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a b s t r a c t

As the hidden backbone of today's Internet, the Domain Name System (DNS) provides name resolution
service for almost every networked application. To exploit the rich DNS query information for traffic
engineering or user behavior analysis, both passive capturing and active probing techniques have been
proposed in recent years. Despite its full visibility of DNS behaviors, the passive capturing technique
suffers from prohibitive management cost and results in tremendous privacy concerns towards its large-
scale and collaborative deployment. Comparatively, the active probing technique overcomes these
limitations, providing broad-view and privacy-preserving DNS query analysis at the cost of constrained
visibility of fine-grained DNS behavior. This paper aims to accurately estimate DNS query characteristics
based on DNS cache activities, which can be acquired via active probing on a large scale at negligible
management cost and minimized privacy concerns. Specifically, we have made three contributions:
(1) we propose a novel solution, which integrates the renewal theory-based DNS caching formulation
and the hyper-exponential distribution model. The solution offers great flexibility to model various
domains; (2) we perform a large-scale real-world DNS trace measurement, and demonstrate that our
solution significantly improves the estimation accuracy; (3) we apply our solution to estimate the
malware-infected host population in remote management networks. The experimental results have
demonstrated that our solution can achieve high estimation accuracy and outperforms the existing
method.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Domain Name System (DNS) provides two-way mapping
between domains meaningful to humans and IP addresses asso-
ciated with networking services. It has become an indispensable
component for the Internet since the vast majority of network
applications rely on DNS to establish connections with Internet
services. The salient examples include web servers, data centers,
content delivery networks (CDNs) (Adhikari et al., 2012), and cloud
computing (Bernstein et al., 2009). In addition, DNS plays an
increasingly critical role in improving the robustness and agility
of malicious services such as botnet command and control (C&C)
servers (Conficker, 2014; Shin et al., 2009), phishing websites
(Zhang et al., 2011), and spamming campaigns (Egele et al., 2013).
Therefore, it becomes a natural way to study network behaviors of

a variety of network applications by monitoring and investigating
DNS traffic. For instance, the number of hosts that query a botnet
C&C domain reveals the bot population in the monitored network
(Abu et al., 2006).

As depicted in Fig. 1, DNS is mainly composed of two types of
components including authoritative servers (a.k.a., A-DNS servers) and
recursive servers (a.k.a., R-DNS servers) (Rfc1034, 2014). Since R-DNS
servers directly interact with applications in end users' hosts, the DNS
activities observed between end users' hosts and their corresponding
R-DNS server characterize the DNS-relevant activities at the finest
granularity. Hence, R-DNS servers represent a perfect vantage point
for network monitoring. In fact, a number of methods (Bilge et al.,
2011; Sato et al., 2010; Choi et al., 2009; Villamarín-Salomón and
Brustoloni, 2009; Dagon and Lee, 2009; Jiang et al., 2010; Antonakakis
et al., 2010) have been proposed to study network activities by
passively monitoring DNS queries between hosts and R-DNS servers,
which are usually deployed in networks belonging to one manage-
ment network range (e.g., an enterprise network or an ISP network).
As the dynamics and diversity of network applications are rapidly
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increasing, there is a growing demand to design effective and scalable
methods that can facilitate collaborative DNS traffic monitoring across
different management network ranges. A large-scale, collabora-
tive DNS monitoring framework can be tremendously beneficial. For
example, it can reveal the propagation patterns of botnets and
subsequently lead to effective mitigation solutions. Unfortunately,
deploying passive monitor methods in a large-scale, collaborative
manner is extremely challenging for at least two reasons. First, passive
monitor methods mandate the installation and maintenance of traffic
collection from various networks and thus may incur huge computa-
tional and management cost. In addition, the captured network traffic
might contain sensitive information such as IP addresses, which
might introduce significant privacy concerns.

An alternative DNS monitoring strategy is to actively probe
R-DNS servers by taking advantage of their “TTL-based caching
mechanism”. Figure 2a shows the caching dynamics for a specific
domain. Specifically, if a host (say hostA) issues a domain request to
its R-DNS server and the R-DNS server does not have the record of
this domain in its cache, it will retrieve the record and then
return it to hostA, where the record contains the IP address(es) for
the queried domain and a time-to-live (TTL) value. Meanwhile, the
R-DNS server will cache this record for TTL units of time (i.e., cache
period). Any host (say hostB) in the same network can obtain the
cached record for a domain within the cache period by querying
its R-DNS server. Note IAT represents the interarrival time between
two successive DNS queries, and CRI represents the cache refresh
interval between the expiration of one cache period and the start
of the subsequent cache period. Figure 2b illustrates examples of
cached records and the remaining TTL time of several domains. If
we can model the correlation between the activities of the cached

records and DNS queries from the end hosts, we can observe the
activities of cached records and then estimate the DNS query
activities. The activities of cached records can be obtained by
actively and continuously probing the cache of an R-DNS server.

Despite the fact that the activities of cache records provide less
fine-grained information compared to passively captured DNS
queries, the active monitoring strategy offers several unique
advantages. First, it drastically reduces the management cost since
the monitoring system does not need to get access to the traffic of
an R-DNS server. Instead, an arbitrary host in the network, which
is willing to cooperate with the monitoring system by relaying
cache probes to its R-DNS server(s), is sufficient for the collection
of cache behavior. Second, it fundamentally minimizes the privacy
concerns since all data collected are accessible to all hosts in the
monitored network. Third, there might be an “honest-but-curios”
A-DNS server that would like to infer the popularity of some of its
domains with respect to the number of clients querying them from
within a certain (possibly sensitive) network. The A-DNS server
will only see queries from the R-DNS server of the target network,
and essentially enables measuring the activities of cached records.

In spite of its promise, the fundamental challenge for active
monitoring is how to deduce the query behavior of a domain
based on the patterns of its cache entries. In practice (Akcan et al.,
2008; Rajab et al., 2008), the query behavior of a domain is usually
represented by its DNS query interarrival times (IATs) while its
cache behavior is characterized by cache refresh intervals (CRIs), a
sequence of time intervals between the removal and the immedi-
ately successive creation of its cache entry. Therefore, the specific
design target is twofold:

� We need to design a model that can accurately characterize the
relationship between DNS query IATs and CRIs for any given
domain.

� Based on the proposed model, we need to profile DNS query
IATs based on the observation of CRIs.

Accomplishing such design target is a challenging task since
different domains may exhibit distinct DNS query patterns. As a result,
the model has to be (i) sufficiently flexible to cope with the high
diversity of DNS query patterns and meanwhile (ii) generic enough to
simplify the design of the estimation algorithm. Existing methods
(Akcan et al., 2008; Rajab et al., 2008) make the assumption that DNS
query IATs for any domain follow the exponential distribution and
therefore fail to profile DNS query patterns with high diversity. In fact,
our empirical study based on large-scale datasets collected from real-
world networks has demonstrated that the exponential distribution
can only fits a small proportion of around 35% domains.

In this paper, we investigate the general distribution relationship
between observed CRIs and the IATs, and design a novel model based
on hyper-exponential distribution to characterize the correlation
between DNS query IATs and CRIs for a given domain. The hyper-
exponential distribution can profile the distributions of IATs with high
diversity because it can control the distribution function according to
Bernstein Theorem (Schilling et al.) by tuning the number of
components to describe the high dispersion (i.e., variation) of the
IATs for a domain. Our model is adaptive since it can automatically
estimate the optimal number of components for different domains.
Based on the new model, we then design an estimation algorithm
that can accurately estimate the IATs based on observed CRIs.
Specifically, we have made the following contributions:

1. Validating assumption of existing work using real-world DNS
traffic:
(a) Instead of simply assuming the distribution models of DNS

query arrivals, we performed the goodness-of-fit test of
distribution models based on extensive real-world DNS
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Fig. 1. A simplified DNS hierarchy.
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traces. Our test indicates that the existing exponential
distribution model does not work well and only fit a
relatively small proportion of DNS traffic.

