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Abstract
Conversational recommender systems proactively query users with

relevant “key terms” and leverage the feedback to elicit users’ pref-

erences for personalized recommendations. Conversational con-

textual bandits, a prevalent approach in this domain, aim to op-

timize preference learning by balancing exploitation and explo-

ration. However, several limitations hinder their effectiveness in

real-world scenarios. First, existing algorithms employ key term

selection strategies with insufficient exploration, often failing to

thoroughly probe users’ preferences and resulting in suboptimal

preference estimation. Second, current algorithms typically rely

on deterministic rules to initiate conversations, causing unneces-

sary interactions when preferences are well-understood and missed

opportunities when preferences are uncertain. To address these

limitations, we propose three novel algorithms: CLiSK, CLiME,

and CLiSK-ME. CLiSK introduces smoothed key term contexts to
enhance exploration in preference learning, CLiME adaptively initi-
ates conversations based on preference uncertainty, and CLiSK-ME

integrates both techniques. We theoretically prove that all three

algorithms achieve a tighter regret upper bound of O(
√︁
𝑑𝑇 log𝑇 )

with respect to the time horizon 𝑇 , improving upon existing meth-

ods. Additionally, we provide a matching lower bound Ω(
√
𝑑𝑇 )

for conversational bandits, demonstrating that our algorithms are

nearly minimax optimal. Extensive evaluations on both synthetic

and real-world datasets show that our approaches achieve at least

a 14.6% improvement in cumulative regret.

CCS Concepts
• Information systems→Recommender systems; • Theory of
computation→ Online learning algorithms; Online learning
theory.
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1 Introduction
Recommender systems play a crucial role in applications like movie

recommendations, online advertising, and personalized news feeds,

where providing relevant and engaging content is essential for user

satisfaction. To cater to diverse user interests, recommender sys-

tems are designed to interact with users and continuously learn

from their feedback. For instance, in product and news recommen-

dations, the system can monitor users’ real-time click rates and

accordingly refine its recommendations. Modern recommender sys-

tems incorporate advanced online learning techniques to adapt in

real time and uncover previously unknown user preferences.

A fundamental challenge in recommender systems is the trade-

off between exploration (i.e., recommending new items to uncover

users’ unknown preferences) and exploitation (i.e., recommending

items that align with users’ historical preferences). Contextual ban-

dits [14] address this trade-off by enabling the system to learn from

user interactions continuously while optimizing recommendations

without compromising the user experience. In this framework, each

item to be recommended is treated as an “arm”, represented by a fea-

ture vector. At each round, the agent (i.e., the recommender system)

recommends an arm to the user based on historical interactions and

the context of each arm, and then receives feedback/rewards (e.g.,

clicks). The objective of the algorithm executed by the agent is to

design an arm recommendation strategy that maximizes cumulative

reward (or equivalently, minimizes cumulative regret) over time.
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def phase_elimination(num_arms, num_rounds, 
arms_means):
    remaining_arms = list(range(num_arms))
    rounds_per_phase = num_rounds // 

               int(np.log2(num_rounds))

    for phase in range(int(np.log2(num_rounds))):
        for arm in remaining_arms:
    . . .
    return remaining_arms[0]
    . . .
print(f"The best arm identified is: {best_arm}")

python
class PhaseElimination:
    def _ _init_ _(self, num_arms, num_rounds, 
arms_means):
     . . .
          self.remaining_arms = list(range(num_arms))

    def run(self):
           rounds_per_phase = self.num_rounds //                                                                
int(np.log2(self.num_rounds))
    . . .
           return self.remaining_arms[0]
    . . .
print(f"The best arm identified is: {best_arm}")

python

Response 1
Phase elimination algorithm is implemented as a function:

Response 2
Phase elimination algorithm is implemented as a class:

Which response do you prefer?
Your choice will help make ChatGPT better.

Figure 1: Illustration of conversational recommendation by
ChatGPT, where users select their preferred response from
presented options.

Another major challenge in recommender systems is the “cold
start” problem, where the system initially lacks sufficient data about

new users’ preferences, making accurate recommendations difficult.

Conversational recommender systems (CRSs) [5, 11, 23, 29] have

emerged as a promising solution. Unlike traditional systems that

rely solely on feedback from recommended items, CRSs can actively

initiate queries with users to collect richer feedback and quickly

infer their preferences. For example, as shown in Figure 1, platforms

like ChatGPT occasionally present users with multiple response

options and allow them to select their preferred one. Through these

interactions, ChatGPT can refine its understanding and improve fu-

ture responses to better align with user preferences. To model these

interactions, conversational contextual bandits [28] are proposed

as a natural extension of contextual bandits. In this framework,

besides recommending items (arms) and observing arm-level feed-

back, the agent can proactively prompt users with questions about

key terms and receive key term-level feedback. The key terms are

related to a subset of arms, providing valuable insights into users’

preferences and improving recommendation quality.

Despite recent advances in conversational contextual bandits [24,

26, 27], existing approaches still face the following limitations:

• Insufficient Exploration in Key Term Selection: Existing
studies about conversational bandits fail to sufficiently explore

key terms, limiting their effectiveness in preference learning.

Zhang et al. [28] introduce the ConUCB algorithm with a re-

gret upper bound of O(𝑑
√
𝑇 log𝑇 ), where 𝑑 is the dimension

and 𝑇 is the number of rounds. However, despite incorporating

additional queries about key terms, the method does not yield

substantial improvement over non-conversational approaches.

Since then, improving regret through conversational interactions

has remained an open problem in the field. Wang et al. [24] and

Yang et al. [27] introduce an additional assumption that the key

term set spans R𝑑 and propose the ConLinUCB-BS and ConDuel

algorithms, respectively. The two algorithms reduce a

√︁
log𝑇

term in the regret, but worsen the dependence on 𝑑 (as discussed

in Section 4.4), resulting in a suboptimal regret bound. To achieve

optimal regret, more explorative key term selection strategies

are needed to efficiently gather informative user feedback and

improve learning efficiency.

• Inflexible Conversation Mechanism: Existing conversational

bandit algorithms [26, 28] often use a deterministic function to

control the frequency of conversations. Specifically, the agent

can only initiate 𝑄 conversations at once per 𝑃 rounds, where 𝑃

and 𝑄 are fixed integers. However, this rigid approach is imprac-

tical and insufficient in real-world scenarios. For example, in a

music streaming service, a fixed-frequency approach may cause

unnecessary interactions when users’ preferences are already

well-understood, disrupting the listening experience. Conversely,

it may fail to collect feedback when the uncertainty is high, lead-

ing to suboptimal recommendations. To address these limitations,

a more adaptive conversation mechanism is needed to adjust the

interaction frequency based on the preference uncertainty.

Motivated by these observations, we develop three algorithms

aimed at improving conversational contextual bandits. To start, we

introduce the concept of “smoothed key term contexts”, inspired by

the smoothed analysis for contextual bandits [13], and propose

the Conversational LinUCB with Smoothed Key terms (CLiSK)

algorithm. Specifically, CLiSK launches conversations at a fixed

frequency, similar to Zhang et al. [28], but greedily selects key

terms that are slightly perturbed by Gaussian noise. For example, in

movie recommendations, instead of asking directly about a genre

like “comedy” or “drama”, CLiSK blends elements of related genres,

such as “comedy-drama” or “dark comedy”. This approach helps

the system explore users’ preferences in a more nuanced manner.

We will show that these small perturbations have strong theoretical
implications, allowing the agent to explore the feature space more

effectively and speed up the learning process.

We next develop the Conversational LinUCB with Minimum

Eigenvalues (CLiME) algorithm, which introduces an adaptive con-
versational mechanism driven by preference uncertainty. Unlike

the fixed-frequency approach of Wang et al. [24], Zhang et al. [28],

CLiME assesses preference uncertainty and initiates conversations

only when the uncertainty is high, thereby maximizing information

gain while avoiding unnecessary interactions. When a conversa-

tion is triggered, CLiME selects key terms that target the areas

of highest uncertainty within the feature space, rapidly refining

user preferences. This adaptive approach not only ensures that

conversations are timely and relevant, but also improves the user

experience. Additionally, we design a family of uncertainty check-
ing functions to determine when to assess the uncertainty, offering

greater flexibility and better alignment with diverse applications.

The smoothed key term contexts approach in CLiSK and the

adaptive conversation technique in CLiME are orthogonal, allow-

ing them to be applied independently or in combination. Therefore,

we further propose the CLiSK-ME algorithm, which integrates both

techniques to maximize exploration efficiency and adaptively ad-

just user interactions. By leveraging the strengths of both methods,

CLiSK-ME enhances exploration efficiency and optimizes user in-

teractions for improved preference learning.

