [22], and Scalable TCP
[23] when α = 1, or TCP Reno [8] when α = 2 [24].

A summary of notations used in our model is shown in
Table I. The round-trip time of TCP flow i in period t is
denoted by Di,t . We use qil,t (τ) and pil,t (τ) to denote the
length of queue i at link l at time τ and the price of queue i at
link l at time τ, respectively. Here, the queue price pil,t (τ) can
be packet dropping probability or queueing delay, depending
on the specific TCP and queue management algorithms used.
Let Cl be the capacity of link l and Cil,t (τ) be the output rate
of queue i at link l at time τ in period t. We use βil,t to denote
the target queue length for queue i at link l in period t, and
let σil,t be a parameter for controlling the drop probability
of queue i at link l in period t. They can be considered as
control parameters of the AQM algorithm managing queue i.
In particular, βil,t is used to control the average queue length
to a predefined value. The weight (or quantum if DRR is used)
for queue i at link l in period t is denoted by Qil,t .

Using (1) as the utility function, our proposed general model
for the TCP/SQM system which can accommodate different
versions of TCP flows in period t is described by a set of
delay differential equations (DDEs) in (2)–(5):

Ûxi,t (τ) = ki,t

(
1 −

∑
l∈At (i) pil,t (τ − Di,t)

U ′i,t (xi,t (τ))

)
, i ∈ Nt, (2)

Ûqil,t (τ) =

{
xi,t (τ) − Cil,t (τ), qil,t (τ) > 0,[
xi,t (τ) − Cil,t (τ)

]+
, qil,t (τ) = 0,

i ∈ Bt (l), l ∈ Lt,

(3)

pil,t (τ) =
[

qil,t (τ) − βil,t
σil,t

]+
, i ∈ Bt (l), l ∈ Lt, (4)

Cil,t (τ) =
Qil,t (τ)∑

j∈Bt (l)Q jl,t (τ)
Cl, i ∈ Bt (l), l ∈ Lt, (5)

where Nt denotes the set of flows appearing in period t and
Lt represents the set of bottleneck links in period t.

TABLE I: A Summary of Notations

Notation Meaning
Nt (τ) Number of TCP flows at time τ in period t

Lt Number of bottleneck links in period t

xi, t (τ) Rate of TCP flow i at time τ in period t

Ui, t (xi, t) Utility function of TCP flow i in period t

Di, t Round-trip time of TCP flow i in period t

qil, t (τ) Length of queue i at link l at time τ in period t

pil, t (τ) Price (e.g., drop probability) of queue i at link l at time τ

Cl Capacity of link l

Cil, t (τ) Output rate of queue i at link l at time τ in period t

βil, t Target queue length for queue i at link l in period t

σil, t Control parameter for drop probability of queue i at link l

Qil, t Weight or quantum for queue i at link l in period t

At (i) Set of bottleneck links that flow i traverses in period t

Bt (l) Set of flows that pass through link l in period t

Mt Total number of non-empty queues in period t

Equations (2)–(3) describe the evolutions (time derivatives)
of flow rates and queue lengths based on their interactions,
while the instantaneous queue prices and the instantaneous
output rates of the queues are determined by (4)–(5).

It is important to point out that (2) is a modified version
of a well-known differential equation describing the dynamics
of TCP flows in the literature such as [7], [17], and [25].
It describes the evolution of the rate of flow i based on
the relation between the end-to-end queue price (e.g., drop
probability) and the marginal utility U ′i,t (i.e., the derivative of
Ui,t with respect to xi,t (τ)). In (2), ki,t > 0 is a constant of gain
parameter which is determined by a specific TCP algorithm
used by flow i. For example, TCP Reno was shown to have
ki,t = 1

D2
i, t

[7], [25]. Note that comparing to the delay-free
models in [7], [17], and [25], we further consider feedback
delays in (2) where Di,t is the average round-trip time of flow i.

The evolution of the length of queue i at link l is modeled by
(3). To simplify the modeling and without loss of generality,
flow i is mapped to queue i with length qil,t (τ) if it traverses
link l in period t. Note that this assumption does not introduce
a restriction to the mapping. When flow i is arbitrarily mapped
to a queue j at link l, one can locally renumber queue j to
queue i. Define [a]+ = max{a, 0}. Since qil,t (τ) ≥ 0, the time
derivative of qil,t (τ) cannot be negative when qil,t (τ) = 0.

The price of queue i at link l is described by (4). Here, we
mainly consider drop probability as the queue price (though
(4) can also describe queueing delay by letting βil,t = 0 and
σil,t = Cil,t (τ)) since AQM algorithms generally carry out
congestion control by dropping packets. In (4), the parameters
βil,t and σil,t control the instantaneous drop probability of
queue i. A number of existing AQM algorithms with a target
queue length or delay, such as CoDel [4] and RED [3], employ
packet dropping policies that satisfy the general form (4).

The output rate of queue i at link l is expressed in (5).
Recall that either WFQ or DRR can be used for scheduling
in SQM. DRR [15] assigns a quantum to each queue and
performs scheduling across queues based on their quanta. In

the long run, a quantum in DRR can be considered as a queue
weight when calculating the output rate of a queue. Let Qil,t (τ)
be an instantaneous weight or quantum for queue i at link l at
time τ. We have Qil,t (τ) ≤ Qil,t . Note that we do not model
the reserved queue since it mainly contains short-lived mice
flows which generally cannot be controlled. Thus, Cl in (5)
excludes the reserved capacity for the reserved queue.

III. EQUILIBRIUM AND STABILITY ANALYSIS

This section analyzes two important properties of the
TCP/SQM system (2)–(5), namely, equilibrium and stability.