(b) In certain scenarios such as malicious domains, we have
observed that the average number of DNS queries per host
with respect to malicious domains is approximately equal
across different networks. This observation is derived from
passive DNS traffic collected from several networks that are
geographically distributed.

2. A Generic Expression of Distribution Relationship and A Novel
Algorithm Estimation Algorithm:
(a) A generic expression to characterize the relationship

between the IAT (interarrival time) distribution and the
CRI (cache refresh interval) distribution is developed,
where the IAT distribution can be of any type. Compara-
tively, the previous work proposed an expression that only
works when the IATs follow the exponential distribution.

(b) An estimation algorithm is proposed when the IATs follow
the hyper-exponential distribution, which possesses mathe-
matically tractable properties and can approximate many
other types of IATs' models. It is worth noting that our
algorithm is not a trivial extension of the previous algorithm.
In fact, it addresses subsequent novel challenges such as
generic distribution relationship development and compo-
nent number estimation by integrating various mathematical
designs such as renewal processes and Laplace transforms.

3. Experimental results based on real-world DNS traffic: We have
performed extensive evaluation based on data collected from
various real networks. The experimental results demonstrate
that our algorithm offers higher accuracy compared to existing
approaches. In addition, our algorithm has shown great promise
in accurately estimating malware-infected host population.

The rest of the paper is organized as follows. Section 2 introduces
the background and problem formulation, and Section 3 introduces
the motivation. We propose our solution in Section 4. In Section 5,
we evaluate our proposed solution against existing solution. After
that, a typical application is demonstrated in Section 6. Finally, we
discuss and conclude our paper in Sections 7 and 8, respectively.

2. Background and problem formulation

2.1. Background of cache probe

Cache is widely used by almost all R-DNS servers (Rfc1034,
2014) to save the network bandwidth, which thus implies the
wide applicability of cache-based active probing techniques. In our
design, we consider two types of DNS queries, namely recursive
and non-recursive queries. When a host, say hostA, issues a recur-
sive query of domain D to its R-DNS server, the R-DNS server will
finally contact an A-DNS server in charge of D. The A-DNS server
will respond the R-DNS server with IP address(es) for D and a
time-to-live (TTL) value (denoted as t). In addition to responding
hostA with the obtained IP address(es), the R-DNS server keeps the
IP address(es) of the domain D in its cache for t units of time (e.g.,
seconds). It is worth noting that t can be easily obtained by query
the A-DNS server of the domain D.

When hostA issues a non-recursive query of D to its R-DNS
server, the R-DNS server will attempt to answer the query based
on its cache records. If the cache record of D is still valid, this R-
DNS server send it to hostA without contacting the A-DNS server of
domain D. Otherwise, if the cache record does not exist or has
expired (i.e., exceeding t units of time), the R-DNS server will
respond hostA with a negative reply. Hereafter, we call these non-
recursive queries for the purpose of cache probing as cache probes.

To summarize, if a host issues a cache probe (i.e., a non-recursive
query) for domain D to its R-DNS server, it can collect the
following information by analyzing the response: (i) the presence
or absence of cache record for D in the R-DNS server, (ii) the
remaining units of time until the cache record expires if the cache
record is present in the cache.

Cache probes and users queries are independent. In other words,
they do not affect each other. The reasons are twofold. On one hand,
we use non-recursive (rather than recursive) DNS queries to probe the
cache of an R-DNS server. As defined by RFC 2136 (Rfc2136, 2014),
when an R-DNS server receives a non-recursive query, it attempts to
answer the query completely based on its cache records, without
contacting external authoritative servers or changing the status of the
cache records. If the record for the domain in the cache is still valid
(i.e., not expired), the R-DNS server directly sends this record to the
host. Otherwise, if the cache record does not exist or has expired (i.e.,
exceeding the TTL value), the R-DNS server will respond the host with
a negative reply. In either scenario, the non-recursive query only reads
the cache records with respect to the domain, and never changes the
dynamics of the cache records. On the other hand, regardless of the
cache refreshing dynamics, the cache probes (i.e. non-recursive DNS
queries) will be issued periodically with a periodicity of the TTL of the
domain.

It is worth noting that there are two special cases where the
DNS cache probing based techniques do not apply. To be specific,
when a domain does not resolve (i.e., NXDOMAINs that stands for
Non-Existent Domains) or its TTL value equals zero, an R-DNS
server will not cache any resource record (e.g., IP addresses) with
respect to the domain, and thus the DNS cache probing based
techniques do not apply. These cases will be further discussed in
Section 7 to demonstrate potential disadvantages and challenges
for the attackers. The DNS queries in these cases may be observed
from other vantage points (e.g., A-DNS servers) due to the absence
of R-DNS servers' caching, and the corresponding population
estimation will be explored in our future work.

2.2. Problem formulation

As illustrated in Fig. 3, a set of hosts can issue DNS queries to an
R-DNS server for an arbitrary domain D. We use a random variable,
denoted as X, to represent the interarrival time (IAT) between two
successive DNS queries, where Xi be the time interval between the
ði�1Þth and the ith query. Meanwhile, we define the average query
rate as λ, i.e., the inverse of the finite mean of X denoted by μ (λ¼ 1=μ).

The “cache status” shows cache refresh dynamics of D's cache
record in the R-DNS server. We use a random variable R to denote the
cache refresh intervals (CRIs), which represent the time intervals
between the removal of one cache entry for domain D and the
successive creation of D's cache entry. If the cache record of D is not in
the R-DNS server, the first recursive DNS query of D will cause its
cache record to be kept in the server for t units of time. To obtain the
complete CRIs for D, we can issue a sequence of cache probes with a
period of t. For instance, if one cache probe is generated at time tp and
it results in a cache hit, the R-DNS server will return the remaining
time (denoted as Tl) for the cache record of D to expire. Given t, Tl,
and tp, we can infer the most recent cache refresh time tr as
tr ¼ tp�ðt�TlÞ. We use Ri as the random variable to denote the ith

DNS arrivals

t R
tp Cache Status

time

Cache Probes

tr Tl

time

X

t t

ttt

Fig. 3. Illustration of the active DNS cache probing technique.
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CRI, where Ri ¼ tri �tri� 1 �t, for i¼ 1;2;3;…. With a sufficient
number of cache probes, we can obtain a sequence of Ris.

Notice that the IATs of DNS queries to an R-DNS server for D are
the aggregation of queries from different hosts. Motivated by the
mutual independence and unpredictable power on-off dynamics of
hosts that query a domain D, we assume that the interarrival times
(IATs) of DNS queries to an R-DNS server for D can be modeled as a
sequence of independently and identically distributed (i.i.d.) random
variables. The assumption indicates that an IAT in the sequence is
independent of its preceding IATs and was commonly used in
previous works (Akcan et al., 2008; Rajab et al., 2008; Jung et al.,
2003, 2002). The i.i.d. assumption is equivalent to assuming that the
IATs form a renewal process. In Jung et al. (2003, 2002), the renewal
process model has been to characterize the hit rates of caches and in
turn to better understand cache behavior for shorter TTL periods.
Different from their work, we use the renewal process to estimate the
characteristics of the DNS query IATs based on the observed CRIs.

