
Diversified Temporal Subgraph Pattern Mining

Yi Yang1,2 Da Yan1 Huanhuan Wu1 James Cheng1 Shuigeng Zhou2 John Lui1
1Department of Computer Science and Engineering

1The Chinese University of Hong Kong
2School of Computer Science, Fudan University

1{yyang,yanda,hhwu,jcheng,cslui}@cse.cuhk.edu.hk
2{yyang1,sgzhou}@fudan.edu.cn

ABSTRACT
Many graphs in real-world applications, such as telecommunica-
tions networks, social-interaction graphs and co-authorship graphs,
contain temporal information. However, existing graph mining al-
gorithms fail to exploit these temporal information and the resulting
subgraph patterns do not contain any temporal attribute. In this pa-
per, we study the problem of mining a set of diversified temporal
subgraph patterns from a temporal graph, where each subgraph is
associated with the time interval that the pattern spans. This prob-
lem motivates important applications such as finding social trends
in social networks, or detecting temporal hotspots in telecommu-
nications networks. We propose a divide-and-conquer algorithm
along with effective pruning techniques, and our approach runs 2 to
3 orders of magnitude faster than a baseline algorithm and obtains
high-quality temporal subgraph patterns in real temporal graphs.

1. INTRODUCTION
Many graphs in real world applications contain temporal infor-

mation. For example, telecommunication companies record huge
amounts of phone call and SMS records every day, where each
phone call or SMS record contains attributes about the sender, the
recipient, and the time when the phone call was made or the SMS
was transmitted. As another example, online social networking
companies keep logs about the interactions between users and the
time when each interaction occurred. However, most existing graph
mining algorithms do not consider temporal information in a graph,
and thus fail to exploit those temporal attributes for detecting im-
portant temporal patterns such as social trends, temporal commu-
nication hotspots, and evolving social structures.

In this paper, we study the mining of subgraph structures with
temporal information. Specifically, we define the concept of tem-
poral subgraph pattern, which consists of a set of vertices S and
a time interval I = [ts, te], indicating that all the vertices in S
closely interact with each other during the period of time from ts
to te. Mining a set of diversified temporal subgraph patterns from a
temporal graph motivates numerous new applications, and we de-
scribe a few of them as follows.
Evolving Social Groups. In an online social network, people join

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’16 San Francisco, CA, USA
c⃝ 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

and leave social groups from time to time. For example, during the
period of FIFA World Cup, people who are interested in football
will actively discuss events on FIFA World Cup in an online forum.
When the World Cup competition ends, people may change to in-
teract more actively with another group of people, e.g., to share
things happened in another event, or to discuss projects with col-
leagues/classmates. Such interesting social groups can be detected
by mining temporal subgraph patterns from a temporal graph con-
structed from the interaction records of an online forum. Moreover,
the detected social activities contain temporal information, which
can help social media companies to recommend new applications
and products to their users before a similar event happens next time.
Temporal Hotspots. In a telecommunication company, each con-
nection between two users is recorded along with the time of the
connection. By mining temporal subgraph patterns from a tempo-
ral graph extracted from user connections, the telecommunication
company can detect communication hotspots in different time pe-
riods, and allocate more resources to hotspot regions in their peak
time periods to improve services. The company may also use the
information of hotspot for marketing or promotion activities.

In fact, temporal clustering has been extensively studied in the
spatial setting [4, 8, 10, 15], which detects clusters of people or
animals that move together for a reasonably long period of time.
This work studies the problem in the context of a temporal graph,
where the distance between two vertices are evaluated on a graph
rather than in a geo-spatial setting.

Since it is important to find social groups (or subgraph patterns)
where people closely interact with each other, many definitions of
dense subgraph patterns have been proposed, such as k-core [3], k-
truss [26], γ-dense subgraph [7, 11] and γ-quasi-clique [1]. Among
them, k-core and k-truss can be efficiently computed, but for a spe-
cific value of k, there is only one k-core and k-truss subgraph for a
graph. Thus, they only provide us a global view of the dense parts
of a graph, rather than individual dense groups. A better definition
is γ-dense subgraph or γ-quasi-clique, which qualifies a subset of
vertices to form a social group if each vertex interacts with most of
the other vertices in the subset.

This paper follows the definition of γ-quasi-clique. Since com-
puting γ-quasi-clique is NP-hard [20], existing solutions are ei-
ther fast approximation algorithms [29], or exact algorithms with
heuristic pruning rules [16]. Moreover, computing γ-quasi-cliques
becomes much harder in the context of a temporal graph, as the
time information makes the problem much more challenging.

The main contributions of this paper are summarized as follows:

• To our knowledge, this is the first work that studies the prob-
lem of mining dense subgraph patterns in a temporal graph.
We formally define the problem of mining top k diversi-
fied temporal subgraph patterns, and propose efficient algo-

rithms for the mining task.

• We design several effective pruning rules to remove vertices
and time periods that do not belong to any temporal subgraph
patterns, which allow us to terminate a useless search as early
as possible.

• We propose a heuristic search strategy. Based on the search
strategy, a quick search algorithm and a complete search al-
gorithm are proposed. We then compare them with a baseline
approach on several real datasets. The experimental results
demonstrate that our algorithms obtain high-quality mining
results, while the quick search algorithm is 2 to 3 orders of
magnitude faster than the baseline algorithm.

The rest of this paper is organized as follows. Section 2 defines
some notations and the problem. Section 3 introduces the base-
line algorithm. Section 4 proposes the framework of our solution,
including the mining algorithms. Section 5 proposes some prun-
ing rules for mining dense subgraph patterns in temporal graphs.
Section 6 proposes some optimization techniques for our mining
algorithms. Section 7 studies the performance of our mining al-
gorithms on real datasets. Section 8 introduces the related works.
Finally, Section 9 concludes the paper.

2. PROBLEM DEFINITION
Temporal Graph. In this paper, we consider an undirected tempo-
ral graph without self loops. A temporal graph G = (V,E) consists
of a vertex set V and a temporal edge set E. Each temporal edge
e ∈ E has the form (u, v, I), indicating that there is an undirected
edge between vertices u and v during the time interval I . Here,
I = [ts, te] indicates that e appears in G during the time period
[ts, te], and we denote the length of I by |I| = te − ts.

A time interval I consists of a set of discrete time points or time
snapshots (e.g., I can be a minute consisting of 60 seconds). Given
a time snapshot t, we define the edge set of G at time t as E(t) =
{(u, v) | ∃(u, v, I) ∈ E : t ∈ I}, and define the snapshot graph
of G at time t as G(t) = (V,E(t)). Since the degree of a vertex
v in a temporal graph G changes from time to time, we denote the
degree of v at time t by dv(t). We can view G(t), E(t) and dv(t)
as functions of t, which show how they change over time.

Given a temporal graph G = (V,E), a vertex subset V ′ ⊆ V ,
and a time interval I ′, we define the temporal subgraph of G in-
duced by V ′ and I ′ as a temporal graph G′ = (V ′,E′, I ′), such
that for any time snapshot t ∈ I ′, G′(t) is the subgraph of G(t)
induced by V ′.
Dense Temporal Graph. We define dense temporal graphs based
on the definition of γ-quasi-clique in a non-temporal graph [1],
where 0 ≤ γ ≤ 1 is a user-defined density parameter:

Given a non-temporal graph G = (V,E), if dv ≥ γ · (|V |− 1)
holds for all v ∈ V , then G is a γ-quasi-clique. As a special case,
when γ = 1, G is a clique.

Now we need to incorporate temporal information into the above
definition to define dense temporal graphs as follows.

Given a temporal graph G = (V,E) and a parameter γ, we say
that G is a γ-quasi-clique during the time interval I iff

dv(t) ≥ γ · (|V |− 1)

holds for all v ∈ V and t ∈ I .
A temporal subgraph G′ = (V ′,E′, I ′) is considered γ-dense iff

G′ is a γ-quasi-clique during the time interval I ′.
Temporal Coverage. Given a temporal graph G and its temporal
subgraph G′ = (V ′,E′, I ′), we define the coverage set of G′ on G

as C(G′) = {(v, t) | v ∈ V ′, t ∈ I ′}, whose size is |C(G′)| =
|V ′| · |I ′|. Consider a set of temporal subgraphs of G, denoted by
G = {G1,G2, . . . ,Gk}, where Gi is induced by a vertex set Vi

and a time interval Ii from G. The coverage set of G is the union
of the coverage sets of individual subgraphs:

C(G) =
k⋃

i=1

C(Gi) = {(v, t)|∃i, s.t. v ∈ Vi, t ∈ Ii},

and its size is denoted by |C(G)|. Although a pair (v, t) may appear
in different coverage sets, i.e., (v, t) ∈ C(Gi), C(Gj) with i ̸=
j, it is counted only once when calculating |C(G)|. Apparently,
|C(G)| is larger if (1) |Vi|, |Ii| are larger, and (2) Vi, Ii are different
from each other for i = 1, 2, ..., k.
The Problem. In this paper, we study how to find k dense temporal
subgraphs in a temporal graph, such that the k subgraphs are large
and diversified (i.e., maximizing the coverage). Formally, given a
temporal graph G and four parameters γ, k, σ and τ , we want to
find a set of γ-dense subgraphs G = {G1, ...,Gk} induced by Vi

and Ii (i = 1, 2, ..., k) from G, such that (1)|Vi| ≥ σ, (2) |Ii| ≥ τ ,
and (3) |C(G)| is maximized. We call G = {G1, ...,Gk} the top k
diversified temporal subgraph patterns in G.

