Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader 24/5/2020, 10:47 AM

COMPUTERS & SECURITY 88 (2020) 101516

Available online at www.sciencedirect.com

. . Computers
ScienceDirect &
Security
journal homepage: www.elsevier.com/locate/cose
* Exploiting non-uniform program execution)
time to evade record/replay forensic analysis eetos

Yang Hu? Mingshen Sun®, John C.S. Lui®*

2School of Computing, National University of Singapore, 13 Computing Drive, Singapore
b Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong,
China

ARTICLE INFO ABSTRACT

Article history: Record/replay system is an essential and widely used module in forensic analysis, as it can
Received 7 January 2019 help forensic analysts to reconstruct programs’ behaviors. However, the security implication
Revised 19 March 2019 of record/replay systems (i.e., whether record/replay systems can faithfully reproduce all be-

Accepted 11 April 2019
Available online 3 May 2019

Keywords:

Forensic analysis
Record/replay system
Anti-forensics
Vulnerability exploitation
Malware analysis

haviors of a program) has not been thoroughly studied. This paper is the first work which
investigates and explores the security limitations of record/replay systems from the per-
spective of software forensics. In particular, we reveal a type of vulnerability in record/replay
systems caused by non-uniform program execution time. A program can exploit this vul-
nerability to prevent its malicious behavior from being replayed. We conduct a series of
experiments on three platforms (i.e., web browser, mobile operating system and virtualized
sandbox) to illustrate the wide footprints of the vulnerability. Finally, we discuss possible
methods to mitigate the vulnerability. The goal of this work is to study the inherent secu-
rity limitations of record/replay systems, discover the vulnerability and explore potential
mitigation methods, from which forensic analysts can be informed and cautious when ap-
plying record/replay systems to software forensics.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Some record/replay systems such as RnR-Safe (Shalabi et al.,
2018) and WebCapsule (Neasbitt et al., 2015) are designed for

In software testing and fault tolerance analysis, record/replay
systems are essential components, since software analysts can
use them to reconstruct programs’ behavior and to check
whether these programs satisfy their software specifications.
They record events that may affect the program flow (e.g., external
inputs and random decisions) and then reproduces the bugs
by replaying the same events. Chen et al. (2014). An example
of a record/replay system is RERAN (Gomez et al., 2013), an An-
droid user-interface testing tool, which records screen touch
and key press events of an application when a human tester
interacts with it, and then RERAN can automatically test the
application by replaying those recorded events.

* Corresponding author.

software forensics. However, a program may exploit vulnerabil-
ities in such record/replay systems to prevent its malicious be-
havior from being discovered or replayed, which significantly
diminishes the values of the underlying forensic analysis. The
primary goal of this paper is to explore these limitations, state
their vulnerabilities and explore potential mitigation meth-
ods. This way, forensic analysts will be more informed and
cautious when handling various forensic tasks.

To the best of our knowledge, this paper is the first work
which systematically studies security issues of record/replay
systems from the perspective of software forensics. We dis-
cover a kind of security vulnerability caused by non-uniform

E-mail addresses: dcshuy@nus.edu.sg (Y. Hu), mssun@cse.cuhk.edu.hk (M. Sun), cslui@cse.cuhk.edu.hk (J.C.S. Lui).

https://doi.org/10.1016/j.cose.2019.04.012
0167-4048/© 2019 Elsevier Ltd. All rights reserved.

https://reader.elsevier.com/reader/sd/pii/S0167404819300938..57EFE04FF3288A2BCAE4261AFC50C32BB7E4AD90B9DAEOD22D7522D9EF5

Page 1 of 13

Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader

2 COMPUTERS & SECURITY 88 (2020) 101516

program execution time, which indicates that program execution
time cannot be exactly the same as the program re-execution
time. By exploiting this vulnerability, a program can identify
whether it is replayed in a forensic context, thereby hiding its
malicious behavior during the replay stage.

To illustrate the type of vulnerability in real world, we con-
duct attack experiments on record/replay systems for three
different platforms: web browser, mobile operating system
and virtualized sandbox. Our experimental results show that
all our attack programs can successfully hide malicious be-
havior on the corresponding record/replay systems.

Lastly, we discuss how to mitigate the vulnerability
through hardware-assisted record/replay analysis, ensemble
record/replay analysis (i.e.,, combine multiple record/replay
methods into one), symbolic execution and exploit detection.

The rest of this paper is organized as follows. In Section 2,
we briefly introduce record/replay systems for software
forensics. In Section 3, we thoroughly introduce details on the
vulnerability. Section 4 demonstrates our attack experiments.
Finally, we give a brief discussion on vulnerability mitigation
in Section 5.

2. Background

In this section, we introduce the background of record/replay
systems. We use a motivating example to explain the basic
ideas of widely-used record/replay methodologies.

2.1. A motivating example: gplay forensic analysis on a
QR code scanner

We introduce a simple forensic case, which will be used to ex-
plain six widely-used record/replay methodologies later. Let
us consider that Alice, a government clerk, uses a QR code
scanner application to scan a malicious QR code which links
to a phishing website. Alice enters her email account pass-
word to the phishing website. As a result, many secret gov-
ernment documents are stolen and disclosed to the public. To
investigate whether Alice deliberately leaked these secret doc-
uments or suffered from a phishing attack, forensic analysts
need to obtain more trustworthy details such as how Alice vis-
ited the phishing website and how her email account pass-
word was leaked, which a record/replay system could help to
reconstruct.

Now let us demonstrate the technical details of
record/replay forensic analysis on the QR code scanner.
QR code scanner consists of two threads: camera thread and
decoder thread. The camera thread captures an image and
sends it to the decoder thread, which extracts the URL in
the QR code and informs the camera thread of the decoding
result. Fig. 1a illustrates the workflow of the QR code scanner.
The camera thread first captures the image 1, and then the
decoder thread analyzes the image 1 to extract the needed
information. During the analysis, the image 2 and the image
3 are ignored because the camera thread has not received
the decoding result of image 1 yet. Because the QR code in
the image 1 is incomplete, the decoding result of the image 1
is “decoding failure”. Now the camera thread sends the
image 4 to the decoder thread, for it is the first image after

receiving the decoding result of the image 1. The image 5 and
the image 6 are ignored just like the image 2 and the image 3.
As the image 4 contains the complete QR code, the decoding
result of the image 4 is “decoding succeeded”.

Let us assume that the QR code scanner behaves as illus-
trated in Fig. 1a during the record stage, and the image 3, 4, 6
contain a complete QR code which links to the phishing web-
site. A record/replay system should store these images during
the record stage and exactly replay them to the camera thread
during the replay stage. If the behavior in replay stage is sim-
ilar to Fig. 1b, which is different from Fig. 1a, the replay is an
unsuccessful replay.

2.2. Record/Replay methods
According to a recent study (Chen et al., 2015), there are six
typical methodologies for record/replay analysis.

(1) Time-based record/replay (TR) method: The first
record/replay method is the time-based record/replay (TR).
The basic idea of this method is to replay an external input
in the replay stage according to its arrival time in the record
stage in order to reproduce some events regarding the arrival
time of external inputs (Halpern et al., 2015). Consider that we
use the TR method to conduct record/replay analysis on the
QR code scanner. It needs to record these images and their
arrival times during the record stage. During the replay stage,
it replays an image only when the current time is the same
as its arrival time in the record stage.