We denote Xi as the time interval between the ði�1Þ th and the ith
query. Let X1, X2,…be i.i.d. positive random variables with finite mean
μ and λ¼ 1=μ. Assume that Xi has a cumulative distribution function
FðxÞ ¼ PrðXirxÞ. Let Sn ¼∑n

i ¼ 1Xi with S0 � 0. Let N(t) denote
the number of queries for a domain in the interval ð0; t�,
NðtÞ ¼ sup fn : Snrtg, where fNðtÞg is a renewal counting process
(Papoulis, 1991). Define τðtÞ ¼ inf fn : Sn4tg ¼NðtÞþ1. Let Rt denote
the set of CRIs when the TTL equals t, where Rt is simplified as R.
Unless otherwise mentioned, the default subscript of R is t. From Fig. 3,
we have R¼ SτðtÞ �t, where R is also known as the residual lifetime at t
(Chang, 1994).

Let F(x) and Gt(r) denote the cumulative distribution function of
X (i.e., DNS query IATs) and R (i.e., CRIs) respectively. With the
distribution of X, one can gain needed insight into the DNS query
patterns for a domain by various statistics of X. One of the
foremost such statistics is the inverse of the finite mean of the
DNS query IATs, i.e., the average query rate for a domain in a
network, which can be calculated by λ¼ 1=

R1
0 x dFðxÞ. Due to the

TTL-based DNS caching mechanism, the CDF of X and R have a
certain relationship. We denote the relationship between F(x) and
Gt(x) by a function F . As is expressed as follows, our aim is to
estimate F(x) given Gt(x)

FðxÞ ¼F ðGtðxÞÞ ð1Þ
This expression indicates two challenges towards the estima-

tion of the distribution of F(X). First, we need to build a distribu-
tion model of X that is sufficiently flexible to cope with the high
diversity of DNS query patterns and meanwhile generic enough to
simplify the design of the estimation algorithm. Second,
with the knowledge of the class of distributions of X and the
duration t (which equals the TTL of the domain), we need to
accurately estimate the distribution parameters of X that is
critical for accurate estimation of λ based on observed CRI samples
from R.

3. Motivation

As we have discussed in Section 2.2, the distribution model of
the DNS query IATs is of central importance to estimate statistics
of IATs based on observed CRIs. Existing methods (Akcan et al.,
2008; Rajab et al., 2008) assume that the DNS query IATs are
exponentially distributed for any given domain. Therefore, the
observed CRIs have exactly the same distribution model with the
DNS query IATs as FðxÞ ¼ GtðxÞ. In this case, λ can be estimated by
the inverse of the mean value of observed samples from R as
λ¼ 1=E½R�. However, we argue that such an assumption is inade-
quate and the corresponding estimate can substantially under-
estimate λ as we will illustrate in the next paragraph. In this

section, we empirically evaluate the assumption adopted by
existing methods using DNS queries collected from a large campus
network (used by more than 32,000 students and staffs). Specifi-
cally, we evaluate the coefficient of variation (CV), which is a
normalized measure of dispersion of random samples, and is
defined as the ratio of the standard deviation to the mean. A large
value of CV (e.g., greater than 1) implies that we need to generalize
the distribution model.

In theory, the exponential distribution can only accurately describe
a sequence of IATs when its coefficient of variation (CV) equal to one.
However, as shown in Fig. 4, the CV of the DNS query IATs is actually
greater than 1 for more than 70% domains based on DNS traces from
the large campus network. This finding is consistent with the study of
network traffic arrival dynamics: networks are characterized by high
or extreme dispersion. Moreover, we can prove that the exponential-
based estimate underestimates λ (see proof in Appendix A) when the
CV is greater than one. To conclude, existing methods will generally
provide inaccurate estimation of the statistics of the DNS query IATs.

To solve this problem, our model needs to characterize IATs
of high dispersion. This indicates that we need a more generic
distribution model with CV of its samples greater than or equal to
1. To this end, we have proposed a generic expression to estimate
IATs based on CRIs regardless of the distribution model of IATs
using Eq. (12). Despite the theoretical generality of this expression,
certain specific characteristics of IATs' model will fundamentally
facilitate the practical usage of this expression. For instance, it
would be of computational efficiency if the IATs' model can result
in convenient Laplace (and the inverse Laplace) transform and
have the closed Laplace transform. In addition, if an IATs' model
can well approximate other types of IATs' models, the complexity
computation, design, and implementation can be further reduced.
These factors motivate the adoption of hyper-exponential distri-
bution in our algorithm. First, it facilitate the Laplace related
operations. Second, existing literature has demonstrated that a
given probability distribution (e.g., a heavy-tailed distribution) can
be approximated by a hyper-exponential distribution by fitting
recursively to different time scales using Prony's method (Prony's
method, 2014; Feldmann and Whitt, 1997). For example, the
hyper-exponential distribution has been used to approximate the
Weibull distribution and any completely monotone distributions
in (Schilling et al.; Jin and Gonigunta, 2010). Third, our empirical
study based on real-world DNS traffic has demonstrated that the
hyper-exponential distribution fits the DNS query IATs for the vast
majority of domains.

4. Estimation methodology
In this section, we present our estimation solution, which

integrates the renewal theory-based DNS caching formulation
and the hyper-exponential distribution model.
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Fig. 4. The distribution of coefficient of variation of the DNS query IATs.
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4.1. The generic distribution relationship between X and R

To estimate the characteristics of the DNS query IATs based on
observed CRIs, the first major task is to approach the generic
distribution relationship between X and R. This is because the
distribution of the observed CRIs completely depends on that of the
DNS query IATs and the TTL value of the domain. Specifically, given
the cumulative distribution function of X denoted by F(x), we are
interested in the cumulative distribution function of R denoted by
Gt(r).

Formally, 8x; tZ0, Gt(r) is the cumulative distribution function
of R, and our aim here is to obtain Gt(r) given F(x). It is known that
GtðrÞ ¼ PrðRrrÞ. According to the law of total probability theorem,
we have

GtðrÞ ¼
Z 1

0
PrðRrrjX ¼ uÞ dFðuÞ: ð2Þ

The above mathematical statement can be interpreted as
follows: given the event X¼u, the probability of which is denoted
by dFðuÞ, the integration of the conditional probability of Rrr Gt(r)
with respect to u equals Gt(r). Due to additivity of integration on
intervals, the above equation can be calculated as follows.