EXAMPLE 1. Assume γ = 0.8, k = 2,σ = 3, τ = 3, and
a temporal graph G shown in Figure 1. There are two diversi-
fied temporal subgraph patterns, G1 = (V1,E1, I1) and G2 =
(V2,E2, I2), of G, where V1 = {a, b, c}, I1 = [0, 3] and V2 =
{c, d, e}, I2 = [2, 5], such that (1) |V1| = |V2| = 3 ≥ σ, (2) |I1| =
|I2| = 3 ≥ τ , and (3) |C(G)| is maximized with G = {G1,G2}.
Since C(G1), C(G2) overlap on vertex c at time t ∈ [2, 3], the size
of the coverage is |C(G)| = 3 · 3+ 3 · 3− 1 = 17, which is shown
in Figure 2.

Figure 1: A temporal graph Figure 2: The coverage set

3. THE BASELINE ALGORITHM
A straightforward solution to our problem is to list all the qual-

ified subgraph patterns, and then find k of them that maximize the
coverage.
Search Space. Given a temporal graph G and a parameter γ, a
naive solution is to check every subgraph induced by any V ′ ⊆ V
and any I ′ ⊆ I from G. To do so, we consider the set of dis-
crete time points T = {t1, t2, . . .}, where t1, t2, . . . are the time
points when an edge appears or disappears. If the subgraph in-
duced by V ′ is γ-quasi-clique at ti, ti+1, . . . , tj , then it is γ-dense
throughout time interval [ti, tj]. Thus, it suffices to examine ev-
ery non-temporal subgraph G(t) induced by any V ′ ⊆ V and any
t ∈ T . Therefore, the search space for listing qualified patterns is
2|V | · |T |.
Pruning during Subgraph Listing. Some pruning rules have
been proposed to reduce the cost of listing quasi-cliques in a non-
temporal graph [16]. These pruning rules check whether a subgraph
can be further grown to form a larger qualified pattern. In the algo-
rithm of [16], a mining task consists of a set S of selected vertices

and a set C of candidate vertices. It then selects a vertex v1 ∈ C,
and generates two mining tasks: (1) moving v1 from C to S, and
(2) simply removing v1 from C. These two tasks refer to two cases,
i.e., a candidate vertex v1 is selected into (resp. excluded from) a
pattern. Each task can be further expanded by checking another
vertex v2 ∈ C in a similar manner. In this way, a mining task is
recursively processed, and meanwhile, the pruning rules may ter-
minate a task from further expansion.
Maximizing the Coverage. Selecting k subgraph patterns from
all the qualified patterns can be regarded as a maximum set cover
problem, which is NP-hard. Using the greedy algorithm of [18],
we can obtain a solution with (1− 1/e) approximation ratio. This
algorithm picks k patterns greedily one by one, where each pattern
is selected as the one that maximizes the current coverage.
The Baseline Algorithm. A straightforward algorithm works as
follows. The algorithm maintains a set V of vertex sets, where for
each vertex set V ′ ∈ V , there exists a time point t ∈ T such that the
subgraph of G(t) induced by V ′ is a γ-quasi-clique. Initially, V is
empty. We first use the algorithm in [16] to list all γ-quasi-cliques
with at least σ vertices in every graph snapshot G(ti) (∀ti ∈ T).
For the γ-quasi-cliques of G(ti), let the set of their vertex sets be
Vi. We then check Vi one by one from i = 1 to i = |T |, and
for each Vi, we use it to update V in two cases. (1) If a vertex set
V ′ ∈ Vi is not in V , then we attach V ′ with a starting time ts = ti
and add V ′ to V . (2) If a vertex set V ′ ∈ V is not in Vi, then we
attach V ′ with an ending time te = ti, output the subgraph pattern
induced by V ′ and I ′ = [ts, te] to the result set R if |I ′| ≥ τ , and
then remove V ′ from V .

After all qualified temporal subgraph patterns have been col-
lected to R, we call the greedy set-cover algorithm over R, and
output the top k subgraph patterns.
Drawbacks of the Baseline Algorithm. The baseline algorithm
simply calls an existing algorithm for each graph snapshot G(ti),
where i = 1, 2, . . . , |T |, which is inefficient since it incurs a lot of
redundant computation when there are not many changes between
consecutive graph snapshots. Moreover, we need to keep all the
quasi-cliques of each snapshot graph (even if they may not last for
τ time steps), which consumes a large amount of memory.

4. OUR SOLUTION
In this section, we introduce the main framework of our algo-

rithm for finding the top k diversified temporal subgraph patterns.

4.1 Overview
The high-level idea is to find qualified patterns in a divide-and-

conquer manner. We define a mining task as T = (G, S, I). Here
G = (V,E) is a temporal graph, S is a subset of V that we have
already selected as a subgraph pattern, and I is a time interval. The
mining task aims to find all maximal dense subgraphs induced by
V ′ ⊆ V and I ′ ⊆ I from G, such that V ′ ⊇ S, |V ′| ≥ σ and
|I ′| ≥ τ . We start with the task T = (G, ∅, T), where we abuse
T (w.r.t. G) to also denote the minimal time interval that contains
all the time snapshots in T . We process the task T recursively as
follows.

We first remove some vertices and time snapshots of G by the
pruning rules to be introduced in Section 5, as they cannot be in-
cluded in any qualified subgraph patterns. If all the vertices and
time snapshots are removed, then G does not contain any qualified
subgraph patterns, and the task is done. Otherwise, let the remain-
ing graph be G′ = (V ′,E′), if G′ is dense throughout I , then we
add G′ to the result set R, and the task is also done.

If G′ is neither empty nor dense, we divide the task T recursively

into subtasks. Let I be the set of unpruned time snapshots in I , then
we continue with two cases: (Case 1) If I is a consecutive interval,
then we select a vertex v from V ′ \ S according to a total order on
vertices (the ordering will be discussed in Section 6.1), and divide
T into two subtasks. One subtask examines the subgraphs that
contain v and the other examines the subgraphs that do not contain
v. More specifically, T is divided into T1 = (G′, S ∪ {v}, I) and
T2 = (G′ \ {v}, S, I), where G′ \ {v} is the remaining graph
after removing vertex v and all edges incident on v from G′. (Case
2) Otherwise, I is disjoint, i.e., I = [s1, e1]∪[s2, e2]∪. . .∪[sℓ, eℓ],
then let Ii = [si, ei] and we divide T into ℓ subtasks Ti = (G′ ∩
Ii, S, Ii), where i = 1, 2, . . . , ℓ and G′ ∩ Ii is a subgraph of G′

induced by V ′ and Ii. We then process the subtasks recursively.

4.2 Updating the Result Set
We keep at most k subgraph patterns in the result set R through-

out the whole mining process. To do so, we simply add the new
qualified subgraphs to R when |R| < k; otherwise, we maintain
R greedily to increase the coverage |C(R)|.

More specifically, we first select a subgraph G from the result set
R, where

G = arg max
G′∈R

|C(R \ {G′})|

is the subgraph in R such that after removing it from R, the remain-
ing coverage is maximized. Let R− = R \ {G} be the result set
after excluding G from R. To decide whether a new qualified sub-
graph Gnew should be included into R, we replace G with Gnew,
and check whether the new coverage |C(R− ∪ {Gnew})| becomes
larger than the current coverage |C(R)|. To allow effective pruning
(to be discussed in Section 5), we only replace G with Gnew if

|C(R− ∪ {Gnew})| > (1 + 1/k) · |C(R)|, (1)

In other words, we only update the result set if the coverage in-
creases by more than 1/k times after updating. According to [2],
this updating rule has a guarantee of a 1/4-approximation ratio
w.r.t. the maximum value of |C(R)|.