A. Equilibrium Analysis

First of all, we investigate the existence and uniqueness of
an equilibrium in the system. By definition, the equilibrium
of the system (2)–(5) in period t is determined by Ûxi,t = 0
and Ûqil,t = 0 for all i ∈ Nt and l ∈ Lt. Note that variables
without the time index τ in (2)–(5) possess fixed values during
period t. We assume that the set Nt contains a fixed number
of flows denoted by Nt (i.e., |Nt | = Nt), when the system
is in equilibrium in period t. Moreover, the set Lt contains
Lt bottleneck links in period t (i.e., |Lt | = Lt). Thus, the
equilibrium equations of the system (2)–(5) are as follows:

1
(x∗i,t)

α
=

∑
l∈At (i)

p∗il,t, i ∈ Nt, (6)

x∗i,t = Cil,t, i ∈ Bt (l), l ∈ Lt, (7)

where

Cil,t =
Qil,t∑

j∈Bt (l)Q jl,t
Cl, i ∈ Bt (l), l ∈ Lt. (8)

When the system is in equilibrium, the time index τ can be
ignored. We use x∗i,t and p∗

il,t
to denote the equilibrium rates

and the equilibrium drop probabilities, respectively. Then, all
x∗i,t and p∗

il,t
(i ∈ Nt, l ∈ Lt) form an equilibrium point of the

system, which is determined by (6)–(7). Note that to derive
(6) from (2), we make use of the α-fair utility function (1).
In (7), Cil,t denotes the output rate of queue i at link l in
equilibrium, which can be expressed by (8). Comparing to (5),
(8) uses the equilibrium values of weights Qil,t to compute the
achievable output rates for the queues. Note that since (8) only
considers bottleneck links that are fully utilized, the values of
Qil,t should satisfy (8).

Let Mt =
∑

l∈Lt

��Bt (l)
�� be the total number of non-empty

queues in period t. Let Rt be an Nt × Mt augmented routing
matrix in period t, which is expressed as:

Rt =

R(1)1 · · · R(Lt)

1
...

. . .
...

R(1)Nt
· · · R(Lt)

Nt

 , (9)

where the vectors R(l)i = [Ri1l, Ri2l, ..., Ri |Bt (l) |l] (for i =
1, 2, ..., Nt and l = 1, 2, ..., Lt) and their entries Rikl = 1 if
flow i uses queue k at link l, and Rikl = 0 otherwise. Note
that to compress the expression of Rt , we have renumbered
the flows from 1 to Nt and the bottleneck links from 1 to

Lt . In addition, once all the flows have been mapped to their
corresponding queues, we can further renumber the non-empty
queues at a link l from 1 to |Bt (l)|.

Define an Mt × 1 equilibrium drop probability vector as:

P∗t =
[
P(1), P(2), ..., P(Lt)]T , (10)

where P(l) =
[
p∗1l,t, p∗2l,t, ..., p∗

|Bt (l) |l,t

]
(for l = 1, 2, ..., Lt).

Define an Nt × 1 marginal utility vector as:

u∗t =
[1
(x∗1,t)

α
,

1
(x∗2,t)

α
, ...,

1
(x∗Nt,t

)α

]T
. (11)

Then, (6) can be written in the following matrix form:

RtP
∗
t = u∗t . (12)

An equilibrium point of the system (2)–(5) is determined by
(6)–(7). One can investigate the existence and uniqueness of an
equilibrium by analyzing the number of solutions to (6)–(7).
Since (7) actually gives a solution for the equilibrium rates
x∗i,t , we only need to study the solution for the equilibrium
drop probability vector P∗t in the matrix form (12).

First of all, we present a lemma about the property of Rt .

Lemma 1. The augmented routing matrix Rt has full rank.

Proof: A detailed proof is given in Appendix A.
Then, the following theorem provides a sufficient condition

for a unique equilibrium point in the system.

Theorem 1. If Nt = Mt , then there exists a unique equilibrium
point in the TCP/SQM system (2)–(5).

Proof: A detailed proof is given in Appendix B.
Theorem 1 implies that if every TCP flow only traverses

one bottleneck link (not necessarily the same one), then
the TCP/SQM system has a unique equilibrium point. From
Theorem 1, we can easily derive the following corollary.

Corollary 1. If Lt = 1, then the corresponding single-
bottleneck TCP/SQM system has a unique equilibrium point.

Proof: Since Lt = 1 implies that Nt = Mt , the conclusion
can be derived from Theorem 1.

Theorem 2. If Nt < Mt , then there are infinitely many
equilibrium points in the TCP/SQM system (2)–(5).

Proof: A detailed proof is given in Appendix C.
Theorem 2 implies that the equilibrium point of the system

is not unique if some flows traverse multiple bottleneck links.
In particular, there exist infinitely many equilibrium drop
probability vectors P∗t in this case.

B. Local Stability Analysis

After analyzing the equilibrium of the TCP/SQM system,
we now conduct stability analysis for the system. Stability
analysis can include both the stability of the entire TCP/SQM
system (2)–(5), as well as the stability of each SQM subsystem
at a bottleneck link. Due to space limitation, here we only
present the stability analysis for each SQM subsystem.

Note that the system (2)–(5) is nonlinear. To study the
stability of a nonlinear system, a prevalent approach (e.g., [26],
[11], and [12]) is to perform linearization for the system and
then analyze the local stability of the linearized system. We
follow the approach used in [11], and present a local stability
analysis for each single-bottleneck TCP/SQM subsystem with
feedback delays. Note that comparing to the model in [11]
which uses Reno as the TCP algorithm and considers a single-
queue AQM scheme at each link, the proposed TCP/SQM
model is more general.