GtðrÞ ¼
Z t

0
PrðRrrjX ¼ uÞ dFðuÞþ

Z tþ r

t
PrðRrrjX ¼ uÞ � dFðuÞ

þ
Z 1

tþ r
PrðRrrjX ¼ uÞ � dFðuÞ: ð3Þ

When the IAT (i.e., X) lies between t and tþr, the CRI (i.e., R) will
be less than or equal to r. Therefore, we have PrðRr rjX ¼ uÞ ¼ 1.
Similarly, when the IAT is larger than tþr, the CRI will be larger
than or equal to r, and thus we have PrðRr rjX ¼ uÞ ¼ 0. Conse-
quently, the above equation can be simplified as follows:

GtðrÞ ¼
Z t

0
PrðRrrjX ¼ uÞ dFðuÞþ

Z tþ r

t
1 � dFðuÞþ

Z 1

tþ r
0 � dFðuÞ: ð4Þ

It is obvious that
R tþ r
t 1 � dFðuÞ ¼ FðtþrÞ�FðtÞ and

R1
tþ r 0�

dFðuÞ ¼ 0. The above equation can be further rewritten as follows:

GtðrÞ ¼
Z t

0
PrðRrrjX ¼ uÞ dFðuÞþFðtþrÞ�FðtÞ: ð5Þ

Recall that R¼ SτðtÞ �t, we have

GtðrÞ ¼
Z t

0
PrðSτðtÞ �trrjX ¼ uÞ dFðuÞþFðtþrÞ�FðtÞ: ð6Þ

From the TTL-based DNS caching mechanism shown in Fig. 3,
we have SτðtÞ ¼ Sτðt�uÞ þu. Therefore, the above equation is equiva-
lent to the following equation:

GtðrÞ ¼
Z t

0
PrðSτðt�uÞ �ðt�uÞrrÞ dFðuÞþFðtþrÞ�FðtÞ: ð7Þ

Recall that Rðt�uÞ ¼ Sτðt�uÞ �ðt�uÞ and Gt�uðrÞ ¼ PrðRt�urrÞ, we
have

GtðrÞ ¼
Z t

0
PrðRt�urrÞ dFðuÞþFðtþrÞ�FðtÞ

¼
Z t

0
Gt�uðrÞ dFðuÞþFðtþrÞ�FðtÞ: ð8Þ

Hence, the cumulative distribution function of R is as follows:

GtðrÞ ¼
Z t

0
Gt�uðrÞ dFðuÞþFðtþrÞ�FðtÞ: ð9Þ

Let GtðrÞ ¼HrðtÞ. We can rewrite Eq. (9) as follows:

HrðtÞ ¼
Z t

0
Hrðt�uÞ dFðuÞþFðtþrÞ�FðtÞ: ð10Þ

One can use Laplace transforms (Davies, 2002) to undertake the
bi-directional conversion between the time-domain and the

frequency-domain because the time-domain convolution is equiva-
lent to multiplication in the frequency domain. We use Laplace
transforms to compute the solution of Gt(r). Let L and L�1 denote
the Laplace transform and the inverse Laplace transform, respec-
tively. We have HrLðsÞ ¼LfHrðtÞg, and correspondingly HrðtÞ ¼
L�1fHrLðsÞg. Applying the Laplace transform to Eq. (10) and rearran-
ging the terms yields

HrLðsÞ ¼
ðers�1ÞFLðsÞ�ers

R r
0 FðτÞe� τs dτ

1�sFLðsÞ
: ð11Þ

Recall GtðrÞ ¼HrðtÞ. Thus we obtain the cumulative distribution
function of R

GtðrÞ ¼L�1 ðers�1ÞFLðsÞ�ers
R r
0 FðτÞe� τs dτ

1�sFLðsÞ

( )
: ð12Þ

The above equation provides a generic distribution expression of
CRIs, which shows the distribution relationship between X and R.
Given a specific analytical model of F(x) with unknown parameters in
the context of a specific application, one obtains Gt(r) with the same
unknown parameters. These parameters can be estimated via samples
from R. Then, we can obtain F(x).

4.2. Estimation algorithm based on hyper-exponential distribution

We proceed to address how to estimate the distribution
parameters of X and the DNS query statistics such as λ when X
follows a hyper-exponential distribution. A hyper-exponential
distribution (a.k.a., a mixture of exponential components) is a
continuous distribution such that the cumulative distribution
function is given by

FðxÞ ¼ 1� ∑
n

i ¼ 1
cie� λix for xZ0; 0rcir1;

0 for xo0:

8><
>: ð13Þ

where ∑n
i ¼ 1ci ¼ 1, ci is the weight parameter, λi is the rate

parameter, and nZ1 is the component number. In such a case,
we have

FLðsÞ ¼L FðxÞ� �¼ 1
s
� ∑

n

i ¼ 1

ci
sþλi

ð14Þ

andZ r

0
FðτÞe� τs dτ¼

Z r

0
1� ∑

n

i ¼ 1
cie� λiτ

 !
e� τs dτ

¼
Z r

0
e� τs dτ� ∑

n

i ¼ 1
ci

Z r

0
e� τðλi þ sÞ dτ

¼ 1
s
ð1�e�xsÞ� ∑

n

i ¼ 1

ci
λiþs

ð1�e� xðλi þ sÞÞ ð15Þ

Substitute the above equations into Eq. (12) and rearranging
the terms yields

GtðrÞ ¼L�1 1
s
�1
s

1
∑n

i ¼ 1
ci

sþ λi

∑
n

i ¼ 1

ci
sþλi

e� λir

( )
ð16Þ

Let

Mi ¼L�1 1
s

ci
sþλi

1
∑n

i ¼ 1
ci

sþ λi

( )
;

we obtain the distribution of R as follows:

GtðrÞ ¼
1� ∑

n

i ¼ 1
Mie� λi r for rZ0; 0rMir1;

0 for ro0:

8><
>: ð17Þ
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where ∑n
i ¼ 1Mi ¼L�1f1=sg ¼ 1 and

Mi ¼L�1 1
s

ci
sþλi

1
∑n

i ¼ 1
ci

sþ λi

( )
: ð18Þ

From Eq. (17), we see that R also follows the hyper-exponential
distribution when X follows such a distribution. Specifically, the
distributions are with the same rate parameters but different weight
parameters.

Next, we propose the following algorithm to estimate the
distribution parameters of X (and the DNS query statistics such
as λ) when X follows a hyper-exponential distribution.

Step 1: Obtain samples of R using the DNS cache probing
technique and estimate parameters θ¼ fλ1;…; λn;M1;…;Mng.

Step 2: Given parameters θ and t (i.e., domain TTL), solve the
nonlinear equation in Eq. (18) to obtain c¼ fc1;…; cng. Note the
specific expression of Eq. (18) depends on n. For example, for n¼2,
Eq. (18) can be written as follows:

M¼ cðλ2�ðc�1Þðλ1�λ2Þeððc�1Þλ1 � cλ2ÞtÞ
cλ2�ðc�1Þλ1

: ð19Þ

Step 3: The distribution parameters of X is then
fλ1;…; λn; c1;…; cng, and the DNS query statistics can be estimated
based on these parameters. In particular, the average query rate λ
can be calculated as follows.

λ¼ 1= ∑
n

i ¼ 1

ci
λi
: ð20Þ

4.3. Optimizing the number of components

For a given value of n, θ Step 1 of the estimation algorithm in
Section 4.2 can be straightforwardly estimated using the EM algorithm
(Bilmes, 1998). However, a key issue is that the optimal number of
components n is agnostic in advance. We need to further enhance
Step 1.

Although more components provide better fitting capability, the
usual trade-off arises: with too many components, it is computational
expensive and may over-fit the data, while it may not be flexible
enough to approximate the true underlying model with just a few
components. To this end, several methods have been proposed to
estimate the number of components of a finite mixture (McLachlan
and Peel, 2000).