4.3 The Algorithm
Our mining algorithm is sketched in Algorithms 1 and 2. Algo-

rithm 1 first initializes the result set R (Line 1) and then calls the
“Search” procedure detailed in Algorithm 2 with the given temporal
graph G, an empty set (of selected vertices) and G’s time interval
T (Line 2). Finally, it outputs the computed result set R (Line 3).

Algorithm 2 shows the recursive procedure of a mining task. It
first applies the pruning rules (to be introduced in Section 5) to
prune some vertices and time snapshots from G (Line 1). Then, we
continue to process the pruned graph (denoted as Gnew) in three
cases. (1) If the set of the remaining time points I is empty, then
there is no qualified subgraph and the mining task is done (Lines
2-3); otherwise, (2) if I contains only one consecutive time inter-
val and Gnew is a γ-quasi-clique through out I, then Gnew is a
new qualified subgraph, and the result set R will be updated as de-
scribed in Section 4.2 before finishing the mining task (Lines 4-6);
otherwise, (3) we continue with two subcases: if I is a consecutive
time interval, then the task is divided into two subtasks according
to a selected vertex v ∈ V \ S (Lines 7-10); otherwise, the task
is divided into ℓ subtasks according to the disjoint time intervals of
I (Lines 11-13). In both subcases, the subtasks are then processed
recursively.

Compared with the baseline algorithm, we now examine the sub-
graph patterns in the unit of time intervals rather than time points.
We also terminate the mining task immediately once we find that
no dense subgraph patterns can last for a period of length at least

Algorithm 1 : Top-k Diversified Temporal Subgraph Mining
Input: G = (V,E), γ, σ, τ , k
Output: R
1. R← ∅
2. Search(G, ∅, T)
3. return R

Algorithm 2 : Search(G = (V,E), S, I)
1. Apply the pruning rules to shrink G (see Section 5)

{Let Gnew be the remaining graph and I = I1 ∪ ... ∪ Iℓ be
the remaining time snapshots after pruning, where I1, ..., Iℓ
are the disjoint time intervals of I}

2. if I = ∅
3. return
4. if ℓ = 1 and Gnew is a γ-quasi-clique throughout I
5. Update R with Gnew (see Section 4.2)
6. return
7. if ℓ = 1
8. select a vertex v ∈ V \ S
9. Search(Gnew, S ∪ {v}, I)

10. Search(Gnew \ {v}, S, I)
11. else
12. for i = 1, 2, . . . , ℓ
13. Search(Gnew ∩ Ii, S, Ii)

τ . This pruning opportunity, however, is not utilized by the base-
line algorithm. Also, we keep at most k subgraph patterns in the
result set throughout our mining procedures, which is more space
efficient than the baseline algorithm.

5. PRUNING RULES
In this section, we present our five pruning rules for temporal

subgraph mining, which are used in Line 1 of Algorithm 2. In the
pruning procedure, we repeat the first four pruning rules to prune
the given temporal graph until it cannot be further pruned, and then
use the last pruning rule to further prune the remaining graph.
Summary of Pruning Rules. For the temporal graph G in a given
mining task, the first rule prunes the vertices with low degrees and
short durations, such that the degree of any vertex in the remaining
graph remains at least γ · (σ − 1) for a period with length at least
τ .

The second rule prunes the vertices that are far away from a
newly selected vertex v, such that the distances from v to the re-
maining vertices are within a valid range.

After calculating the bounds on the sizes of the qualified sub-
graph patterns, the third (resp. fourth) rule removes the snapshot
graphs (resp. vertices) that cannot be included in a qualified sub-
graph pattern according to the bounds.

The last rule is applied only if the time points of the remaining
snapshot graphs still form a consecutive interval after the previous
pruning. In this case, the task is terminated if no qualified subgraph
can increase the coverage by more than 1/k times as the updating
rule requires.
The Pruning Operations. Before presenting the details of our
pruning rules, we first introduce three pruning operations that are
commonly used to shrink a temporal graph G.

Operation 1: Edge Removal. Recall that a temporal edge e =
(u, v, I) connects vertices u and v within time interval I . After
removing this edge, du(t) and dv(t) decrease by 1 for all t ∈ I .
Sometimes we may only remove an edge within a given time in-

terval I ′, and then this edge becomes (u, v, I \ I ′), which will be
broken into two edges if I \ I ′ is disjoint after removal. For ex-
ample, let a temporal edge be (u, v, [0, 60]), and if we remove this
edge within time interval [20, 50], then this edge is broken into two
edges (u, v, [0, 20]) and (u, v, [50, 60]).

Operation 2: Vertex Removal. If a vertex v is removed from
G, then all its adjacent temporal edges are removed. Sometimes
we may only remove a vertex within a given time interval I ′, and
thus only its adjacent edges within the time interval I ′ are removed.
Moreover, given a set of disjoint time intervals, I = {[s1, e1], . . . ,
[si, ei], . . . , [sℓ, eℓ]}, if we only remove v w.r.t. I, then v is only
removed within time intervals [si, ei] for all i = 1, 2, ..., ℓ.

Operation 3: Snapshot Graph Removal. Given a set of dis-
joint time intervals, I, if we remove the snapshot graphs in I, then
all the vertices of G are only removed w.r.t. I, and hence, the snap-
shot graphs will be empty at any time t ∈ I.

5.1 The List of Pruning Rules
Now we present our five pruning rules. Let T = (G, S, I) be a

mining task, where G = (V,E). For an induced subgraph G′ =
(V ′,E′, I ′) of G, if V ′ ⊇ S, |V ′| ≥ σ, |I ′| ≥ τ and G′ is γ-dense
throughout I ′, then we say G′ is a qualified subgraph pattern.
Rule 1: Degree-and-Duration Based Pruning. We first prune
the vertices with low degrees or short durations, since they cannot
be included in a qualified subgraph pattern.

More specifically, let v ∈ V be a vertex of G. If dv(t) < γ ·
(|S|−1), then dv(t) < γ·(|V ′|−1) for any superset V ′ ⊇ S. Thus,
dv(t) is too low for v to be included in a γ-dense subgraph at time
t. Moreover, if dv(t) < γ · (σ − 1), then we also cannot include v
in a γ-dense subgraph with size at least σ at time t. Based on these
facts, let us define I−

v = {t | t ∈ I, dv(t) < γ · (max{|S|,σ} −
1)}, then we can prune v within any time interval in I−

v .
Let us define I+

v = {t | t ∈ I, dv(t) ≥ γ · (max{|S|,σ}− 1)},
and let [s1, e1], [s2, e2], ..., [sℓ, eℓ] be the disjoint time intervals of
I+
v . If ei − si < τ for some i, where 1 ≤ i ≤ ℓ, then time interval

[si, ei] is too short and v cannot be included in a qualified subgraph
pattern at any time t ∈ [si, ei]. Based on this fact, we can prune v
within [si, ei] for any i = 1, 2, ..., ℓ such that ei − si < τ .

We repeat the above operations for all vertices in G until no more
vertex can be removed within any time interval.
Rule 2: Distance Based Pruning. According to [21], if a vertex
is too far away from any selected vertex, it cannot be included in
a γ-quasi-clique. Therefore, after selecting a new vertex, we can
remove the vertices that are farther away than a distance threshold
computed based on γ.

More specifically, if a non-temporal graph G = (V,E) is a γ-
quasi-clique, then according to Theorem 1 in [21], we have δu,v ≤
f(γ) for all u, v ∈ V , where δu,v is the distance between vertices
u and v, and f is a function of γ. As a special case, f(1) = 1 and
f(γ) = 2 for 0.5 ≤ γ < 1. According to this property, vertices
whose distance are larger than f(γ) from any selected vertex can
be removed. To do so, we define δu,v(t) as the distance between
vertices u and v in G at time t, and define I∗

v (u) = {t | δu,v(t) >
f(γ)} as the set of time points when the distance between u, v ∈ V
is larger than a given threshold f(γ). Then, after adding a new
vertex v to S, for every u ∈ V \ S, we prune u within any time
interval in I∗

v (u).
Rule 3: Pattern Size Based Pruning. Consider the current task
T = (G, S, I) again. For a time point t ∈ I , if there does not exist
any qualified subgraph pattern G′ = (V ′,E′, I ′) such that t ∈ I ′,
then we call t as a break point. To find break points for any t ∈ I ,
we first calculate an upper bound ub(t) and a lower bound lb(t) for

the size of any qualified subgraph pattern at time t (the calculation
will be discussed later in Section 5.2). Obviously, if ub(t) < σ or
ub(t) < lb(t), then t is a break point. Based on this property, we
define Tb = {t|t ∈ I, ub(t) < σ or ub(t) < lb(t)} as the set of
break points.