First, we formulate a single-bottleneck TCP/SQM subsys-
tem at link l based on the original system (2)–(5) as follows:

Ûxi,t (τ) = ki,t

(
1 − xαi,t (τ)

(
pil,t (τ − Di,t) +

∑
j∈At (i)
j,l

p∗i j,t

))
, (13)

Ûqil,t (τ) =

{
xi,t (τ) − Cil,t (τ), qil,t (τ) > 0,[
xi,t (τ) − Cil,t (τ)

]+
, qil,t (τ) = 0,

(14)

where i ∈ Bt (l), l is fixed for a specific link under considera-
tion, p∗i j,t denotes the equilibrium drop probability of queue i
at link j , l that flow i traverses, pil,t (τ − Di,t) and Cil,t (τ)
are still described by (4) and (5) (with a fixed l), respectively,
and the utility function (1) is used to derive (13).

The subsystem (13)–(14) only considers the evolution of the
queue lengths (and corresponding drop probabilities) at link l
and the evolution of the rates of the flows traversing link l. The
drop probabilities at other links j , l that a flow i traverses
are fixed to the equilibrium values. This can be considered as
an approximation for the original system [11].

Next, we linearize the subsystem (13)–(14) at the equilib-
rium point and obtain:

δ Ûxi,t (τ) = −
αki,t
x∗i,t

δxi,t (τ) −
ki,t (x∗i,t)

α

σil,t
δqil,t (τ − Di,t), (15)

δ Ûqil,t (τ) = δxi,t (τ) −
1

Di,t
δqil,t (τ), (16)

where i ∈ Bt (l), l is fixed, δxi,t (τ) = xi,t (τ) − x∗i,t , and
δqil,t (τ) = qil,t (τ)−q∗

il,t
(q∗

il,t
is the equilibrium queue length).

For simplicity, we also renumber the flows and non-empty
queues in a subsystem at link l such that i = 1, 2, .., |Bt (l)|. To
express the linearized subsystem (15)–(16) in the matrix form,
we further define some matrices as follows.

Define a 2|Bt (l)| × 2|Bt (l)| matrix for link l as:

Fl,t =

[
F1 0
I1 F2

]
, (17)

where F1 = diag
(
−
αki, t
x∗i, t

)
is a |Bt (l)| × |Bt (l)| diagonal matrix

with entries
(
−

αki, t
x∗i, t

)
in the main diagonal, I1 is a |Bt (l)| ×

|Bt (l)| identity matrix, F2 = diag
(
− 1

Di, t

)
is a |Bt (l)| × |Bt (l)|

diagonal matrix, and 0 is a |Bt (l)| × |Bt (l)| zero matrix.
Define a set of 2|Bt (l)| × 2|Bt (l)| matrices for link l as:

Eil,t =

[
0 Ei1
0 0

]
, i = 1, 2, .., |Bt (l)|, (18)

where Ei1 = diag
(
(Ei1)j

)
is a |Bt (l)| × |Bt (l)| diagonal matrix

with the following entries in the main diagonal

(Ei1)j =

{
−

ki, t (x
∗
i, t)

α

σil, t
, if j = i,

0, otherwise.

Define a 2|Bt (l)| × 1 vector for link l as:

yl,t (τ) =
[
δx1,t (τ), ..., δx |Bt (l) |,t (τ), δq1l,t (τ), ..., δq |Bt (l) |l,t (τ)

]T
.

(19)
Then, the linearized subsystem (15)–(16) can be written in

the following matrix form:

Ûyl,t (τ) = Fl,t yl,t (τ) +

|Bt (l) |∑
i=1

Eil,t yl,t (τ − Di,t). (20)

Next, we construct a Lyapunov function for the subsystem
(20). To this end, we first present the following lemma about
the property of the matrix Fl,t .

Lemma 2. Fl,t is a stable matrix, i.e., every eigenvalue of Fl,t

has negative real part.

Proof: A detailed proof is given in Appendix D.
Since Fl,t is a stable matrix, there exists a unique positive

definite matrix Al,t that satisfies the following Lyapunov
equation [27]:

FT
l,tAl,t + Al,tFl,t = −I (21)

where I is a 2|Bt (l)| × 2|Bt (l)| identity matrix.
Using the matrix Al,t in (21), we construct the following

candidate Lyapunov function for the subsystem (20):

V(yl,t) = yTl,tAl,t yl,t . (22)

We now present a theorem that states a sufficient condition
for the local asymptotic stability of the subsystem.

Theorem 3. The subsystem (20) is locally asymptotically
stable if

|Bt (l) |∑
i=1

ki,t (x∗i,t)
α

σil,t
<

1
2ρJl,t ‖Al,t ‖

(23)

where ‖Al,t ‖ denotes the 2-norm of Al,t , Jl,t =
√
λmax (Al,t)

λmin(Al,t)
,

λmax(Al,t) and λmin(Al,t) are the largest and smallest eigen-
values of Al,t , respectively, and ρ > 1 is a constant.

Proof: A detailed proof is given in Appendix E.
Theorem 3 provides a guidance for choosing proper control

parameters σil,t for the queues of SQM, such that the SQM
subsystem is locally asymptotically stable.

IV. SNUM PROBLEM AND SQM ALGORITHM

In this section, we first formulate a SNUM problem for the
TCP/SQM system, and then propose our SQM algorithm.

A. Problem Formulation for SNUM

In the literature on congestion control, network utility max-
imization (NUM) [17] is frequently formulated to determine
the optimal flow rates of a network. The classical NUM is a
“static” optimization problem where all the network variables
are assumed to have static values. In reality, network variables
(such as the number of flows in a network) are usually time-
varying, rendering the solution of the static NUM problem
impractical for dynamic environments. To tackle this issue, we
formulate a stochastic version of NUM, named SNUM, where
the number of flows in the network is a random variable.

Following the formulation of the TCP/SQM model, the total
time under consideration is composed of a number of periods
indexed by t (t = 1, 2, ...,T). In every period t, we assume that
the number of flows can reach a steady value denoted by Nt

when the system is in equilibrium. Across different periods,
the random variable Nt changes according to an unknown
distribution. We further assume that the maximum number of
flows that can be supported by the TCP/SQM system in all
periods is denoted by K , and that the maximum number of
bottleneck links in the system is denoted by L.