We employ the method in Figueiredo and Jain (2000) for the
hyper-exponential distribution to estimate the number of compo-
nents as well as θ. For deterministic methods, the number of
components is selected from a set of pre-estimated candidate
models according to n̂ ¼ arg minnfCðθ̂ðnÞ;nÞ;n¼ nmin;…;nmaxg,
where Cðθ̂ðnÞ;nÞ is the model selection criterion, θ̂ðnÞ is an estimate
of the mixture parameters for n components, and nmin and nmax are
the minimum and maximum number of components, respectively
(nmin ¼ 1 and nmax ¼ 5 in our experiments). Let Y ¼ fyð1Þ;…; yðkÞg be
a set of i.i.d. samples. These criteria usually have the form
Cðθ̂ðnÞ;nÞ ¼ � log pðYjθ̂ðnÞÞþPðnÞ, where log pðYjθ̂ðnÞÞ is the log-
likelihood corresponding to the n-component mixture, and PðnÞ is
an increasing function penalizing higher values of n. In Figueiredo
and Jain (2000), the minimum message length (MML) criterion
is used and is derived using a variant of the expectation max-
imization (EM) method. The main advantages of the method are
twofold. First, it does not choose one among a set of pre-estimated

Input: k samples from R: Y ¼ fyð1Þ;…; yðkÞg, nmin, nmax, ϵ¼ 10�5, initial parameters θ̂ð0Þ ¼ fλ̂1;…; λ̂nmax ; M̂1;…; M̂nmax g
Output: Hyper-exponential distribution in θ̂best
q’0, n’nmax, Lmin’þ1;

uðiÞ
m’λ̂me� λ̂myðiÞ , for m¼ 1;…;nmax, and i¼1,…,k;

while nZnmin do
repeat
q’qþ1;
for m¼1 to nmax do

wðiÞ
m’M̂mu

ðiÞ
m ð∑nmax

j ¼ 1M̂ju
ðiÞ
j Þ�1 for i¼1,…,k;

M̂m’max 0; ð∑k
i ¼ 1w

ðiÞ
m Þ�1

2

n o
ð∑n

j ¼ 1 max 0; ð∑k
i ¼ 1w

ðiÞ
m Þ�1

2

n o
Þ�1;

fM̂1;…; M̂nmax g’fM̂1;…; M̂nmax gð∑nmax
m ¼ 1M̂mÞ�1;

if M̂m40 then

log pðY;WjθÞ ¼∑k
i ¼ 1∑

nmax
m ¼ 1w

ðiÞ
m log M̂mu

ðiÞ
m

h i
;

λ̂m’argmaxλm log pðY;WjθÞ;
uðiÞ
m’λ̂me� λ̂myðiÞ for i¼1,…,k

else
n’n�1

end
end

θ̂ðqÞ ¼ fλ̂1;…; λ̂nmax ; M̂1;…; M̂nmax g;

L½θ̂ðqÞ;Y�’1
2
∑m:M̂m 40 log

kM̂m

12
þn
2

log
k
12

þn�∑k
i ¼ 1 log ∑nmax

m ¼ 1M̂mu
ðiÞ
m

untill L½θ̂ðq�1Þ;Y��L½θ̂ðqÞ;Y�oϵ L½θ̂ðq�1Þ;Y�j
���

if L½θ̂ðqÞ;Y�rLminthen
Lmin’L½θ̂ðqÞ;Y�, θ̂best’θ̂ðqÞ
end

mn’arg minmfM̂m40g, M̂mn’0, n’n�1
end
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candidate models. Instead, it integrates EM-based parameter
estimation and model selection into a single algorithm. Second,
it is less sensitive to the initialization point as compared with the
standard EM, and it automatically avoids the boundary of the
parameter space. The specific method is given in Algorithm 1.

Algorithm 1. Component-aware algorithm to estimate θ̂best of
hyper-exponential distributions.

Note that determining the number of components of the distribu-
tion is a nontrivial task given the low number of CRI (cache refresh
intervals) samples. Particularly, the number of CRI samples may be
low for “low usage” domains (i.e., domains that are less frequently
queried) and for domains with large TTL values. To address this
challenge, one solution is to probe the R-DNS server's cache entries for
a longer period of time so as to collect more CRI samples. This
challenge might be mitigated in certain specific deployment scenarios
such as bot population estimation. Specifically, a bot may generate
multiple domains for C&C communication. Therefore, we can inten-
tionally choose target domains that are neither “low-usage” domains
nor domains with large TTL values (if any).

4.4. Applicability of our estimation algorithm

Our estimation algorithm is a generalized one compared with
the previous one. Since there is not a unified type of distribution
model to characterize the DNS query IATs, our estimation algo-
rithm has its specific conditions that must be met so that it could be
effectively used. That is, the DNS query IATs for a domain can be
modeled as hyper-exponential distributions.

One can examine whether the DNS query IATs follow a hyper-
exponential distribution based on the observed CRIs. If the
observed CRIs follow the hyper-exponential distribution, the IATs
follow as well. Otherwise, the IATs have other distribution. In other
words, if and only if R follows the hyper-exponential distribution,
one can declare that X will also follow the hyper-exponential
distribution. This is because R following the hyper-exponential
distribution is the necessary and sufficient condition of X following
the hyper-exponential distribution. The reason for the necessity
can been clearly seen from Eq. (17), while the reason for the
sufficiency can be explained by the following theorem.

Theorem 4.1. Given GtðrÞ ¼ 1�∑n
i ¼ 1Mie� λir , the solution of F(x) is

unique by solving Eq. (12). Such a unique solution of F(x) equals
1�∑n

i ¼ 1cie
� λix.

The above theorem can be proved briefly below. First, if GtðrÞ ¼
1�∑n

i ¼ 1Mie� λir , there exists a solution FðxÞ ¼ 1� ∑n
i ¼ 1cie

� λix.
Second, substitute Gt(r) into Eq. (12), take the derivative of both
sides with respect to r, let

R r
0 e

� sτdτ¼WðrÞ, and we obtain an

ordinary differential equation with respect to W(r), which satisfies
the Lipschitz condition. According to the existence and uniqueness
theorem (Roberts, 2010), the solution of W(r) is unique and
correspondingly F(x) is unique.

5. Evaluation

Our evaluation aims to answer two important questions. First,
is hyper-exponential model capable of profiling the distribution of
DNS query IAT that experiences high diversity? Second, can our
method accurately estimate λ and outperform existing methods?

5.1. Datasets

In order to answer these questions, we have collected two
large-scale datasets from real-world networks. The first dataset,
Dataset 1, was collected from a large campus network with more
than 32,000 hosts. It contains IATs for both malicious and
legitimate domains we have observed in the campus network.
Specifically, we extract IATs from DNS requests sent from all hosts
to the R-DNS server in the campus network. As presented in
Table 1, Dataset 1 includes 1956 C&C domains of the “Confiker-B”
botnet (Worm:win32/conficker, 2014) and 34 blacklisted domains
collected from the DNS-BH public domain reputation service (Dns-
bh project, 2014). In addition, we identify top 1000 most popular
domains and label them as “Popular-Domain-Campus”, which are
likely to be legitimate. We also extracted “legitimate but not very
popular domains”, which were randomly extracted from our
campus network by excluding popular Alex top 1000 domains (i.
e., “Unpopular-Domain-Campus”). In this way, the diversity of the
experimental data is enhanced.

Different types of DNS queries in Dataset 1 were collected at
different times in our campus network. Specifically, the DNS
queries of “Conficker-B” were collected by monitoring our campus
network from June 1 to June 15, 2010 (i.e., 15 days), the DNS
queries of “DNS-BH-1” were collected by monitoring our campus
network from March 1 to March 30, 2011 (i.e., 30 days), the DNS
queries of “Popular-Domain-Campus” were collected by monitor-
ing our campus network for 24 h on December 7, 2012, and the
DNS queries of “Unpopular-Domain-Campus” were collected by
monitoring our campus network for 24 h on June 20, 2014.