Our algorithms introduce advanced key term selection strategies,

significantly enhancing the efficiency of conversational contextual

bandits. Theoretically, we prove that CLiSK achieves a regret upper

bound of O(
√︁
𝑑𝑇 log𝑇 + 𝑑), while CLiME and CLiSK-ME achieve a

regret upper bound of O(
√︁
𝑑𝑇 log𝑇 ). Notably, all three algorithms

reduce the dependence on 𝑇 by a factor of

√
𝑑 compared to prior
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studies. To the best of our knowledge, our work is the first to

achieve the Õ(
√
𝑑𝑇 ) regret in the conversational bandit literature. In

addition, we establish a matching lower bound of Ω(
√
𝑑𝑇 ), showing

that our algorithms are minimax optimal up to logarithmic factors.

In summary, our contributions are listed as follows.

• We propose three novel conversational bandit algorithms: CLiSK

with smoothed key term contexts, CLiME with an adaptive con-

versation mechanism, and CLiSK-ME, which integrates both for

improved preference learning.

• We establish the minimax optimality of our algorithms by prov-

ing regret upper bounds of O(
√︁
𝑑𝑇 log𝑇 + 𝑑) for CLiSK and

O(
√︁
𝑑𝑇 log𝑇 ) for CLiME and CLiSK-ME, along with a matching

lower bound of Ω(
√
𝑑𝑇 ). These results underscore the theoretical

advancements achieved by our methods.

• We conduct extensive evaluations on both synthetic and real-

world datasets, showing that our algorithms reduce regret by

over 14.6% compared to baselines.

2 Problem Formulation
In conversational contextual bandits, an agent interacts with a user

over 𝑇 ∈ N+ rounds. The user’s preferences are represented by

a fixed but unknown vector 𝜽 ∗ ∈ R𝑑 , where 𝑑 is the dimension.

The agent’s goal is to learn 𝜽 ∗ to recommend items that align with

the user’s preferences. There exists a finite arm set denoted by A,

where each arm 𝑎 ∈ A represents an item and is associated with

a feature vector 𝒙𝑎 ∈ R𝑑 . We denote [𝑇 ] = {1, 2, . . . ,𝑇 }. At each
round 𝑡 ∈ [𝑇 ], the agent is given a subset of arms A𝑡 ⊆ A. The

agent then selects an arm 𝑎𝑡 ∈ A𝑡 and receives a reward 𝑟𝑎𝑡 ,𝑡 . The

reward is assumed to be linearly related to the preference vector

and the feature vector of the arm, i.e., 𝑟𝑎𝑡 ,𝑡 = 𝒙⊤𝑎𝑡 𝜽
∗ + 𝜂𝑡 , where 𝜂𝑡

is a random noise term.

Let𝑎∗𝑡 be the optimal arm at round 𝑡 , i.e.,𝑎∗𝑡 = argmax𝑎∈A𝑡
𝒙⊤𝑎 𝜽

∗
.

The agent’s objective is to minimize the cumulative regret, which is

defined as the total difference between the rewards of the optimal

arms and the rewards obtained by the agent, i.e.,

R(𝑇 ) =
𝑇∑︁
𝑡=1

(
𝒙⊤
𝑎∗𝑡
𝜽 ∗ − 𝒙⊤𝑎𝑡 𝜽

∗
)
.

Beyond observing the user’s preference information through

arm recommendations, the agent can gather additional feedback

by launching conversations involving key terms. Specifically, a

“key term” represents a category or keyword associated with a

subset of arms. For example, in movie recommendations, key terms

might include genres like “comedy” or “thriller”, and themes such as

“romance” or “sci-fi”. LetK denote the finite set of key terms, where

each key term 𝑘 ∈ K corresponds to a context vector �̃�𝑘 ∈ R𝑑 .
At round 𝑡 , if a conversation is initiated, the agent selects a key

term 𝑘 ∈ K , queries the user, and receives key-term level feedback

𝑟𝑘,𝑡 . We follow the formulation of Wang et al. [24] that the user’s

preference vector 𝜽 ∗ remains consistent across both arms and key

terms. The relationship between key terms and the user’s preference

is also linear, i.e., 𝑟𝑘,𝑡 = �̃�⊤
𝑘
𝜽 ∗ +𝜂𝑡 , where 𝜂𝑡 is a random noise term.

We list and explain our assumptions as follows. Both Assump-

tions 1 and 2 are consistent with previous works on conversational

contextual bandits [24, 28] and linear contextual bandits [1, 14].

Assumption 1. We assume that the feature vectors for both arms

and key terms are normalized, i.e., ∥𝒙𝑎 ∥2 = 1 and ∥�̃�𝑘 ∥2 = 1 for all

𝑎 ∈ A and 𝑘 ∈ K . We also assume the unknown preference vector

𝜽 ∗ is bounded, i.e., ∥𝜽 ∗∥2 ≤ 1.

Assumption 2. We assume the noise terms 𝜂𝑡 , 𝜂𝑡 are conditionally

independent and 1-sub-Gaussian across 𝑇 rounds.

3 Algorithm Design
In this section, we introduce our proposed algorithms, outlining

their key components and implementation details.

3.1 CLiSK Algorithm
To enhance the exploration of users’ preferences, we introduce the

smoothed key term contexts and propose the CLiSK algorithm, de-

tailed in Algorithm 1. The algorithm consists of two main modules:

key term selection (Lines 4 to 10) and arm selection (Lines 11 to 16).

Specifically, in each round 𝑡 , the agent first determines whether to

initiate a conversation based on a predefined query budget (Lines 2

and 3). If a conversation is initiated, the agent selects a key term

𝑘 (Line 5) and queries the user about it. Subsequently, the agent

updates its estimate of the preference vector 𝜽𝑡 (Line 11) and selects
an arm 𝑎𝑡 for recommendation (Line 12). The strategies for key

term selection and arm selection are elaborated as follows.

Algorithm 1: CLiSK
Input: A, K , 𝑏 (𝑡), 𝜆, {𝛼𝑡 }𝑡>0
Initialization: 𝑴1 = 𝜆𝑰𝑑 , 𝒃1 = 0𝑑

1 for 𝑡 = 1, . . . ,𝑇 do
2 𝑞𝑡 = ⌊𝑏 (𝑡)⌋ − ⌊𝑏 (𝑡 − 1)⌋
3 while 𝑞𝑡 > 0 do
4 Smooth the key term contexts to get { ˜�̃�𝑘 }𝑘∈K
5 Select a key term 𝑘 = argmax𝑘∈K ˜�̃�⊤

𝑘
𝜽𝑡

6 Query the user’s feedback for 𝑘

7 Receive the key term-level feedback 𝑟𝑘,𝑡

8 𝑴𝑡 = 𝑴𝑡 + ˜�̃�𝑘,𝑡 ˜�̃�
⊤
𝑘,𝑡

9 𝒃𝑡 = 𝒃𝑡 + 𝑟𝑘,𝑡 ˜�̃�𝑘,𝑡
10 𝑞𝑡 = 𝑞𝑡 − 1

11 𝜽𝑡 = 𝑴−1
𝑡 𝒃𝑡

12 Select 𝑎𝑡 = argmax𝑎∈A𝑡
𝒙⊤𝑎 𝜽𝑡 + 𝛼𝑡 ∥𝒙𝑎 ∥𝑀−1

𝑡

13 Ask the user’s preference for arm 𝑎𝑡

14 Observe the reward 𝑟𝑎𝑡 ,𝑡

15 𝑴𝑡+1 = 𝑴𝑡 + 𝒙𝑎𝑡 𝒙
⊤
𝑎𝑡

16 𝒃𝑡+1 = 𝒃𝑡 + 𝑟𝑎𝑡 ,𝑡𝒙𝑎𝑡

3.1.1 Intuition Overview. Building on insights from Kannan et al.

[13] and Raghavan et al. [20], we add small perturbations to the key

term contexts to deepen the exploration of users’ preferences. These

perturbations increase data diversity and help uncover preferences

that might be overlooked when selecting key terms directly. For

instance, instead of using “comedy” alone, variations like “romantic

comedy” or “dark comedy” can reveal more specific preferences.

Below is the formal definition of smoothed key term contexts,

where the perturbations are modeled as Gaussian noise.
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Definition 1 (Smoothed Key Term Contexts). Given a key term set

K , the smoothed key term contexts are defined as { ˜�̃�𝑘 }𝑘∈K , where

˜�̃�𝑘 = �̃�𝑘 + 𝜺𝑘 for each 𝑘 ∈ K . The noise vector 𝜺𝑘 is independently

drawn from a truncatedmultivariate Gaussian distributionN(0, 𝜌2 ·
𝑰𝑑 ), where 𝑰𝑑 is the 𝑑-dimensional identity matrix and 𝜌2 controls

the level of perturbations. Each dimension of 𝜺𝑘 is truncated within

[−𝑅, 𝑅] for some 𝑅 > 0, i.e., | (𝜺𝑘 ) 𝑗 | ≤ 𝑅,∀𝑗 ∈ [𝑑].

3.1.2 Key Term Selection. When initiating conversations, the agent

no longer selects key terms directly based on their original contexts.

Instead, the agent applies a small random perturbation to each key

term’s context, as defined in Definition 1 (Line 4). It then greedily

selects the key term with the highest value under the perturbed

contexts, i.e., 𝑘 = argmax𝑘∈K ˜�̃�⊤
𝑘
𝜽𝑡 (Line 5).