Let xt = [x1,t, x2,t, ..., xK,t]T be the rate vector in period t.
Note that xt includes the equilibrium (or average) rates of all
the K possible flows in period t. For non-existent flows j
in period t, we let xj,t = ε, where ε is a small positive
constant such as one. We do not set the rate to zero in this
case because we need to use the utility function (1) for all
flows, which is undefined at zero. Thus, we have xt � ε.
Let C = [C1,C2, ...,CL]

T be the link capacity vector. Define
a K × L routing matrix Rt in period t, where entries Ril = 1
if flow i uses link l, and Ril = 0 otherwise. Note that Rt is
different from the augmented routing matrix Rt in (9).

Define a time-varying aggregate utility function Ut as:

Ut (xt) =
K∑
i=1

Ũi,t (xi,t), (24)

where

Ũi,t (xi,t) =

{
Ui,t (xi,t), if i ∈ Nt,

Ui,t (ε), otherwise.
(25)

Ui,t is defined in (1). Nt denotes the set of Nt existing flows
in period t. For non-existent flows, they have constant utilities
Ui,t (ε), and we can ignore them by assigning zero coefficients.

The SNUM problem for the TCP/SQM system can be
specified as follows:

max
xt

T∑
t=1

Ut (xt) (26)

subject to RT
t xt � C, t = 1, 2, ...,T . (27)

Note that the objective function (26) considers cumulative
utilities from all periods, and this cumulative form of objective
function is widely used in the online optimization literature,
e.g., [16], [28], and [29]. Moreover, Ut is time-varying and
depends on the random variable Nt , thereby introducing diffi-
culties to apply static optimization techniques. Since Ut is the

Algorithm 1 Online Solver for SNUM

Input: T , initial rate vector x1 ∈ X, step size ηt = D
G
√
t
.

1: for t = 1, 2, ...,T do
2: Set the rate vector xt .
3: Observe Nt existing flows and compute OUt (xt).
4: Update: yt+1 = xt + ηtOUt (xt).
5: Project: xt+1 = ΠX(yt+1).
6: end for

sum of some concave functions Ui,t and the constraints (27)
are linear, the SNUM problem (26)–(27) belongs to the OCO
category. Thus, we can utilize OCO techniques to solve it.

Let X be the feasible region, which is determined by (27)
and xt � ε (i.e., each xi,t ≥ ε). It is easy to see that X is a
bounded convex set. Let D be an upper bound on the diameter
of the feasible region X. Since X is bounded, it satisfies that:

∀x, y ∈ X, ‖x − y‖ ≤ D. (28)

Note that U ′i,t (xi,t) =
1

xαi, t
and xi,t has non-zero and bounded

value1. Therefore, the gradient of Ut (xt), denoted by OUt (xt),
exists and is bounded. Let G be an upper bound on the norm
of the gradient OUt (xt), i.e.,

‖OUt (xt)‖ ≤ G, for any xt ∈ X. (29)

Given specific network settings, it is easy to determine the
values of D and G.

B. OGD-based Algorithm for Solving SNUM

Instead of using reinforcement learning methods [30], we
now utilize OCO techniques to solve our SNUM problem. In
the OCO framework [16], an online player sequentially makes
decisions. At iteration t, the player has to choose a decision
xt ∈ X before observing the corresponding function Ut . The
performance of an algorithm for OCO is formally measured
by the regret, which is defined as follows:

Regret(T) = max
x∗∈X

T∑
t=1

Ut (x
∗) −

T∑
t=1

Ut (xt) (30)

where x∗ ∈ arg max
x∈X

∑T
t=1 Ut (x) is the best fixed decision in

hindsight (i.e., with full knowledge of all Ut).
The goal of OCO is to develop an online learning algorithm

such that the regret is sublinear with respect to T , i.e.,
Regret(T) = o(T). This implies that the algorithm performs
as well as the best fixed decision in hindsight on the average.

The online gradient descent (OGD) [31] is an OCO algo-
rithm which achieves sublinear regret. Here we propose an
OGD-based algorithm to solve the SNUM in Algorithm 1.

In Algorithm 1, a decision for the rate vector xt is made at
the beginning of period t. This is done before the correspond-
ing Ut (xt) is available. After xt is made, one can observe Nt

1For the TCP/SQM system, we can set ε = 1 which means that the rates
of non-existent flows in period t are fixed to 1. The rates of existing flows are
initialized at 1 and usually significantly larger than it as the system evolves.
By doing so, the upper bound G in (29) does not become too large.

Algorithm 2 SQM Algorithm at Link l

Input: x(l)
t+1 ⊆ xt+1 obtained in period t of Algorithm 1. At

the end of period t, perform self-tuning:
1: Set the queue weights Qil,t+1 at link l such that:

Qil, t+1∑
j∈Bt (l)

Q j l, t+1
Cl = xi,t+1 (i ∈ Bt (l)), e.g., Qil,t+1 = xi,t+1.

2: Adjust the control parameters σil,t+1 at link l such that:
|Bt (l) |∑
i=1

ki, t+1(xi, t+1)
α

σil, t+1
< 1

2ρJl, t+1 ‖Al,t+1 ‖
.

existing flows and compute the gradient OUt (xt) in period t.
Then, the next decision xt+1 is derived by using the current
gradient OUt (xt) and projecting it back onto the feasible set
X. The operator ΠX(·) denotes the projection onto X.

Next, we present a theorem about the regret of Algorithm 1.

Theorem 4. Algorithm 1 with step size ηt =
D

G
√
t

(t =

1, 2, ...,T) yields O(
√

T) sublinear regret. Specifically,

Regret(T) = max
x∗∈X

T∑
t=1

Ut (x
∗) −

T∑
t=1

Ut (xt) ≤
3
2

GD
√

T . (31)

Proof: A detailed proof is given in Appendix F.
Remark 1: We make use of OGD to solve the SNUM since

it is easy to determine its step size. There exist other advanced
algorithms that can be utilized to solve the SNUM, such as
the Primal-Dual algorithm in [28]. We do try it and find that
it is challenging to select a proper step size for it.