In order to increase the geographical diversity of our experi-
mental data, we actively probed a large number of 480 open
R-DNS servers that are globally located as indicated in Fig. 5. An
open R-DNS server accepts DNS queries from arbitrary hosts
outside its administrative domain due to access policies that are
not strict (e.g., configuration by default). The basic flow and
intuitions to collect open R-DNS servers are as follows.

Table 1
Datasets and the attributions (IATs, interarrival times; CRIs, cache refresh intervals; #IATs, the number of sequences of IATs; #CRIs, the number of sequences of CRIs).

Dataset 1: IATs #IATs #Domain Duration

Malicious DNS Queries Conficker-B 1956 1956 2010.6.1�2010.6.15
DNS-BH-1 34 34 2011.3.1�2011.3.30

Legitimate DNS Queries Popular-Domain-Campus 1000 1000 2012.12.7
Unpopular-Domain-Campus 1000 1000 2014.6.20

Dataset 2: CRIs #CRIs #Domain Duration

Malicious DNS Queries IRC-botnet 7747 86 2011.4.2�2011.4.8
Zeus 135,662 984 2011.4.2�2011.4.8
DNS-BH-2 17,517 141 2011.4.2�2011.4.8

Legitimate DNS Queries Popular-Domain-Alex 361,007 1000 2013.9.8�2013.9.14
Unpopular-Domain-DMOZ 27,325 1000 2014.6.20
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Collecting A-DNS Servers: We extract a set of domains from the
URLs crawled from webpages. For each domain, we query the
whole DNS hierarchy for its authoritative DNS (A-DNS) server, i.e.,
NS (name server) records describing on which A-DNS server the
domain is registered. Then, we obtain a list of A-DNS servers,
which are represented by IP addresses.

Extracting and Verifying Open R-DNS Servers from A-DNS Servers:
Since an R-DNS server can reside in the same physical machine with
an A-DNS server, we extract those R-DNS servers that are co-located
with A-DNS servers. Next, we further identify those R-DNS servers
that satisfy the following two conditions: (i) an R-DNS server is open,
meaning that it can offer recursive DNS resolution services to hosts
outside its administrative range, and (ii) an R-DNS server functions
well, meaning that it respond DNS queries with correct answers.

The challenge is to verify these two conditions. We address this
challenge by designing the following experiments.

Verifying condition (i): To determine whether a given A-DNS
server (denoted by s) is open recursive, we first register a domain
(denoted by d) on an A-DNS server (denoted by A) that we have
registered and deployed beforehand. Note we have full control over
A so as to capture its DNS traffic. Then, we issue a recursive DNS
query, which originates from a host in our network to server s, to
ask for the IP address of domain d. Meanwhile, we monitor the DNS
traffic of server A to see whether server s contacts server A and asks
for the IP address of domain d. If so, server s is open recursive.

Verifying condition (ii): If server s responds the host in our
network with the right IP address of domain d, server s performs
correctly. In practice, we determine the correctness of server s
based on the DNS resolution results with respect to domain d (e.g.,
IP addresses, TTL values) that it offers to the host in our network.

Similar to Dataset 1, domains in Dataset 2 also exhibit great
diversity. Specifically, we have explored malicious domains includ-
ing 86 IRC botnet domains identified in our honeypots (Honeynet,
2014), 984 Zeus botnet domains (Zeus tracker, 2014), and 141
blacklisted domains, where their statistics are summarized in the
“IRC-botnet”, “Zeus”, and “DNS-BH-2” in Table 1, respectively. In
addition, we investigated popular DNS queries for Alex top 1000
domains (Alex, 2014) likely to be legitimate in the row of “Popular-
Domain-Alex” in Table 1. We also extracted “legitimate but not very
popular domains”, which were randomly extracted from yahoo's
DMOZ project (Dmoz project, 2014) by excluding popular Alex top

1000 domains. For each domain, we keep its CRIs on each open R-
DNS server and store them in Dataset 2. Note each sequence of CRIs
is uniquely identified by a tuple of (“domain”, “R-DNS server”).

5.2. Effectiveness on profiling the distribution of DNS query IATs

In this section, we evaluate how effective our solution is to
characterize the sequences of IATs and investigate the extent to
which hyper-exponential outperforms other popular distributions
including Exponential, Gamma, and Weibull.

We evaluate the proportion of IAT sequences that can be
accurately profiled by different distribution models. We first per-
form hypothesis testing on Dataset 1 at the significance level of
0.05. Specifically, the Kolmogorov–Smirnov goodness-of-fit testing
(Kolmogorov–Smirnov test, 2014) is used to decide if a sample
comes from a population with a specific distribution (e.g., expo-
nential distributions). The testing results are presented in Table 2. In
Dataset 1, only 32.2% of all the sequences of IATs are exponentially
distributed. Although Gamma and Weibull distributions fit 37.5%
and 63.1%, respectively, they are still much less effective compared
to hyper-exponential, which achieves the highest accuracy of 85.9%.

In addition, we perform similar hypothesis testing on Dataset 2 to
investigate the effectiveness for exponential and hyper-exponential
distribution models to characterize IATs. Although Dataset 2 has CRIs
instead of IATs, we have demonstrated that IATs will follow expo-
nential distribution or hyper-exponential distribution if the CRIs have
an exponential or hyper-exponential distribution (see Section 4.4 for
details). In other words, if CRIs can be effectively modeled by
exponential or hyper-exponential distribution, the corresponding
IATs can also be well modeled by the same type of distribution.
The experimental results are evident: the exponential distribution
can effectively profile only 35.8% of CRI sequences while the hyper-
exponential distribution achieves a high percentage of 86.7%.

To further quantify the improvement of the hyper-exponential
distribution over the exponential distribution, we perform a Like-
lihood Ratio Test (LRT) (Likelihood-ratio test, 2014) for both datasets.
LRT is a statistical test used to compare the fit of two models, one of
which (the null model) is a special case of the other (the alternative
model). Because the hyper-exponential distribution is generalized
with more components compared to the exponential distribution, it
always fits at least as well as the exponential distribution. Whether

Fig. 5. The geographical distribution of the R-DNS servers we probed.
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these distributions fit significantly better than the exponential
distribution can be determined by LRT. Experimental results have
demonstrated that the hyper-exponential distribution significantly
improves the exponential distribution. We present our analysis of
the datasets in Fig. 6. In Dataset 1, the hyper-exponential distribu-
tion is 80.9%, 87.7%, 89.5% and 88.4% better compared to exponen-
tial distribution in term of fitting IAT sequences from four different
data sources. In Dataset 2, the hyper-exponential distribution out-
performs the exponential distribution by 84.7%, 89.2%, 92.2%, 85.2%,
and 90.5% for three data sources.

5.3. Effectiveness on estimating λ

To estimate the error on estimating λ (i.e., the average query
rate for a domain), let λ̂ be the estimated value of λ. We define
relative error and absolute error respectively as

error¼ ðλ̂�λÞ=λ; errora ¼ jðλ̂�λÞj=λ: ð21Þ
We evaluate our estimator using Dataset 1, which contains

sequences of IATs and therefore enables the calculation of λ as
ground truth. However, Dataset 1 does not have the sequence of
CRIs. Nevertheless, since the TTL-based caching mechanism is
deterministic, we can perform real-trace-driven analysis to obtain
CRIs. To be specific, given a sequence of IATs for a domain, we
simulate the cache behavior of the record(s) for this domain
according to the TTL value. We further probe the simulated cache
to acquire the sequence of CRIs for this domain. Given the TTL-
based caching mechanism is deterministic and the TTL value of a
domain can be acquired by querying its A-DNS server, the generated
CRIs are the same as those obtained by actual cache probing.