We focus on one limitation of this method that the exe-
cution time of a program during the record stage may differ
from that during the replay stage due to other events such
as thread scheduling and interrupt requests. This difference,
if sufficiently big, may cause an unsuccessful replay. Fig. 1b
shows an unsuccessful replay. In this example, the decoding
time of the image 1 in Fig. 1b is longer than that in Fig. 1a
due to different thread scheduling. Therefore, after decoding
the image 1, the decoder thread ignores the image 4 but de-
codes the image 5 in Fig. 1b. Because the QR code in the im-
age 5 is incomplete (i.e., the image only contains a part of QR
code or does not contain any QR code), the decoding result of
the image 5 will result a “decoding failure” event. As a
result, the program behavior in Fig. 1b is different from that
in Fig. 1a due to the different execution time of decoding the
image 1.

(2) Check-and-Restart (CR) method: To overcome the problem
stated above, researchers proposed to make the TR method
tolerate faults introduced by program execution time. One
such proposal is the check-and-restart methodology (CR) (Lee
et al,, 2011; Montesinos et al., 2008; Voskuilen et al., 2010; Xu
et al., 2018), which separates the record stage into several sub-
stages, records the execution environment at the beginning of
each sub-stage and creates checkpoints at the end of each sub-
stage during the record stage. For each sub-stage, if its replay
result does not match its checkpoint, it needs to restore the
current execution environment to the beginning of this sub-
stage and then redoes the replay on this sub-stage.

To reconstruct the scanner’s behavior in Fig. 1, the im-
proved CR needs to record the decoding result and execution
environment at the beginning of each sub-stage in the record
stage. If the second decoding result in the replay stage is

https://reader.elsevier.com/reader/sd/pii/S0167404819300938..57EFE04FF3288A2BCAE4261AFC50C32BB7E4AD90B9DAEOD22D7522D9EF5

24/5/2020, 10:47 AM

Page 2 of 13

COMPUTERS & SECURITY 88 (2020) 101516

Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader

Camera
Thread
T

Decoder
Thread

Image 1
Image 2 . Ist
y Declodmg Decoding
Image 3 Ij Finlu—rg - !
o i
Image 4 |
|
Image 5 2nd
i Decoding Decoding

Tmage 6 D Succie’dgd,'

S
|

;, Receive an image with incomplete QR code

D Receive an image with complete QR code

g Extract URL. from an image

(a) An example of the scanner’s behav-

ior.
Camera Decoder
Thread Thread
! |
Image 1 V |
i
Image 2
Image 3 Ist
. Decoding
Decoding
Failure __ - ‘
-~ -7 I
i
Image 4 !
i
Image 5 E |
Tmage 6 Decoding 2nd‘
Succeeded - - ‘ Decoding
-7 |

Z Receive an image with incomplete QR code
I:I Receive an image with complete QR code

§$ Suspension
ﬁ Extract URL from an image

Camera Decoder
Thread Thread
]

|
Image 1 z i
|

1
Image 2 Z/
. Ist
Tmage 3 D Decoding
| Decoding
Image 4 D Failll_rg ="
“ i
Image 5 Z |
i
1 |
Image 6 D Decoding Dcicr::in
| Failure - -~} €
e :

E Receive an image with incomplete QR code
[I Receive an image with complete QR code

g Extract URL from an image

(b) An unsuccessful replay of TR.

Camera
Thread
T

Decoder
Thread
T

1
Image 1 E

]

&8

Tmage 2 { 5 z Ist
=z .
I 3 {2 Decoding i Decoding
mage C:T-’ Failure _ _ 4
Tmage 4 i
! |
fmage 5 {i - 2nd
Image 6 {g Decoding E Decoding
P Succeede _
|
1
|

@r, Receive an image with incomplete QR code
D: Receive an image with complete QR code

En Extract URL from an image

Camera Decoder
Thread Thread

1 1
7

Image 1 [i
i

Tmage 2 2 Ist
‘)é Decoding
Image 3 Decpding
Failure _ -~
- i
'
Image 4 !
] |
1 I
Image 5 7/
mage 7 Decoding 2nd.
Image 6 i Su(ic)egqeg, - Decoding
- '

Z Receive an image with incomplete QR code
D Receive an image with complete QR code

§ Suspension

E Extract URL from an image

(C) A successful replay of IR

Replay
Thread

|
? Send
Image 1
&
]
Decoding
Failure
; Send
I 4
& mage
=
=
Decoding
i« Succeeded

-~ Receive an image with incomplete QR code

v
DD Receive an image with complete QR code
ﬁm Extract URL from an image

24/5/2020, 10:47 AM

(d) A successful replay of RD. (e) An example of the scanner’s behav- (f) A successful replay of IS.

ior on IS.

Fig. 1 - Example of record/replay analysis on a QR code scanner.

different from that in the record stage, we only need to restore
current execution environment to the latest recorded execu-
tion environment (i.e., the execution environment when the
camera thread receives the first decoding result), rather than
going back to the execution environment at the beginning of
the record stage. In summary, the CR method reduces the tim-
ing overhead by storing multiple system checkpoints. But it
may cause severe storage overhead because it needs to record
the execution environment several times.

(3) Instruction-Based Replay (IR) Method: Different from the
TR and CR methods, the IR method replays external inputs ac-
cording to instruction execution progresses rather than time
(Dunlap et al., 2002; King et al., 2005). Specifically, when an ex-
ternal input happens during the record stage, the IR method
records values in the program counter and instruction counter
(i.e., a counter containing the number of executed instruc-
tions) for each thread as a milestone. During the replay stage,
the IR method suspends a thread when the thread reaches

a milestone. After all threads of the program have been sus-
pended, the IR method replays the external inputs and then
wakes up all these threads.

Fig. 1c demonstrates how the IR method conducts a suc-
cessful replay on the QR code scanner. Here, we assume that
some events make the program execution time in the replay
stage different from that in the record stage. For example, the
decoder thread in the replay stage runs slower than that in
the record stage during the first decoding phase due to dif-
ferent thread schedule. Then, the IR method suspends the
camera thread when it arrives at certain milestone until the
decoder thread reaches it. As a result, the IR method can
ensure that the image 3 will be replayed before the camera
thread receives the first decoding result, and the image 4 will
be replayed after the camera thread receives the first decoding
result. Therefore, the image 4 can still be sent to the decoder
thread, which ensures the second decoding result in the re-
play stage is the same as that in the record stage.

https://reader.elsevier.com/reader/sd/pii/S0167404819300938..57EFE04FF3288A2BCAE4261AFC50C32BB7E4AD90B9DAEOD22D7522D9EF5

Page 3 of 13

Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader

4 COMPUTERS & SECURITY 88 (2020) 101516

(4) Race detection (RD) method: The IR method can replay
some events regarding external inputs, but cannot replay the
events regarding data race. To reproduce events related to data
race, researchers propose a record/replay method based on
race detection (RD). In essence, it attempts to detect all data
races in a program and ensure all data race results in the re-
play stage are the same as these in the record stage (Hsiao
etal., 2014; Xue et al., 2009). For instance, in Fig. 1a the decoder
thread sends the first decoding result to the camera thread,
and then the camera thread uses it to decide whether the im-
age 4 should be sent to the decoder thread. In fact, this is a
typical reader-writer data race, and the RD method can detect
it. Therefore, it is necessary to ensure that the first decoding
result is received after the camera thread captures the image
3 and before the camera thread captures the image 4. To this
end, during the replay stage, RD suspends the camera thread
after capturing the image 3. When the decoder thread sends
the first decoding result to the camera thread, RD replays the
image 4 and then wakes up the camera thread. The other data
race situation regarding the second decoding result can also
be handled in this manner.