Remark 1. Note that the smoothed key term contexts are re-generated

for each conversation. For notational consistency, we use the same

notation { ˜�̃�𝑘 }𝑘∈K to represent the smoothed key term contexts

across different conversations.

3.1.3 Conversation Frequency. Following Zhang et al. [28], CLiSK

uses a deterministic function 𝑏 (𝑡) to regulate the frequency of con-

versation initiation. The function 𝑏 (𝑡) is monotonically increasing

regarding 𝑡 and satisfies 𝑏 (0) = 0. At round 𝑡 , the agent initiates

𝑞(𝑡) = ⌊𝑏 (𝑡)⌋ − ⌊𝑏 (𝑡 − 1)⌋ conversations if 𝑞(𝑡) > 0; otherwise, no

conversation is conducted.

3.1.4 Arm Selection. CLiSK uses the Upper Confidence Bound

(UCB) strategy for arm selection, a prevalent method in linear ban-

dits. At round 𝑡 , the agent updates its estimated preference vector

𝜽𝑡 based on both arm-level and key term-level feedback. This esti-

mation follows a ridge regression framework with regularization

parameter 𝜆, i.e., 𝜽𝑡 = 𝑴−1
𝑡 𝒃𝑡 , with 𝑴𝑡 and 𝒃𝑡 defined as

𝑴𝑡 =

𝑡−1∑︁
𝑠=1

𝒙𝑎𝑠𝒙
⊤
𝑎𝑠

+
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

˜�̃�𝑘 ˜�̃�
⊤
𝑘
+ 𝜆𝑰𝑑 ,

𝒃𝑡 =
𝑡−1∑︁
𝑠=1

𝑟𝑎𝑠 ,𝑠𝒙𝑎𝑠 +
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

𝑟𝑘,𝑠
˜�̃�𝑘 ,

whereK𝑠 is the set of key terms selected at round 𝑠 .𝑴𝑡 is commonly

referred to as the covariance matrix.

After the update, the agent selects the arm with the highest

UCB value, i.e., 𝑎𝑡 = argmax𝑎∈A𝑡
𝒙⊤𝑎 𝜽𝑡 +𝛼𝑡 ∥𝒙𝑎 ∥𝑴−1

𝑡
, where ∥𝒙 ∥𝑴

denotes theMahalanobis norm

√
𝒙⊤𝑴𝒙 and {𝛼𝑡 }𝑡>0 are parameters

designed to balance the exploration-exploitation trade-off.

3.2 CLiME Algorithm
To enable more adaptive and flexible conversation initiation, we in-

troduce the CLiME algorithm, detailed in Algorithm 2. The CLiME

adopts the same arm selection strategy as CLiSK, but it introduces

key innovations in determining when to initiate conversations and

which key terms to select. Unlike CLiSK, which follows a determin-

istic function 𝑏 (𝑡) for scheduling conversations, CLiME adaptively

determines when to conduct a conversation based on the uncer-

tainty in the preference estimation.

Algorithm 2: CLiME

Input: A, K , 𝜆, 𝛼 , {𝛼𝑡 }𝑡>0
Initialization: 𝑴1 = 𝜆𝑰𝑑 , 𝒃1 = 0𝑑

1 for 𝑡 = 1, . . . ,𝑇 do
2 if UncertaintyChecking(𝑡) then
3 Diagonalize 𝑴𝑡 =

∑𝑑
𝑖=1 𝜆𝒗𝑖𝒗𝑖𝒗𝑖

⊤

4 foreach 𝜆𝒗𝑖 < 𝛼𝑡 do
5 𝑘 = argmax𝑘∈K |�̃�⊤

𝑘
𝒗𝑖 |

6 𝑛𝑘 = ⌈(𝛼𝑡 − 𝜆𝒗𝑖 )/𝑐20⌉
7 Schedule 𝑛𝑘 conversations about the key term 𝑘

before next uncertainty checking

8 Update 𝑴𝑡 and 𝒃𝑡 accordingly

9 𝜽𝑡 = 𝑴−1
𝑡 𝒃𝑡

10 Select 𝑎𝑡 = argmax𝑎∈A𝑡
𝒙⊤𝑎 𝜽𝑡 + 𝛼𝑡 ∥𝒙𝑎 ∥𝑀−1

𝑡

11 Ask the user’s preference for arm 𝑎𝑡

12 Observe the reward 𝑟𝑎𝑡 ,𝑡

13 𝑴𝑡+1 = 𝑴𝑡 + 𝒙𝑎𝑡 𝒙
⊤
𝑎𝑡

14 𝒃𝑡+1 = 𝒃𝑡 + 𝑟𝑎𝑡 ,𝑡𝒙𝑎𝑡

3.2.1 Intuition Overview. The main idea behind CLiME is to adap-

tively initiate conversations based on the current level of uncer-

tainty in the estimated preference and use key terms to explore

the uncertain directions effectively. Specifically, the covariance ma-

trix 𝑴𝑡 encodes information about the feature space, where its

eigenvectors represent the principal directions within the space,

and the corresponding eigenvalues indicate the level of uncertainty

along these directions. A smaller eigenvalue indicates a higher

uncertainty in the associated direction. Therefore, by guiding the

agent to explore such high-uncertainty directions, the agent can

reduce uncertainty and improve learning efficiency. If the minimum

eigenvalue of 𝑴𝑡 remains above a certain value, the agent ensures

sufficient exploration of the feature space. To facilitate exploration,

we introduce the following assumption.

Assumption 3. We assume that the elements in the key term setK
are sufficiently rich and diverse, such that for any 𝒙 ∈ R𝑑 satisfying

∥𝒙 ∥2 = 1, there exists a key term 𝑘 ∈ K such that |�̃�⊤
𝑘
𝒙 | ≥ 𝑐0,

where 𝑐0 is some constant close to 1.

This mild assumption ensures that the key term set K is com-

prehensive enough to cover all relevant directions in the feature

space. In other words, for any direction 𝒙 that the agent might need

to explore, there exists a key term 𝑘 ∈ K whose context �̃�𝑘 aligns

sufficiently well with 𝒙 . This diversity allows the agent to effec-

tively reduce uncertainty by exploring underrepresented directions,

thereby improving preference learning.

3.2.2 Conversation Initiation and Key Term Selection. In CLiME,

conversation initiation and key term selection are designed to max-

imize the information gained from user interactions. As shown

in Algorithm 2, the agent first evaluates the eigenvalues of the

covariance matrix 𝑴𝑡 (Line 3). If any eigenvalue 𝜆𝒗𝑖 falls below a

certain threshold (derived from Section 4.2), i.e., 𝜆𝒗𝑖 < 𝛼𝑡 (Line 4),

the agent prompts 𝑛𝑘 = ⌈(𝛼𝑡 − 𝜆𝒗𝑖 )/𝑐20⌉ conversations by selecting
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key terms that most closely align with the corresponding eigen-

vector 𝒗𝑖 (Lines 5 to 7). Here, 𝛼 ∈ (0, 𝑐2
0
) is an exploration control

parameter that regulates the exploration level. Note that the agent

can distribute these 𝑛𝑘 conversations across multiple rounds before

re-evaluating the eigenvalues of the covariance matrix.

To further enhance flexibility and accommodate diverse real-

world applications, we design an uncertainty checking function

UncertaintyChecking(𝑡) (Line 2). This function determines when

to assess uncertainty and potentially trigger conversations. Exam-

ples of such checking functions are given as follows.

• Continuous Checking: The agent assesses uncertainty at every
round and initiates conversations as needed.

• Fixed Interval Checking: The agent assesses uncertainty every
𝑃 rounds, where 𝑃 is a fixed integer.

• Exponential Phase Checking: The agent evaluates uncertainty
at exponentially increasing intervals of 2

𝑖
, where 𝑖 = 1, 2, . . ..

Remark 2. The uncertainty checking functions in CLiME differ

fundamentally from the frequency function 𝑏 (𝑡) in ConUCB [28].

Specifically, these checking functions regulate how often uncer-

tainty is assessed but do not directly dictate conversation initiation.

In contrast, 𝑏 (𝑡) deterministically controls both the timing and

number of conversations. CLiME and ConUCB also differ in how

they select key terms, further distinguishing the two approaches.

Remark 3. It is worth noting that the smoothed key term contexts

approach in CLiSK and the adaptive conversation technique in

CLiME are orthogonal. The two strategies can operate indepen-

dently or be integrated to enhance learning efficiency further. To

this end, we introduce the CLiSK-ME algorithm, detailed in Ap-

pendix A.1, which integrates both approaches to leverage their

complementary strengths.

4 Theoretical Analysis
This section presents the theoretical results of our algorithms,

which employ analytical techniques that differ from standard lin-

ear bandit methods. Proofs of the main theorems are provided in

Appendices A.3 and A.4, and detailed proofs of all lemmas and

theorems are included in our technical report [19].

4.1 Regret Analysis of CLiSK Algorithm
Following Zhang et al. [28] and Wang et al. [24], we assume 𝑏 (𝑡) =
𝑏𝑡 for some 𝑏 ∈ (0, 1). We start with Lemma 1, which bounds the

difference between the estimated and true rewards for each arm.