Figure 7 shows the distribution of the TTL of the collected
domains. One observes that most TTLs of these domains lie
between 0 and 7200 s. Thus, we set TTL¼60, 300, 600, 1800,

3600, 5400, and 7200 s. Figure 8a shows the error bar of the
absolute error of all the evaluated domains for different TTLs,
which indicates that our estimator exhibits much lower errors
than the existing exponential estimator. Figure 8b demonstrates
the error for a specific domain (i.e., “ijkaxabq.net”), whose IATs do
not follow the exponential distribution but follow the hyper-
exponential distribution, for different TTLs. We see that our
estimator significantly reduces the estimation error, while the
existing exponential estimator underestimates λ. Our estimator
roughly halves the estimation error of the existing estimator as to
the average query rate.

6. Application

Monitoring the population of malware-infected hosts across a
large number of real-world networks can fundamentally facilitate
the study of Internet-scale malware propagation patterns and the
design of effective mitigation strategies. Unfortunately, deploying
a massive number of passive monitors in the R-DNS server(s) of
each monitored network for traffic collection and analysis is
extremely challenging. In this section, we discuss how we can
apply our solution to estimate the population of malware-infected
hosts in a remote management network (i.e., an external network)
by actively probing its R-DNS server. It is worth noting that we
may not be able to directly probe the cache of a R-DNS server in an
external network. However, an arbitrary host in that external
network that is willing to relay our probing traffic is sufficient
for our data collection.

The active DNS cache probing technique can be used to
estimate the malware-infected host population querying a mal-
icious domain D, denoted by N, as follows:

N¼ λT=n ð22Þ
where n denotes the average number of DNS queries per host, and T is
the measurement time. Note we simply consider the number of
hosts to be equivalent to the number of IP addresses in our
experiment. In here, λ can be straightforward estimated using our
estimator of λ, while n is an empirical parameter learned from DNS
traces. Without knowing the average number of DNS queries per
host, it will be extremely challenging to estimate the host population
in a remote network by solely probing the R-DNS server. However, in
certain scenarios such as malicious domains, we have observed that
the average number of DNS queries per host with respect to
malicious domains is approximately equal across different networks.
This observation is derived from passive DNS traffic collected from
several networks that are geographically distributed. The root-cause
for this observation is that different infected hosts execute same

Fig. 6. LRT results, where the percentage describes the proportion of the sequences
of IATs or CRIs that significantly better fit the hyper-exponential distribution than
the exponential distribution.

Table 2
Hypothesis testing results, where the percentage describes the proportion of the sequences of IATs (for Dataset 1) or CRIs (for Dataset 2) that significantly fit the
corresponding distribution.

Dataset 1 Exponential (%) Hyper-exponential (%) Gamma (%) Weibull (%)

Conficker-B 30.3 80.9 35.5 66.6
DNS-BH-1 0 87.7 2.9 0
Popular-Domain-Campus 32.2 89.5 40.7 62.1
Unpopular-Domain-Campus 36.3 91.2 39.7 59.4
Total 32.2 85.9 37.5 63.1

Dataset 2 Exponential Hyper-exponential

IRC-botnet 27.2 84.7
Zeus 35.8 89.2
DNS-BH-2 37.5 92.2
Popular-Domain-Alex 35.6 85.2
Unpopular-Domain-DMOZ 38.9 90.1
Total 35.8 86.7
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malware binary, thereby generating similar pre-programmed net-
work behaviors (e.g., issuing DNS queries). Therefore, when we use
our algorithm to estimate the population related to “automated-
generated” domains (e.g., bot domains), we can derive the average
number of DNS queries per host in remote networks from other
networks where the passive DNS traffic is available.

To estimate the malware-infected host population, we actively
sent cache probes carrying malicious domains to the R-DNS servers
of two remote major networks (more than 1000 kilometers far away
from our campus) for 24 h on April 30, 2013. One network, which
we denote by “Remote-N1”, is a remote campus network containing
more than 20,000 end-users, while the other network, which we
denote by “Remote-N2”, has more than 300,000 end-users. These
two networks belong to different ISPs and have different user bases.
To evaluate the effectiveness of our estimation solution, we captured
the DNS traces from these two networks and our campus network
on the same day. In order to obtain the ground truth with respect to
the malicious domains, we leverage an extensive collection of public
DNS reputation services including DNS-BH database (Dns-bh pro-
ject, 2014), malwaregroup (Malwaregroup, 2014), hostsfile (Hosts

file, 2014), clean mx database (Clean mx realtime database, 2014),
McAfee Threat Intelligence (Mcafee threat intelligence, 2014), Goo-
gle Safe Browsing (Google safe browsing, 2014), and so forth. These
public DNS reputation services provide hard evidences (e.g., mal-
ware hosting) for malicious domains. If a domain is labeled as
malicious by any of these services, we label this domain as
malicious. If a host queries a malicious domain, the host will be a
compromised malicious system. We extracted 372 unique malicious
domains that were commonly observed in the three different
networks. Given the average number of DNS queries per host
learned from our campus DNS traces, the malware-infected host
population associated with these domains in the two remote net-
works was estimated via active probing. To be specific, we assign the
value of n learned from our campus DNS traces to n of the two
remote networks for each malicious domain. As a matter of fact, the
average coefficient of variation of n of these commonly observed
malicious domains in different networks has a small value of 0.12,
indicating low dispersion of n in different networks. Figure 9
demonstrates a list of malicious domains and their approximately
equal values of n in different networks.
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Fig. 7. The distribution of TTL values of malicious domains. (a) The CDF of all TTL values and (b) the histograms of TTL from 0 to 7200.
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Fig. 9. Comparison of the values of n of malicious domains in different networks.
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Figure 10 shows the error bar (mean absolute error and the
standard deviation) of all the estimated host population of mal-
icious domains as we vary TTL values and set TTL¼60, 1800, 3600,
5400, and 7200 s. We see that the mean absolute error grows as
the TTL increases and our hyper-exponential estimator again
outperforms the existing exponential estimator. Figure 11 shows
the CDF (cumulative distribution function) of the relative estima-
tion error for malicious domain for a particular TTL value (i.e.,
60 s). As the figure shows, the relative errors of our hyper-
exponential estimator have approximately equal probability to
be negative and positive, while the relative errors of the previous
exponential estimator are negative for most malicious domains,
meaning that the previous exponential estimator underestimates
the malware-infected host population in most cases.

7. Discussion

Since there is not a unified type of distribution model to
characterize the DNS query IATs, our proposed estimation solution
for the active probing technique has its specific conditions (i.e., the
DNS query IATs to an R-DNS server for a domain can be modeled as
hyper-exponential distributions) that must be met so that it could
be effectively used. Real-world DNS trace measurement experi-
ments showed that such specific conditions can be satisfied in
most cases. In addition, two special types of domains (including
“TTL¼0” and NXDOMAIN), whose DNS responses are not cached
by R-DNS servers, cannot be applied in the DNS cache probing
based techniques.

Next, we discuss prevention policies that an attacker might take
to defeat the DNS cache probing based techniques, as well as these
policies' potential disadvantages and challenges for the attacker.

7.1. “TTL¼0” and NXDOMAIN

An attacker can deliberately assign 0-TTL to the malicious
domains, or unregister the domains (i.e., NXDOMAINs that stands
for Non-Existent Domains) to evade our population estimation
algorithm. However, we argue that adopting 0-TTL domains or
NXDOMAINs may actually negatively impact the malicious activ-
ities. Nevertheless, we acknowledge population estimation in
these specific adversarial scenarios indeed calls for new methods,
which will fall into our further work.