(5) Instruction serialization (IS) method: State-of-the-art RD
methods can detect common data races such as data races in
the shared memory, but fail to detect some special data races
such as races in the covert channel (Wendzel et al., 2015). If a
RD method ignores certain data races in a program, the replay
on the program may be an unsuccessful replay because the
results of these ignored data races in the replay stage may be
different from these in the record stage.

To address this problem, researchers propose a
record/replay method called instruction serialization (IS)
(Devietti et al., 2009; 2011). In essence, the IS method reg-
ulates the execution order of all instructions in a program,
and it intercepts routines to ensure that program execu-
tions in the record and replay stage obey the same order.
Note that when the instruction execution orders remain the
same, the data race results become the same. One possible
implementation of the IS method is illustrated in Fig. 1e and
Fig. 1f. In Fig. le, the scanner runs on a single CPU with a
time-sharing policy during the record stage. For each time
slice, only one thread is running, therefore, all instructions of
the scanner are executed sequentially. The IS method records
the instruction execution order during the record stage and
then re-executes these instructions on one thread in similar
order during the replay stage, which is shown in Fig. 1f.

(6) Load logging (LL) method: Note that one major perfor-
mance overhead of the IS method is that it is difficult, if not
impossible, to extend it to the parallel execution framework,
and given that many CPUs are multi-cores, the IS method will
significantly underutilize the CPU resources. Researchers pro-
pose a novel record/replay method called load logging (LL) (Lee
et al,, 2011; Narayanasamy et al., 2005; Patil et al., 2010), which
can both reproduce the aforementioned events and utilize
CPU resources as much as possible. During the record stage,
the LL method records the initial values of registers, instruc-
tion sequence, the execution results of all load instructions (i.e.,
read the value in certain memory address and store it in spe-
cific register). During the replay stage, the LL method restores
registers with their initial values and then re-executes the
recorded instruction sequence. In particular, when facing a

load instruction, the LL method does not re-execute it but re-
stores its execution results to its corresponding results.

LL method may cause severe performance overhead, espe-
cially for its software-only implementations. The major rea-
son is that LL method relies on system call side effect analysis
and shared memory access order analysis, which usually involve
a large amount of computation®.

3. A type of vulnerability

In essense, malware utilizes non-uniform program execution
time to generate a new random number, which is then used to
conduct challenge-response authentication. The malware will
hide its malicious behavior once the authentication fails. In
theory, the vulnerability exploitation works on record/replay
systems which use TR, CR and IR methods, because malware
can observe the non-uniform program execution time, which
can be used to conduct authentication. The vulnerability ex-
ploitation may not work on record/replay systems which use
the RD method, when the data race used to observe the non-
uniform program execution time can be recognized and hin-
dered. Record/replay systems which use IS or LL methods do
not have such vulnerability, since all execution states of mal-
ware are stored or reconstructed so that malware cannot ob-
serve the non-uniform program execution time in the replay
stage. Then we will give the threat model first and introduce
details on vulnerability exploitation.

3.1. Threat model

We assume that the malware can access the Internet or
send/receive SMS (if the malware is designed for mobile plat-
form). Malware can also interact with users so that it can
receive users’ inputs. The malware does not have the root
privilege. The malware has a payload which contains its core
malicious code. We say the malware evades the record/replay
system successfully if the malicious behavior caused by run-
ning the payload in the record stage cannot be reconstructed
in the replay stage. Besides, we assume that TR, CR and IR
methods are used to conduct record/replay forensic analysis.
We do not consider RD, IS and LL methods, since they are too
heavy-weight and no existing record/replay forensic systems
use those methods.

3.2. Vulnerability exploitation

3.2.1. Producing a new random number based on non-uniform
program execution time

Generating a new random number should have been easy
to accomplish, since many operating systems have random
number generation components. For example, in Linux, a
random number can be obtained from the /dev/random
(Barak and Halevi, 2005). However, to avoid the replay diver-
gence caused by a random number, record/replay systems
may record the random number generated by the component
during the record stage, which is then replayed to the program

1 https://software.intel.com/en-us/articles/pinplayfaq.

https://reader.elsevier.com/reader/sd/pii/S0167404819300938..57EFE04FF3288A2BCAE4261AFC50C32BB7E4AD90B9DAEOD22D7522D9EF5

24/5/2020, 10:47 AM

Page 4 of 13

Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader

COMPUTERS & SECURITY 88 (2020) 101516 5

sample when it asks for a new random number during the re-
play stage. In other words, the random number obtained by
the program sample during the replay stage is the same as
that during the record stage, while our trick requires that the
program sample uses two different random numbers during the
record stage and the replay stage respectively.

To address this issue, we generate a new random num-
ber using non-uniform program execution time, which basically
means the time cost of a program execution in the replay stage
is usually different from that in the record stage, and this dif-
ference cannot be precisely predicted. For example, consider
a program that can solve the sum of an integer array. Ideally,
given the same integer array, all the executions of the program
would take the same amount of time. But, in fact, some may
take longer time than others. A recent study (Chen et al., 2014)
points out two sources/causes of non-uniform program exe-
cution time. First, program execution time is highly associated
with a series of factors like:

» Physical Factors: temperature and voltage affect the per-
formance of the electron components.

» Factors in CPU: branch prediction results decide which in-
struction will be executed in advance. Therefore, they af-
fect program execution time.

« Factors in IRQs: the position where an interrupt blocks a
program affects the program execution time.

» Factors in Thread Scheduling: the priority of the thread de-
termines the time cost of its execution.

« Factors in Storage: the cache layout, memory layout, disk
layout, magnetic needle status (for mechanical disk) and
wear leveling status affect the time cost of storage opera-
tions.

Second, the operations that a record/replay system con-
ducts during the record stage have different time consump-
tion from operations during the replay stage. For example, a
record/replay system may write key events to file system dur-
ing the record stage, while it may read those events from stor-
age during the replay stage.

A program sample can generate a new random number in
two phases. First, it uses a software counter to measure the exe-
cution time of a program sample. In Fig. 2, the program sample
first creates a counter and initialize it to 0. Then the program
sample repeats the increment operations of the counter asyn-
chronously. After sleeping for several seconds, the program
sample stops the counter and gets the current value in the
counter. Second, we use state-of-the-art random number gen-
erators such as (Barak and Halevi, 2005; Corrigan-Gibbs and
Jana, 2015) to transform the value in the counter to a new ran-
dom number.