Lemma 1. Under Assumptions 1 and 2, for CLiSK, for any round
𝑡 ∈ [𝑇 ] and any arm 𝑎 ∈ A, with probability at least 1 − 𝛿 for some
𝛿 ∈ (0, 1), we have��𝒙⊤𝑎 𝜽𝑡 − 𝒙⊤𝑎 𝜽

∗�� ≤ 𝛼𝑡 ∥𝒙𝑎 ∥𝑴−1
𝑡
,

where 𝛼𝑡 =

√√
2 log ( 1

𝛿
) + 𝑑 log

(
1 +

𝑡+
(
1+

√
𝑑𝑅

)
𝑏𝑡

𝜆𝑑

)
+
√
𝜆.

Next, we examine the smoothed key term contexts and their

impact on exploring the feature space.

Lemma 2. For any round 𝑡 ∈ [𝑇 ], with the smoothed key term
contexts in Definition 1, CLiSK has the following lower bound on the

minimum eigenvalue of the matrix E[ ˜�̃�𝑘 ˜�̃�⊤𝑘 ] for any 𝑘 ∈ K𝑡 , i.e.,

𝜆min

(
E[ ˜�̃�𝑘 ˜�̃�⊤𝑘 ]

)
≥ 𝑐1

𝜌2

log |K | ≜ 𝜆K ,

where 𝑐1 ∈ (0, 1) is some constant.

Lemma 2 provides a lower bound on the minimum eigenvalue of

the expected outer product of the selected key term. Intuitively, this

implies that under smoothed contexts, the selected key terms exhibit

sufficient diversity in the feature space, ensuring that each query

contributes meaningful information about the user’s preferences.

Lemma 3. For CLiSK, with probability at least 1 − 𝛿 for some 𝛿 ∈
(0, 1), if 𝑡 ≥ 𝑇0 ≜ 8(1+

√
𝑑𝑅)2

𝑏𝜆K
log

(
𝑑
𝛿

)
, we have

𝜆min

©«
𝑡∑︁

𝑠=1

∑︁
𝑘∈K𝑠

˜�̃�𝑘 ˜�̃�
⊤
𝑘

ª®¬ ≥ 𝜆K𝑏𝑡
2

.

Lemma 3 establishes a lower bound on the minimum eigenvalue

of the Gram matrix that grows linearly with time 𝑡 . This guarantees

that CLiSK accumulates enough statistical information to effectively

estimate the user’s preference vector through ridge regression. Fol-

lowing these results, we bound ∥𝒙𝑎 ∥𝑴−1
𝑡

in Lemma 4 and derive a

high-probability regret upper bound for CLiSK in Theorem 1.

Lemma 4. For CLiSK, for any 𝑎 ∈ A, if 𝑡 ≥ 𝑇0 ≜ 8(1+
√
𝑑𝑅)2

𝑏𝜆K
log

(
𝑑
𝛿

)
,

with probability at least 1−𝛿 for some 𝛿 ∈ (0, 1), ∥𝒙𝑎 ∥𝑴−1
𝑡

≤
√︃

2

𝜆K𝑏𝑡
.

Theorem 1 (Regret of CLiSK). With probability at least 1 − 𝛿 for
some 𝛿 ∈ (0, 1), the regret upper bound of CLiSK satisfies

R(𝑇 ) ≤ 8(1 +
√
𝑑𝑅)2 log( |K |)
𝑐1𝜌

2𝑏
log

(
𝑑

𝛿

)
+ 4

√︄
2𝑐1𝜌

2𝑇

𝑏 log( |K |) ·

©«
√√√√√√
2 log

(
1

𝛿

)
+ 𝑑 log

©«1 +
𝑇 +

(
1 +

√
𝑑𝑅

)
𝑏𝑇

𝜆𝑑

ª®®¬ +
√
𝜆

ª®®®¬
= O(

√︁
𝑑𝑇 log(𝑇 ) + 𝑑),

where 𝑅 and 𝜌2 are constants in Definition 1.

4.2 Regret Analysis of CLiME Algorithm
We begin with Lemma 5, which closely parallels Lemma 1.

Lemma 5. Let 𝜽𝑡 be the estimated preference vector at round 𝑡 and
𝜽 ∗ be the true preference vector. Under Assumptions 1, 2 and 3, for
CLiME, at round 𝑡 , for any arm 𝑎 ∈ A, with probability at least 1− 𝛿
(𝛿 ∈ (0, 1)), we have��𝒙⊤𝑎 𝜽𝑡 − 𝒙⊤𝑎 𝜽

∗�� ≤ 𝛼𝑡 ∥𝒙𝑎 ∥𝑴−1
𝑡
,

where 𝛼𝑡 =

√︄
2 log ( 1

𝛿
) + 𝑑 log

(
1 + 𝑡+𝛼𝑑𝑡

𝜆𝑑𝑐2
0

)
+
√
𝜆, 𝛼 is an exploration

control factor in Algorithm 2, and 𝑐0 is a constant in Assumption 3.

Since conversations are initiated adaptively in CLiME, the num-

ber of conversations conducted up to each round 𝑡 is not determin-

istic. A key challenge to prove Lemma 5 is to bound this quantity.

Then, we present Lemma 6, which bounds ∥𝒙𝑎 ∥𝑴−1
𝑡
.
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Lemma 6. For CLiME, for any arm 𝑎 ∈ A, with probability at least

1− 𝛿 for some 𝛿 ∈ (0, 1), at round 𝑡 ≥ 2𝑃 , we have ∥𝒙𝑎 ∥𝑴−1
𝑡

≤
√︃

2

𝛼𝑡 ,
where 𝑃 is a fixed integer.

The proof of Lemma 6 relies on establishing a lower bound on the

minimum eigenvalue of 𝑴𝑡 , i.e., 𝜆min (𝑴𝑡 ) ≥ 𝛼𝑡 , which involves a

delicate analysis of covariance matrix eigenvalues. The condition

𝑡 ≥ 2𝑃 is introduced to generalize all three checking functions.

Building on this, we derive the following theorem for CLiME.

Theorem 2 (Regret of CLiME). With probability at least 1 − 𝛿 for
some 𝛿 ∈ (0, 1), the regret upper bound of CLiME satisfies

R(𝑇 ) ≤ 4

√︂
2𝑇

𝛼

©«
√√√
2 log ( 1

𝛿
) + 𝑑 log

(
1 + 𝑇 + 𝛼𝑑𝑇

𝜆𝑑𝑐2
0

)
+
√
𝜆
ª®¬ + 2𝑃

= O
(√︁
𝑑𝑇 log(𝑇 )

)
.

Remark 4. Note that Theorem 2 applies to all three uncertainty

checking functions discussed in CLiME algorithm, which under-

scores the generality of our methods.

CLiSK-ME combines the advantages of both smoothed key term

contexts and adaptive conversation techniques, ensuring efficient

exploration while adaptively adjusting conversation frequency

based on uncertainty. As a result, we derive the following corollary.

Corollary 1. With probability at least 1 − 𝛿 for some 𝛿 ∈ (0, 1), the
regret upper bound of CLiSK-ME satisfies R(𝑇 ) = O(

√︁
𝑑𝑇 log(𝑇 )).

4.3 Lower Bound for Conversational Bandits
We establish a regret lower bound for conversational bandits with

finite and time-varying arm sets. Our result is novel because thewell-

known lower bound Ω(
√
𝑑𝑇 ) by Chu et al. [6] does not consider

conversational information and thus cannot be directly applied to

our setting. Additionally, the existing lower bound for federated

conversational bandits [18] is also inapplicable, as it assumes a fixed
arm set. The detailed proof is given in Appendix A.5.

Theorem 3 (Regret lower bound). For any policy that chooses
at most one key term per time step, there exists an instance of the
conversational bandit problem such that the expected regret is at least
Ω(

√
𝑑𝑇 ). Furthermore, for any 𝑇 = 2

𝑚 with𝑚 ∈ [𝑑], the regret is at
least Ω(

√︁
𝑑𝑇 log(𝑇 )).

4.4 Discussion on Optimality
To the best of our knowledge, we are the first to propose algorithms

for conversational contextual bandits that achieve the optimal regret
bound of order Õ(

√
𝑑𝑇 ). We summarize the regret bounds of our

proposed algorithms and related algorithms in Table 1 and discuss

the theoretical improvements over existing methods.

The regret upper bound of LinUCB [1] is O(𝑑
√
𝑇 log𝑇 ), which

serves as a standard benchmark in contextual linear bandits. The

first algorithm for conversational bandits, ConUCB [28], offers the

same regret upper bound as LinUCB, indicating that it does not offer

a substantial theoretical improvement over the non-conversational

algorithms. Since then, improving regret through conversational

interactions has remained an open problem in the field. Under

Table 1: Comparison of theoretical regret bounds.