Then, we can use Tb to find more break points by checking the
length of the time interval between any two break points in Tb,
which is detailed as follows. If t1, t2 ∈ Tb satisfies |t2 − t1| < τ ,
then for any t ∈ [t1, t2], the time span of any γ-dense subgraph that
spans across time t is broken at t1 and t2, and hence, these subgraph
patterns cannot last for a period with length τ . As a result, all time
points t ∈ [t1, t2] are also break points. We denote this expanded
set of break points as follows:

T+
b = {t|t ∈ I, ∃t1, t2 ∈ Tb, s.t. t1 ≤ t ≤ t2, t2 − t1 < τ}.

Then, we can prune the snapshot graphs in T+
b .

Rule 4: Vertex Based Pruning. Recall that V is the vertex set of
G. For a vertex v ∈ V and a time point t ∈ I , if there does not exist
any qualified subgraph pattern G′ = (V ′,E′, I ′) such that v ∈ V ′

and t ∈ I ′, then we say that v is disqualified at time t. We will
show how to find disqualified vertices in Section 5.3. Moreover, if
a vertex v is disqualified at both t1 and t2 such that |t2 − t1| < τ ,
then v is also disqualified at any time t ∈ [t1, t2].

Let Tv be the set of time points when v is disqualified. If v ∈ S,
then all the time points in Tv are break points and we prune the
snapshot graphs in Tv; otherwise (i.e., v ∈ V \ S), we prune v at
any time t ∈ Tv .
Rule 5: Diversifying Based Pruning. This pruning rule is only
called when the set of time intervals (denoted as I) of the remaining
snapshot graphs (after repeatedly applying Rules 1-4) consists of
only one consecutive time interval.

Recall from Section 4.2 that if Inequality (1) does not hold, we
do not update the result set R, and thus can terminate the task ear-
lier. For this purpose, we derive an upper bound on the coverage
score after we update R with any subgraph pattern G′ mined from
the current task T .

Let ∆(G′) = |C(R− ∪ {G′})|− |C(R−)| be the increment of
the coverage after adding G′ to R−. Since we have selected a set S
of vertices, we can first calculate ∆(G∩S), where G∩S refers to
the subgraph of G induced by S and I. Let m = maxt∈I ub(t) be
the maximum allowed number of vertices in a qualified subgraph,
and let ∆1,∆2, . . . ,∆m−|S| be the (m − |S|) largest values of
∆(G ∩ {v}) among all v ∈ V \ S. Then the upper bound of the
coverage is Cub = |C(R−)|+∆(G ∩ S) +

∑m−|S|
i=1 ∆i (i.e., the

coverage after we add into R− a pattern G′, which contains S and
up to (m− |S|) other vertices). If Cub < (1+1/k) · |C(R)|, then
Inequality (1) cannot hold, and thus, we terminate the mining task
T directly.

5.2 Bounds on Pattern Sizes
Recall that Rule 3 requires the bounds ub(t) and lb(t) on the

size (i.e., the number of vertices) of any qualified subgraph pattern
at time t. We now derive these bounds.

5.2.1 Degree Based Bounds
The degree of a vertex provides an upper bound on the size of any

quasi-clique that contains this vertex. We discuss how to derive the
upper bound u(t) for a mining task.

Given a mining task T = (G, S, I), for any t ∈ I , let dmin(t) =
min{dv(t) | v ∈ S}. Then, u(t) is given by the following lemma.

LEMMA 1. Let G′ = (V ′, E′) be a subgraph of G(t). If V ′ ⊇
S and G′ is a γ-quasi-clique, then |V ′| ≤ u(t), where u(t) =

⌊dmin(t)/γ⌋+ 1.
PROOF. According to the definition of γ-quasi-clique, we have

dv(t) ≥ γ · (|V ′| − 1) for all v ∈ V ′. Since V ′ ⊇ S, we have
dmin(t) ≥ γ · (|V ′| − 1), that is, |V ′| ≤ ⌊dmin(t)/γ⌋ + 1 =
u(t).

We now derive the lower bound l(t). Let Nv(t) be the set of v’s
neighbors at time t. Given a set of vertices, S′, we first define the
restricted degree of v w.r.t. S′ at time t as dS

′
v (t) = |Nv(t) ∩ S′|,

which refers to the number of neighbors of v that are in S′ at time
t. Let dSmin(t) = min{dSv (t) | v ∈ S}. Then, l(t) is given by the
following lemma.

LEMMA 2. Let G′ = (V ′, E′) be a subgraph of G(t). If V ′ ⊇
S and G′ is a γ-quasi-clique, then |V ′| ≥ l(t), where l(t) =
⌈(|S|− dSmin(t)− γ)/(1− γ)⌉.

PROOF. According to the definition of γ-quasi-clique, we have
dV

′
v (t) ≥ γ · (|V ′| − 1) for all v ∈ V ′. Since V ′ ⊇ S, we have

dV
′

v (t) ≤ (|V ′| − |S|) + dSv (t), and thus, |V ′| − |S| + dSv (t) ≥
γ · (|V ′| − 1) for all v ∈ V ′. Since dSv (t) ≥ dSmin(t), we have
|V ′| − |S| + dSmin(t) ≥ γ · (|V ′| − 1), and thus, |V ′| ≥ ⌈(|S| −
dSmin(t)− γ)/(1− γ)⌉ = l(t).

5.2.2 Sum of Degree Based Bounds
We now make u(t) and l(t) tighter by considering the sum of the

restricted degree of individual vertices. Note that if a non-temporal
graph G′ = (V ′, E′) is a γ-quasi-clique, then for any m vertices
in V ′, the sum of their degrees must be at least m · ⌈γ · (|V ′|−1)⌉.

Since S ⊆ V ′, for any subset of S with m vertices, denoted
by S′, the sum of all degrees of vertices in S′ should be at least
m · ⌈γ · (|V ′| − 1)⌉. Currently, V ′ = S but the degree sum may
be less than m · ⌈γ · (|S|− 1)⌉, and we need to include more ver-
tices into V ′ to make the requirement satisfied for the subset S′.
We present how to derive bounds on the number of vertices that
needs to be included, using restricted vertex degrees w.r.t. S′. For
vertices in S, we compute their sum of restricted degree w.r.t. S′

at time t as
∑

v∈S dS
′

v (t). For vertices in V \ S (which are candi-
dates to be included into V ′), we sort them in non-increasing order
of their restricted degree dS

′
v (t), and denote the sorted vertices by

v1, v2, . . . , v|V \S|. Then, we have the following lemma.

LEMMA 3. Let G′ = (V ′, E′) be a subgraph of G(t), and S′

be a subset of S, if V ′ ⊇ S and G′ is a γ-quasi-clique, then we
have

∑

v∈S

dS
′

v (t) +

|V ′\S|∑

i=1

dS
′

vi (t) ≥ |S′| · ⌈γ · (|V ′|− 1)⌉ (2)

PROOF. According to the definition of γ-quasi-clique, we have∑
v∈S′ d

V ′
v (t) ≥ |S′| ·⌈γ ·(|V ′|−1)⌉ = R.H.S., then we just need

to prove that L.H.S. ≥
∑

v∈S′ d
V ′
v (t).

Note that
∑

v∈S′ d
V ′
v (t) equals the number of edges between S′

and V ′, and thus equals
∑

v∈V ′ d
S′
v (t). Thus, we only need to

prove that L.H.S. ≥
∑

v∈V ′ d
S′
v (t).

We divide V ′ into two sets S and V ′ \ S, then we get
∑

v∈V ′

dS
′

v (t) =
∑

v∈S

dS
′

v (t) +
∑

v∈V ′\S

dS
′

v (t).

Since we have sorted the vertices v ∈ V \S in descending order
of their restricted degrees, we have

|V ′\S|∑

i=1

dS
′

vi (t) ≥
∑

v∈V ′\S

dS
′

v (t).

Thus, according to Inequality (2), we have

L.H.S. ≥
∑

v∈S

dS
′

v (t) +
∑

v∈V ′\S

dS
′

v (t) =
∑

v∈V ′

dS
′

v (t),

which completes the proof.

Let uS′
(t) (resp. lS

′
(t)) be the maximum (resp. minimum) |V ′|

(computed from S′), such that

l(t) ≤ lS
′
(t) ≤ |V ′| ≤ uS′

(t) ≤ u(t), (3)

∑

v∈S

dS
′

v (t) +

|V ′\S|∑

i=1

dS
′

vi (t) ≥ |S′| · ⌈γ · (|V ′|− 1)⌉. (4)

To compute uS′
(t) and lS

′
(t), we first compute

∑
v∈S dS

′
v (t).