C. Proposed SQM Algorithm

We now present our SQM algorithm based on the solution
to the SNUM and the stability condition (23) in Algorithm 2.

The SQM algorithm in Algorithm 2 can be run iteratively
at every bottleneck link l in a distributed manner. In contrast,
Algorithm 1 is a centralized algorithm (which can be run by a
controller or a designated router in the network) since it needs
to collect the observed information about existing flows from
all the bottleneck links (managed by the SQM algorithms).

During every update period t, the SQM algorithm at link l
makes use of Algorithm 1 to obtain an interim decision for
the rate vector in the SNUM. Thus, one can consider that
the SQM algorithm at every link l can be invoked separately
after Line 5 of Algorithm 1 for every period t. Specifically,
xt+1 denotes the interim rate vector computed in period t of
Algorithm 1. Let x(l)

t+1 ⊆ xt+1 be a vector which only contains
the rates (i.e., xi,t+1, i ∈ Bt (l)) of the flows that traverse link l
in period t. Then, at the end of period t, the queue weights
Qil,t+1 and the control parameters σil,t+1 can be self-tuned
by SQM as follows. Since xt+1 is computed for the objective
of maximizing the cumulative utilities via OCO, it can serve
as a good indicator for the rate allocation. Thus, we update
the queue weights based on xt+1 in Line 1 and aim to use the
updated queue weights to drive the system towards an efficient
equilibrium. To ensure the stability of the SQM subsystem at
link l, we also update the control parameters σil,t+1 based

on the stability condition (23) in Line 2. Specifically, we can
construct the matrix Fl,t+1 based on (17) with Bt+1(l) = Bt (l),
where the elements in (17) can be estimated or predetermined.
We can then solve the corresponding Lyapunov equation
(21) for Al,t+1 via MATLAB (note that MATLAB provides
an interface to call it from C++). Alternatively, there are
many efficient methods for solving Lyapunov equations in the
literature. The eigenvalues of Al,t+1 can also be computed via
MATLAB (or related efficient methods in the literature), so as
to obtain Jl,t+1 and the 2-norm of Al,t+1. Note that by the end
of period t, one can only observe the existing flows i ∈ Bt (l).
The updating for Qil,t+1 can be considered as an action for
setting xt+1 in the next period (t + 1) in Algorithm 1.

Remark 2: Although Algorithm 1 is a centralized algorithm
(since it needs to solve the SNUM problem globally), it
is simple and easy to implement in a single autonomous
system (AS). We leave the decentralization of it as our future
work, which usually involves some message exchanges among
distributed SQM routers. By passing a subset of xt+1 to every
bottleneck link, the SQM algorithm (Algorithm 2) at every
link can be run locally and separately.

V. PERFORMANCE EVALUATION

This section presents our simulation results obtained from
MATLAB and ns [32].

The simulation settings are as follows. The network topol-
ogy of our simulations is shown in Fig. 2, where the square
nodes represent routers. To save space, we do not show hosts
but they are indeed connected to the routers. In particular, the
link connecting routers R2 and R3 denoted by l23 and the
link connecting R3 and R4 denoted by l34 are two bottleneck
links, and they have the same capacity. R2, R3, and R4 can
deploy AQM algorithms such as CoDel [4], PIE [5], SFQ-
CoDel [9], and our proposed SQM in the simulations. There
are a number of TCP flows in the network, traversing from R1
to R4, from R5 to R6, or from R6 to R4. The long-lived TCP
flows with different round-trip times (RTTs) are generated by
FTP applications, and they can use the popular loss-based TCP
algorithms: NewReno [33] or CUBIC [34].

A. Numerical Results via MATLAB

First, we verify our theoretical analysis by conducting
MATLAB simulations. For simplicity, let us focus on a single-
bottleneck case in this subsection, that is, the flows from R6 to
R4 do not exist such that l34 is not a bottleneck link. We use the
following settings to study the equilibrium and stability of the
TCP/SQM system (2)–(5) (the period index t is removed here).
There are ten TCP flows (with rates xi(τ)) traversing the bottle-
neck link l23 with a capacity Cl23 = 1000 packets/s. The RTTs
of the flows (i.e., Di) range from 0.100 s to 0.150 s. Let α = 2,
which means that the flows are Reno or NewReno flows. Thus,
we can set the constants ki = 1

D2
i

. Let the weights of the ten
corresponding queues be Q1 = Q2 = Q3 = Q4 = Q5 = 1500
and Q6 = Q7 = Q8 = Q9 = Q10 = 1000. Then, we can use
the dde23 solver [35] to solve the DDEs (2)–(5) with these
specific settings.

R1 R2

Flows

R3 R4

R5 R6
Flows

Bottleneck links

R1 R2

Flows

R3 R4

R5 R6 Flows

Bottleneck Links

Flows

!!" !"#

R1 R2

Flows

R3 R4

R5 R6 Flows

Bottleneck link

Fig. 2: Simulation topology.
0 10 20 30 40 50

Time

0

100

200

300

400

500

600

Va
lu

e

x1()
x2()
x3()
x4()
x5()

x6()
x7()
x8()
x9()
x10()

Fig. 3: Results via MATLAB.

Fig. 3 plots the solution for the rates xi(τ) evaluated in
the interval [0, 50]. It can be seen that as time τ increases,
xi(τ) can converge to the equilibrium values x1 = x2 = x3 =
x4 = x5 = 120 and x6 = x7 = x8 = x9 = x10 = 80. These
equilibrium rates are consistent with the above assignment of
queue weights. This shows that one can drive the TCP/SQM
system towards a desirable equilibrium by setting proper queue
weights.