Algorithm Conversational Regret

LinUCB [1] ✗ O(𝑑
√
𝑇 log𝑇 )

ConUCB [28], ConLinUCB-MCR [24] ✓ O(𝑑
√
𝑇 log𝑇 )

ConLinUCB-BS [24] ✓ At least O(𝑑
√︁
𝑇 log𝑇 )*

CLiSK (Ours, Theorem 1) ✓ O(
√︁
𝑑𝑇 log𝑇 + 𝑑)

CLiME (Ours, Theorem 2) ✓ O(
√︁
𝑑𝑇 log𝑇 )

CLiSK-ME (Ours, Corollary 1) ✓ O(
√︁
𝑑𝑇 log𝑇 )

*
The original paper claims a regret of O(

√︁
𝑑𝑇 log𝑇 ) but its analysis is flawed.

the assumption that the key term set K spans R𝑑 , ConLinUCB-
BS [24] achieves a regret upper bound of O( 1√

𝜆B

√︁
𝑑𝑇 log𝑇 ), where

𝜆B ≔ 𝜆min

(
E𝑘∈unif(B)

[
�̃�𝑘 �̃�

⊤
𝑘

] )
andB is the barycentric spanner of

K . The authors assume 𝜆B is a constant, leading to a regret bound of

O(
√︁
𝑑𝑇 log𝑇 ). However, this assumption is incorrect as 𝜆B depends

on the dimension 𝑑 and is not a constant. Specifically, denoting

𝑿 ≔ E𝑘∈unif(B)
[
�̃�𝑘 �̃�

⊤
𝑘

]
and {𝜆𝑖 }𝑑𝑖=1 as its eigenvalues, we use the

fact that ∥�̃�𝑘 ∥ = 1 and obtain Tr (𝑿 ) = E𝑘∈unif(B)
[
Tr

(
�̃�𝑘 �̃�

⊤
𝑘

)]
= 1,

thus 𝜆B ≤
∑𝑑

𝑖=1 𝜆𝑖
𝑑

=
Tr (𝑿 )

𝑑
= 1

𝑑
. Consequently, by plugging

this result back into the regret expression, the regret bound of

ConLinUCB-BS cannot be better than O(𝑑
√︁
𝑇 log𝑇 ). These previ-

ous attempts underscore the significance of our work. In contrast,

with the smoothed key term context technique and with the adap-

tive conversation technique, our algorithms achieve a better regret

bound of O(
√︁
𝑑𝑇 log𝑇 + 𝑑) and O(

√︁
𝑑𝑇 log𝑇 ), respectively. These

improvements successfully match the lower bound (Theorem 3) up

to logarithmic factors in their dependence on the time horizon 𝑇 .

5 Evaluation
In this section, we evaluate the performance of our algorithms on

both synthetic and real-world datasets. All the experiments were

conducted on a machine equipped with a 3.70 GHz Intel Xeon

E5-1630 v4 CPU and 32GB RAM.

5.1 Experiment Setups
5.1.1 Datasets. Consistent with existing studies, we generate a

synthetic dataset and use three real-world datasets: MovieLens-

25M [12], Last.fm [4], and Yelp
1
.

For the synthetic dataset, we set the dimension 𝑑 = 50, the

number of users 𝑁 = 200, the number of arms |A| = 5, 000,

and the number of key terms |K | = 1, 000. We generate it fol-

lowing Zhang et al. [28]. First, for each key term 𝑘 ∈ K , we sample

a pseudo feature vector ¤𝒙𝑘 with each dimension drawn from a

uniform distributionU(−1, 1). For each arm 𝑖 ∈ A, we randomly

select an integer 𝑛𝑖 ∈ {1, 2, . . . , 5} and uniformly sample a subset

of key terms K𝑖 ⊂ K with |K𝑖 | = 𝑛𝑖 . The weight is defined as

𝑤𝑖,𝑘 = 1/𝑛𝑖 for each 𝑘 ∈ K𝑖 . For each arm 𝑖 , the feature vector

𝒙𝑖 is drawn from a multivariate Gaussian N(∑𝑗∈K𝑖
¤𝒙 𝑗/𝑛𝑖 , 𝑰 ). The

feature vector for each key term 𝑘 , denoted by �̃�𝑘 , is computed

as �̃�𝑘 =
∑
𝑖∈A

𝑤𝑖,𝑘∑
𝑗 ∈A 𝑤𝑗,𝑘

𝒙𝑖 . Finally, each user’s preference vector

1
https://www.yelp.com/dataset

https://www.yelp.com/dataset
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𝜽𝑢 ∈ R𝑑 is generated by sampling each dimension fromU(−1, 1)
and normalizing it to unit length.

For the real-world datasets, we regard movies/artists/businesses

as arms. To exclude unrepresentative or insufficiently informative

data (such as users who have not submitted any reviews or movies

with only a few reviews), we extract a subset of |A| = 5, 000 arms

with the highest number of user-assigned ratings/tags, and a subset

of 𝑁 = 200 users who have assigned the most ratings/tags. Key

terms are identified by using the associated movie genres, busi-

ness categories, or tag IDs in the MovieLens, Yelp, and Last.fm

datasets, respectively. For example, each movie is associated with a

list of genres, such as “action” or “comedy”, and each business (e.g.,

restaurant) is categorized by terms such as “Mexican” or “Burgers”.

Using the data extracted above, we create a feedback matrix 𝑹 of

size 𝑁 × |A|, where each element 𝑹𝑖, 𝑗 represents the user 𝑖’s feed-
back to arm 𝑗 . We assume that the user’s feedback is binary. For the

MovieLens and Yelp datasets, a user’s feedback for a movie/business

is 1 if the user’s rating is higher than 3; otherwise, the feedback is 0.

For the Last.fm dataset, a user’s feedback for an artist is 1 if the user

assigns a tag to the artist. Next, we generate the feature vectors for

arms 𝒙𝑖 and the preference vectors for users 𝜽𝑢 . Following existing
works, we decompose the feedback matrix 𝑹 using truncated Sin-

gular Value Decomposition (SVD) as 𝑹 ≈ 𝚯𝑺𝑨⊤
, where 𝚯 ∈ R𝑁×𝑑

and 𝑨 ∈ R |A |×𝑑
contain the top-𝑑 left and right singular vectors,

and 𝑺 ∈ R𝑑×𝑑 is a diagonal matrix with the corresponding top-𝑑

singular values. Then each 𝜽⊤𝑢 corresponds to the 𝑢-th row of 𝚯𝑺
for all 𝑢 ∈ [𝑁 ], and each 𝒙⊤

𝑖
corresponds to the 𝑖-th row of 𝑨 for

all 𝑖 ∈ A. The feature vectors for key terms are generated similarly

to those in the synthetic dataset, by assigning equal weights for all

key terms corresponding to each arm.

5.1.2 Baseline Algorithms. We select the following baseline algo-

rithms from existing studies: (1) LinUCB [1]: The standard linear

contextual bandit algorithm, which does not consider the conversa-

tional setting and only has arm-level feedback. (2) Arm-Con [5]: An

extension of LinUCB that initiates conversations directly from arm

sets. (3) ConUCB [28]: The first algorithm proposed for conversa-

tional contextual bandits that queries key termswhen conversations

are allowed. (4) ConLinUCB [24]: It consists of three algorithms

with different key term selection strategies. ConLinUCB-BS com-

putes the barycentric spanner of key terms as an exploration basis.

ConLinUCB-MCR selects key terms with the largest confidence

radius. ConLinUCB-UCB chooses key terms with the largest upper

confidence bounds. Since ConLinUCB-BS and ConLinUCB-MCR

demonstrate superior performance, we focus our comparisons on

these two variants.

5.2 Evaluation Results
5.2.1 Cumulative Regret. First, we compare our algorithms against

all baseline algorithms in terms of cumulative regret over𝑇 = 6, 000

rounds. In each round, we randomly select |A| = 200 arms from

each dataset. For the baseline algorithms, we adopt the conver-

sation frequency function 𝑏 (𝑡) = 5⌊log(𝑇 )⌋, as specified in their

original papers. We present the results for all three checking func-

tions “Continuous”, “Fixed Interval”, and "Exponential Phase”, for

both CLiME and CLiSK-ME. For the “Fixed Interval” function,

UncertaintyChecking is triggered every 100 rounds, whereas for

the "Exponential Phase” it is triggered whenever 𝑡 is a power of

2. For CLiSK, both the perturbation level 𝜌2 and the truncation

limit 𝑅 are set to 1. The results are averaged over 20 trials, and the

resulting confidence intervals are included in the figures. Under

the “Continuous Checking” function, as shown in Figure 2, our

three algorithms consistently achieve the best performance (low-

est regret) with an improvement of over 14.6% compared to the

best baseline. Similar performance trends hold under the other two

checking functions, as illustrated in Figures 3 and 4. These results

confirm the validity of our theoretical advancements.
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Figure 2: Comparison of cumulative regret where CLiME and
CLiSK-ME use the “Continuous Checking” function.
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Figure 3: Comparison of cumulative regret where CLiME and
CLiSK-ME use the “Fixed Interval” function.
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Figure 4: Comparison of cumulative regret where CLiME and
CLiSK-ME use the “Exponential Phase” function.