3.2.2. Challenge-response authentication

The program sample can use a random number to conduct
challenge-response authentication to determine whetheritisin a
replay context or not. For instance, the program sample first
sends the challenge with a random number to the attacker.
After receiving the challenge, the attacker sends its response
with the received number back to the program sample. Fi-
nally, the program sample executes the malicious code only

¢

Create a counter

and initialize it to 0

—

b Received

the signal?

Sleep for
several seconds

Send a signal
0 stop the counter,

Get the value
in the counter

Fig. 2 - Use non-uniform program execution time to
generate a new random number.

when the received response and the challenge have the same
number.

Fig. 3 illustrates the authentication protocol. The program
sample and the attacker share one encryption key denoted
by K. The record/replay system is a communication intercep-
tor between the program sample and the attacker. Therefore,
the record/replay system can intercept all challenges and re-
sponses before they are received. During the record stage, the
program sample generates a random number S; and sends
the challenge C(K, S1). The record/replay system intercepts
C(K, S1) and then sends C(K, S1) to the attacker. Then the at-
tacker sends a response R(K, S1), which is then intercepted
by the record/replay system. Since R(K, S;) is a type of exter-
nal input to the program sample, the record/replay system
records R(K, S;) and then sends it to the program sample. Since
C(K, S1) and R(X, S1) contain Si, the program then sample ex-
ecutes its malicious code. In the replay stage, the program
sample produces a new random number S, and sends the
challenge C(K, Sy). Since the record/replay system only replays
what has been recorded, it sends R(K, S1)) back to the program
sample. Since R(K, S1) contains S; which is not what C(K, S,)
contains, the program sample does not execute its malicious
code.

In the example mentioned above, we assume that the pro-
gram sample can communicate with the attacker via network.
If the program sample does not have the network permission,
the authentication cannot be done between the program sam-
ple and the attacker. In that case, the program sample may
conduct the authentication via the user interface. For exam-
ple, the program sample can produce the verification code
based on random numbers and ask the user to input the ver-
ification code. The program sample runs malicious code only

https://reader.elsevier.com/reader/sd/pii/S0167404819300938..57EFE04FF3288A2BCAE4261AFC50C32BB7E4AD90B9DAEOD22D7522D9EF5

24/5/2020, 10:47 AM

Page 5 of 13

Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader

6 COMPUTERS & SECURITY 88 (2020) 101516
C(K,Sy) C(K,S1)
Record Record/Replay
Stage System
Malware R R(K.S Attacker
KRy R(K,S;) RES)
Y
Event Records
C(K,Sy)
Replay Record/Replay
Stage System
—— A
Malware
R(K,S)) R(K,S))

Event Records

Fig. 3 - Use challenge-response authentication to hide malicious behavior.

when the user correctly inputs the verification code. Since the
verification code in the replay stage is different from that in
the record stage, the program sample does not execute its ma-
licious code.

4, Evaluation

In this section, we conduct attack experiments on three dif-
ferent platforms: web browser, mobile operating system and
virtualized sandbox.

4.1. Web browser

Conducting forensic analysis to investigate web-based se-
curity incidents is necessary, because it helps security re-
searchers to better understand security incidents and propose
defense mechanism. To illustrate the security issues of web
browser forensic systems in practice, we conduct a proof-of-
concept attack on WebCapsule (Neasbitt et al., 2015), which is
a record/replay based forensic system for web browsers.

WebCapsule works in two phases. During the record stage,
a user launches a browser to visit web pages, while WebCap-
sule records the user’s inputs to the browser (e.g., key press,
mouse click and network flow) by monitoring the Web render-
ing engine and V8 JavaScript engine in the browser. During the
replay stage, WebCapsule replays those external inputs, and it
follows the time order of those external inputs in the record
stage.

Besides, WebCapsule implements a self-healing mechanism
to mitigate potential divergence caused by obstinate events.
During the record stage, it records DOM trees of the web
pages visited by the user. During the replay stage, WebCapsule

restores those web pages one by one and replays external in-
puts on their corresponding web pages.

To set up our experimental environment, we downloaded
the source code of WebCapsule from its repository” and de-
ployed it on Ubuntu 15.10 and the Google Chrome browser. In
addition, we build a website using HTML and JavaScript hosted
on Apache Tomcat 7.0. Our website only has one button. If the
user clicks the button, a piece of JavaScript code to conduct
the attack will be executed in the browser. The attack pro-
cess is shown in Algorithm 1. The function ATTACK() describes
key procedures to hide malicious behavior in the replay stage.
First, it invokes the function OBSERVE() n times to observe the
non-uniformity of program execution time. Then it produces
a random number R based on those observed results (i.e.,
Aj,...,Ap) and sends the ciphertext of R to the attacker. Next,
it receives the response and decrypts it as R'. If R = R, it sub-
mits the user’s private information (e.g., email address and
password) to the attacker. The function OBseRrVE() first applies
a variable s and initializes it to 0, and then it sends an HTTP
request to the server and then repeats executing incremen-
tal operations on the variable s until the program receives the
corresponding response from the server. Finally, it returns s as
an observed result. The experimental results show that our at-
tack are successfully conducted. We present the whole attack
process for WebCapsule in a video which can be accessed via
a YouTube link>.

4.2. Mobile operating system
Mobile malware analysts or forensic analysts usually adopt
record/replay analysis to investigate and understand security

2 https://github.com/perdisci/WebCapsule.
3 https://youtu.be/FvopAIlIQOCM.

https://reader.elsevier.com/reader/sd/pii/S0167404819300938..57EFE04FF3288A2BCAE4261AFC50C32BB7E4AD90B9DAEOD22D7522D9EF5

24/5/2020, 10:47 AM

Page 6 of 13

Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader

COMPUTERS & SECURITY 88 (2020) 101516 7

Algorithm 1 Hide malicious behavior in WebCapsule.

1: function ATTACK()

2: A < Array(n);

3 fori=1- ndo

4 A; < OBSERVE_HTTP;
5: end for
6
7

produce a random number R based on Ay, ..., Ap;
encrypt R and send an HTTP request with its ciphertext
to the attacker;

8 receive an HTTP response and decrypt it as R ;
9: if R=R)then

10: send user’s private information to the attacker;

11: end if

12: end function

13:

14: function OBSERVE_HTTP()

15: s« 0;

16: send an HTTP request to server;

17: repeat

18: S« s+1;

19: until (receive its response);
20: return s;
21: end function

events on mobile platform. In particular, they usually focus on
recording/replaying the events regarding the interaction be-
tween users and the mobile devices such as finger operations,
because those events are usually highly related to the attack
or malicious behavior. For example, in the motivating exam-
ple introduced in Section 2.1, the clerk needs to operate the QR
code scanner to scan malicious QR code and input the email
password to the phishing website. If the finger operations are
not precisely recorded and replayed, the phishing website may
not appear or the malicious code that steals clerk’s data may
not be executed.

To record/replay finger operations, one of the most com-
mon methods used by Android record/replay systems such
as (Gomez et al.,, 2013; Halpern et al., 2015; Qin et al., 2016)
is to capture/inject relevant events via /dev/input/event®,
which is a set of device files in Android OS that serves as
the interface to the input device module in kernel. When a
user operates a mobile device, the finger operations are en-
coded into a sequence of events in a standard five-field for-
mat Gomez et al. (2013) and stored in kernel space. Those
events can be extracted by reading those device files. Arti-
ficial events can also be made based on the event format
and injected to kernel by writing the events to those device
files.