B. Packet-Level (ns) Simulation Results

We then conduct packet-level simulations using ns [32] to
compare our SQM with the popular CoDel, PIE, and SFQ-
CoDel in terms of queueing delay and average throughput.

Using the topology in Fig. 2 with two bottleneck links l23
and l34, we now consider Scenario 1, where the maximum
number of TCP flows in the network is K = 40. Initially,
there are five flows traversing from R5 to R6 and another five
flows going from R6 to R4. Subsequently, new flows randomly
arrive and traverse from R1 to R4, and they will end with
different finishing times. The number of newly arriving flows
in period t is randomly drawn from the range [0, 5]. All flows
use the NewReno algorithm. The RTTs of the flows range from
0.080 s to 0.180 s. Let the link capacities be Cl23 = Cl34 =

4166 packets/s (i.e., 50 Mbps). CoDel, PIE, and SFQ-CoDel
use the default settings, and PIE has an auto-tuning mechanism
for its control parameters [5]. The target queueing delay is set
to 5 ms for all algorithms. A period t in SQM lasts for 5
seconds by default. This can be reset whenever needed.

Due to space limitation, here we only present the results for
the queueing delay at the more congested link l23 (compared
to l34). Specifically, Fig. 4 illustrates the evolution of the
queueing delay produced by the AQM algorithms at l23. It can
be seen that CoDel and PIE exhibit a number of notable spikes
on the queueing delay when the number of flows changes
randomly over time. SFQ-CoDel suffers more and shows
highly fluctuating queueing delay with a larger mean value.
In contrast, our SQM can consistently stabilize the queueing
delay by properly tuning its control parameters.

Next, we present Scenario 2, which aims to investigate the
throughput of flows and the fairness among them, given that
a specific AQM is used. Here we are interested in the case
where flows can use different TCP algorithms. Specifically,
five NewReno flows from R5 to R6 and another five NewReno
flows from R6 to R4 start at the beginning of the simulation.
Then, two CUBIC flows from R1 to R4 start at 30 s, and
three more CUBIC flows join at 55 s. We investigate the rate
allocation of these flows regulated by the AQM algorithms.

Fig. 5 shows the average throughput of the NewReno flows
(from R5 to R6) and the CUBIC flows (from R1 to R4)
when using different AQM algorithms during [10s, 80s]. One
can observe that the CUBIC flows aggressively acquire much
higher throughput while substantially lowering the throughput
of the NewReno flows, if CoDel or PIE is used as the AQM
algorithm. The reason is that CoDel and PIE employ a single-
queue structure that cannot differentiate flows, which may
lead to unfairness. In contrast, SQM and SFQ-CoDel can
provide fair rate allocation for different flows. Note that unlike
SFQ-CoDel which uses the same static weight for all queues,
our SQM is more flexible and can self-tune different queue
weights. It is also applicable when one aims to provide dif-
ferentiated services for flows or minimize the flow completion
time (FCT) using a different form of utility function [36].

Here, the packet-level simulation results demonstrate that
our SQM not only stabilizes the queueing delay, but also
improves fairness among flows.

VI. CONCLUSION

In this paper, we have proposed a general framework for a
self-tuning queue management (SQM) scheme, which is adap-
tive to the stochastic network environments and provides fair
congestion control among flows. We first presented a general
architecture of SQM with adaptive fair queueing and proposed
a fluid model to analyze a general TCP/SQM system. We then
conducted equilibrium and stability analysis for the general
TCP/SQM system by showing the existence and uniqueness
of an equilibrium point in the system, and deriving sufficient
conditions for the local asymptotic stability of each SQM
subsystem with feedback delays. To adapt to the stochastic
environments, we further formulated a SNUM problem for
the TCP/SQM system and utilized OCO techniques to tackle
it. Finally, we developed a distributed SQM algorithm which
can self-tune different queue weights and control parameters.
By numerical and packet-level simulations, we not only ver-
ified our theoretical analysis, but also demonstrated that our
SQM algorithm can significantly improve queueing delay and
fairness among flows, compared to existing AQM algorithms.

APPENDIX A
PROOF OF LEMMA 1

Proof: From the definition of Rt in (9), one can know
that there must be at least one entry with the value of 1 in
every row since every flow i (i = 1, 2, ..., Nt) is mapped to at
least one queue in the system. Moreover, for every flow i, the
columns of its non-zero entries must be different from that of
all other flows’ non-zero entries. The reason is that different
flows are mapped to different queues even if they traverse the
same link and every queue contains one flow. Thus, we can
conclude that the Nt rows of Rt are linearly independent. That
is, Rt has full rank and rank(Rt) = Nt since Nt ≤ Mt .

APPENDIX B
PROOF OF THEOREM 1

Proof: If Nt = Mt , Rt is a square matrix with full rank
and thus has an inverse R

−1
t . Then, we can directly solve (12)

(a) CoDel. (b) PIE. (c) SFQ-CoDel. (d) SQM.

Fig. 4: Scenario 1: queueing delay at the bottleneck link l23 in a stochastic environment.

(a) Using CoDel. (b) Using PIE. (c) Using SFQ-CoDel. (d) Using SQM.

Fig. 5: Scenario 2: average throughput of NewReno and CUBIC flows.

for P∗t and obtain P∗t = R
−1
t u∗t , which is uniquely determined

since u∗t is already fixed. On the other hand, Nt = Mt indicates
that every flow only traverses one bottleneck link. Thus, (7)
gives a unique solution for the equilibrium rates x∗i,t as Cil,t is
uniquely determined by (8). As a result, there exists a unique
equilibrium point in the TCP/SQM system when Nt = Mt .