5.2.2 Precision of Estimated Preference Vectors. To assess how ac-

curately each algorithm learns the user’s preferences over time,

we measure the average distance between the estimated vector

𝜽𝑡 and the ground truth 𝜽 ∗ for all algorithms over 1000 rounds.

We present the results for the “Continuous Checking” function of

CLiME and CLiSK-ME, with results for other functions provided

in Appendix A.2. As shown in Figure 5, all algorithms exhibit a de-

creasing estimation error over time. However, our three algorithms

consistently achieve the lowest estimation error in all datasets. This

is because they leverage our novel conversational mechanism to

gather more informative feedback, significantly accelerating the

reduction of estimation error. As a result, our algorithms estimate

the user’s preference vector more quickly and accurately than the

baseline methods.

5.2.3 Number of Conversations. Next, we evaluate the number of

conversations initiated by CLiME. Since CLiSK and all baseline

algorithms initiate conversations based on a deterministic function

𝑏 (𝑡), their results are consistent across all datasets. Therefore, we
plots the scenarios for 𝑏 (𝑡) = 5⌊log(𝑡)⌋ and 𝑏 (𝑡) = ⌊𝑡/50⌋ as in
prior studies. It is also important to note that although some exist-

ing studies employ a logarithmic 𝑏 (𝑡) in their experiments, their

theoretical results require a linear 𝑏 (𝑡) to hold. In contrast to the

baselines, our algorithm CLiME adaptively initiates conversations

depending on the current uncertainty of user preferences, providing

greater flexibility and enhancing the user experience. We plot the

number of conversations initiated by CLiME with different uncer-

tainty checking functions across 4 datasets. As shown in Figure 6,

the number of conversations increases only logarithmically with

the number of rounds.

5.2.4 Running Time. To evaluate the computational efficiency, we

compare the running times of our algorithms with other conver-

sational methods using the MovieLens dataset across 𝑇 = 6, 000

rounds. We separately report the total running times, as well as the
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Figure 5: Comparison of estimation precision where CLiME
and CLiSK-ME use the “Continuous Checking” function.
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Figure 6: Number of conversations initiated by deterministic
approaches and our adaptive approach CLiME with different
uncertainty checking functions.

times for picking arms and key terms. The results are averaged over

20 runs. As shown in Table 2, our three algorithms show substan-

tial improvements compared to ConUCB and exhibit performance

comparable to the ConLinUCB family of algorithms. For CLiME

and CLiSK-ME, while matrix operations and eigenvalue compu-

tation introduce slight overhead, the algorithms remain efficient,

particularly with interval and exponential checking strategies.
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Table 2: Comparison of Running Times for Conversational
Bandit Algorithms Using the Movielens dataset.

Algorithms Running Time (s)

Key terms Arms Total

CLiSK-ME

Continuous 1.169 3.443 4.651

Interval 0.332 3.361 3.723

Exponential 0.352 3.344 3.724

CLiME

Continuous 0.803 3.371 4.205

Interval 0.021 3.341 3.390

Exponential 0.014 3.334 3.375

CLiSK 0.490 3.339 3.857

ConUCB 0.011 8.362 8.403

ConLinUCB

UCB 0.009 3.354 3.392

MCR 0.007 3.337 3.371

BS 0.006 3.334 3.366

5.2.5 Ablation Study. We conduct an ablation study evaluating

the effect of the truncation limit 𝑅. Specifically, we analyze how

different values of 𝑅 affect algorithm performance by comparing

the cumulative regrets at round 6,000 across all datasets, as shown

in Figure 7. The results indicate that increasing 𝑅 from 0.1 to 3.1

leads to a decrease in regret, with performance stabilizing when

𝑅 > 2. For the perturbation level 𝜌2, we observe that varying it

from 0.1 to 3 results in no significant change in regret. Therefore,

we do not include a separate figure for this parameter.

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1
Truncation Limit R
(a) Synthetic dataset

0.00

0.25

0.50

0.75

1.00

Re
gr

et

1e3

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1
Truncation Limit R

(b) MovieLens dataset

0.00

0.25

0.50

0.75

1.00

1.25

Re
gr

et

1e3

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1
Truncation Limit R

(c) Yelp dataset

0.0

0.5

1.0

1.5

Re
gr

et

1e3

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9 3.1
Truncation Limit R
(d) Last.fm dataset

0.0

0.5

1.0

1.5

2.0

2.5

Re
gr

et

1e3

Figure 7: Effect of the truncation limit 𝑅.

6 Related Work
Our research is closely aligned with studies on conversational con-

textual bandits, particularly focusing on the problem of key term

selection within this framework.

Contextual bandits serve as a fundamental framework for online

sequential decision-making problems, covering applications like

recommender systems [6, 14] and computer networking [10]. Con-

textual bandit algorithms aim to maximize the cumulative reward

in the long run while making the trade-off between exploitation

and exploration. Prominent algorithms include LinUCB [1] and

Thompson Sampling (TS) [2].

To address the cold start problem, conversational recommender

systems (CRSs) [5, 23, 29] are proposed to engage users in con-

versations to learn their preferences more effectively. Zhang et al.

[28] extend the standard contextual bandits to model conversa-

tional interactions, and the pioneering ConUCB algorithm with a

regret upper boundO(𝑑
√
𝑇 log𝑇 ). Following the foundational work

of Zhang et al. [28], a branch of research has advanced this field. Li

et al. [15] design the first TS-type algorithm ConTS. Wu et al. [25]

propose a clustering-based algorithm to automatically generate key

terms. Zuo et al. [31] propose Hier-UCB and Hier-LinUCB, leverag-

ing the hierarchical structures between key terms and items. Xie

et al. [26] introduce a comparison-based conversation framework

and propose RelativeConUCB. Zhao et al. [30] integrate knowl-

edge graphs into conversational bandits. Li et al. [18] investigate

federated conversational bandits. Dai et al. [7, 8] study the conver-

sational bandits with misspecified/corrupted models. To enhance

learning efficiency, Dai et al. [9] consider multi-agent LLM response

identification with a fixed arm set. Wang et al. [24] and Yang et al.

[27] investigate the key term selection strategies and propose the

ConLinUCB-BS and ConDuel algorithms, respectively. Both algo-

rithms uniformly select key terms from the barycentric spanner of

the key term set.

The smoothed analysis for contextual bandits has been widely

studied recently [13, 16, 17, 20–22]. The smoothed setting bridges

i.i.d. distributional and adversarial contexts. Kannan et al. [13] first

introduce the smoothed analysis for linear contextual bandits, show-

ing that small perturbations can lead to sublinear regret with a

greedy algorithm. Raghavan et al. [21] and Raghavan et al. [20]

show that the greedy algorithm achieves the best possible Bayesian

regret in this setting. Sivakumar et al. [22] extend the smoothed

analysis to structured linear bandits. Li et al. [17] investigate the role

of the expected value of information (EVOI) in preference elicitation

under smoothed key term contexts. Li et al. [16] demonstrate that

the smoothed analysis framework offers a more practical setting for

addressing the clustering of bandits problem. Building on these in-

sights, we apply the smoothed key term contexts in conversational

contextual bandits.

7 Conclusion
In this paper, we studied key term selection strategies for conversa-

tional contextual bandits and introduced three novel algorithms:

CLiSK, CLiME, and CLiSK-ME. CLiSK leverages smoothed key term

contexts to enhance exploration, while CLiME adaptively initiates

conversations with key terms that minimize uncertainty in the

feature space. CLiSK-ME integrates both techniques, further im-

proving learning efficiency. We proved that all three algorithms

achieve tighter regret bounds than prior studies. Extensive evalua-

tions showed that our algorithms outperform other conversational

bandit algorithms.
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A Appendix
A.1 CLiSK-ME Algorithm
In this section, we present the details of the CLiSK-ME algorithm

(Algorithm 3), which integrates the smoothed key term contexts

and the adaptive conversation technique.