We find malware can use our approach to evade
record/replay systems based on /dev/input/event*.
For example, malware can generate a random number based
on the non-uniform program execution time and ask the user
to input the number. Although events regarding finger opera-
tions can be collected via /dev/input/event* in the record
stage, the random number generated in the replay stage is
different so that replaying those events inputs an unmatched
number that can not help to pass the authentication held by
the malware.

To verify the opinion we state above in practice, we per-
form an attack experiment on FRep*, which is an Android
record/replay tool based on /dev/input/event*. We con-
duct the experiment on Google Nexus 6P smartphone with An-
droid 6.0 OS. We implemented an Android application with
four activities as shown in Fig. 4. When we start our appli-
cation, the default activity with START button is displayed.
After a user clicks the START button, the application will
produce random numbers based on non-uniform program
execution time, generate verification code with the random
numbers and show the verification code in the authentication
activity. To finish the authentication task, a user needs to in-
put the verification code and click the SUBMIT button. If the
code entered by the user is the same as the verification code,
our application will run malicious payload. Otherwise, our ap-
plication will behave normally.

In our attack experiment, we click the START button,input
the verification code and click the SUBMIT button. Since we
correctly input the verification code, the program sample car-
ries out the malicious activity after finishing those operations.
Then we let FRep replay our operations and check whether the
program sample still conducts the malicious activity. The ex-
perimental results show that the payload is not executed dur-
ing the replay stage, which indicates our attack succeeds. We
show the whole attack process in a video which is accessible
via a YouTube link®.

4.3. Virtualized sandbox

Hardware virtualization has been widely used to build a secure
production or analysis environment, and record/replay anal-
ysis is also used to facilitate forensic or security analysis in a
virtualized sandbox such as ROP attack defense (Shalabi et al.,
2018), memory forensic analysis (Dolan-Gavitt et al., 2013) and
honeypot forensic analysis (Srinivasan and Jiang, 2011). For ex-
ample, RnR-Safe (Shalabi et al., 2018) is a security framework
to enhance the security hardware features such as return ad-
dress stack that may not be always precise in detecting ROP
attacks. In essense, it conducts record/replay analysis in two
steps. First, RnR-Safe records the events such as program in-
puts and attack alarms to a log file on a recording hypervisor.
Second, it uses checkpointing and alarm replayers to recon-
struct the attack on the replaying VMs and analyze whether
the recorded alarms are false positives or not.

Despite the merits of RnR-Safe, we find RnR-Safe can be
evaded through our approach. Intuitively, RnR-Safe works
when checkpointing and alarm replayers can precisely recon-
struct program behavior in the record stage. But malware may
exploit the vulnerability caused by non-uniform program ex-
ecution time to hinder reconstructing attacks on the replay-
ing VMs. As a result, RnR-Safe recognizes the alarm events re-
ported in the record stage as a false positive rather than a real
attack.

Since we fail to obtain RnR-Safe’s source code or binary,
we implement a prototype tool based on QEMU to imitate the

4 https://play.google.com/store/apps/details?id=com.x0.strai.
frep.
5 https://youtu.be/iehMoHXmodE.

https://reader.elsevier.com/reader/sd/pii/S0167404819300938..57EFE04FF3288A2BCAE4261AFC50C32BB7E4AD90B9DAEOD22D7522D9EF5

24/5/2020, 10:47 AM

Page 7 of 13

Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader

8 COMPUTERS & SECURITY 88 (2020) 101516

4 EBLAE

attacker

Malicious Activity

]) 2
o Please input the code in the field) Malicious ACtiVity
below:
1679523046
n
E— -
3)
R EEX]
.. . . attacker
Default Activity Authentication
Activity
Normal Activity
Figure Legend:

1) Click "START".

Normal Activity

2) Click "SUBMIT" when the user input is correct.
3) Click "SUBMIT when the user input is wrong.

Fig. 4 - The application for the attack on FRep.

record/replay part of RnR-Safe. In the record stage, our pro-
totype builds a snapshot/checkpoint to back up the data in
virtual memory space. During the record stage, it intercepts
part of the inputs to the virtual machine including mouse and
keyboard inputs, network packets, audio controller inputs and
hardware clocks. During the replay stage, it imports the snap-
shot to the virtual machine and replays all recorded inputs
back to the virtual machine with the icount feature of QEMU
or its extension.

We install QEMU 2.8.0 on Ubuntu 15.10 OS and create a vir-
tual machine with two virtual CPUs of the x86 architecture,
1024-MB virtual memory and 20-GB virtual hard disk. We also
set up the Ubuntu 15.10 OS on this virtual machine. In addi-
tion, we implement an attack program based on our approach,
whihc first produces authentication code and then executes
ROP attack only when someone correctly inputs the code.

We run the program in the virtual machine and let QEMU
record the behavior of the program. During the execution of
the program, we correctly input the authentication code so
that the program finally conducts ROP attack. Then we let
QEMU replay the whole process according to what it has been
recorded. As a result, during the replay stage, the program cor-
rectly recognizes that current execution is in the replay con-
text so that the ROP attack code is not executed. The video
capturing the whole attack process is accessible via a YouTube
link®.

5. Defense discussion

In this section, we discuss potential mitigation methods for
the vulnerability we presented in Section 3.

§ https://youtu.be/khHyQ4WUGZA.

Ideally, precisely controlling the timing of program execution in
the replay stage can eliminate the vulnerability. However, as
non-uniform program execution time originates from inher-
ent properties of computer systems, precisely controlling tim-
ing is impractical in current architecture of computer sys-
tems. Given this, we do not try to control timing precisely
but to hide timing, which means to prevent a program sam-
ple from observing program execution time. Based on this
idea, we discuss four mitigation methods: hardware-assisted
record/replay analysis, ensemble record/replay analysis, sym-
bolic execution and exploit detection.

5.1. Hardware-assisted record/replay analysis

Our vulnerability exploitation method uses a software counter
to observe non-uniform program execution time. If we can re-
produce all instruction execution events (i.e., record/restore op-
code, operands and results for each instruction execution), the
ending value of the counter in the replay stage must be the
same as that in the record stage. As a result, a program sam-
ple cannot observe non-uniform program execution time via
the counter.

It is crucial for us to point out that this method can cause
significant performance overhead, especially for software-
only record/replay systems, because it has to execute extra
instructions to record/replay each instruction execution of the
program. Since a forensic system should be always-on to col-
lect all data for forensic analysis, it should be light-weight to
avoid affecting the daily usage of user’s device (Neasbitt et al.,
2015).