APPENDIX C
PROOF OF THEOREM 2

Proof: Applying the Rouché-Capelli Theorem [37], (12)
has a solution if and only if rank(Rt) = rank(Rt

��u∗t), where
[Rt

��u∗t] denotes the augmented matrix of (12). Since [Rt

��u∗t]
is an Nt × (Mt + 1) matrix and Nt < (Mt + 1), we still have
rank(Rt

��u∗t) = Nt . Thus, we obtain rank(Rt) = rank(Rt

��u∗t) =
Nt , which implies that (12) has a solution. However, since the
rank of Rt is less than the number of variables (i.e., rank(Rt) =

Nt < Mt), (12) actually has infinitely many solutions for P∗t
according to the Rouché-Capelli Theorem. Therefore, we can
conclude that there are infinitely many equilibrium points in
the TCP/SQM system when Nt < Mt .

APPENDIX D
PROOF OF LEMMA 2

Proof: Let λ be an eigenvalue of Fl,t . By definition, λ
satisfies the equation:

��Fl,t − λI
�� = 0, where I is a 2|Bt (l)| ×

2|Bt (l)| identity matrix. We can iteratively expand
��Fl,t − λI

��
along the last column using the Laplace expansion as follows:��Fl,t − λI

�� = |Bt (l) |∏
i=1

(
−

1
Di,t
− λ

)
·

����diag
(
−
αki,t
x∗i,t
− λ

)���� = 0.

(32)

Therefore, we obtain λi = −
αki, t
x∗i, t

and λ |Bt (l) |+i = −
1

Di, t
for

i = 1, ..., |Bt (l)|. Since every eigenvalue of Fl,t has negative
real part, Fl,t is a stable matrix.

APPENDIX E
PROOF OF THEOREM 3

Proof: Here we apply similar proof techniques used in
[11]. By definition, we just need to show that (22) is indeed
a Lyapunov function, i.e., ÛV(yl,t) < 0 if (23) is satisfied.

Let Dmax = max{D1,t,D2,t ...,D |Bt (l) |,t }. Applying the fol-
lowing Razumikhin condition [38] with some constant ρ > 1:

V(yl,t (ξ)) ≤ ρ2V(yl,t (τ)), for τ − Dmax ≤ ξ ≤ τ, (33)

we can obtain:

λmin(Al,t)‖yl,t (ξ)‖
2 ≤ ρ2λmax(Al,t)‖yl,t (τ)‖

2. (34)

Thus,
‖yl,t (ξ)‖ ≤ ρJl,t ‖yl,t (τ)‖. (35)

From (18), we have:

‖Eil,t ‖ =
ki,t (x∗i,t)

α

σil,t
. (36)

Using (21), (35), and (36), we can derive:

ÛV(yl,t) = − yTl,t (τ)I yl,t (τ) + 2
|Bt (l) |∑
i=1

yTl,t (τ − Di,t)E
T
il,tAl,t yl,t (τ)

≤ − ‖yl,t (τ)‖
2 + 2ρJl,t

|Bt (l) |∑
i=1
‖Al,t ‖‖Eil,t ‖‖yl,t (τ)‖

2

= −
(
1 − 2ρJl,t ‖Al,t ‖

|Bt (l) |∑
i=1

ki,t (x∗i,t)
α

σil,t

)
‖yl,t (τ)‖

2.

(37)

One can now observe that if (23) is satisfied, ÛV(yl,t) < 0
when yl,t (τ) , 0. Thus, (22) is indeed a Lyapunov function,
such that the subsystem is locally asymptotically stable.

APPENDIX F
PROOF OF THEOREM 4

Proof: For simplicity, define Ot , OUt (xt). By the
concavity of Ut , we have:

Ut (x
∗) −Ut (xt) ≤ O

T
t (x

∗ − xt). (38)

Using the Pythagorean theorem about the property of the
projection operator [16], we can derive an upper bound for
OTt (x

∗ − xt) as follows:

‖xt+1−x
∗‖2 =

ΠX(xt+ηtOt)−x∗2
≤ ‖xt+ηtOt−x

∗‖2. (39)

Expanding the right-hand side of (39) gives:

‖xt+1 − x
∗‖2 ≤ ‖xt − x

∗‖2 + η2
t ‖Ot ‖

2 + 2ηtOTt (xt − x∗). (40)

Using (29), we then derive:

2OTt (x∗ − xt) ≤
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+ ηtG2. (41)

Let ηt = D
G
√
t

(with 1
η0
, 0) and summing (38) and (41)

from t = 1 to T , we can derive:

2 Regret(T) ≤
T∑
t=1

‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt
+ G2

T∑
t=1

ηt

≤

T∑
t=1
‖xt − x∗‖2

(1
ηt
−

1
ηt−1

)
+ G2

T∑
t=1

ηt

≤ D2 1
ηT
+ G2

T∑
t=1

ηt ≤ 3GD
√

T .

Therefore, Regret(T) ≤ 3
2 GD
√

T .

REFERENCES

[1] S. H. Low, “A duality model of TCP and queue management algorithms,”
IEEE/ACM Trans. Networking, Vol. 11, No. 4, pp. 525-536, Aug. 2003.

[2] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the Internet,”
Communications of the ACM, Vol. 55, No. 1, pp. 57-65, Jan. 2012.

[3] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Networking, Vol. 1, No. 4,
pp. 397-413, Aug. 1993.

[4] K. Nichols and V. Jacobson, “Controlling queue delay,” ACM Queue,
Vol. 10, No. 5, pp. 1-15, May 2012.

[5] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. VerSteeg, “PIE: A lightweight control scheme to address
the bufferbloat problem,” Proc. of IEEE HPSR, pp. 148-155, Jul. 2013.

[6] A. Tang, X. Wei, S. H. Low, and M. Chiang, “Equilibrium of heteroge-
neous congestion control: Optimality and stability,” IEEE/ACM Trans.
Networking, Vol. 18, No. 3, pp. 844-857, Jun. 2010.