Algorithm 3: CLiSK-ME

Input: A, K , 𝑏 (𝑡), 𝜆, {𝛼𝑡 }𝑡>0
Initialization: 𝑴1 = 𝜆𝑰𝑑 , 𝒃1 = 0𝑑

1 for 𝑡 = 1, . . . ,𝑇 do
2 if UncertaintyChecking(𝑡) then
3 Diagonalize 𝑴𝑡 =

∑𝑑
𝑖=1 𝜆𝒗𝑖𝒗𝑖𝒗𝑖

⊤

4 foreach 𝜆𝒗𝑖 < 𝛼𝑡 do
5 𝑛𝒗𝑖 = ⌈(𝛼𝑡 − 𝜆𝒗𝑖 )/𝑐20⌉
6 for 𝑛𝒗𝑖 > 0 do
7 Smooth the key term contexts to get

{ ˜�̃�𝑘 }𝑘∈K
8 𝑘 = argmax𝑘∈K | ˜�̃�⊤

𝑘
𝒗𝑖 |

9 Receive the key term-level feedback 𝑟𝑘,𝑡

10 𝑴𝑡 = 𝑴𝑡 + ˜�̃�𝑘,𝑡 ˜�̃�
⊤
𝑘,𝑡

11 𝒃𝑡 = 𝒃𝑡 + 𝑟𝑘,𝑡 ˜�̃�𝑘,𝑡
12 𝑛𝒗𝑖 = 𝑛𝒗𝑖 − 1

13 𝜽𝑡 = 𝑴−1
𝑡 𝒃𝑡

14 Select 𝑎𝑡 = argmax𝑎∈A𝑡
𝒙⊤𝑎 𝜽𝑡 + 𝛼𝑡 ∥𝒙𝑎 ∥𝑀−1

𝑡

15 Ask the user’s preference for arm 𝑎𝑡

16 Observe the reward 𝑟𝑎𝑡 ,𝑡

17 𝑴𝑡+1 = 𝑴𝑡 + 𝒙𝑎𝑡 𝒙
⊤
𝑎𝑡

18 𝒃𝑡+1 = 𝒃𝑡 + 𝑟𝑎𝑡 ,𝑡𝒙𝑎𝑡

https://arxiv.org/abs/2501.01849
https://arxiv.org/abs/2505.21393
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A.2 Supplementary Experiment Results
We compare the estimation precision for the “Fixed Interval” and

“Exponential Phase” uncertainty checking functions in Figures 8

and 9. In the former, UncertaintyChecking is triggered every 100

rounds while in the latter it is triggered when 𝑡 is a power of 2.

Combined with the results in Section 5.2, these experiments show

that our algorithms consistently outperform the baselines.
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Figure 8: Comparison of estimation precision where CLiME
and CLiSK-ME use the “Fixed Interval” function.

100 300 500 700 900 1100
Round

(a) Synthetic dataset

0.00

0.05

0.10

0.15

0.20

kµ̂
t
¡
µ
¤
k 2

100 300 500 700 900 1100
Round

(b) MovieLens dataset

0.0

0.1

0.2

0.3

kµ̂
t
¡
µ
¤
k 2

100 300 500 700 900 1100
Round

(c) Yelp dataset

0.00

0.05

0.10

0.15

0.20

kµ̂
t
¡
µ
¤
k 2

100 300 500 700 900 1100
Round

(d) Last.fm dataset

0.0

0.1

0.2

0.3

kµ̂
t
¡
µ
¤
k 2

CLiSK-ME
CLiME

CLiSK
ConUCB

LinUCB
Arm-Con

ConLinUCB-MCR
ConLinUCB-BS

Figure 9: Comparison of estimation precision where CLiME
and CLiSK-ME use the “Exponential Phase” function.

A.3 Proof of Theorem 1
[Proof of Theorem 1. ] Denote the instantaneous regret at round

𝑡 by reg𝑡 . We first decompose it as follows:

reg𝑡 = (𝒙⊤
𝑎∗𝑡
𝜽 ∗ + 𝜂𝑡 ) − (𝒙⊤𝑎𝑡 𝜽

∗ + 𝜂𝑡 )

=𝒙⊤
𝑎∗𝑡
(𝜽 ∗ − 𝜽𝑡 ) + (𝒙⊤

𝑎∗𝑡
𝜽𝑡 + 𝛼𝑡 ∥𝒙𝑎∗𝑡 ∥𝑴−1

𝑡
) − (𝒙⊤𝑎𝑡 𝜽𝑡 + 𝛼𝑡 ∥𝒙𝑎𝑡 ∥𝑴−1

𝑡
)

+ 𝒙⊤𝑎𝑡 (𝜽𝑡 − 𝜽 ∗) − 𝛼𝑡 ∥𝒙𝑎∗𝑡 ∥𝑴−1
𝑡

+ 𝛼𝑡 ∥𝒙𝑎𝑡 ∥𝑴−1
𝑡

≤𝒙⊤
𝑎∗𝑡
(𝜽 ∗ − 𝜽𝑡 ) + 𝒙⊤𝑎𝑡 (𝜽𝑡 − 𝜽 ∗) − 𝛼𝑡 ∥𝒙𝑎∗𝑡 ∥𝑴−1

𝑡
+ 𝛼𝑡 ∥𝒙𝑎𝑡 ∥𝑴−1

𝑡
(1)

≤𝛼𝑡 ∥𝒙𝑎∗𝑡 ∥𝑴−1
𝑡

+ 𝛼𝑡 ∥𝒙𝑎𝑡 ∥𝑴−1
𝑡

− 𝛼𝑡 ∥𝒙𝑎∗𝑡 ∥𝑴−1
𝑡

+ 𝛼𝑡 ∥𝒙𝑎𝑡 ∥𝑴−1
𝑡

(2)

≤2𝛼𝑡 ∥𝒙𝑎𝑡 ∥𝑴−1
𝑡
,

where Equation (1) follows from the UCB strategy for arm selection,

and Equation (2) follows from Lemma 1. Next, we have

R(𝑇 ) =
𝑇0∑︁
𝑡=1

reg𝑡 +
𝑇∑︁

𝑡=𝑇0+1
reg𝑡

≤ 𝑇0 +
𝑇∑︁

𝑡=𝑇0+1
2𝛼𝑡 ∥𝒙𝑎𝑡 ∥𝑴−1

𝑡
(3)

≤ 𝑇0 + 2

𝑇∑︁
𝑡=𝑇0+1

𝛼𝑡

√︄
2

𝜆K𝑏𝑡
(4)

≤ 𝑇0 + 4𝛼𝑇

√︄
2𝑇

𝜆K𝑏
(5)

where Equation (3) is because the instantaneous regret reg𝑡 ≤ 1 by

Assumption 1, Equation (4) follows from Lemma 4, and Equation (5)

is because 𝛼𝑡 is non-decreasing and
∑𝑇
𝑡=1

1√
𝑡
≤ 2

√
𝑇 .

Recall 𝑇0 ≜ 8(1+
√
𝑑𝑅)2

𝑏𝜆K
log

(
𝑑
𝛿

)
in Lemma 3 and 𝛼𝑡 in Lemma 1.

Plugging them into Equation (5), we obtain the regret bound. □

A.4 Proof of Theorem 2
[Proof of Theorem 2. ] With the same decomposition as in the

proof of Theorem 1, we have

R(𝑇 ) =
2𝑃∑︁
𝑡=1

reg𝑡 +
𝑇∑︁

𝑡=2𝑃+1
reg𝑡 ≤ 2𝑃 + 2

𝑇∑︁
𝑡=2𝑃+1

𝛼𝑡 ∥𝒙𝑎𝑡 ∥𝑴−1
𝑡

≤ 2𝑃 + 4𝛼𝑇

√︂
2𝑇

𝛼
. (6)

= 2𝑃 + 4

√︂
2𝑇

𝛼

©«
√√√
2 log

(
1

𝛿

)
+ 𝑑 log

(
1 + 𝑇 + 𝛼𝑑𝑇

𝜆𝑑𝑐2
0

)
+
√
𝜆
ª®¬, (7)

where Equation (6) follow from Lemma 5 and analogous steps in

Theorem 1. Note that 𝑃 > 1 is a given constant for the “Fixed

Interval Checking” function. Plugging 𝛼𝑇 into the inequality, we

can obtain the result and conclude that R(𝑇 ) = O(
√︁
𝑑𝑇 log(𝑇 )) . □

A.5 Proof of Theorem 3
Since any algorithms for conversational bandits must select both

arms and key terms, we model a policy 𝜋 as a tuple consisting of

two components 𝜋 = (𝜋arm, 𝜋key), where 𝜋arm selects arms and

𝜋key selects key terms. We assume that at each time step, the policy

can select at most one key term; otherwise, the number of key terms

could exceed the number of arms, which is impractical. LetH𝑡 =

{𝑎1, 𝑥1, 𝑘1, 𝑥1, . . . , 𝑎𝑡 , 𝑥𝑡 , 𝑘𝑡 , 𝑥𝑡 } denote the history of interactions
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between the policy and the environment up to time 𝑡 . We note that

the presence of key terms at every time step inH𝑡 is without loss

of generality because we allow 𝑘𝑡 to be empty if no conversation

is initiated at round 𝑡 . The noise terms associated with both arm-

level and key term-level feedback, denoted by 𝜂𝑡 and 𝜂𝑡 , follow the

standard Gaussian distribution N(0, 1). We also denote the feature

vectors of selected arm and key term as random variables 𝑨𝑡 ,𝑲𝑡 ∈
R𝑑 , and the arm-level and key term-level rewards 𝑋𝑡 = ⟨𝑨𝑡 , 𝜽 ⟩ +𝜂𝑡
and 𝑋𝑡 = ⟨𝑲𝑡 , 𝜽 ⟩ + 𝜂𝑡 , follow N(⟨𝑨𝑡 , 𝜽 ⟩ , 1) and N(⟨𝑲𝑡 , 𝜽 ⟩ , 1),
respectively. We denote by P𝜽 the probability measure induced by

the environment 𝜽 and policy 𝜋 , and by E𝜽 the expectation under

P𝜽 . With these definitions, we present the following lemma.