Different from software-only solutions, hardware-assisted
solutions, such as (Lee et al., 2011; Qian et al., 2013), usually use
dedicated hardware to record/replay execution information to
reduce the performance overhead of record/replay analysis.
But, hardware-assisted solutions also have some limitations

https://reader.elsevier.com/reader/sd/pii/S0167404819300938..57EFE04FF3288A2BCAE4261AFC50C32BB7E4AD90B9DAEOD22D7522D9EF5

24/5/2020, 10:47 AM

Page 8 of 13

Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader

COMPUTERS & SECURITY 88 (2020) 101516 9

such as weak compatibility, replay slowdown, high implemen-
tation cost, etc. (Chen et al., 2015). So far, hardly do any com-
mercial processors adopt state-of-the-art hardware-assisted
record/replay solutions. In brief, hardware-assisted solutions
can mitigate the vulnerability, but more efforts need to be paid
to remove side effects to make them applicable to real forensic
tasks.
5.2. Ensemble record/replay analysis

We have introduced six record/replay methods, and two light-
weight methods (i.e., TR, CR and IR) are currently used in soft-
ware forensics. Now let us switch back to the remaining four
methods. We discuss whether we can mitigate the vulnera-
bility by combining these two light-weight methods with the
remaining four methods. We call this mitigation method as
ensemble replay.

We give two ensemble replay schemes and discuss their
strengths and weaknesses.

(1) RD+IR Let us reconsider the vulnerability exploitation
algorithm in Fig. 2. One thread sends a signal, and another
thread receives the signal to stop the counter, which is a
typical race condition. If we can force the race result (i.e,
the sequence that all threads access one data item) in the
replay stage to be the same as that in the record stage, a
program sample cannot observe the non-uniform program
execution time via the counter. Given this, we can recognize
all data races in the program sample during the program
execution at first, also known as race detection (RD). Then
we can make data race results in the replay stage similar to
these in the record stage via lock mechanism. More details
of the RD method can be found in Section 2. Except for the
RD method, we also use the IR method to record/replay
inputs.

The mitigation method works when all data races in the
program can be detected without missing and error. However,
state-of-the-art race detection methods can detect common
data races (e.g., shared-memory data race), but they may miss
special data races (e.g., data race via a covert channel). In con-
clusion, ensemble replay based on the RD method can miti-
gate the vulnerability only when the race detection method
which forensic analysts adopt never makes mistakes.

(2) LL+IR: The LL method hides non-uniform program exe-
cution time by recording/restoring memory operations. How-
ever, it usually incurs significant performance overhead. To
mitigate its performance overhead, we can combine the LL
method with other record/replay methods. In particular, we
can use the LL method to record/replay the behavior of vul-
nerability exploitation, while using other light-weight meth-
ods (e.g., the IR method) to record/replay other behaviors. This
way, we only need to use the LL method occasionally so that
performance overhead is reduced. To illustrate, let us consider
our attack program for WebCapsule in Algorithm 1. It uses an
if statement to decide whether to conduct malicious behav-
ior or not. In this case, we only need to use the LL method
to record/replay the execution of the last if statement in
Algorithm 1.

The main challenges of this mitigation method are how
to recognize the behavior of vulnerability exploitation and
how to switch record/replay methods automatically. One may

roughly regard all if statements as suspicious vulnerabil-
ity exploitation behavior and switch current record/replay
method to the LL method whenever it meets an if statement.
However, when a program has to execute a group of if state-
ments, the performance may remain low. This will be studied
in our future work.

5.3. Symbolic execution

In essence, malware exploits the vulnerability to make the
execution path in the record stage different from that in the
replay stage. To avoid the divergence caused by non-uniform
program execution time, one intuition is to use symbolic ex-
ecution to force the execution path to be exactly the same
with that in the replay stage and solve constraints in the ex-
ecution path to get the inputs that can trigger such execution
path.

Symbolic execution should be useful in the security anal-
ysis scenarios which mainly aims at triggering malicious be-
havior. For example, in malware analysis or detection, secu-
rity analysts can use symbolic execution to execute suspicious
code in a program. But, directly applying symbolic execution
to forensic cases may cause some problems. In fact, although
symbolic execution can force to execute every possible exe-
cution paths in the replay stage, it cannot prove the same ex-
ecution path happened in the record stage, which is usually
meaningless for forensic scientists who aim at extracting ev-
idences for a criminal investigation. Recall the motivating ex-
ample in Section 2.1. Symbolic execution has the capability to
execute the path to trigger a phishing attack. But after solving
the constraints in the execution path, we find the solved in-
puts may be different from the recorded inputs, which cannot
prove that the clerk inputs its email password to the phishing
website. Given such scenario, further research should be con-
ducted to apply symbolic execution to record/replay forensic
analysis.

5.4. Exploit detection

Malware which exploits such vulnerability may leave cer-
tain footprints (i.e., static or dynamic features) which could
be used to detect such malware. Based on this intuition, a
record/replay system may scan the malware before doing re-
play on it to know whether it exploits such vulnerability or
not. If so, forensic or security analysts will do manual analysis
on the malware instead of replay analysis. Although this ap-
proach cannot ensure a faithful replay, it can notice forensic
or security analysts to take care when facing such anti-replay
malware.

The major challenge of this approach is to extract effective
features to reduce false positives on detecting such malware.
For example, although malware which exploit such vulnera-
bility may observe data race results to generate random num-
bers, data race cannot be directly used to detect such malware.
Because benign programs or malware which do not exploit
such vulnerability may also have data races. The feature ex-
traction to detect such malware is also included in our future
work.

https://reader.elsevier.com/reader/sd/pii/S0167404819300938..57EFE04FF3288A2BCAE4261AFC50C32BB7E4AD90B9DAEOD22D7522D9EF5

24/5/2020, 10:47 AM

Page 9 of 13

Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader

10

COMPUTERS & SECURITY 88 (2020) 101516

6. Related work

Although, to our best knowledge, there is no existing work fo-
cusing on the security issues of record/replay systems for soft-
ware forensics, we drew inspiration from a variety of sources,
which can be roughly classified into four categories.

6.1. Record/Replay analysis

Record/replay analysis has been extensively studied in soft-
ware testing and fault tolerance. Existing work such as (Jiang
et al.,, 2014; Neasbitt et al., 2015; Qian et al., 2013) mainly fo-
cuses on precisely conducting record/replay analysis with small log
size, high record/replay speed and little probe effect (Chen et al,,
2015). Different from existing work, our work explores secu-
rity issues of record/replay systems for software forensics.

6.2. Software forensics

Software forensics has about forty years of history. In the early
days, most of forensic tasks were data recovery in essence
(Garfinkel, 2010). Now, software forensics are facing great chal-
lenges from different kinds of cybercrimes, and there are a
large variety of new forensic tasks much more complicated
than data recovery such as forensic imaging (Guido et al.,
2016), memory forensics (Socata and Cohen, 2016), network
forensics (Joshi and Pilli, 2016), etc. In particular, record/replay
analysis is an important technique which forensic analysts
adopt in order to accomplish these forensic tasks. For exam-
ple, Panda conducts record/replay as a way to facilitate mem-
ory forensic analysis (Dolan-Gavitt et al., 2013). WebCapsule
(Neasbitt et al., 2015) records/replays users’ operations on the
Web browser to collect evidence in a web-based cybercrime.
Timescope (Srinivasan and Jiang, 2011) applies record/replay
to honeypot forensics. This paper tries to remind forensic an-
alysts of the weakness or limitations of record/replay in order
to help them deal with complex forensic tasks.

6.3. Anti-forensics

Anti-forensics refers to the countermeasures to software
forensic analysis. Existing anti-forensic work is mainly about
the definitions of anti-forensics (Harris, 2006; Stamm et al.,
2012), anti-forensic techniques (Afshin et al., 2016; Lee et al.,
2016), detection or mitigation of anti-forensic attacks (Rekhis
and Boudriga, 2012), etc. We proposed a new anti-forensic
technique for the forensic systems based on record/replay
analysis. We also discussed how to mitigate our anti-forensic
technique.