Then, we sort the vertices in V \ S in non-increasing order of their
restricted degree dS

′
v (t) for every t ∈ I , and hence we obtain the

L.H.S. of Inequality (4) for |V ′| = |S|, |S| + 1, ..., u(t) by sum-
ming up the restricted degree dS

′
vi (t) one by one from the sorted list

for i = 1, 2, . . . , u(t) − |S|. Finally, we compare the sum with
R.H.S. to get uS′

(t) and lS
′
(t).

According to Inequality (3), uS′
(t) and lS

′
(t) are tighter than

u(t) and l(t). If there is no valid value of |V ′| that satisfies Inequal-
ities (3) and (4), then we set uS′

(t) = −1 and lS
′
(t) = |V |+ 1.

Since any subset S′ ⊆ S can be selected to compute the bounds
uS′

(t) and lS
′
(t), we define

um(t) = min
S′⊆S

uS′
(t),

lm(t) = max
S′⊆S

lS
′
(t),

then um(t) and lm(t) are tighter than uS′
(t) and lS

′
(t) for any

S′ ⊆ S, and we have the following corollary.

COROLLARY 1. Let G′ = (V ′, E′) be a subgraph of G(t),
if V ′ ⊇ S, |V ′| ≥ σ and G′ is a γ-quasi-clique, then we have
lm(t) ≤ |V ′| ≤ um(t).

For efficiency reasons, we only enumerate some subsets S′ ⊆ S
to compute the bounds, as we will discuss in Section 6.1.

5.2.3 Duration Based Bounds
Note that um(t) and lm(t) are functions of t for t ∈ I , we can

further make them tighter using the minimum duration τ .

LEMMA 4. If there exists t, t1, t2 ∈ I , such that

t1 < t < t2, (5)

t2 − t1 < τ and (6)

um(t) > max{um(t1), um(t2)}, (7)

then no dense subgraph pattern with size um(t) at time t can last
for a duration with length τ .

PROOF. According to Corollary 1, there does not exist a dense
subgraph pattern with size larger than um(t1) at time t1 or larger
than um(t2) at time t2. That is, there does not exist a dense sub-
graph pattern with size larger than max{um(t1), um(t2)} at time
t1 or t2. Then, any dense subgraph pattern with size um(t) >
max{um(t1), um(t2)} at time t must start after t1 and end before
t2, and hence, it cannot last for a duration with length t2 − t1 <
τ .

According to Lemma 4, we can make um tighter if there exists
t, t1, t2 ∈ I satisfying Inequalities (5)-(7). In this case, we say um

is tighten-able at time t, and we tighten um by setting um(t) to
max{um(t1), um(t2)}. We repeat this operation until um is not
tighten-able at any time t ∈ I . Then, the upper bound ub(t) used
by Rule 3 equals the tightened um(t), which can be computed in
linear time as follows.

We first represent um(t) in s pairs (t1,∆1), (t2,∆2), . . ., (ts,∆s),
where s is the number of changes of the value of um(t) for t ∈ I ,
ti is the time of the i-th change, and ∆i is the difference of the
value of um(t) after and before time t = ti. As a special case, t1
is the starting time of I and ∆1 equals um(t1). For example, the
upper bound um(t) shown in Figure 3(a) can be represented in 3
pairs (0, 8), (20, 6), (40,−4). Before explaining how to compute
ub(t) in linear time, we need to prove the following lemma.

LEMMA 5. Let (ta,∆a) and (tb,∆b) be two consecutive pairs
in the representation of um(t). If

∆a > 0, ∆b < 0 and tb − ta < τ, (8)

then um(t) is tighten-able at any time t ∈ (ta, tb).

PROOF. Since ∆a > 0, we have um(t) > um(ta) for t > ta;
also, since ∆b < 0, we have um(t) > um(tb) for t < tb. Then, let
t1 = ta, t2 = tb and t ∈ (t1, t2), we have t1 < t < t2, t2−t1 < τ
and um(t) > max{um(t1), um(t2)}, and thus, um is tighten-able
at any time t ∈ (ta, tb).

To compute ub(t), we maintain a stack S of pairs, which is
empty initially. Recall that um(t) has been represented in s pairs
(t1,∆1), (t2,∆2), . . ., (ts,∆s), we push the pairs (ti,∆i) into S
one by one for i = 1, 2, ..., s. After we have pushed a pair into
S , let the top 2 pairs of S be (ta,∆a) and (tb,∆b), we then check
Inequalities (8) in Lemma 5. If they all hold, then um(t) is tighten-
able at any t ∈ (ta, tb), and hence, we want to tighten um(t) by
setting um(t) to max{um(ta), um(tb)} for all t ∈ (ta, tb). To
handle this operation, we first pop (ta,∆a) and (tb,∆b) out from
S . We then define ∆ = ∆a + ∆b, and update S as follows, if
∆ > 0, we push (ta,∆) into S; otherwise, if ∆ < 0, we push
(tb,∆) into S . We repeat the previous operations, until Inequali-
ties (8) do not hold for the top 2 pairs of S . Finally, ub(t) is derived
as the pairs in S represent. Apparently, the computation time of
ub(t) is linear to s.

To illustrate the computation of ub(t), let I = [0, 70], τ = 30,
and um(t) be shown in Figure 3(a). To compute ub(t), we first
push the pairs (0, 8), (20, 6), (40,−4) into S one by one. After
we have pushed (40,−4) into S , the top 2 pairs are (20, 6) and
(40,−4), which satisfy 6 > 0, −4 < 0 and 40 − 20 < τ , and
thus, um is tighten-able at t ∈ (20, 40). To tighten um, we pop
(20, 6) and (40,−4) out from S , and we have ∆ = 6 + (−4) =
2 > 0, and hence, we push (20, 2) into S . Finally, we get S =
{(0, 8), (20, 2)}, and ub(t) is derived as the 2 pairs (0, 8), (20, 2)
represent, which is shown in Figure 3(b).

Similarly, we have the following lemma on the lower bounds.

LEMMA 6. If there exists t, t1, t2 ∈ I , such that t1 < t <
t2, t2 − t1 < τ and lm(t) < min{lm(t1), lm(t2)}, then all the
dense subgraph patterns with size lm(t) at time t cannot last for a
duration with length τ .

According to Lemma 6, we can make lm tighter by a similar
procedure, such that t1 < t < t2, t2 − t1 < τ and lm(t) <
min{lm(t1), lm(t2)} cannot hold simultaneously for any t, t1, t2 ∈
I . Finally, the lower bound lb(t) used by Rule 3 equals the tight-
ened lm(t).

(a) An example of the upper bound (b) The improved upper bound

Figure 3: An example of um before and after improvement.

5.3 Computation of Disqualified Vertices
After deriving the bounds lb(t) and ub(t) on the size of qualified

subgraph patterns of G, we can use these bounds to check whether
we can include a vertex v in a qualified subgraph pattern at time
t. If we cannot include v in a qualified subgraph pattern at time t,
then v is disqualified at time t, which will be pruned by Rule 4. To
check whether a vertex v is disqualified at time t, we first prove the
following lemma.

LEMMA 7. Let G′ = (V ′, E′) be a subgraph of G(t), if V ′ ⊇
S and G′ is a γ-quasi-clique, then we have dv(t) ≥ γ · (lb(t)− 1)
for all v ∈ V ′.

PROOF. According to the definition of γ-quasi-clique, we have
dv(t) ≥ γ · (|V ′|− 1) for all v ∈ V ′. Since we have |V ′| ≥ lb(t),
we obtain dv(t) ≥ γ · (lb(t)− 1).

According to Lemma 7, if we find that there exists v ∈ V , t ∈ I ,
such that dv(t) < γ · (lb(t) − 1), then we cannot include v in
a qualified quasi-clique at time t, and hence, v is disqualified at
time t. To find more disqualified vertices, we prove the following
lemma.

LEMMA 8. Let G′ = (V ′, E′) be a subgraph of G(t), if V ′ ⊇
S and G′ is a γ-quasi-clique, then we have ub(t)− |S|+ dSv (t) ≥
γ · (lb(t)−1) for all v ∈ S and we have ub(t)− |S|−1+dSv (t) ≥
γ · (lb(t)− 1) for all v ∈ V ′ \ S.

PROOF. Since G′ is a γ-quasi-clique, we have dV
′

v (t) ≥ γ ·
(lb(t) − 1). Since we have |V ′| ≤ ub(t), V ′ contains at most
(ub(t)− |S|) vertices that are not in S, and thus, we have dV

′
v (t) ≤

ub(t)−|S|+dSv (t) for v ∈ S and dV
′

v (t) ≤ ub(t)−|S|−1+dSv (t)
for v ∈ V ′\S. Thus, we obtain ub(t)−|S|+dSv (t) ≥ γ ·(lb(t)−1)
for all v ∈ S and ub(t)− |S|− 1 + dSv (t) ≥ γ · (lb(t)− 1) for all
v ∈ V ′ \ S.