Lemma 7. Let 𝐷 (𝑃 ∥ 𝑄) denote the KL divergence between distri-
butions 𝑃 and 𝑄 , and let 𝜽 , 𝜽 ′ be two environments, then we have

𝐷 (P𝜽 ∥ P𝜽 ′ ) = 1

2

𝑇∑︁
𝑡=1

(
E𝜽

[〈
𝑨𝑡 , 𝜽 − 𝜽 ′

〉
2

]
+ E𝜽

[〈
𝑲𝑡 , 𝜽 − 𝜽 ′

〉
2

] )
.

Next, we present a lower bound for conversational bandits but

without imposing the constraint that the number of arms is 𝐾 .

Lemma 8. Let the arm set and the key term set A = K = [−1, 1]𝑑

and Θ =

{
±
√︃

1

𝑇

}𝑑
, then for any policy, there exists an environ-

ment 𝜽 ∈ Θ such that the expected regret satisfies: E𝜽 [𝑅(𝑇 )] ≥
exp(−4)

4
𝑑
√
𝑇 .

Proof. For any 𝑖 ∈ [𝑑] and 𝜽 ∈ Θ, define E𝜽 ,𝑖 as the event that
the sign of the 𝑖-th coordinate of at least half of {𝑨𝑡 }𝑇𝑡=1 does not
agree with 𝜽 : E𝜽 ,𝑖 =

{∑𝑇
𝑡=1 I{sign(𝑨𝑡𝑖 ) ≠ sign(𝜽𝑖 )} ≥ 𝑇

2

}
.

Let 𝑝𝜽 ,𝑖 = P𝜽
[
E𝜽 ,𝑖

]
and 𝜽 ′ = (𝜽1, . . . , 𝜽𝑖−1,−𝜽𝑖 , 𝜽𝑖+1, . . . , 𝜽𝑑 )⊤,

i.e., 𝜽 ′ is the same as 𝜽 except that the 𝑖-th coordinate is negated. It

is easy to verify that E𝑐
𝜽 ,𝑖 = E𝜽 ′,𝑖 . Thus, applying Lemmas 7 and 9,

𝑝𝜽 ,𝑖 + 𝑝𝜽 ′,𝑖 ≥
1

2

exp(𝐷 (P𝜽 ∥ P𝜽 ′ ))

=
1

2

exp

(
−1

2

𝑇∑︁
𝑡=1

(
E𝜽

[〈
𝑨𝑡 , 𝜽 − 𝜽 ′

〉
2

]
+ E𝜽

[〈
𝑲𝑡 , 𝜽 − 𝜽 ′

〉
2

] ))
=
1

2

exp(−4),

where the last equality follows from a straightforward calculation

showing that ⟨𝑨𝑡 , 𝜽 − 𝜽 ′⟩ = ⟨𝑨𝑡 , 𝜽 − 𝜽 ′⟩ = 4/𝑇 .
Since |Θ| = 2

𝑑
, we have∑︁

𝜽 ∈Θ

1

|Θ|

𝑑∑︁
𝑖=1

𝑝𝜽 ,𝑖 =
1

|Θ|

𝑑∑︁
𝑖=1

∑︁
𝜽 ∈Θ

𝑝𝜽 ,𝑖 =
𝑑

4

exp(−4).

This implies the existence of some 𝜽 ∗ ∈ Θ such that

𝑑∑︁
𝑖=1

𝑝𝜽 ∗,𝑖 ≥
𝑑

4

exp(−4) . (8)

Choosing this 𝜽 ∗ and defining the optimal arm 𝒂∗ as:

𝒂∗ = argmax

𝒂∈A

〈
𝒂, 𝜽 ∗

〉
= argmax

𝒂∈A

𝑑∑︁
𝑖=1

𝒂∗𝑖 𝜽
∗
𝑖 .

It is easy to verify that to maximize

∑𝑑
𝑖=1 𝒂

∗
𝑖
𝜽 ∗
𝑖
, we must have 𝑎∗

𝑖
=

sign(𝜽 ∗
𝑖
) for all 𝑖 ∈ [𝑑]. Therefore, the expected regret is at least

E𝜽 ∗ [𝑅(𝑇 )] = E𝜽 ∗

[
𝑇∑︁
𝑡=1

〈
𝒂∗ −𝑨𝑡 , 𝜽

∗〉]

= E𝜽 ∗

[
𝑇∑︁
𝑡=1

𝑑∑︁
𝑖=1

(𝒂∗𝑖 −𝑨𝑡𝑖 )𝜽 ∗𝑖

]
= E𝜽 ∗

[
𝑇∑︁
𝑡=1

𝑑∑︁
𝑖=1

(sign(𝜽 ∗𝑖 ) −𝑨𝑡𝑖 )𝜽 ∗𝑖

]
= E𝜽 ∗

[
𝑇∑︁
𝑡=1

𝑑∑︁
𝑖=1

2I
{
sign(𝑨𝑡𝑖 ) ≠ sign(𝜽 ∗𝑖 )

}√︂ 1

𝑇

]
= 2

√︂
1

𝑇

𝑑∑︁
𝑖=1

E𝜽 ∗

[
𝑇∑︁
𝑡=1

I
{
sign(𝑨𝑡𝑖 ) ≠ sign(𝜽 ∗𝑖 )

}]
≥
√
𝑇

𝑑∑︁
𝑖=1

P𝜽 ∗

[
𝑇∑︁
𝑡=1

I
{
sign(𝑨𝑡𝑖 ) ≠ sign(𝜽 ∗𝑖 )

}
≥ 𝑇 /2

]
(9)

=
√
𝑇

𝑑∑︁
𝑖=1

𝑝𝜽 ∗,𝑖 ≥
exp(−4)

4

𝑑
√
𝑇,

where Equation (9) uses Markov’s inequality, and the last inequality

follows from Equation (8). □

Proof of Theorem 3. Suppose we have 𝛽 = 𝑑
𝑚 smaller problem

instances 𝐼1 .𝐼2, . . . , 𝐼𝛽 , each corresponding to an 𝑚-dimensional,

𝐾-armed bandit instance with a horizon of 𝑇 /𝛽 and we assume

they have preference vectors 𝜽1, . . . , 𝜽𝛽 ∈ R𝑚 , respectively. We

denote the arm set for instance 𝐼 𝑗 as A𝐼 𝑗 ⊂ R𝑚 , and the regret

incurred by instance 𝐼 under policy 𝜋 as 𝑅𝜋
𝐼
(𝑇 ) . Next, we construct

a 𝑑-dimensional instance 𝐼 = (𝐼1, 𝐼2, . . . , 𝐼𝛽 ) by leting the unknown

preference vector for instance 𝐼 be 𝜽 = (𝜽⊤
1
, . . . , 𝜽⊤

𝛽
)⊤, and dividing

the time horizon 𝑇 into 𝛽 consecutive periods, each of length 𝑇 /𝛽 .
For each time step 𝑡 ∈ [𝑇 ], the feature vectors of arms A𝑡 are

constructed from instance 𝐼 𝑗 , where 𝑗 = ⌈𝑡𝛽/𝑇 ⌉. Specifically, A𝑡 ={
(0⊤, . . . , 𝒙⊤, . . . , 0⊤)⊤

}
𝒙∈A𝐼 𝑗 , where the non-zero entry is located

at the 𝑗-th block. This means that at time 𝑡 , the learner can only

get information about the 𝑗-th block of the preference vector 𝜽 .
Therefore for any policy 𝜋 , there exists policies 𝜋1, . . . , 𝜋𝛽 such that

𝑅𝜋
𝐼
(𝑇 ) =

∑𝛽

𝑗=1
𝑅
𝜋 𝑗

𝐼 𝑗
(𝑇
𝛽
). Applying Lemma 8, we can always find

instances 𝐼1, 𝐼2, . . . , 𝐼𝛽 such that

𝑅𝜋
𝐼
(𝑇 ) =

𝛽∑︁
𝑗=1

𝑅
𝜋 𝑗

𝐼 𝑗
(𝑇
𝛽
) ≥

𝛽∑︁
𝑗=1

Ω

(
𝑚

√︄
𝑇

𝛽

)
= Ω

(
𝑚

√︁
𝑇𝛽

)
= Ω

(
𝑚

√︂
𝑇
𝑑

𝑚

)
= Ω

(√
𝑑𝑇𝑚

)
= Ω

(√︁
𝑑𝑇 log(𝑇 )

)
. □

A.6 Technical Inequalities
Lemma 9 (Bretagnolle and Huber [3]). Let 𝑃 and 𝑄 be probability
measures on the same measurable space (Ω, F ), and let 𝐴 ∈ F be an
arbitrary event. Then,

𝑃 (𝐴) +𝑄 (𝐴𝑐 ) ≥ 1

2

exp(−𝐷 (𝑃 ∥ 𝑄)),

where 𝐷 (𝑃 ∥ 𝑄) =
∫
Ω log

(
d𝑃
d𝑄

)
d𝑃 = E𝑃

[
log

d𝑃
d𝑄

]
is the KL diver-

gence between 𝑃 and 𝑄 . 𝐴𝑐 = Ω \𝐴 is the complement of 𝐴.
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