6.4. Malware analysis evasion

Malware may utilize a series of techniques to evade mal-
ware analysis. For example, code obfuscation techniques such
as Banescu et al. (2016); Kuang et al. (2018) are used to de-
ter static analysis. Anti-debugging techniques such as Wan
etal. (2018), Chen et al. (2016) and sandbox evasion techniques
such as (Costamagna et al., 2018; Diao et al., 2016) are used

to evade dynamic analysis. Despite the merits of state-of-the-
art malware analysis evasion techniques, they show limita-
tions to evade record/replay forensic analysis, because the
record/replay forensic analysis is a special dynamic analysis
that does not rely on debugging or sandbox techniques. To
overcome such issues, we propose a novel approach to evade
record/replay forensic analysis.

7. Conclusion and future work

Record/replay analysis is initially utilized in software debug-
ging. It records the events that may affect program flow and re-
produces the bug by replaying the same events. Record/replay
analysis is now used in software forensics. However, the pro-
gram under forensic analysis may use tricks to prevent mali-
cious behavior from being replayed. In this paper, we explored
the vulnerabilities which malware may exploit to hinder a
faithful replay.

We discovered a type of vulnerability associated with the
phenomenon that program execution time cannot be ex-
actly the same as the program re-execution time due to the
non-uniform noise from hardware. By exploiting this vul-
nerability, malware can prevent its malicious behavior from
being replayed. We conducted attack experiments on web
browser, mobile operating system and virtualized sandbox,
which verified the vulnerability in practice. Finally, we dis-
cussed the effectiveness and challenges to mitigate the vul-
nerability via hardware-assisted record/replay analysis, en-
semble record/replay analysis, symbolic execution and exploit
detection.

As for future work, we plan to look for more vulnerabilities
which malware can explore to hinder record/replay forensic
analysis. This way, we could understand the security issues
of record/replay analysis more comprehensively. Besides, we
plan to propose a novel record/replay forensic analysis ap-
proach which is immune to existing evasion techniques or
vulnerabilities, and conduct a series of experiments on the
prototype tool based on this approach to evaluate its effec-
tiveness to defend against evasion and performance.

Acknowledgment

The work of John C.S. Lui is supported in part by the RGC
R4032-18.

REFERENCES

Afshin N, Razzazi F, Moin MS. A dictionary based approach to
jpeg anti-forensics. In: Proceedings of the 2016 IEEE 8th
international conference on intelligent systems (IS). IEEE;
2016. p. 778-83.

Banescu S, Collberg C, Ganesh V, Newsham Z, Pretschner A. Code
obfuscation against symbolic execution attacks. In:
Proceedings of the 32nd annual conference on computer
security applications, ACSAC '16. New York, NY, USA: ACM;
2016. p. 189-200. doi:10.1145/2991079.2991114.

Barak B, Halevi S. A model and architecture for pseudo-random
generation with applications to /dev/random. In: Proceedings

https://reader.elsevier.com/reader/sd/pii/S016740481930093..57EFE04FF3288A2BCAE4261AFC50C32BB7E4D90B9DAESD22D7522D9EF5

24/5/2020, 10:47 AM

Page 10 of 13

Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader

COMPUTERS & SEGURITY 88 (2020) 101516 11

of the 12th ACM conference on computer and
communications security. ACM; 2005. p. 203-12.

Chen A, Moore WB, Xiao H, Haeberlen A, Phan LTX, Sherr M,
Zhou W. Detecting covert timing channels with
time-deterministic replay. In: Proceedings of the 11th USENIX
symposium on operating systems design and implementation
(OSDI 14); 2014. p. 541-54.

Chen P, Huygens C, Desmet L, Joosen W. Advanced or not? A
comparative study of the use of anti-debugging and anti-VM
techniques in generic and targeted malware. In: Proceedings
of the IFIP international information security and privacy
conference. Springer; 2016. p. 323-36.

Chen Y, Zhang S, Guo Q, Li L, Wu R, Chen T. Deterministic replay:
a survey. ACM Comput Surv (CSUR) 2015;48(2):17.

Corrigan-Gibbs H, Jana S. Recommendations for randomness in
the operating system, or how to keep evil children out of your
pool and other random facts. Proceedings of the 15th
workshop on hot topics in operating systems (HotOS XV),
2015.

Costamagna V, Zheng C, Huang H. Identifying and evading
android sandbox through usage-profile based fingerprints. In:
Proceedings of the first workshop on radical and experiential
security. ACM; 2018. p. 17-23.

Devietti J, Lucia B, Ceze L, Oskin M. Dmp: deterministic shared
memory multiprocessing, 37. ACM; 2009. p. 85-96.

Devietti J, Nelson], Bergan T, Ceze L, Grossman D. RCDC: a
relaxed consistency deterministic computer, 46. ACM; 2011. p.
67-78.

Diao W, Liu X, Li Z, Zhang K. Evading android runtime analysis
through detecting programmed interactions. In: Proceedings
of the 9th ACM conference on security & privacy in wireless
and mobile networks. ACM; 2016. p. 159-64.

Dolan-Gavitt B, Leek T, Hodosh J, Lee W. Tappan zee (north)
bridge: mining memory accesses for introspection. In:
Proceedings of the ACM Sigsac conference on computer and
communications security; 2013. p. 839-50.

Dunlap GW, King ST, Cinar S, Basrai MA, Chen PM. Revirt:
enabling intrusion analysis through virtual-machine logging
and replay. ACM SIGOPS Oper Syst Rev 2002;36(SI):211-24.

Garfinkel SL. Digital forensics research: the next 10 years. Digit
Investig 2010;7:564-73.

Gomez L, Neamtiu I, Azim T, Millstein T. Reran: timing-and
touch-sensitive record and replay for android. In: Proceedings
of the 2013 international conference on software engineering.
IEEE Press; 2013. p. 72-81.

Guido M, Buttner], Grover J. Rapid differential forensic imaging of
mobile devices. Digit Investig 2016;18:546-54.

Halpern M, Zhu Y, Peri R, Reddi VJ. Mosaic: cross-platform
user-interaction record and replay for the fragmented android
ecosystem. In: Proceedings of the 2015 IEEE international
symposium on performance analysis of systems and software
(ISPASS),. IEEE; 2015. p. 215-24.

Harris R. Arriving at an anti-forensics consensus: examining how
to define and control the anti-forensics problem. Digit Investig
2006;3:44-9.

Hsiao CH, Yu], Narayanasamy S, Kong Z, Pereira CL, Pokam GA,
Chen PM, Flinn J. Race detection for event-driven mobile
applications, 49. ACM; 2014. p. 326-36.

Jiang Y, Gu T, Xu C, Ma X, Lu J. Care: cache guided deterministic
replay for concurrent java programs. In: Proceedings of the
36th international conference on software engineering. ACM,;
2014. p. 457-67.

Joshi R, Pilli ES. Network forensics. Fundamentals of network
forensics. Springer, 2016. 3-16.