According to Lemma 8, if we find that there exists v ∈ S, t ∈ I ,
such that ub(t) − |S| + dSv (t) < γ · (lb(t) − 1), then we cannot
include v in a qualified quasi-clique at time t, and hence, v is dis-
qualified at time t. Also, if we find there exists v ∈ V \ S, t ∈ I ,
such that ub(t) − |S| − 1 + dSv (t) < γ · (lb(t) − 1), then v is
disqualified at time t.

We can further check whether a vertex w ∈ V \S can be included
in a qualified subgraph pattern at time t by considering the sum of
degrees as follows. If we include vertex w in the set of selected
vertices, then the set of selected vertices will be S ∪ {w}. Let
S′ be a subset of S, and v1, v2, . . . , v|V \(S∪{w})| be the vertices in
V \(S∪{w}) that are sorted by descending order of their restricted
degrees dS

′
v (t) w.r.t. S′ at time t. Let

Σ =
∑

v∈S∪{w}

dS
′

v (t) +

m−|S|−1∑

i=1

dS
′

vi (t),

where m refers to the size of a subgraph pattern. If there does
not exists m, such that (1) lb(t) ≤ m ≤ ub(t), and (2) Σ ≥
|S′| · ⌈γ · (m− 1)⌉, then vertex w cannot be included in a qualified
subgraph pattern at time t, and hence, w is disqualified at time t.

6. OPTIMIZATIONS
In this section, we provide some optimization techniques that are

used to further improve our algorithm.

6.1 Ordering Techniques
Consider a task T = (G, S, I), let I be the set of time intervals

of the remaining snapshot graphs after pruning. Recall that when
I is a single consecutive time interval, we will divide T into two
subtasks, T1 = (G, S ∪ {v1}, I) and T2 = (G \ {v1}, S, I),
where v1 is a selected vertex. Since T2 may be further divided into
T2,1 = (G \ {v1}, S ∪ {v2}, I) and T2,2 = (G \ {v1, v2}, S, I),
and T2,2 may be further divided into T2,2,1 = (G \ {v1, v2}, S ∪
{v3}, I) and T2,2,2 = (G \ {v1, v2, v3}, S, I), and so on, we can
divide the task T into |V \S| subtasks T1, T2, . . ., T|V \S| directly,
where Ti = (G\{v1, v2, . . . , vi−1}, S∪{vi}, I). Therefore, when
I is a consecutive time interval, we need to arrange the |V \ S|
vertices in order so that we can divide the task T into |V \ S|
subtasks directly.
Vertex Ordering. We order the vertices in ascending order of their
degrees. That is, the vertices with smaller degrees will be selected
first. Since we have selected a set S of vertices, their degrees are
more important than the degrees of the vertices we have not se-
lected. According to this intuition, we define a score function of
a vertex as the weighted sum of its restricted degree w.r.t. S and
its original degree. Formally, the score function of a vertex v in a
temporal graph G at time t is defined as

scGv (t) = |S| · dSv (t) + dv(t).

Then, the first selected vertex v1 is the vertex with the smallest∑
t∈I sc

G
v (t) among all v ∈ V \ S, the second selected vertex v2

is the vertex with the smallest
∑

t∈I sc
G\{v1}
v (t) among all v ∈

V \ (S ∪ {v1}), and so on.
Subtasks Ordering. Since the degrees of v1, v2, ... are smaller
than the remaining vertices, the remaining graph G \ {v1, v2, ...}
is probably denser than the original graph G, and hence, it is eas-
ier to find qualified subgraph patterns in the remaining graph. In
other words, it is easier to mine dense subgraphs from subtask Ti

with larger i intuitively. According to this intuition, we process the
subtask Ti in descending order of i (i.e. i = |V \ S|, |V \ S| −
1, ..., 2, 1), so that we can find some qualified subgraph patterns
more quickly.

The previous discussions are based on the case that I is a con-
secutive time interval. When I is disjoint, we will divide T into
subtasks according to the disjoint time intervals in I. Then, we
order the subtasks according to the density of their graphs, where
the density is measured by the weighted sum of the degrees of the
vertices. Specifically, let Σ =

∑
v∈V

∑
t∈Ii

scG∩Ii
v (t)/|Ii|, then a

subtask will be processed earlier if its graph has a larger Σ value.
Vertex Subsets Ordering. Recall that any subset S′ ⊆ S can be
used to derive a bound of pattern size (see Section 5.2.2), we only
take |S| subsets into consideration to achieve higher efficiency. We
next specify which |S| subsets will be considered.

The first subset is S itself, then the next subset is the previous
subset after excluding a vertex with the largest weighted degree.
The reason is that the vertices with smaller degrees are harder to
satisfy the degree threshold, and hence, they are more likely to
affect the bounds of pattern sizes. Formally, let v1, v2, . . . , v|S|

be the list of vertices in S sorted by non-increasing order of their
weighted degrees

∑
t∈I sc

G
v (t), then the first subset is S itself, the

second subset is S \ {v1}, and so on.

6.2 Search Strategy
Recall that we continue processing a task only when Cub ≥

(1 + 1/k) · |C(R)| holds (see Rule 5 in Section 5.1), a good result
set R may help us to terminate many tasks earlier since the larger
|C(R)| is, the less likelihood this condition holds. According to
this intuition, we want to collect the first k qualified subgraph pat-
terns (1) as quick as possible, and (2) with the size of the coverage
set as large as possible. However, our current search strategy only
achieves the first goal, but has not achieved the second goal yet.
The reason is that our search is depth first, i.e., we do not proceed
to the next subtask until the current subtask is done. Note that all
the subgraphs mined from T = (G, S, I) contain the set S of ver-
tices, they overlap with each other on any vertex v ∈ S, and hence,
our current search strategy cannot get a large initial coverage.

To achieve both goals, we propose a quick search algorithm,
which runs with a user defined parameter ℓ. This search strategy
proceeds to the next subtask earlier according to the value of ℓ. To
specify how the algorithm works, we first define the hardness of a
task T , denoted as h(T). If T can be done without dividing into
subtasks, i.e., the graph is totally pruned, or is dense throughout
its time interval, then h(T) = 0. Otherwise, h(T) is defined in
a recursive way as follows. Let h(Ti) be the hardness of the i-th
subtask of T , i = 1, 2, . . . , s, where s is the number of subtasks
of T . Let hm(T) = max{h(Ti) | 1 ≤ i ≤ s} be the maximum
hardness of the subtasks of T , and let hc(T) = |{i | h(Ti) =
hm(T), 1 ≤ i ≤ s}| be the number of subtasks of T with the max-
imum hardness. Then we define h(T) = hm(T) if hc(T) = 1,
and h(T) = hm(T) + 1 otherwise.

The quick search algorithm only goes into the first subtask that
has a large enough hardness, then passes through the remaining
subtasks quickly. More specifically, the quick search algorithm
with parameter ℓ works as follows. If T is divided into subtasks,
it recursively calls the quick search algorithm with parameter ℓ to
handle the subtasks T1, T2, . . ., one by one. Once a subtask Ti is
finished, it checks whether h(Ti) ≥ ℓ or not. Once h(Ti) ≥ ℓ
holds, it passes through the remaining subtasks quickly as follows.
It first checks whether ℓ > 0 or not. If ℓ = 0, it terminates immedi-
ately without handling the remaining subtasks Ti+1, Ti+2, . . .; oth-
erwise (i.e. ℓ > 0), it handles the remaining subtasks Ti+1, Ti+2,
. . . by recursively calling the quick search algorithm with parame-
ter ℓ− 1 only. We have the following theorem on the efficiency of
the quick search algorithm.

THEOREM 1. The quick search algorithm with parameter ℓ han-
dles at most rℓ+1

max · sℓmax tasks, where rmax is the maximum depth
of recursions handling a task, and smax is the maximum number of
subtasks that a task is divided into.

PROOF. We first prove that there are at most R(ℓ) = rℓ+1
max ·sℓmax

tasks that need to be handled in a task T with hardness ℓ. We prove
this proposition by induction. The base case is ℓ = 0. According
to the definition of hardness, if T needs to be divided, it must be
divided into at most one subtask T1, and T1 has at most one subtask
T1,1, and T1,1 has at most one subtask T1,1,1, and so on. Then the
total number of tasks needs to be handled in T is at most rmax,
which proves the base case of the proposition.