0-TTL: When an attacker sets a domain's TTL value to zero or
this domain does not resolve, an R-DNS server will not cache any
resource record (e.g., IP addresses) with respect to the domain.
Therefore, whenever a client (inside the R-DNS server's adminis-
trative range) queries the domain, the R-DNS server will contact
the A-DNS server of the domain, thereby exposing the IATs to the
A-DNS server. The A-DNS server provides a new vantage point for
monitoring the IATs of hosts behind an R-DNS server querying a
domain. For example, the A-DNS server of malicious domain
“abcrepuestos.com” (i.e., “.com” A-DNS server) is responsible for
the resolution of all the domains affiliated to “.com”, and the DNS
traffic of this A-DNS server can be captured to monitor the IATs of
hosts behind an R-DNS server querying “abcrepuestos.com”.

NXDOMAIN: It is true that attackers actively use NXDOMAINs
(e.g., NXDOMAINs related to a botnet C&C server) to defeat legal
actions such as domain sinking techniques. Nevertheless, such
usage consequently raises the anomaly of domains. For example,
recent studies (Jiang et al., 2010; Yadav and Reddy, 2011) have
shown that NXDOMAINs could be a rich source of information
exploited to detect malicious activities. On the other hand, an
irresolvable domain actually offers no value to translate a domain
to an IP address. Therefore, attackers still need to use resolvable
domain(s) to operate malicious services. For example, bots need to

Fig. 11. The CDF of the relative error of malware-infected host population estimation with TTL equal to 60 seconds. (a) Remote-N1 network and (b) remote-N2 network.

Fig. 10. Error bar of malware-infected host population estimation over different TTLs. (a) Remote-N1 network and (b) remote-N2 network.
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establish communication channels with attackers and one com-
mon way is to contact a few registered domains. These domains
can still be effectively analyzed by our technique.

7.2. Deliberately changing DNS querying behavior

After knowing our estimation algorithm, attackers can deliber-
ately change the DNS behaviors of infected hosts to bias our
estimation results. This is a general challenge for any detection/
measurement system used in adversarial environments rather
than a design flaw intrinsic to our system.

7.2.1. Cache pollution
One may pollute DNS cache entries so that the cache dynamics

are “distorted”. For example, one may randomly query an R-DNS
server for a domain recursively when the domain is not cached by
the R-DNS server, leading to the domain being cached more times
than expected and an overestimated λ. An extreme “saturation”
case occurs when one sends a sequence of queries so that the
cache entry is refreshed immediately after its expiry. From an
attacker's perspective, the overestimated λ and too many polluted
R-DNS servers make the malware clients less stealthy and being
exposed to the network administrators. We argue that an attacker
will not be motivated to deliberately pollute cache entries of R-
DNS servers under the monitor of the active probing technique.

7.2.2. Periodic querying
Different infected hosts can periodically query a domain in a

synchronized way to evade our system. However, these strategies
will significantly raise the anomaly of these malicious domains.
Therefore, we can encourage the malicious domain detection
community to proactively add detection features related to these
strategies into their detection system for effective detection.

Strategy1: When each periodicity expires, all infected hosts
issue queries simultaneously. This strategy can be hard-coded into
the bot program by the attacker, or can be implemented by
sending commands to all the infected hosts via a C&C (command
and control) channel. However, the behavior will result in an
effective feature (i.e., simultaneous query) for malicious domain
detection, making malicious activities much less stealthy.

Strategy2: Attackers can sequentialize the querying behaviors
of these bots. Specifically, when each periodicity expires, one
infected host issues a query exclusively. This strategy also repre-
sents a discriminative feature to detect malicious domain names
since most legitimate applications do not benefit from this
strategy and therefore are less likely to adopt this strategy.

To summarize, we acknowledge that it is not difficult for different
infected hosts to periodically query a domain in a synchronized way.
However, periodically querying a domain in a synchronized way may
make the infected hosts more likely to be detected.

7.2.3. Mimicking different hosts
When a single host in a remote network deliberately mimics the

behavior of many different hosts, the actual value of the average
number of DNS queries per host in this remote network will be
larger than the value we used. As a consequence, the number of
malware-infected hosts will be over-estimated in this remote net-
work. From an attackers perspective, an over-estimated number of
malware-infected hosts will attract more attention of the network
administrators, and thus an attacker will not be motivated to
deliberately mimic the behavior of many different hosts.

7.3. Attack mitigation strategies

Although an attacker might defeat the DNS cache probing based
techniques, another challenge exists if the attacker wants to prevent
the DNS cache probing based techniques. Generally, the deploy-
ment of our technique is transparent to attackers. This is because
cache probes (i.e., non-recursive DNS queries) only read the cache
records with respect to a domain, and does not affect the dynamics
of original cache records. Naturally, in order to mitigate the above
attacks, a simple strategy is not to reveal the list of probed R-DNS
servers and domains to the outside world, especially to the attacker.

Such a strategy makes the attacker completely unaware of the
DNS cache probing activity. As a consequence, the attacker has to
constantly take the prevention policies whenever DNS queries are
issued (rather than based on the domains and R-DNS servers that
are involved in the DNS cache probing based techniques). For
example, although attackers can presume that all infected net-
works are monitored by our technique, they cannot selectively
enable 0-TTL malicious domains in those networks monitored by
our system. Consequently, in order to evade our estimation, an
attacker has to constantly set all the domains' TTL values to be
zero, or make all the domains unresolvable. Such behaviors will
fundamentally signify the anomaly of these malicious domains,
thereby making them more distinguishable from legitimate ones.

8. Conclusion

The active DNS cache probing technique provides a low-cost
and privacy-preserving choice to perform broad-view DNS query
behavior analysis in geographically different networks. We focused
on DNS query characteristics estimation via active DNS cache
probing, and proposed a novel solution that integrates the renewal
theory-based DNS caching formulation and the hyper-exponential
distribution model. Our solution can estimate the statistics of the
DNS query IATs with strong capacity and flexibility, resulting in
significant accuracy improvement. A large-scale real-world DNS
trace evaluation was made to reveal that the existing solution
often deviate from reality, and that our solution significantly
outperforms the existing solution. We demonstrated the effective-
ness of our solution by applying it to estimate malware-infected
host population in remote management networks.
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Appendix A. Previous estimator underestimates when CV41

Proof. The problem is equivalent to: a person arrives at the bus
stop at random time and R is the waiting time for the next bus.
Suppose bus runs for period T, Xi is the IAT between the ith and
ðiþ1Þ th bus, and the person arrives at random time during T, as
illustrated in Fig. A12. The average waiting time E½R� is the area of
the right angled isosceles triangles divided by T. We have
E½R� � ð1=tÞ∑n

i ¼ 1
1
2 X

2
i . Let t-1, t ¼ nE½X�, hence

E½R� � 1
nE½X� ∑

n

i ¼ 1

1
2
X2
i ¼

E½X2�
2E½X�:

Since D½X� ¼ E½X2��ðE½X�Þ2, then E½R� ¼ ðD½X�þD½X�Þ=2E½X�, which
concludes

E½R��E½X�
E½X� ¼ 1

2
D½X�
ðE½X�Þ2

�1

 !

If D½X�4 ðE½X�Þ2 (i.e., CV41), then E½R�4E½X�, which means the
previous exponential estimator underestimates λ. □
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