[7] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, “FAST TCP: Motivation,
architecture, algorithms, performance,” IEEE/ACM Trans. Networking,
Vol. 14, No. 6, pp. 1246-1259, Dec. 2006.

[8] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM
Computer Comm. Review, Vol. 18, No. 4, pp. 314-329, Aug. 1988.

[9] K. Nichols, sfqCodel - The Controlled-Delay Active Queue Management
algorithm with stochastic binning. [Online]. Available: http://www.
pollere.net/Txtdocs/sfqcodel.cc

[10] J. Ye and K.-C. Leung, “Adaptive and stable delay control for combating
bufferbloat: Theory and algorithms,” IEEE Systems Journal, Vol. 14,
No. 1, pp. 1285-1296, Mar. 2020.

[11] J. Ye, K.-C. Leung, and S. H. Low, “Combating bufferbloat in multi-
bottleneck networks: Theory and algorithms,” IEEE/ACM Trans. Net-
working, Vol. 29, No. 4, pp. 1477-1493, Aug. 2021.

[12] L. Wang, L. Cai, X. Liu, X. Shen, and J. Zhang, “Stability analysis
of multiple-bottleneck networks,” Computer Networks, Vol. 53, No. 3,
pp. 338-352, Feb. 2009.

[13] F. Baker and G. Fairhurst, “IETF recommendations regarding active
queue management,” RFC 7567, IETF, Jul. 2015.

[14] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a
fair queueing algorithm,” ACM SIGCOMM Computer Comm. Review,
Vol. 19, No. 4, pp. 1-14, Aug. 1989.

[15] M. Shreedhar and G. Varghese, “Efficient fair queueing using deficit
round robin,” ACM SIGCOMM Computer Comm. Review, Vol. 25, No. 4,
pp. 231-242, Oct. 1995.

[16] E. Hazan, “Introduction to online convex optimization,” Found. Trends
Optimization, Vol. 2, No. 3-4, pp. 157-325, 2016.

[17] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control for
communication networks: Shadow prices, proportional fairness and
stability,” Journal of the Operational Research Society, Vol. 49, No. 3,
pp. 237-252, Mar. 1998.

[18] Y. Lu, M. Wang, B. Prabhakar, and F. Bonomi, “ElephantTrap: A low
cost device for identifying large flows,” Proc. of IEEE HOTI, Sep. 2007.

[19] T. Yang, H. Zhang, J. Li, J. Gong, S. Uhlig, S. Chen, and X. Li,
“HeavyKeeper: An accurate algorithm for finding top-k elephant flows,”
IEEE/ACM Trans. Networking, Vol. 27, No. 5, pp. 1845-1858, Oct. 2019.

[20] J. Mo and J. Walrand, “Fair end-to-end window-based congestion
control,” IEEE/ACM Trans. Networking, Vol. 8, No. 5, pp. 556-567,
Oct. 2000.

[21] T. Bonald and L. Massoulié, “Impact of fairness on Internet perfor-
mance,” Proc. of ACM SIGMETRICS, Jun. 2001.

[22] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion
avoidance on a global Internet,” IEEE Jour. Selected Areas in Commun.,
Vol. 13, No. 8, pp. 1465-1480, Oct. 1995.

[23] T. Kelly, “Scalable TCP: improving performance in highspeed wide area
networks,” ACM SIGCOMM Computer Comm. Review, Vol. 33, No. 2,
pp. 83-91, Apr. 2003.

[24] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proc. of the IEEE, Vol. 95, No. 1, pp. 255-312, Jan.
2007.

[25] C. Lai, S. H. Low, K.-C. Leung, and V. O. K. Li, “Pricing link by
time,” ACM SIGMETRICS Performance Eval. Review, Vol. 42, No. 1,
pp. 421-433, Jun. 2014.

[26] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “Analysis and design
of controllers for AQM routers supporting TCP flows,” IEEE Trans.
Automatic Control, Vol. 47, No. 6, pp. 945-959, Jun. 2002.

[27] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ:
Prentice Hall, 2002.

[28] X. Cao and K. J. R. Liu, “Online convex optimization with time-
varying constraints and bandit feedback,” IEEE Trans. Automatic Con-
trol, Vol. 64, No. 7, pp. 2665-2680, Jul. 2019.

[29] S. Shahrampour and A. Jadbabaie, “Distributed online optimization in
dynamic environments using mirror descent,” IEEE Trans. Automatic
Control, Vol. 63, No. 3, pp. 714-725, Mar. 2018.

[30] J. Wang, Y. Liu, S. Niu, and H. Song, “Reinforcement learning optimized
throughput for 5G enhanced swarm UAS networking,” Proc. of IEEE
ICC, Jun. 2021.

[31] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” Proc. of ICML, pp. 928-936, Aug. 2003.

[32] K. Fall and K. Varadhan, “The ns manual (formerly ns notes and
documentation),” The VINT Project, Nov. 2011.

[33] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno
modification to TCP’s fast recovery algorithm,” RFC 6582, IETF, Apr.
2012.

[34] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Sys. Review, Vol. 42, No. 5,
pp. 64-74, Jul. 2008.

[35] L.F. Shampine and S. Thompson, “Solving DDEs in MATLAB,” Applied
Numerical Mathematics, Vol. 37, No. 4, pp. 441–458, Jun. 2001.

[36] K. Nagaraj, D. Bharadia, H. Mao, S. Chinchali, M. Alizadeh, and
S. Katti, “NUMFabric: Fast and flexible bandwidth allocation in dat-
acenters,” Proc. of ACM SIGCOMM, Aug. 2016.

[37] I. R. Shafarevich and A. O. Remizov, Linear Algebra and Geometry.
Berlin/Heidelberg, Germany: Springer-Verlag, 2013.

[38] K. Gu, V. L. Kharitonov, and J. Chen, Stability of Time-Delay Systems.
Boston, MA: BirkhÜauser, 2003.