For the induction case, suppose the proposition holds for the
tasks with hardness ℓ − 1, and the hardness of a task T is ℓ. Then
there are at most one subtask of T with hardness ℓ. Without los-
ing generality, let h(T1) = ℓ, then we have h(Ti) ≤ ℓ − 1 for

i = 2, 3, Then there are at most one subtask of T1 with
hardness ℓ, and without loss of generality, let h(T1,1) = ℓ, then
we have h(T1,i) ≤ ℓ − 1 for i = 2, 3, Then the same ar-
gument can be applied to T1,1, then T1,1,1, and so on. Hence,
the total number of tasks that need to be handled in T is at most
rmax · smax · R(ℓ − 1) = R(ℓ), which proves the induction case
and the proposition holds for all ℓ.

We then prove, by induction, that the quick search algorithm with
parameter ℓ handles at most R(ℓ) = rℓ+1

max · sℓmax tasks. The base
case is ℓ = 0. According to the quick search algorithm, if T needs
to be divided, it only handles the first subtask T1. If T1 needs to be
divided, it only handles the first subtask T1,1, and so on. Then the
total number of tasks that need to be handled in T is at most rmax,
which proves the base case of the theorem.

For the induction case, suppose the theorem holds for parameter
ℓ− 1, then the algorithm with parameter ℓ first handles some tasks
with hardness at most ℓ − 1, then handles a task with parameter ℓ,
and then handles the remaining tasks with parameter ℓ−1. By sim-
ilar arguments in the previous proof, the algorithm handles at most
rmax · smax · R(ℓ − 1) = R(ℓ) tasks, which proves the induction
case and the theorem holds for all ℓ.

Apparently, both rmax and smax cannot exceed |V | + |T |. So
according to Theorem 1, given a constant value ℓ, the running time
of the quick search algorithm is a polynomial of |V | and |T |. How-
ever, the quick search algorithm may miss some qualified subgraph
patterns. To avoid missing any qualified subgraph pattern, we also
propose a complete search algorithm, which works as follows. It
calls the quick search algorithm with parameter ℓ = 0, 1, 2, . . . for
the initial task T , until ℓ = h(T) holds. Then we have the follow-
ing theorem on the performance of the complete search algorithm.

THEOREM 2. The complete search algorithm achieves the 1/4
approximation ratio on maximizing |C(R)|.

PROOF. We first show that a task with hardness ℓ will be com-
pletely handled by the quick search algorithm with parameter ℓ.
We prove the proposition by induction. Apparently, this proposi-
tion holds for the base case ℓ = 0. For the induction case, suppose
the tasks with hardness ℓ − 1 will be completely handled by the
quick search algorithm with parameter ℓ − 1, and h(T) = ℓ. Re-
call that the algorithm with parameter ℓ handles the subtasks of T
by three steps: (1) first handles some subtasks whose hardness is at
most ℓ−1 with parameter ℓ, (2) then handles a subtask whose hard-
ness is ℓ with parameter ℓ, (3) then handles the remaining subtasks
whose hardness is at most ℓ − 1 with parameter ℓ − 1. Appar-
ently, the subtasks in step (1) and (3) will be completely handled,
it remains to show that the subtask in step (2) will be completely
handled. Since the same argument can be recursively applied to the
smaller subtasks of the subtask in step (2), they will be completely
handled. Thus the proposition holds for all cases.

Since the complete search algorithm finally calls the quick search
algorithm with parameter ℓ = h(T) for the initial task T , this
task will be completely handled. Then according to the updating
rule described in Section 4.2 and the theoretical results in [2], the
complete search algorithm achieves the 1/4 approximation ratio on
maximizing |C(R)|, which completes the proof.

7. EXPERIMENTAL RESULTS
This section studies the performance of our algorithms. The ex-

periments were conducted on a PC with Intel Core i5-3570 CPU
at 3.40GHz and 32GB RAM. The operation system is Linux. Our
algorithms are implemented using C++ and compiled by g++.

 1

 10

 100

 1000

 10000

 100000

 0.75 0.8 0.85 0.9

Ti
m

e
(s

ec
)

γ

DBLP
Enron

Facebook
Linux

Slashdot
Wikipedia

Figure 4: Effect of γ

 1

 10

 100

 1000

 10000

 100000

 5 10 15 20

Ti
m

e
(s

ec
)

k

DBLP
Enron

Facebook
Linux

Slashdot
Wikipedia

Figure 5: Effect of k

 1

 10

 100

 1000

 10000

 100000

 0.6 0.8 1 1.2

Ti
m

e
(s

ec
)

τ/τ0

DBLP
Enron

Facebook
Linux

Slashdot
Wikipedia

Figure 6: Effect of τ

Datasets. We used six real datasets in our experiments. Five
datasets are social networks and one is hyperlinks, which are all
downloaded from KONECT (http://konect.uni-koblenz.de/). In which,
“DBLP coauthor” dataset is the co-authorship between authors in
DBLP, “Enron employees” dataset is the communication between
employees in Enron, “Facebook wall posts” dataset is the wall posts
between users in Facebook, “Linux kernel mails” dataset is the
emails between email addresses in Linux kernel, “Slashdot” dataset
is the communication between users in Slashdot, and “Wikipedia
simple-En” dataset is the hyperlinks between Wikipedia articles in
simple English. The sizes of these datasets are shown in Table 1.

Table 1: Dataset size and duration
Dataset |V | |E| Duration

DBLP coauthor 1,314,050 18,986,618 35 years
Enron employees 87,273 1,148,072 4 years

Facebook wall posts 46,952 876,993 4 years
Linux kernel mails 63,399 1,096,440 8 years
Slashdot threads 51,083 140,778 3 years

Wikipedia simple-En 100,312 1,627,472 9 years

7.1 Experiments on Algorithm Efficiency
We first report the efficiency of our algorithms. We report the

running time of both the complete search algorithm (denoted as
“Complete”) and the quick search algorithm (denoted as “Quick”),
compared with the baseline algorithm (denoted as “Baseline”) de-
scribed in Section 3. We set γ = 0.8 and k = 10 as the default
values, while the default values of σ and τ for each dataset are
shown in Table 2. Note that if σ and/or τ are too large, there will
be no qualified patterns; while if σ and/or τ are too small, then the
coverage of the top k patterns will be too small. We study the ef-
fects of different values of the parameters in Section 7.3. We also
set ℓ = 2 as the default value for the quick search algorithm.

Table 2: Default values of σ and τ
Dataset σ τ

DBLP coauthor 20 1 year
Enron employees 32 4 months

Facebook wall posts 8 4 months
Linux kernel mails 32 4 months
Slashdot threads 6 4 months

Wikipedia simple-En 18 8 months

Table 3 reports the running time of the three algorithms on each
dataset. Note that we terminated an algorithm when it ran for more
than 10 days (i.e., 864,000 seconds). The result shows that Quick
is 2 to 3 orders of magnitude faster than Baseline. Baseline could
not complete the process in 10 days for 5 out of the 6 datasets,
showing the hardness of the problem studied in this paper. Com-
plete also achieves good performance for 4 out of the 6 datasets.

In fact, for 3 of the 4 datasets, Complete achieves the same perfor-
mance as Quick, which is because the search space of Complete
is already small (as reflected by the running time) and the strategy
used in Quick cannot further reduce the search space. However, for
the other 3 datasets that take much longer time to process, the op-
timization of Quick becomes vital and significant reduction in the
running time is observed compared with Complete.

Table 3: Running time (in sec)
Dataset Baseline Complete Quick

DBLP coauthor >864,000 198 198
Enron employees >864,000 >864,000 2,417

Facebook wall posts >864,000 560 560
Linux kernel mails >864,000 7,293 958
Slashdot threads >864,000 3,697 2,438

Wikipedia simple-En 1,656 1 1

7.2 Experiments on Quality of Results
Theorem 2 shows that theoretically Complete has a 1/4 approx-

imation ratio, while Quick is heuristic. Thus, we also show practi-
cally how good the results obtained by Complete and Quick are. To
do this, we compare the results obtained by Complete and Quick
with that obtained by an “Enumerate-all” algorithm, which lists
all the qualified subgraph patterns and then computes the top-k re-
sult by the greedy algorithm for the maximum set cover problem.
The result set obtained by Enumerate-all is guaranteed to have a
(1 − 1/e) approximation ratio of the optimal result. We used the
default values of the parameters as in Section 7.1 for the algorithms.

Table 4 reports the coverage (i.e., |C(G)|) of the top k patterns
obtained by each of the three algorithms on each dataset. The re-
sult shows that the top k patterns obtained by Complete achieves
a coverage far better than the theoretical 1/4 approximation ratio,
and practically the approximation ratio is over 0.8 in all the datasets
and over 0.9 in 4 datasets. In fact, for 2 datasets the results of Com-
plete are exactly the same as Enumerate-all and for another one the
approximation ratio is 0.997.