King ST, Dunlap GW, Chen PM. Debugging operating systems
with time-traveling virtual machines. Proceedings of the
annual conference on USENIX annual technical conference,
2005. 1-1.

https://reader.elsevier.com/reader/sd/pii/S016740481930093..57EFE04FF3288A2BCAE4261AFC50C32BB7E4D90B9DAESD22D7522D9EF5

Kuang K, Tang Z, Gong X, Fang D, Chen X, Wang Z. Enhance
virtual-machine-based code obfuscation security through
dynamic bytecode scheduling. Comput Secur 2018;74:202-20.

Lee D, Said M, Narayanasamy S, Yang Z. Offline symbolic analysis
to infer total store order. In: Proceedings of the 2011 IEEE 17th
International Symposium on high performance computer
architecture (HPCA). IEEE; 2011. p. 357-8.

Lee K, Hwang H, Kim K, Noh B. Robust bootstrapping memory
analysis against anti-forensics. Digit. Investig. 2016;18:
S23-S32.

Montesinos P, Ceze L, Torrellas J. Delorean: recording and
deterministically replaying shared-memory multiprocessor
execution effficiently. In: Proceedings of the 35th
international symposium on computer architecture, 2008.
ISCA’08.. IEEE; 2008. p. 289-300.

Narayanasamy S, Pokam G, Calder B. Bugnet: continuously
recording program execution for deterministic replay
debugging, 33. IEEE Computer Society; 2005. p. 284-95.

Neasbitt C, Li B, Perdisci R, Lu L, Singh K, Li K. Webcapsule:
towards a lightweight forensic engine for web browsers. In:
Proceedings of the 22nd ACM SIGSAC conference on computer
and communications security. ACM; 2015. p. 133-45.

Patil H, Pereira C, Stallcup M, Lueck G, Cownie J. Pinplay: a
framework for deterministic replay and reproducible analysis
of parallel programs. In: Proceedings of the 8th annual
IEEE/ACM international symposium on code generation and
optimization. ACM; 2010. p. 2-11.

Qian X, Huang H, Sahelices B, Qian D. Rainbow: efficient memory
dependence recording with high replay parallelism for
relaxed memory model. In: Proceedings of the 2013 IEEE 19th
international symposium on high performance computer
architecture (HPCA2013),. IEEE; 2013. p. 554-65.

Qin Z, Tang Y, Novak E, Li Q. Mobiplay: a remote execution based
record-and-replay tool for mobile applications. In:
Proceedings of the 38th international conference on software
engineering. ACM; 2016. p. 571-82.

Rekhis S, Boudriga N. A system for formal digital forensic
investigation aware of anti-forensic attacks. IEEE Trans Inf
Forensics Secur 2012;7(2):635-50.

Shalabi Y., Yan M., Honarmand N., Lee R.B., Torrellas J.
Record-replay architecture as a general security framework.
In: Proceedings of the 2018 IEEE international symposium on
high performance computer architecture (HPCA). IEEE; 2018. p.
180-193.

Socatla A, Cohen M. Automatic profile generation for live linux
memory analysis. Digit Investig 2016;16:511-24.

Srinivasan D, Jiang X. Time-traveling forensic analysis of
VM-based high-interaction honeypots. In: Proceedings of the
international conference on security and privacy in
communication systems. Springer; 2011. p. 209-26.

Stamm MC, Lin WS, Liu KR. Forensics vs. anti-forensics: a
decision and game theoretic framework. In: Proceedings of
the 2012 IEEE international conference on acoustics, speech
and signal processing (ICASSP). IEEE; 2012. p. 1749-52.

Voskuilen G, Ahmad F, Vijaykumar T. Timetraveler: exploiting
acyclic races for optimizing memory race recording, 38. ACM;
2010. p. 198-209.

Wan J, Zulkernine M, Liem C. A dynamic app anti-debugging
approach on android art runtime. In: Proceedings of the 2018
IEEE 16th international conference on dependable, autonomic
and secure computing, 16th international conference on
pervasive intelligence and computing, 4th international
conference on big data intelligence and computing and cyber
science and technology congress
(DASC/PiCom/DataCom/CyberSciTech). IEEE; 2018. p. 560-7.

Wendzel S, Zander S, Fechner B, Herdin C. Pattern-based survey
and categorization of network covert channel techniques.
ACM Comput Surv (CSUR) 2015;47(3):50.

24/5/2020, 10:47 AM

Page 11 of 13

Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader

12

COMPUTERS & SECURITY 88 (2020) 101516

Xu C, Lemaitre RP, Soto J, Markl V. Fault-tolerance for distributed
iterative dataflows in action. Proc VLDB Endow
2018;11(12):1990-3.

Xue R, Liu X, Wu M, Guo Z, Chen W, Zheng W, Zhang Z, Voelker G.
MPIWIZ: subgroup reproducible replay of MPI applications.
ACM Sigplan Not 2009;44(4):251-60.

Yang Hu received the B.Eng. degree in Software Engineering in
Xi’'an Jiaotong University, Xi’an, China in 2014 and received the
M.Eng. degree in Software Engineering in Xi’an Jiaotong University
in 2017. He was a research assistant in the Department of Com-
puter Science and Engineering, The Chinese University of Hong
Kong, and the Department of Computing, The Hong Kong Poly-
technic University. He is currently a research assistant in School
of Computing, National University of Singapore. His research in-
terests include system security and software engineering.

Mingshen Sun is a senior security researcher of Baidu X-Lab at
Baidu USA. He received his Ph.D. degree in Computer Science and
Engineering from The Chinese University of Hong Kong, under the
supervision of Prof. John C.S. Lui. He was a member of Advanced

Networking and System Research Laboratory (ANSRLab) in CUHK.
During the Ph.D. studies, he worked as a research intern in Qihoo
360. Mingshen also worked in National University of Singapore as
aresearch assistant. He maintains and actively contributes to sev-
eral open source projects. His research interests include system
security, mobile/IoT security, car hacking, and memory-safe pro-
gramming language.

John C.S. Lui is currently the Choh-Ming Li Chair Professor in the
Department of Computer Science and Engineering, The Chinese
University of Hong Kong. His current research interests are in In-
ternet, network sciences with large data implications, machine
learning on large data analytics, network/system security, network
economics, large scale distributed systems and performance eval-
uation theory. He received various departmental teaching awards
and the CUHK Vice-Chancellor’s Exemplary Teaching Award. John
also received the CUHK Faculty of Engineering Research Excel-
lence Award (20112012). John is a co-recipient of the best paper
award in the IFIP WG 7.3 Performance 2005, IEEE/IFIP NOMS. He is
a Fellow of ACM and IEEE.

https://reader.elsevier.com/reader/sd/pii/S016740481930093..57EFE04FF3288A2BCAE4261AFC50C32BB7E4D90B9DAESD22D7522D9EF5

24/5/2020, 10:47 AM

Page 12 of 13

Exploiting non-uniform program execution time to evade record/replay forensic analysis | Elsevier Enhanced Reader 24/5/2020, 10:47 AM

https://reader.elsevier.com/reader/sd/pii/S016740481930093..57EFE04FF3288A2BCAE4261AFC50C32BB7E4D90B9DAESD22D7522D9EF5 Page 13 of 13