Table 4: Coverage of top-k results
Dataset Enumerate-all Complete Quick

DBLP coauthor 34,401,846,400 34,306,345,600 34,306,345,600
Enron employees 2,307,833,012 2,093,446,876 2,093,446,876

Facebook wall posts 1,297,815,288 1,297,815,288 1,297,815,288
Linux kernel mails 2,258,325,198 1,789,498,564 1,361,365,217
Slashdot threads 615,257,760 530,798,960 530,798,960

Wikipedia simple-En 1,043,388,109 1,043,388,109 1,043,388,109

The results obtained by Quick are exactly the same as those ob-
tained by Complete for 5 out of the 6 datasets, but Quick is much
faster than Complete for processing 3 datasets as shown in Table 3.
Thus, the results of this experiment demonstrate that Quick is not
only fast but also computes high-quality results.

7.3 Effects of Different Parameters
In this set of experiments, we show the performance of our al-

gorithm, Quick, by varying the different parameters. We first vary
γ = 0.75, 0.8, 0.85, 0.9, while keeping the other parameters as
their default values as in Section 7.1.

Figure 4 shows that the running time of Quick can vary consid-
erably with varying values of γ. For some datasets, the running
time increases when γ increases, because it is easier to collect the
first k qualified subgraph patterns into the result set with a smaller
γ, and once we have collected k patterns, we can apply Pruning
Rule 5 to terminate a task earlier. However, there are also a few
datasets for which the running time remains rather stable or even
decreases when γ increases, which can be explained as follows.
From Lemma 1 we have u(t) = ⌊dmin(t)/γ⌋+1, which decreases
if γ increases. Since ub(t) is tightened from u(t), and the snapshot
graphs at time t will be pruned by Pruning Rule 3 if ub(t) < σ,
more snapshot graphs will be pruned when γ increases. Thus, the
result shows that the effect of γ on the performance of the algo-
rithm varies for different datasets, but overall, even if the running
time increases, it only increases linearly in terms of γ.

Next we vary k = 5, 10, 15, 20. Figure 5 shows that the running
time of Quick remains quite stable for different values of k for all
the datasets. Note that we could set larger values of k, but the
quality of the patterns degrades significantly when k is larger than
20 (i.e., they do not increase the coverage much). We also vary τ
to be 0.6, 0.8, 1, 1.2 times of the default value, i.e., τ0 in Figure 6.
The result shows that the running time of Quick decreases when
τ increases, which is because we can prune more short-duration
patterns by Rule 1 and obtain a tighter bound by duration-based
bounds (see Section 5.2.3).

8. RELATED WORK
Existing work on temporal graphs is mostly related to temporal

paths and their applications [6, 12, 13, 19, 22, 23, 24, 28, 27]. More
applications of temporal graphs and the sources of temporal graph
data can be found in surveys on temporal graphs [6, 9, 17]. None
of these works study mining dense subgraph patterns in a tempo-
ral graph, and the algorithms of mining dense temporal subgraph
patterns are also totally different from any of the existing works.

Many different types of subgraph structures that have high den-
sity have been proposed and studied for real-world network anal-
ysis, including maximal cliques [5], quasi-clique [1], densest sub-
graphs [7, 11], k-core [3], k-truss [26], and so on. The well-known
definition of quasi-clique was introduced by Abello et al. in [1].
Similar with exact maximal cliques, the problem of enumerating
quasi-cliques is NP-hard. In [16], Liu et al. proposed several effec-
tive pruning rules for mining quasi-cliques. In [25], Tsourakakis et
al. showed that quasi-cliques are high-quality subgraphs. Readers
can refer to the survey [14] on dense subgraphs for more compre-
hensive understanding. All the above discussed works are studied
in non-temporal graphs. To our knowledge, our work is the first
one for mining quasi-cliques in a temporal graph, and we proposed
powerful pruning rules and optimization techniques that make use
of time information in a temporal graph.

9. CONCLUSIONS
We proposed the problem of mining the top k diversified tempo-

ral subgraph patterns in a temporal graph, and presented a complete
search algorithm and a quick search algorithm with effective prun-
ing techniques and search strategies. Our experimental results show
that our algorithms are orders of magnitude faster than a baseline
algorithm and obtain high-quality results.

10. REFERENCES
[1] J. Abello, M. G. C. Resende, and S. Sudarsky. Massive quasi-clique

detection. In LATIN, pages 598–612, 2002.
[2] G. Ausiello, N. Boria, A. Giannakos, G. Lucarelli, and V. T. Paschos.

Online maximum k-coverage. In Fundamentals of Computation
Theory, pages 181–192. Springer, 2011.

[3] V. Batagelj and M. Zaversnik. An O(m) algorithm for cores
decomposition of networks. CoRR, cs.DS/0310049, 2003.

[4] M. Benkert, J. Gudmundsson, F. Hübner, and T. Wolle. Reporting
flock patterns. In ESA, pages 660–671, 2006.

[5] C. Bron and J. Kerbosch. Finding all cliques of an undirected graph
(algorithm 457). Commun. ACM, 16(9):575–576, 1973.

[6] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro.
Time-varying graphs and dynamic networks. International Journal of
Parallel, Emergent and Distributed Systems, 27(5):387–408, 2012.

[7] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric
maximum flow algorithm and applications. SIAM J. Comput.,
18(1):30–55, 1989.

[8] J. Gudmundsson and M. J. van Kreveld. Computing longest duration
flocks in trajectory data. In GIS, pages 35–42, 2006.

[9] P. Holme and J. Saramäki. Temporal networks. CoRR,
abs/1108.1780, 2011.

[10] H. Jeung, H. T. Shen, and X. Zhou. Convoy queries in
spatio-temporal databases. In ICDE, pages 1457–1459, 2008.

[11] S. Khuller and B. Saha. On finding dense subgraphs. In ICALP,
pages 597–608, 2009.

[12] G. Kossinets, J. M. Kleinberg, and D. J. Watts. The structure of
information pathways in a social communication network. In KDD,
pages 435–443, 2008.

[13] V. Kostakos. Temporal graphs. Physica A: Statistical Mechanics and
its Applications, 388(6):1007–1023, 2009.

[14] V. E. Lee, N. Ruan, R. Jin, and C. C. Aggarwal. A survey of
algorithms for dense subgraph discovery. In Managing and Mining
Graph Data, pages 303–336. 2010.

[15] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed
temporal moving object clusters. PVLDB, 3(1):723–734, 2010.

[16] G. Liu and L. Wong. Effective pruning techniques for mining
quasi-cliques. In ECML/PKDD, pages 33–49, 2008.

[17] M. Müller-Hannemann, F. Schulz, D. Wagner, and C. D. Zaroliagis.
Timetable information: Models and algorithms. In ATMOS, pages
67–90, 2004.

[18] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of
approximations for maximizing submodular set functions-i.
Mathematical Programming, 14(1):265–294, 1978.

[19] R. K. Pan and J. Saramäki. Path lengths, correlations, and centrality
in temporal networks. Phys. Rev. E, 84:016105, 2011.

[20] P. M. Pardalos and S. Rebennack. Computational challenges with
cliques, quasi-cliques and clique partitions in graphs. In
Experimental Algorithms, pages 13–22. Springer, 2010.

[21] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques.
In KDD, pages 228–238, 2005.

[22] N. Santoro, W. Quattrociocchi, P. Flocchini, A. Casteigts, and
F. Amblard. Time-varying graphs and social network analysis:
Temporal indicators and metrics. CoRR, abs/1102.0629, 2011.

[23] J. Tang, M. Musolesi, C. Mascolo, and V. Latora. Temporal distance
metrics for social network analysis. In WOSN, pages 31–36, 2009.

[24] J. Tang, M. Musolesi, C. Mascolo, and V. Latora. Characterising
temporal distance and reachability in mobile and online social
networks. Computer Communication Review, 40(1):118–124, 2010.

[25] C. E. Tsourakakis, F. Bonchi, A. Gionis, F. Gullo, and M. A. Tsiarli.
Denser than the densest subgraph: extracting optimal quasi-cliques
with quality guarantees. In KDD, pages 104–112, 2013.

[26] J. Wang and J. Cheng. Truss decomposition in massive networks.
PVLDB, 5(9):812–823, 2012.

[27] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. Path problems
in temporal graphs. PVLDB, 7(9):721–732, 2014.

[28] B.-M. B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest,
and foremost journeys in dynamic networks. Int. J. Found. Comput.
Sci., 14(2):267–285, 2003.

[29] L. Yuan, L. Qin, X. Lin, L. Chang, and W. Zhang. Diversified top-k
clique search. In ICDE, pages 387–398, 2015.

